
One-dimensional inference in autoregressive models

with the potential presence of a unit root.

By Anna Mikusheva 1

Abstract

This paper examines the problem of testing and confidence set construction for one-dimensional

functions of the coefficients in AR(p) models with potentially persistent time series. The pri-

mary example concerns inference on impulse responses. A new asymptotic framework is sug-

gested, and some new theoretical properties of known procedures are demonstrated. I show

that the LR and LR± statistics for a linear hypothesis in an AR(p) can be uniformly approx-

imated by a weighted average of local-to-unity and normal distributions. The corresponding

weights depend on the weight placed on the largest root in the null hypothesis. The suggested

approximation is uniform over the set of all linear hypotheses. The same family of distributions

approximates the LR and LR± statistics for tests about impulse responses, and the approxi-

mation is uniform over the horizon of the impulse response. I establish the size properties of

tests about impulse responses proposed by Inoue and Kilian (2002) and Gospodinov (2004),

and theoretically explain some of the empirical findings of Pesavento and Rossi (2007). An

adaptation of the grid bootstrap for IRFs is suggested and its properties are examined.

Key words: impulse response, grid bootstrap, uniform inferences

1 Introduction

Impulse response function (IRF) estimates and confidence sets are the most common way

of reporting results for AR/VAR estimation, and also for describing dynamic interactions

between variables. IRF confidence sets also serve as means for assessing the fit between

theoretical macro models and the data as in, for example, Gali (1999) and Christiano,

Eichenbaum and Vigfusson (2004). Estimation of impulse responses is also a first step in

the estimation of DSGE models via the IRF matching method introduced by Rotemberg
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and Woodford (1997) and Christiano, Eichenbaum and Evans (1999).

The main problem discussed in this paper is how to make inferences on IRFs in AR(p)

models when the process is highly persistent. The question of how much a practitioner

should be concerned about the potential presence of a unit root is a controversial one.

At one extreme, Inoue and Kilian (2002) showed that the usual bootstrap works asymp-

totically for impulse responses at fixed horizons in an AR(p), regardless of whether there

is a unit root. At the same time, it was shown in simulations by Kilian (1998), Kilian

and Chang (2000), Pesavento and Rossi (2007), among others, that the bootstrap pos-

sesses very poor size properties, and the normal approximation is inaccurate for impulse

responses at very long horizons if a near-unit root is present. This was also demonstrated

theoretically by Phillips (1998) and Gospodinov (2004).

The reason for such a difference of opinion is the use of different asymptotic assump-

tions. There are two distinct strands of literature, which are referred below as the “short”

and “long” horizon approaches. In the “short” horizon approach, one assumes that the

horizon of the impulse response being estimated is fixed as the sample size increases.

Under this assumption, one indeed arrives at the same conclusion as Inoue and Kilian

(2002), in particular, the t-statistic for the impulse response converges to a normal dis-

tribution regardless whether the unit root is present. However, if the horizon is modeled

as growing proportionally to the sample size, then the asymptotic distribution of the

LR statistic will be non-standard if a weak unit root is present. The assumption of a

growing horizon may be a reasonable one for the estimation of an impulse responses

on long horizons. Methods suggested by Gospodinov (2004) and Pesavento and Rossi

(2006) employ this asymptotic setting. The confidence sets based on the classical meth-

ods (delta-method, bootstrap) are significantly different from those produced by methods

that are consistent under linearly-growing horizon asymptotics. The incompatibility of

these two different approaches requires practitioners to somewhat artificially choose a set

of asymptotic assumptions, making inferences subjective. The main goal of this paper

is to provide a method that will work uniformly well for both short and long horizons

independent of the presence of a unit root.

In this paper, I introduce and examine the properties of the grid bootstrap, a proce-

dure initially suggested by Hansen (1999) to do inferences on the sum of AR coefficients

in an AR(p). In an AR(p) with a root near one the distributions of the usual test

statistics depend on a so-called local-to-unity parameter, which cannot be consistently
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estimated by OLS. The idea underlying the grid bootstrap is that the null hypothesis

contains information that can be used for estimating the local-to-unity parameter. The

grid bootstrap uses the restricted estimates of unknown parameters to construct critical

values. The grid bootstrap is so named because it constructs confidence sets by grid

testing, that is, one tests all possible values of the impulse response (on a fine grid) and

composes the confidence set from the accepted values. For each value tested, I use the

same test statistic but different critical values. For each null hypothesis, the critical val-

ues depend on the restricted estimates of the parameters. Mikusheva (2007a) shows that

the grid bootstrap produces uniformly correct confidence sets for the sum of autoregres-

sive parameters in an AR(p), while the classical bootstrap or equi-tailed subsampling

fails to control size uniformly.

