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We begin with the ssimplest model specification with one right hand side (RHS)
jointly endogenous variable so that the left hand side variable (LHS) depends only on the
single jointly endogenous RHS variable. This model specification accounts for other
RHS predetermined (or exogenous) variables, which have been “partialled out” of the

specification.? We will assume that

) y, = by, +e =bzp, +v;
2 Yo, =2, Vs,
where dim(p,) = K . Thus, the matrix z isthe matrix of all predetermined variables, and

equation (2) is the reduced form equation for y, with coefficient vector p,. Wealso
assume homoscedasticity:
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We use the following notation:
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|. Biasin2SLSandOLS
A common finding in empirical research isthat when 2SL S is used the coefficient

estimate increases in magnitude from the OL S estimate. However, in finite samples under

certain situations even when 2SL S is used on equation (1), bias remains because an
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estimate of p, from equation (2) is used, since the true parameters are unknown. We
now demonstrate how this result occurs.

Suppose that zp , is measured without error. Then, OLS of y, on zp, would be
unbiased. Instead, zp,must be estimated, i.e., we havetorely on 2SLS. Let p, denote
the first stage OL S estimator. We have
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where R? isthe R? in thefirst stage regression to obtain 3, . It can be shown that:
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where R° E[z(z/ n] . Here, K>s , , isthe expectation of theterm V{P,v,, whichiss ,

times a c® random variable with expectation equal to the dimension of the projection
matrix P,.
Therefore, we expect bias approximately equal to
K:s 1 Ks
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Equation (5) indicates that the bias is monotonically increasingin s, and K, but
monotonically decreasing in R? . Conventional asymptotics, which lets n® ¥ keeping

DGPfixed, ignoresthe influence of s, , K, and R?.
For comparison purposes we calculate the bias of OLS. We find approximately
that
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Note that in equation (5) the denominator typically becomes large as the sasmple sizen
becomes large so that the bias of 2SL. S decreases. However, in the OL S bias equation (6)
the denominator does not change size as n increases so that the bias does not decrease.

Thus, 2SL S is consistent and OL S isinconsistent, asiswell known.

[I. No ldentification

We now use equation (5) to explore what happens in the unidentified situation of

p, = 0. The denominator of equation (5) becomes K >s , , . Thus, when p, =0,

eguation (5) predicts the bias of the 2SL S estimator to be approximately
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In large samples the result holds in the limit without the necessity of assuming that the
stochastic disturbances are normal. Note that the bias does not decrease here asn
becomes large asit did in the last section. Thisresult is expected because without
identification we cannot find a consistent estimator of beta

We now compare this 2SL S bias with the bias of OLS on equation (1) again

where no identification exists so that p, = 0. We use equation (6). When p, =0, the

denominator isequal to s, . Thus, wefind that the bias of OL Sis the same as the bias

of 2SLSin the unidentified case of p, =0:
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discussion of models with other RHS predetermined variables.



See Phillips (1989) for related results.

[1l. Local Non-ldentification

We now consider what happens when we are close to being unidentified so that

p, = a/ Jn , where the vector ahas dimension K. Thus, the reduced form coefficients are
“local to zero”. Stock and Staiger (1997) refer to this situation as “weak instruments’.
We disagree somewhat with this terminology because the result of badly biased IV
estimators also depends on the value of covariance term in the numerator of equation (5)

as we discuss in Hahn and Hausman (1999).
With p, = a/~/n, equation (5) predicts the bias of 2SL.Sto be
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Equation (9) is an approximation to the asymptotic bias of 2SL S under the asymptotics
wherep, = a/ Jn. When K is suffici ently large, the difference between equation (9) and
the asymptotic biasis negligible. See Chao and Swanson (2000, Theorem 3.1 (¢)).
On the other hand, equation (6) predicts the approximate bias for OLS to be:

s
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Comparison of (9) and (10) suggest that the bias of 2SL S is smaller than OLS aslong as
K<n, a condition which will always be satisfied in practice.

We have considered three asymptotic approximation: (i) p, * 0 and fixed; (ii)

p,= a/\/ﬁ at 0; (iii) p, = 0. For thefirst two cases, our approximate bias formulae



predict that 2SL S has less bias than OLS. For the last case, our formulae predict that

2SL S has approximately equal biasas OLS.

V. Bias Corrected 2SL S

We can also use equation (5) to construct an approximately unbiased 2SL S
estimator. Whileit first appears that we have only one equation (moment) and two

unknownsin b and s, , it turns out that this second parameter is a function of beta
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Now we can solvefor b which isalinear equation. The derivationis:
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where M =K/ysP,y,, d =M /(N - K) and q¢= y§Q,.Thus we can solve for beta to

find abias corrected estimator b :

Boc =6 - dag,)/(t- dagy,)
If we now consider the (approximate) bias of the estimator we find it to be zero by
construction. Thus, the estimator is approximately unbiased as claimed.

This estimator turns out to be the same as Nagar’ s estimator (EMA 1959), which
was derived in a considerably more difficult manner using a higher order expansion

approach. This equivalence can be seen from:
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Unfortunately, the estimator has no moments, and performs poorly when the model is
nearly non-identified. ® This poor performance follows by noting that the denominator is

zero when p, = 0. The Nagar estimator “blows up” in this situation in contrast to the

2SL S estimator, which isinconsistent but has its moments existing. For near non-
identification, the Nagar estimator similarly works poorly because the non-existence of
moments from the denominator being near zero leads to poor results in many situations.
Hahn, Hausman, and Kuersteiner (2001) give Monte Carlo results that demonstrate the
poor performance of the Nagar estimator in this situation. Thus, the Nagar estimator is
not very useful in the situation where 2SL S has substantial bias. Hahn, Hausman, and

Kuersteiner (2001) explore aternative estimators to use in this situation.

3 See Sawa (1972).
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