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Abstract

We provide evidence of a powerful barrier to social learning: people are much less
sensitive to information others discover compared to equally-relevant information
they discover themselves. In a series of incentivized lab experiments, we ask par-
ticipants to guess the color composition of balls in an urn after drawing balls with
replacement. Participants’ guesses are substantially less sensitive to draws made
by another player compared to draws made themselves. This result holds when
others’ signals must be learned through discussion, when they are perfectly com-
municated by the experimenter, and even when participants see their teammate
drawing balls from the urn with their own eyes. We find a crucial role for taking
some action to generate one’s ‘own’ information, and rule out distrust, confu-
sion, errors in probabilistic thinking, up-front inattention and imperfect recall as
channels.
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1 Introduction

We learn new information in two main ways: through our own personal efforts and
experiences or by acquiring information from others. For example, we may try out
a new restaurant, experiment with a novel technology, or track the performance of
our own investments. But we also have access to a vast trove of data that can be
accessed through conversations with others, observing their outcomes, or reading about
their experiences. Efficient learning requires us to correctly aggregate information from

these different sources.

This paper tests the standard assumption in economics that equivalent pieces of
information are weighed equally regardless of their source. Our three pre-registered
experiments each involve a simple statistical learning task, in which participants make
incentivized guesses of the fraction of red balls in an urn. To inform their guesses, they
have access to noisy, independent signals. The signals are drawn either themselves or
by another participant, with both opportunity and incentives to learn others’ signals.
If social learning is frictionless, we would expect participants’ guesses to be equally

sensitive to signals they generate themselves and signals drawn by their partners.

In the first experiment, we recruit 500 adults at the Behavioral Development Lab in
Chennai, India. Participants play five rounds of the task with different treatments in
randomized order. In a control condition, participants generate all signals themselves,
i.e., they draw balls from the urn with replacement by themselves. In the treatment
conditions, some of the signals are drawn by the participant themselves, while others
are drawn by a randomly matched partner. The participant then has a chance to learn
their partner’s draws in different ways. In some treatments, participants can learn the
signals via discussion with their partner, who has an incentive to share information.! In
other treatments, the experimenter directly informs participants about their partner’s

signals, thus shutting down any communication frictions between participants.

Our three empirical approaches—non-parametric, reduced-form, and structural—
impose different assumptions but yield similar results. We focus here on the reduced-
form approach, which simply asks how much the average guess changes in response to an
additional red (as opposed to white) draw—we call this the “sensitivity” to information

or, alternatively, the “weight” placed on signals.

'In these discussion rounds, participants were also asked to make a joint guess, such that in addition
to learning each other’s signals, participants could also jointly deliberate.



Participants’ guesses are substantially less sensitive to their partner’s draws com-
pared to their own draws. When participants have a chance to learn their partner’s
draws through a face-to-face discussion, subsequent guesses are 54% less sensitive to
their partner’s signals than to their own (p < 0.01).> The lower sensitivity to others’
information is not driven by a lack of communication: when participants are addi-
tionally perfectly informed of their partner’s draws by the experimenter—ensuring the
relevant information is shared—they discount the information by a nearly identical 46%
(p = 0.02). When informed of the partner’s draws by the experimenter but without the
aid of joint deliberation, the results are even starker: participants are 87% (p < 0.01)
less sensitive to their partner’s information. Consequently, signals that participants’
partners gather are worth between 37% and 85% less—in terms of payoffs from more

accurate guessing—than signals they gather themselves.

In a second experiment with 292 adults in the same setting, we test additional treat-
ment variations to evaluate mechanisms. Our most striking finding is that participants
underweight their partner’s information by 41% relative to their own even when they
sit beside their partner and can observe them drawing balls from the urn with their
own eyes (p = 0.04). This result narrows the list of potential mechanisms. Specifically,
it eliminates or diminishes any role for (i) distrust of the information communicated
by the partner and/or experimenter, since the information is directly observed with
one’s own eyes; and (ii) the mode of presentation of the information, including both its
visual salience and whether the information is learned draw-by-draw or communicated
in summary form. Moreover, randomly increasing incentives for accuracy by 50% does

not increase sensitivity to others’ information.

The third experiment evaluates the external validity of our findings in a higher-
literacy population while further exploring mechanisms. In a simpler between-subjects
experiment with 4,489 participants from the UK and US on the Prolific platform, we
randomize the order of learning one’s own signals versus a partner’s signals. Again,
participants are less sensitive to others’ information compared to their own, by 17%

(p < 0.01), despite it being perfectly communicated to them.> Presenting own and

2This comparison is not confounded by the order in which participants learn their own versus others’
information, as described in detail in Section 4.

3The magnitude of discounting of others’ information is significantly lower in the online experiment
than in the lab experiments. This difference could be because the online experiment generates less of
a sense of playing with another person or of truly drawing the signals oneself. Indeed, participants are
often less sensitive to treatments in online experiments (Gupta et al., 2021). Differences in the study
populations between India and the US/UK may also contribute to the difference.



others’ signals using visually identical animations does not reduce underweighting, nor
does increasing the stakes of the experiment or reducing any sense of competition by

barring the partner from making any guess.