The paper contains two main results. First, I establish an approximation of the

finite sample distributions of the LR and LR± test statistics for making inferences about

IRFs by a weighted sum of local-to-unity and normal distributions. The approximation

is uniform over the parameter space, and it works uniformly well for all horizons. The

weights in the approximation are determined by how important the persistence parameter

is for the null hypothesis. For short horizons, the approximating distribution is very close

to normal, while for very long horizons it approaches the local-to-unity limit. Thus the

new approximation includes as special cases the classical asymptotic setting with a fixed

horizon as well as the non-standard asymptotic setting of Gospodinov (2004), and it

allows for a comparison of the asymptotic size obtained by the different methods. The

generalization of the results to heteroscedastic and multivariate models is discussed.

The second result presented in this paper is that the grid bootstrap controls size well

for the two extremes- a fixed horizon as well as a linearly-growing horizon. Surprisingly

enough, the grid bootstrap fails to fully control size on medium horizons, but the distor-

tions are relatively small. The intuition for the grid bootstrap performance is as follows.

An impulse response at a very long horizon heavily depends on the persistence of the

process, as characterized by the largest root, and therefore a hypothesis about such an

impulse response contains a lot of information about the degree of persistence. As a

result, the restricted estimate of the local-to-unity parameter is consistent if the horizon

is growing at a faster rate than
√

T . This allows the grid bootstrap to use asymptotically

correct critical values and to effectively control size for long horizons. The impulse re-

sponses at short horizons do not contain as much information about the largest root, but
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the distribution of the test statistic is close to normal and does not depend on persistence

in any significant way. As a result, the grid bootstrap controls size on short horizons as

well. Some distortions occur in the middle, but they are smaller than the distortions pro-

duced by the usual bootstrap since the grid bootstrap uses a better estimate. The grid

bootstrap is a working method to produce confidence intervals for the impulse responses

that behaves favorably when compared with currently used methods.

Along the way I obtain three results that are interesting on their own. First, I gen-

eralize the results obtained in Mikusheva (2007a) to an AR(p). I establish a uniform

asymptotic approximation for some basic OLS statistics for an AR(p). The difficulties

of normalizing and separating statistics with standard and non-standard limits are dis-

cussed. Related results describing the behavior of linear and quadratic forms for the

stationary region only are obtained in Giraitis and Phillips (2009).

Second, establishing the uniform approximation for LR and LR± statistics for IRFs

allows me to discuss theoretical properties of known procedures for testing hypotheses

about IRFs on different horizons. I provide a theoretical justification to many of the

findings Pesavento and Rossi (2007) obtained in their simulation study.

Third, I show that the LR and Wald statistics may have asymptotically different

distributions. I prove that the LR statistic for an IRF has the same asymptotic ap-

proximation as the LR statistic for the linearized version of the hypothesis, and this

approximation is uniform over the horizon of the IRF as well as over the parameter

space. At the same time, the Wald statistic is very sensitive to the curvature of the

problem, and it is not uniformly well approximated by the above-described family. The

curiosity found in this paper is one of the first examples where LR and Wald statistics

are asymptotically different.

The remainder of the paper is organized in the following way. In section 2, the

uniform approximation for the basic OLS-type statistics in an AR(p) is established.

Section 3 establishes the uniform approximation for a set of linear hypotheses, and it

introduces the grid bootstrap procedure. The issues related to the non-linearity of IRFs

are discussed in section 4, which also provides a generalization of the results to multi-

dimensional and heteroskedastic settings. Section 5 obtains and discusses the asymptotic

coverage properties of different methods of constructing confidence sets. The results of a

simulation study appear in section 6. The proofs of the main results are collected in the

Appendix. Since the proofs are long and technically involved, some proofs, in particular,
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those for the results of Section 4.2, extensions to heteroskedasticity as well as additional

discussions of the Wald statistic for non-linear functions are placed in the Supplementary

Appendix, which can be found on the author’s web-site.2

2 The Asymptotic Approximation for AR(p)

2.1 Autoregressive Models

Consider a sample of size T from an AR(p) process written in the Augmented Dickey-

Fuller (ADF) form

yt = ρyt−1 +

p−1∑
j=1

αj∆yt−j + et. (1)

Assume that the process is initialized as y0 = y−1 = ... = y−p+1 = 0.