We interpret these findings as evidence of an ownership effect. Existing work has
shown that people treat goods they own as more valuable (Kahneman et al., 1991) and
pay more attention to information about these goods (Hartzmark et al., 2021). We
show that this notion may also extend to a sense of ownership over information itself.
But what determines whether people treat information as ‘theirs’ and therefore more
influential? In our third experiment, we find a critical role for taking some action to
generate one’s own information. When participants have to click a button to generate
each of their own draws, they are less sensitive to their partner’s information than to
their own. In contrast, when they passively observe draws appearing on the screen
with a label identifying them as ‘Yours’ or ‘Your partner’s’, this under-sensitivity is
significantly reduced (and, in some specifications, disappears completely). This suggests
that being actively engaged or exerting some effort to uncover information oneself—as
one might when trying out something oneself—makes it more influential than equivalent

information perfectly received from others.

A debriefing survey at the end of the third experiment sheds further light on the psy-
chological mechanisms. First, underweighting of others’ information does not appear to
be driven by imperfect up-front attention or later recall: underweighting of others’ in-
formation is statistically significant and quantitatively similar even among participants
who perfectly recall their partner’s draws after making their guess. Second, partici-
pants are largely unaware of their bias against information coming from others. 77% of
participants reported that they treated their own and their partner’s information the

same. Yet these same participants are just as insensitive to their partner’s information.

Taken together, our experiments establish a tendency for people to underweight
information uncovered by others even when there is no reason to do so. The exper-
imental design rules out order effects, distrust, difficulties in probabilistic reasoning,
overconfidence, or competitiveness as explanations. Whether people discount others’
information also does not depend on how people learn others’ information, e.g., by dis-
cussion with the person themselves, reported by a third party, or seen with one’s own
eyes, and communicated in summary form or in a piece-meal way. Instead, our results
suggest a bias in favor of information generated oneself, which people treat as more

precise or relevant.



The main contribution of this paper is to the literature on social learning. Our
results further our understanding of how agents aggregate the information that reaches
them through others (see Mobius and Rosenblat 2014 for a review). Existing research
finds that people fail to fully account for the correlation structure of the information that
reaches them (Eyster et al., 2018; Enke and Zimmermann, 2019) and instead naively
average their social neighbors’ views or information (Chandrasekhar et al., 2020). In
field settings, people sometimes also react very differently to information depending on
the source, e.g., they may react more to information coming from celebrities (Alatas et
al., 2021) or from people who are socially or economically similar to them or who are
of a particular gender (BenYishay and Mobarak, 2019; BenYishay et al., 2020).* We
provide evidence for a different, potentially far-reaching bias in information aggrega-
tion that may hinder social learning whenever people have to aggregate their own and
others’ information. This phenomenon may underlie other documented cases of incom-
plete social learning, whether in agricultural technology adoption in the field (Foster
and Rosenzweig, 1995; Duflo et al., 2020; Chandrasekhar et al., 2022) or observational
learning in the lab (Weizsécker, 2010). It could also play a role in explaining the of-
ten modest effects of interventions providing people with information regarding the

experiences or outcomes of others (Haaland et al., 2022).

Our paper also relates to the literature in psychology and economics on learning from
experience. In the field, this literature has shown that people’s beliefs and economic
decisions are powerfully shaped by their personal experiences, even when much more
complete data are easily available (Malmendier and Nagel, 2016; D’ Acunto et al., 2021).
In the lab, closest to our study, Simonsohn et al. (2008) show that when people play
repeated strategic games with rematching, their actions in each round are more sensitive
to their experiences with their recent partners than to information they are provided
on other players.® Our findings have a similar flavor, but with a simpler setup without
dynamics and without any notion of receiving feedback or earning utility from one’s
past actions. Instead, we show that information uncovered through one’s own actions
is weighed more than information uncovered by others even prior to making any choice

or receiving feedback.

4This finding could be consistent with Bayesian learning if the information from particular sources
is considered to be less precise or relevant to the receiver.

® Another related paper is Miller and Maniadis (2012), which shows using a balls-and-urns task that
a personally-experienced event affects subsequent choices more than an equally-informative observed
event that did not directly affect the player.



An open question is how this bias plays out in the field and whether under-sensitivity
to others’ information is a reasonable heuristic. In some situations, such as when
returns to an action are idiosyncratic, information that comes from others is truly less
relevant to one’s own decisions. Alternatively, information received from others may be
untrustworthy or correlated and thus one should react less to it relative to one’s own
independent signals. However, in many cases, people have limited information from
their own experiences while information from others is far more informative and reliable,
so discounting others’ information is costly. More research is required to understand

the prevalence and strength of the effect we document in natural settings.

The remainder of this paper is organized as follows. Section 2 presents the broad
aspects of the design shared by the different experiments. Section 3 presents the empir-
ical framework. Sections 4, 5, and 6 present the detailed designs and results of the three
experiments. Section 7 discusses confounds and alternative interpretations. Section 8

discusses open questions and concludes.

2 Overview of Design

In all three experiments, participants play multiple rounds of the same basic statistical
learning exercise: a balls-and-urns task based on a large literature studying individual
learning (Benjamin, 2019). Here, we describe the task and features of our design com-
mon to all experiments. We defer discussion of treatment variations and details specific

to each experiment to the corresponding sections below.

The goal in the experimental task is to guess the number of red balls in an urn
containing 20 balls. Participants are informed that the number of red balls in the urn is
drawn uniformly from 4 to 16 in each round, as explained with help of the illustration
in Appendix Figure A.I(a) in the in-person experiments.® In the online experiment, we
explain that “the computer will randomly choose the exact number of red marbles [in

the urn|, where every number between 4 and 16 was equally likely to be chosen.”

In each round, participants receive independent, noisy signals about the composition

of the urn, by privately drawing a number of balls from the urn with replacement.”

6We avoided more extreme distributions—fewer than 4 or over 16 red balls out of 20—as these were
more likely to generate signals with complete agreement between the two partners.

"In Experiments 1 and 2, participants physically drew balls from an urn in our lab, while in
Experiment 3 (the online experiment), the drawing was simulated using an animation of an urn. In each



The number of draws in each ‘signal’ is randomized—either 1, 5, or 9 draws—creating

variation in how informed each participant is.®

Depending on the treatment condition, participants either play the game entirely
on their own—the Individual treatment—drawing two sets of balls themselves, or else
draw one set of balls themselves and have access to another set of balls that a partner
(another participant in the experiment) drew. The different treatments vary how the
information obtained by one’s partner can be learned: via open-ended discussion, di-
rectly communicated by the experimenter, observed with one’s own eyes, etc. Guesses
are made after making each set of draws (or potentially learning them via their part-
ner). We test for frictions in social learning by comparing the sensitivity of guesses to

draws across conditions.

2.1 Incentives to pool information and make accurate guesses

Participants have incentives to pool information and make accurate guesses. The in-
centives provided were chosen to be easy for participants to understand: a penalty per
ball away from the truth. Formally, each guess is incentivized by a piece-wise linear loss
function.® For example, in Experiment 1, a perfectly accurate guess earns each member
of the pair Rs. 105 and the payment decreases by Rs. 15 per ball the guess deviates from
the truth. This incentive scheme was explained to participants in Experiments 1 and
2 using the illustration shown in Appendix Figure A.I(b). These incentives are sizable.
Rs. 105 is about $1.50 and Rs. 15 is about $0.20, while average daily earnings in our
Chennai sample are about Rs. 350 ($5). Further, as we will show below, randomizing

higher stakes for half the rounds in Experiments 2 and 3 does not change our findings.

Participants make multiple guesses throughout the experiment, and we randomly
select one guess to score and pay participants for its accuracy. In Experiments 1 and

2, we select one guess among all the guesses that either partner made (including in-

case, participants were informed that both partners were drawing from the same urn. In Experiments
1 and 2, at least one participant was always present with the urn, eliminating any concern that the
urn might be switched out between players.

8To be precise, we randomly choose the number of draws in the two sets of draws received in each
round with uniform probability from {(1, 1), (1,5), (5,1), (5,5),(1,9),(9,1)}. This excludes cases with
more than 10 draws total.

90n top of their participation fee, each person receives a payment equal to max{(A— B x|g—r]),0},
where g is the guess, r the true number of red balls for the randomly-selected guess, and A and B are
constants.



termediate guesses). We then divide the payoff equally between the two participants
irrespective of who made the guess. Each participant receives their half in a separate
envelope at the end of the experiment. Each person thus has an incentive to make every
guess from their pair as accurate as possible. Neglecting to ask your partner for infor-
mation, withholding information from them, or ignoring their information thus reduces
your own expected payoff. In Experiment 3, the online experiment, participants never
need to (and, indeed, cannot) communicate, and information is shared by design. Each
participant is rewarded for a randomly selected one of their own guesses, i.e., we do not

split incentives between partners.

2.2 Complexity and comprehension

We designed the experimental task to balance two goals. First, given relatively low
education and numeracy levels in the samples for Experiments 1 and 2, it was meant
to be easy to understand and feasible for most participants. We therefore avoided
eliciting probabilistic beliefs or employing difficult-to-explain scoring rules. Similarly,
we used uniform priors as they are easy for participants to understand. We also provided
training in the task to the participants of Experiments 1 and 2 before the first round.
Participants individually played two unincentivized practice rounds with two guesses in
each, and during these rounds received two ‘tips’ on making good guesses.'’ The vast

majority understood the tasks, as measured by excellent performance on comprehension
checks (Table A.I).

The simple setup of our experiment does not require participants to use others’ ac-
tions to make (potentially complex) inferences about their information. Nor must they
attempt to correct for any redundancy in the information that reaches them through
multiple sources. Instead, participants in our experiment can directly learn their part-
ner’s independent signal itself. This is in contrast to studies where participants observe
other participants’ decisions, sometimes in complex real-world networks, and must both

infer the underlying signals as best they can and then make decisions based on those

10The first tip explains that it makes sense to guess there are more red than white balls if you
draw more red than white, and vice-versa. The second tip is that “the more balls you draw, the
more confident you can be in your guess”. We note a possible caveat that some participants might
have construed these tips to imply their ‘own’ information was more valuable than someone else’s.
However, the tips were given in the context of a practice round where all balls were drawn oneself, so
there was no implication of discounting others’ information. Nonetheless, these tips were not provided
in Experiment 3.



inferences (Goeree et al., 2007; Reshidi, 2022; Chandrasekhar et al., 2020).

The second goal was to design a task that is sufficiently complex—as in many
learning problems in the field—to create some ambiguity and wiggle room for biases and
heuristics to enter participants’ decision-making. Making the optimal guess sufficiently
easy to compute—e.g., with very few states or possible signals—might have potentially

eliminated all biases since the correct action would become obvious to everyone.