Assumption A. Let {et}∞t=1 be i.i.d. error terms with a zero mean Eet=0, a unit

variance Ee2
t = 1 and a finite fourth moment Ee4

t < C < ∞.

I restrict the parameter space of coefficients (ρ, α = (α1, ..., αp−1)) in such a way that

there is at most one root close to a unit root. In doing so I abstract from multiple unit

roots as well as harmonic unit roots. For each (ρ, α), one can find λi = λi(ρ, α) such that

1− ρL−
p−1∑
j=1

αjL
j(1− L) = (1− λ1L)...(1− λpL),

where the (complex) roots are ordered in ascending order |λ1| ≤ |λ2| ≤ ... ≤ |λp|. I

assume that (ρ, α) ∈ Rδ , and

Rδ = {(ρ, α) : |λp−1(ρ, α)| < δ, and if λp(ρ, α) ∈ R, then − δ ≤ λp < 1} .

Consider a family of finite-sample distributions of some statistic ξ1: F
(1)
ρ,α,T (x) =

Pρ,α,T{ξ1 < x}. I approximate this family by a family of limiting distributions indexed

by a parameter c: F
(2)
c (x) = Pc{ξ2(c) < x}, where c = c(T, ρ, α) is related to the true

parameter value (ρ, α) and to the sample size T in a known way. The approximation is

said to be uniform over (ρ, α) ∈ Rδ if

lim
T→∞

sup
(ρ,α)∈Rδ

sup
x

∣∣∣F (1)
ρ,α,T (x)− F

(2)
c(ρ,α,T )(x)

∣∣∣ = 0.

2http://econ-www.mit.edu/files/6612
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This corresponds to the notion of uniformity given in Mikusheva (2007a). For simplicity,

when no ambiguity arises, I write ξ1
∼= ξ2(c). The uniform approximation is a much

stronger requirement than the point-wise approximation

lim
T→∞

sup
x

∣∣∣F (1)
ρ,α,T (x)− F

(2)
c(ρ,α,T )(x)

∣∣∣ = 0 for each (ρ, α) ∈ Rδ.

The former requires that for any ε > 0 there exists a sample size that guarantees that the

accuracy of the approximation at any parameter value (ρ, α) is no worse than ε. In con-

trast, the point-wise approximation allows the speed of convergence to differ depending

on the value of (ρ, α). Since the true value of (ρ, α) is usually unknown, the accuracy of

the point-wise procedure is unknown, and the finite sample size of the procedure may be

much larger than the declared. The distinction between uniform and point-wise approxi-

mations is important for many econometric problems such as inference for persistent time

series, weak instruments, and the parameter-on-the-boundary problem. A nice treatment

of this distinction with additional examples and explanations is given in Andrews and

Guggenberger (2009).

The importance of uniform inferences for an AR(1) with near unit roots was demon-

strated in Mikusheva (2007a). For any value of the AR parameter different from the unit

root, the Central Limit Theorem and Law of Large Numbers hold for 1√
T

∑T
t=1 yt−1et and

1
T

∑T
t=1 y2

t respectively. However, the convergence in those laws becomes slower as the

AR parameter approaches a unit root. This leads to the observation that the classical

OLS t-statistic inferences are point-wise correct but not uniformly correct. This explains

the extremely poor coverage of classical OLS procedures for very persistent processes.

2.2 Uniform Approximation for AR(1)

Here I briefly describe the results for an AR(1) established in Mikusheva (2007a) because

they provide useful intuition in an AR(p) case.

Assume that yt = ρyt−1 + et with y0 = 0, and the error term satisfies Assumption A.

Then the following asymptotic approximations hold uniformly over ρ ∈ [−1 + δ, 1) for

some positive δ > 0:
√

1− ρ2

T

T∑
t=1

yt−1et
∼= 1√

g(c)

∫ 1

0

Jc(t)dW (t); (2)

1− ρ2

T

T∑
t=1

y2
t−1

∼= 1

g(c)

∫ 1

0

J2
c (t)dt, (3)
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where Jc(s) =
∫ s

0
ec(t−s)dW (t) is an Ornstein-Uhlenbeck process, g(c) = E

∫ 1

0
J2

c (t)dt =

e2c−1−2c
4c2

, and c = c(ρ, T ) = T log(ρ).

Several observations are worth making. First, the expressions on the right side of

equations (2) and (3) are the point-wise limits of the expressions staying on the left in

the so-called local-to-unity asymptotic approach, where the parameter ρ is modeled as

approaching a unit root as the sample size T increases: ρT = 1 + c/T . The local-to-

unity asymptotics were suggested in a sequence of papers by Bobkoski (1983), Cavanagh

(1985), Chan and Wei (1987), Phillips (1987), and Stock (1991).

Second, in the classical asymptotic setting, that is, |ρ| < 1 is fixed and T → ∞,

the first statistic has normalization proportional to 1√
T
, while the second has 1

T
. If the

parameter ρ is modeled as in the local-to-unity approach ρT = 1+ c/T , then the normal-

ization in (2) and (3) becomes much stronger: for the first statistic, it is proportional to

1
T
, while for the second it is proportional to 1

T 2 .

Third, if |ρ| < 1 is fixed and T →∞ then c(ρ, T ) → −∞. Phillips (1987) showed that

the right side of (2) weakly converges to a standard normal distribution, and the right side

of (3) converges in probability to one as c → −∞. That is, even though the approximating

family resembles the local-to-unity limit distribution, it nests the classical Central Limit

Theorem and the Law of Large Numbers approximations for strictly stationary processes.

Finally, the variables are normalized in such a way that 1
g(c)

∫ 1

0
J2

c (t)dt is bounded in

probability from above and separated in probability from zero, while 1√
g(c)

∣∣∣
∫ 1

0
Jc(t)dW (t)

∣∣∣
is bounded in probability uniformly over −∞ ≤ c < 0.

2.3 Main result on the uniform approximation for AR(p)

If one wishes to establish some analogs to equations (2) and (3) for an AR(p), one faces

several difficulties. The regressor Xt = (yt−1, ∆yt−1, ..., ∆yt−p+1)
′ in the auto-regression

(1) has components Zt = (∆yt−1, ..., ∆yt−p+1)
′ which are strictly stationary and obey the

classical Central Limit Theorem and the Law of Large Numbers, as well as a component

yt−1 that may be stationary or persistent depending on how close the largest root is

to the unit circle. As in the case of an AR(1), these components may require different

normalizations. When ρ is close to 1, statistics involving yt−1 will be asymptotically

independent from those containing ∆yt−j. However, when ρ is far from 1 and the classical

normal asymptotics apply, there is a non-zero correlation between these two sets of
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statistics. To deal with this issue, I rotate Xt in such a way that the resulting statistics

will be asymptotically uncorrelated in the stationary region as well.

Let Σ(ρ, α) = limt→∞ Eρ,αXtX
′
t be the limit of the variance matrix of Xt.

3 Assume

also that F is a lower-triangular matrix such that FΣ(ρ, α)F ′ = Ip.

Theorem 1 Let yt be an AR(p) process defined by equation (1) with error terms satisfy-

ing Assumption A. Then the following approximations hold uniformly over (ρ, α) ∈ Rδ:

1√
T

T∑
t=1

FXtet
∼=




1√
g(c)

∫ 1

0
Jc(s)dW (s)

ξ


 , (4)

1

T

T∑
t=1

FXtX
′
tF

′ ∼=



1
g(c)

∫ 1

0
J2

c (s)ds 0′

0 Ip−1


 , (5)

where c = T log(|λp|), ξ ∼ N(0, Ip−1) is independent of W , 0 is a (p − 1) × 1 vector of

zeros, and Ip−1 is an identity matrix of size (p− 1)× (p− 1).

In an AR(p), the persistence of the process can be characterized by the largest root

λp. Local-to-unity asymptotics assumes λp = exp{c/T}. However, the concept of the

largest root is well defined only for very persistent processes. A strictly stationary AR(p)

process may have complex roots. I resolve this issue by defining c = T log(|λp|).
According to Lemma 2 in the Appendix, the first component of the vector FXt is√

1−ρ2

C(ρ,α)
yt−1, where C(ρ, α) is bounded and separated from the zero. Theorem 1 shows

that

√
1−ρ2

C(ρ,α)
√

T

∑T
t=1 yt−1et and 1−ρ2

C2(ρ,α)T

∑T
t=1 y2

t−1 are approximated by the same family of

distributions as in the AR(1) case. The normalization term
√

1− ρ2 allows for stronger

normalization in local-to-unity asymptotics. Function C(ρ, α) captures the long-run vari-

ance of the quasi-differenced series yt − λpyt−1 within the local-to-unity framework. The

last p− 1 components of FXt (denote them x̃t) are strictly stationary in the sense that

1√
T

∑T
t=1 x̃tet satisfies the Central Limit Theorem and 1

T

∑T
t=1 x̃tx̃

′
t obeys the Law of

Large Numbers. The transformation F rotates Xt in such a way that the standard and

non-standard components are asymptotically independent.