A caveat resulting from the above design choices is that we do not, strictly speaking,
measure participants’ beliefs about the color composition of the urn. Doing so would
involve eliciting their full probabilistic belief distribution, or at least attempting to
elicit the mean (or median or mode) of their belief distribution by employing a proper
scoring rule (Palfrey and Wang, 2009). The incentives we employ do not constitute a
proper scoring rule, and the optimal guess of a participant is not generally their mean
or modal belief.!! Guesses should therefore be thought of as actions which participants
have an incentive to tailor to the signals they receive. Our empirical tests examine
whether these guesses are equally sensitive to one’s own and others’ signals. However,
as a benchmark, we also compute what a risk-neutral Bayesian seeking to maximize
expected payoffs would guess given the signals and our incentive structure. In addition,

our structural model accounts for the incentive structure faced by participants.

3 Empirical Framework

Our goal is to test whether individuals’ guesses are equally sensitive to signals drawn
by themselves versus by others. We further examine how this depends upon the precise
mode of social learning, such as whether the partner’s information must be learned

through a discussion, is communicated by a third party (the experimenter), is directly

HPractically speaking, our goal was for participants to broadly understand that they face an incen-
tive to pay attention to information, think about it, and try to make accurate guesses. We avoided
using more complex scoring rules such as quadratic or binarized scoring due to the difficulty of ex-
plaining them even to higher-education populations (Danz et al., 2022). A simpler alternative would
be to pay a reward if a participant guessed the truth exactly, while paying zero otherwise. This has the
attractive feature of giving the participant incentives to report the mode of their belief while still easy
to understand. We did not pursue this route since we felt it would be unfair to participants, and could
cause disappointment or ill will, making future recruitment harder. That said, our incentive scheme
is close to a proper scoring rule for the median of the Bayesian posterior under risk neutrality, due to
its absolute value form. The exception is following rare extreme draws (mostly red or mostly white)
where the truncation of the loss function at zero incentivizes shading the guess towards 50% red.



observed, etc. We present three types of empirical analyses—non-parametric, reduced
form, and structural—to answer these questions. These three approaches impose differ-

ent assumptions and have different strengths, but ultimately lead to similar conclusions.

3.1 Non-parametric approach

In the non-parametric approach, we present the results with minimal assumptions,
by simply plotting average guesses in each treatment against the signals drawn. For
simplicity, we summarize each signal by the net number of red draws (i.e., number
of red minus number of white draws). That is, if a participant saw 4 red draws and
1 white draw, we would classify the signal as being 3 net red draws.!? To enable a
transparent comparison of the sensitivity of guesses to own versus others’ signals, we
plot the guesses separately against the signals drawn oneself versus the signals drawn

by one’s partner.

3.2 Reduced-form approach

Next, we impose a linear relationship between signals and the resulting guesses and
test for differences in this relationship across treatments. We estimate the following

equation by OLS, separately by treatment:

Guess; = a+ P - Own Info, + 5 - Partner’s Info, + €; (1)

where Guess; is i’s guess of the number of red balls (after having a chance to learn
both signals), and Own Info, and Partner’s Info, are the net number of red draws
(i.e., red minus white draws) drawn oneself and by one’s partner, respectively. ; and
S5 capture the sensitivity of participants’ guesses to signals drawn themselves and by
others, respectively. If participants learn their partner’s signals and treat them the
same as their own signals, it should be that 8; = 5. If instead 85 < (1, participants

in that treatment are less sensitive to their partner’s draws than to their own.

There are two ways in which we modify our tests to deal with order effects in the

12This simplification loses some information, e.g., it does not capture the total number of draws. A
signal with 1 net red could come from a single draw of a red ball or from 9 draws with 5 red and 4
blue. A Bayesian should react differently to these two signals. The structural model does not share
this weakness.

10



experiments. First, in all three experiments, participants play the game multiple times
in randomized order. Although they receive no feedback after each round, and thus
the scope for learning is limited, we control for order effects by including dummies for

round number interacted with Own Info, and Partner’s Info;.'3

Second, the order in which one receives information may affect the weight placed
on it. For a Bayesian, the order of receiving information should not matter, and this
should not introduce a bias to our analysis. Nonetheless, ex ante we might worry that
participants put more weight on signals they saw first (‘first impressions matter’) or on
signals they saw last (‘recency effects’). We therefore designed our experiments to avoid
order effects or to be able to control for them. In Experiment 3, the order of learning
one’s own and one’s partner’s signals is randomized with equal probabilities, and thus
Equation 1 is unbiased. In Experiment 1, instead, participants learn their partner’s
signals only after they have received their own signals. Therefore, Experiment 1 includes
a control condition (the Individual condition) in which both signals are drawn oneself.
For a clean comparison, we therefore compare the sensitivity of guesses to one’s partner’s
draws versus one’s own second set of draws from the Individual condition. That is, we
compare (35 from Equation 1 with the corresponding coefficient on participants’ second
set of draws in the Individual condition.!* In practice, we find that participants tend
to put more weight on the signals they receive second, so treatments that provide
partners’ information last would tend to bias us against finding under-sensitivity to

others’ information.

3.3 Structural approach

In our third empirical approach, we estimate a simple model of quasi-Bayesian updating.
This approach has a number of strengths relative to the reduced-form analysis. First,
it exploits the full information content of the signals, including the number of draws,
rather than the simplified ‘net red draws’ employed in the reduced form. Second, it
accounts for the incentive structure faced by participants, modeling them as risk-neutral

agents trying to maximize expected payoffs given their beliefs. Third, by taking the form

13We stack the regression for all treatment conditions in a given experiment and estimate them
jointly in one regression, allowing all coefficients to vary by treatment.

4 Experiment 2 has aspects of the design of both Experiment 1 and Experiment 3. Some compar-
isons involve a randomized order of receiving information, as in Experiment 3. Others are similar to
Experiment 1 in that one’s partner’s information is received after one’s own information.

11



of a standard learning model, it allows us to estimate interpretable weights placed on
one’s own and others’ signals, with a clear Bayesian benchmark. Finally, it also accounts
for noisy choice together with censoring in guesses at 4 and 16, which might otherwise
cause guesses to appear less sensitive than those of a risk-neutral Bayesian. On the
other hand, the structural model makes more assumptions than the non-parametric

and reduced-form analysis, including imposing risk-neutrality.

Let dy be the participant’s own signal and let ds be her partner’s signal, e.g., d;
might equal {Red, Red, White, Red, White} and dy might equal {Red}. We then assume
that the participant updates her beliefs about the state of the world s (the number of

red balls in the urn) according to a modified version of Bayes’ Rule:
Posterior(s|dy, dy) o< Prior(s) x P(dy|s)“*t % P(dg|s)**" (2)

where Prior(s) is the participant’s prior about the probability of state s, and P(d;|s)
is the (objective) probability of observing a set of draws d; conditional on state s.
Recall that participants are told each state is equally likely, and there are 13 possible
states s € {4,5,...,16}, so Prior(s) = % Next, wy,¢ and wy,; are the weights that the
participant puts, respectively, on her own and her partner’s signals in treatment ¢ when
that round occurs in chronological order r. For wy,; = wre = 1, Equation (2) reduces

to Bayes” Rule.

We allow wy,+ and wo,; to differ from the Bayesian benchmark depending on both the
treatment condition and the chronological order of the round. In particular, we assume

the following functional form to mirror the reduced-form analysis described above:

Wit = Pt + far
Wort = 612075 + Hor

where 31, and 5, are, respectively, the weight the participant puts on her own and her
partner’s signal in treatment ¢, and p, and pg,. are the additional weight she puts on

each signal when that treatment occurs in chronological order r.

Just as with the reduced-form analysis, we control for the order in which informa-
tion arrives in one of two ways. In Experiment 1, the partner’s information is always
conveyed second, so we use a control condition (the Individual treatment) where both
signals are drawn by the participant herself. We then estimate a version of 5, using

participants’ second set of signals in this Individual round. Comparing this estimate to

12



(5, in other treatments, we can identify the effect of drawing information yourself, net
of any order effects. In Experiment 3, we randomize whether participants’ own infor-
mation or their partner’s information comes first, so wy,; and wy,; will not be biased by

differential treatment of earlier or later signals.

In addition to systematically biased updating, we allow for noisy choice. Doing
so allows us to account for heterogeneity in guesses conditional on signals (i.e., not
everyone with the same signals makes the same guess). We assume that agents are
risk-neutral but calculate the expected payoff of each possible guess with noise. In
particular, we can define Farnings(g,s) to be the earnings that a participant would
earn if they made guess g and the true state was s. Given the experimental incentives,
this implies Earnings(g,s) = max{0,105 — 15 % |g — s|}. We assume that the agent
calculates the expected payoff of each guess g using the (potentially biased) updating
rule given by Equation 2 plus a random additive error term. That is, we assume the

perceived expected payoff from making guess g given draws d; and ds is given by

16
EP(g|dy,ds) = Z Posterior(s|dy, ds) Earnings(g, s) + a€; 4. (3)

s=4

The agent then chooses the guess that maximizes this perceived expected payoff. For
simplicity, we assume ¢; 4 is i.i.d. Type 1 extreme value. The parameter o then governs

the extent of noisy choice.'® We estimate the model by maximum likelihood.!

15See Goeree et al. (2007) for an example of a similar model of noisy discrete choice in a balls-and-
urns decision problem.
16In particular, given the assumptions above, the probability that an agent with signals d; and ds

will choose guess g is P(i guesses g|dy, da) o< exp <(1¥ [216:4 Posterior(s|dy,ds)Earnings(g, s)} . We
then choose parameters that maximize the joint likelihood of observing all the choices in our data.
We calculate standard errors by bootstrapping the data, drawing pairs with replacement from the
data. Throughout, we report bootstrapped standard errors for legibility but denote significance using
bootstrapped confidence intervals (e.g., an estimate is significant at the 5% level if the center 95% of
bootstrapped estimates do not include zero).

13



4 Experiment 1: Establishing the Main Results

4.1 Recruitment and Sample

Experiment 1 was conducted in person at the Behavioral Development Lab in Chennai,
India, between July and December 2019. Participants were recruited on a rolling basis,
with about 4 to 10 individuals completing the experiment on a given day. We recruited
individuals—not pairs—residing in low- to middle-income neighborhoods within a rea-
sonable travel time of the lab. Surveyors went door-to-door to advertise an academic
study on ‘your choices and how you aggregate information’ which would ‘help us un-
derstand how you make decisions’. No more specific study details were provided at
this stage. Potential participants were informed that they would spend 2 to 3 hours at
the study office and could expect to earn Rs. 150 to 280 ($2 to $3.90) per person, plus
a payment of Rs. 100 ($1.40) to cover travel expenses. Recruitment stopped when we
reached our pre-specified target of 500 individuals. Participants were randomly assigned

to pairs within an experimental session.!”

Column 1 of Table 1 reports characteristics of our sample. 50% are male. Partici-
pants are on average 35 years old and have almost 8 years of education. Participants
answered about 80 percent of comprehension questions correctly on the first attempt,
indicating fairly high levels of attention and comprehension for a task that was unusual

and somewhat complex given the local context.

4.2 Experiment 1: Design

Participants play five rounds of the task, as illustrated in Figure 1, with no feedback
between rounds.'® Participants first play, in randomized order, an Individual round
and a Discussion round. In each round, participants have access to two sets of draws

with 1, 5, or 9 draws each.

Individual round. In the Individual round, the participant first draws a set of

ITEach participant plays four of their five rounds with one randomly-assigned partner of a different
gender, and one round with a randomly-assigned partner of the same gender. Participants were
introduced to their partner at the start of each round. This variation was induced in order to study
the effect of gender composition on learning and to contrast these findings with a study of learning
between spouses. These results are reported in a companion paper. Here, we pool results across gender
and both types of pairs.

18The full experimental script is provided in Appendix A.3.
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balls from the urn with replacement, followed by a guess of how many red balls are in
the urn. Then, they draw a second set of balls from the urn and make a second (and
final) guess. All drawing and guessing is done privately, without any need to share
information. This round serves as a control condition—a benchmark against which we

compare the other treatments.

Discussion round. The Discussion round models a common mode of social learn-
ing, where we learn from others’ experiences through direct communication with them.
Instead of drawing two sets of draws oneself as in the Individual round, participants’
partner’s draws—accessible through a discussion—serve as their second set of draws.
Each person first makes one set of draws followed by a private guess, exactly as in the
Individual round. Next, the pair are asked to hold a face-to-face discussion and enter
a joint guess.'® After their discussion, the teammates are separated and each person

makes one final, private guess.

Participants can take as long as they like for the unstructured, face-to-face discussion
with their partner. They have an incentive to share information since one guess per
team is randomly chosen to be paid for accuracy at the end of the experiment, with
the payment split between the two partners. Participants also have an incentive to
help their partner deliberate and make better guesses conditional on information, as
in Cooper and Kagel (2005). We record the audio of the discussion (with participants’

consent) and later analyze the transcripts, as reported in Table A.IL.

Comparing each participant’s final guesses in the Individual and Discussion rounds
reveals whether they learn as much through a discussion with a partner as from infor-
mation they uncovered themselves. By design, participants have access to the exact
same number of draws to inform their final guess in these two rounds, provided they

share information.? If participants are instead less sensitive to information collected

19The joint guess was included as a comparison to joint guesses made by teams composed of married
couples and is not the focus of this paper. Note that having to enter a joint guess might cause
teammates to come closer to agreement about the optimal guess, which might be expected to reduce
under-sensitivity to each others’ information. Experiment 3 and most treatments in Experiment 2 do
not include such a joint guess.

20Tn order to allow a particularly sharp comparison between the Individual and Discussion rounds,
we ensure that exactly the same number of draws are available to each individual by the end of the
first two rounds. For instance, suppose that an individual (call them Person 1) gets n; draws first and
ng draws second in the Individual round, for a total of ni + ny draws. We ensure that their partner
(‘Person 2’) in turn receives ny and then nq draws in the Individual round. To make the Discussion
round comparable, we ensure that Person 1 receives n; draws and Person 2 receives no draws, such
that, if they pool information in their discussion, each again has access to nj +ns draws to inform their
final private guess. (n1,n9) are randomized across pairs. In the other rounds, (n1,ns) are randomized
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by their partner, this implies either a failure of communication or a failure to aggregate

information provided by one’s partner.

Participants next play three more rounds, in randomized order, consisting of a
Discussion round and two additional treatments in which the experimenter informs the

participant of their partner’s draws or guesses.

Informed of Partner’s Draws round. This round (which we abbreviate as the
‘Informed’ round) is designed to shut down any communication frictions between the
partners. It is identical to the Discussion round except that, after participants receive
their first set of draws and enter their first guess, they are told their partner’s draws
(both number and composition) directly by the experimenter, e.g., “Your partner had
five draws, of which three were red and two were white.” Participants then make an
additional private guess, which can incorporate both sets of draws, before moving on

to the discussion and their final private guess.

Comparing the guess made after the experimenter informs the participant of their
partner’s signal (but before discussion) with the second guess in the Individual round
allows us to directly test whether participants use information they gathered them-
selves in the same way as information collected by others but perfectly shared with
them by a third party. In each case, there is no possibility of joint deliberation.?!
Comparing instead the post-discussion guess in the Informed round with that in the
Discussion round holds fixed the possibility of joint deliberation while testing whether

communication frictions in discussion inhibit information pooling.

Informed of Partner’s Guess round. This round is the same as the Informed
of Partner’s Draws round except that the experimenter informs each person of their
partner’s private guess (made based on their own draws only), rather than their part-
ner’s draws. The experimenter also shares the number of draws this guess was based
on, e.g., “Your partner had 5 draws and, after seeing these draws, they guessed that
the urn contains 12 red balls.” Thus, while in the Informed of Partner’s Draws round
we directly transmit the signal received by one’s partner, in the Informed of Partner’s
Guess round we transmit the action (guess) taken based on that signal as well as a
measure of the precision of the signal. This round parallels more closely the literature

that investigates social learning based on observing others’ actions (Weizsicker, 2010).

independently within-pair across rounds.
2INote that this comparison requires controlling for order effects, since the Individual round is always
in the first two rounds, while the Informed round falls in rounds 3-5.
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In this treatment, less information is transmitted to the participant. Moreover, beliefs
about others’ competence might affect how these actions are interpreted and how much

is learned about the signals.

4.3 Experiment 1: Results
4.3.1 Non-parametric results

We begin by examining participants’ first guesses, which they make after drawing the
first set of balls by themselves. Reassuringly, as shown in Figure 2 Panel A, the average
number of red balls guessed increases in the number of “net red” draws uncovered oneself
(pooling across all treatments), implying that participants respond to information they
receive. We can compare this sensitivity to a normative benchmark by computing, for
each guess that participants make, what a risk-neutral Bayesian seeking to maximize
expected payoffs would guess given the same signals and faced with our incentive struc-
ture. Figure 2 shows that, on average, participants’ individual guesses (blue dots and
lines) are fairly close to this benchmark (pink dashed lines), though they are somewhat

less sensitive to signals than a risk-neutral Bayesian would be.??

Figure 3 contrasts the sensitivity of participants’ guesses to their second set of draws
in the Discussion and Informed rounds, comparing each to the Individual round. The
blue curve representing the Discussion round (left panel) is distinctly flatter than the
grey curve representing the Individual round, revealing that participants’ guesses are
less sensitive to information gathered by their partner compared to information they
gathered themselves. This difference is statistically significant: we can reject (F-test,
p = 0.001) that the differences in average guesses across treatments for each ‘net red’

value are all zero (i.e., that each pair of dots in Figure 3 lie on top of each other).

Strikingly, the curve is even flatter in the Informed round (middle panel), in which
we plot participants’ guesses after their partners’ information is directly communicated
to them by the experimenter (and before any joint deliberation with their partner).

Despite having been given all decision-relevant information about their partner’s draws

22The lower sensitivity compared to the risk-neutral Bayesian could be due to conservatism in up-
dating, risk aversion, or noisy guessing combined with censoring. We do not seek to disentangle these
explanations, as our focus is instead on testing whether guesses respond differently to information de-
pending on the source by contrasting behavior across treatments. The structural estimation accounts
for noisy guessing and censoring in the data.
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directly, participants react to this information much less than they do to information
they collected themselves. We can again reject that average guesses conditional on each
‘net red’ value are always equal across treatments (F-test, p < 0.001).2> This result sug-
gests that the key friction is not communication (i.e., participants never learning the
information from their partner) but instead participants underweighting information
uncovered by their partner, even when it is communicated. By design, this behav-
ior cannot be explained by failure to communicate information or by mistrust of the

partner’s memory or motives.

Is lower sensitivity to others’ signals necessarily evidence of worse learning? Recall
that sensitivity to one’s own signals is itself lower than that of a risk-neutral Bayesian
(Figure 2). Since sensitivity to others’ signals is lower still (Figure 3), this suggests that
participants learn less effectively—are even further away from this benchmark—when

some information is only available via a discussion with their partner.

4.3.2 Reduced-form and structural results

The reduced-form and structural models provide quantitative estimates of sensitivity
to own and others’ information. Figure 4 plots participants’ average sensitivity to
the second set of signals, by treatment, using reduced-form estimates from Equation
1. In their final private guesses in the Discussion round, participants are less than
half as sensitive to their partner’s signals compared to the corresponding signals in the
Individual round (second bar, p < 0.01). This implies they respond less to information
collected by their partner compared to their ‘own’ information. Even more starkly,
participants put close to zero weight on their partner’s information in the Informed
round, right after it is directly shared with them (third bar, p < 0.01). Adding a
face-to-face discussion with their partner after being informed of their draws somewhat
increases participants’ sensitivity to their partner’s signals, but it remains significantly
below the sensitivity to their own signals (fourth bar, p = 0.02). Recall that these
estimates hold the order of receiving the information fixed: we compare sensitivity to

the second set of draws across treatments.

The corresponding regression estimates are presented in Table 2 Panel A (columns

23Note that this graph depicts the second private guess—after being informed of one’s partner’s
draws but before having a chance to discuss with them. This provides a clean comparison with the
individual round: the only difference is drawing the signals oneself versus being informed of the signals
one’s partner drew. The right panel of Figure 3 shows Informed round guesses after the discussion.
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1 to 4). Comparing the coefficient S5 on the second set of information by treatment
condition shows a clear result. Participants are 54 percent (0.28/0.52) less sensitive to
information collected by their partner in the Discussion round relative to information
they collected themselves in the Individual round (p < 0.01). They are a striking 87
percent (0.45/0.52) less sensitive to their partner’s draws in the pre-discussion Informed
guess compared to in the Individual round (p < 0.01), and 46 percent (0.24/0.52) less
sensitive to their partner’s draws in the post-discussion Informed guess compared to
the Individual round (p = 0.02). The face-to-face discussion increases sensitivity to
the partner’s information, presumably through joint deliberation regarding the right

answer (since the information was already shared between partners).?t

The structural estimates in Table 2 Panel B mirror the reduced-form results. Col-
umn 1 shows that participants put close to the Bayesian weight (8; = 0.92 vs. the
Bayesian benchmark of 1) on their own first signal in the Individual treatment, and
somewhat greater weight (59 = 1.50) on their second signal in that round. In contrast,
participants put 73% less weight (1.11/1.50, p < 0.01) on their partner’s signals in the
Discussion round, and most strikingly put no weight at all on their partner’s signals
in the (pre-discussion) Informed round. In the post-discussion Informed round, they
put 69% less weight on their partner’s signal than on their own signal in the Individual

round.?®

Earnings implications. The expected earnings from guesses are a direct measure
of performance in the experiment. Table 3 estimates average expected earnings from
guesses as a function of the number of draws in each set of signals. As expected,
more draws in the second set of signals in the Individual round significantly increases
earnings, by Rs. 2.79 per extra draw. However, participants earn significantly less
for each extra draw their partner makes in the Discussion (p = 0.03) and Informed

(p = 0.06) rounds. This provides further evidence that learning is worse when not all

24The pattern of results in the Informed of Partner’s Guess round are similar or more extreme than
those that we find in the Discussion and Informed of Partner’s Draws rounds. In the reduced-form
estimates, participants are 90% less sensitive to their partner’s information in this treatment. Because
lower sensitivity to others’ information in this treatment can be explained by additional factors such
as guesses containing less information than draws or players’ beliefs about their partners’ ability to
make good guesses, we leave analysis of the Informed of Partner’s Guess round to Appendix A.1.

25The parameters of the quasi-Bayesian model have a different scale and interpretation than the
reduced-form results discussed above. But frictionless social learning implies 39 = 5 in both cases,
where o and p refer to own and partner’s draws respectively. Appendix A.2 shows that the reduced-
form and structural estimates are consistent with each other: data simulated using the structural
model produces the same reduced-form results as the empirical data.
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information is uncovered oneself.?6

5 Experiment 2: Exploring Mechanisms and Confounds

Why do participants discount their partner’s information even when it is directly com-
municated to them? Experiment 2 is designed to isolate potential mechanisms, rule out

potential confounds, and evaluate the robustness of our findings.

5.1 Recruitment and Sample

Experiment 2 was run at the Behavioral Development Lab in Chennai, India between
January and March 2020, after observing the results of Experiment 1. We recruited
new participants following a similar procedure as Experiment 1. Data collection ended
in March 2020 due to the Covid-19 pandemic, with a sample size of 292 participants
(out of an intended sample of 800).2” Compared to Experiment 1, participants have
a similar average age (38 versus 35) and years of education (9 versus 8), but are less
likely to be female (31% versus 50%), as reported in Column 2 of Table 1.

5.2 Experiment 2: Design

Participants played six rounds corresponding to different treatment conditions, with
no feedback between rounds. They first played a Discussion round, exactly as in our
first experiment, to provide a baseline and comparison with our previous sample. They
then played five rounds in randomized order, consisting of an Informed round just as

in Experiment 1 and four additional variations of Informed, described below.?8

26Table A.III in the appendix shows similar regressions but where the dependent variable is the
absolute difference between participants’ guesses and the true number of red balls in the urn. Mirroring
the results in Table 3, additional draws reduce this error on average, and this improvement is smaller
when these draws come from participants’ partners in the Discussion and Informed rounds.

2"The pre-registered sample size was chosen in order to be powered to test for gender differences in
treatment effects (which we explore in other work). Thus, even though the final sample size is much
smaller than intended, we remain tolerably well-powered to estimate the treatment effects described
here. For example, the minimum detectable effect size for the Informed treatment is around 50% lower
sensitivity to partner’s information relative to own information. This is close to the estimated effect
in Experiment 1.

28 Appendix Figure A.II, Panel A, also illustrates the design of the new treatment conditions in this
experiment. The full experimental script is provided in Appendix A.3.
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Observe Partner’s Draws round. In this round (which we abbreviate to ‘Ob-
serve’), both participants are in the same booth, so they can each watch their partner
drawing balls from the urn with their own eyes. After both participants have drawn
their signals, in randomized order, they are separated and each makes a private guess.
There is no discussion between partners and no need for the experimenter to share
draws. Nor is there any scope for distrust of the experimenter or partner. Both one’s
own and one’s partner’s signals are perfectly observable and revealed draw-by-draw in
randomized order across individuals. The only difference between the two sets of draws
is who physically drew the balls from the urn. We designed this to be an extreme
treatment, where we anticipated equal sensitivity to one’s own and others’ information.

The remaining treatments are subtler and largely subsumed under this treatment.

Draw-by-Draw round. In the Informed treatment, participants learn about their
own and their partner’s information in different ways. One such difference is that they
draw their own signals one at a time from the urn, while their partner’s information is
communicated in summary form in a single report (‘2 red and 3 white balls’). Certain
updating biases (e.g., base-rate neglect) could cause participants to respond differently
to summary information than to learning information draw-by-draw. To test for this
channel, the Draw-by-Draw round proceeds identically to the Informed round, except
that the experimenter shares their partner’s draws with each participant one draw at a
time, e.g., by saying, ‘Your partner first drew a red ball’, then after a brief pause, ‘Your

Y

partner then drew a white ball, ...” and so on.

Reverse-Order round. In this round, one participant learns their partner’s signal
before making any draws themselves. They then makes a guess, make their own draws,
and make another private guess. Since this treatment is only possible for one person in

each pair, we only include guesses from the treated person while analyzing this round.

No-First-Guess round. This round was identical to the Informed round except
that participants do not make a guess directly after making their own set of draws. We
implemented this change to test whether, for example, people are more open to others’
information when they have not yet taken an action or stated a belief based on their

own information.

Higher-Stakes treatment. We increased the incentives for accurate guessing by
50% in a randomly-chosen 3 out of 6 rounds. The maximum amount each i