3It is equal to the covariance matrix of an analog of Xt for a strictly stationary process as defined in

equation (1).
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3 Inference for linear functions

3.1 Approximation of the test statistic

The main goal of the paper is to perform a test about or to construct a confidence set for

a function of the parameters γ = f(ρ, α, T ). These are dual problems, since a confidence

set is an acceptance set for a sequence of the hypotheses H0 : γ = γ0. Let (ρ̂, α̂′)′ be the

unrestricted OLS estimates and

(ρ̃(γ0), α̃(γ0)
′)′ = arg max

f(ρ,α)=γ0

max
σ

lT (ρ, α, σ)

be the restricted estimates of coefficients given the null H0 : f(ρ, α) = γ0. Here

lT (ρ, α, σ) = −T

2
ln(σ2)− 1

2

T∑
t=1

(yt − ρyt−1 − α′Zt)
2

σ2

is the quasi-log-likelihood function. The LR statistic is LR(γ0) = T ln(SSR0/SSR). It

is easy to verify that LR = T log(1 +
∑

ẽ2
t−

∑
ê2
t∑

ê2
t

) =
∑

ẽ2
t−

∑
ê2
t

σ̂2 + op(1) uniformly. For

simplicity, I will use LR to denote the last expression, namely
∑

ẽ2
t−

∑
ê2
t

σ̂2 . I also consider

a signed version of the LR statistic LR±(γ0) = sign(f(ρ̂, α̂)− γ0) ·
√

LR(γ0). The signed

statistic can be employed to create equi-tailed confidence sets. It also can be used to

create a median-unbiased estimator as was mentioned in Gospodinov (2004).

This section considers only linear hypotheses: f(ρ, α) = A1ρ + A′
2α, where A =

(A1, A
′
2)
′ is a p × 1 vector. Since in the linear case the LR and the Wald statistics

coincide and LR = t2, it is enough to study the t-statistic in this case:

t =
A′

(∑T
t=1 XtX

′
t

)−1 ∑T
t=1 Xtet

σ̂

√
A′

(∑T
t=1 XtX ′

t

)−1

A

=
(FA)′

(
1
T

∑T
t=1 FXtX

′
tF

′
)−1

1√
T

∑T
t=1 FXtet

σ̂

√
(FA)′

(
1
T

∑T
t=1 FXtX ′

tF
′
)−1

FA

. (6)

Consider a family of distributions indexed by two parameters, c and u:

t(c, u) =
tc + u

√ ∫ 1
0 J2

c (s)ds

g(c)
N(0, 1)

√
1 + u2

∫ 1
0 J2

c (s)ds

g(c)

, (7)

where tc =
∫ 1
0 Jc(t)dW (t)√∫ 1

0 J2
c (t)dt

is the limit of the t-statistic for ρ in the local-to-unity asymptotics,

and N(0, 1) is a standard normal variable independent of Brownian motion W (t). Let

u =

√
f ′2f2

|f1| =

√
A′F ′FA− (i′1FA)2

(i′1FA)2
, (8)
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where f1 = i′1FA is the first component of the vector FA, and f2 is the vector consisting

of the last p− 1 components.

Theorem 2 Consider a sample {yt} from an AR(p) process as defined in equation (1)

with error terms satisfying assumption A. Assume that the linear hypothesis about coeffi-

cients H0 : (ρ, α′)A = γ0 is tested, and t(A) is the OLS t-statistic for testing this hypoth-

esis. For each value of A, ρ and α let u be defined as in equation (8), and c = T log(|λp|).
Then the finite sample distribution of t-statistic is asymptotically approximated by the

distribution of the random variable t(c, u) defined in equation (7) uniformly with respect

to parameters of the process ρ, α and the hypothesis tested:

lim
T→∞

sup
A∈Rp

sup
(ρ,α)∈Rδ∩H0

|Pρ,α {t(A) < x} − P {t(c, u) < x}| = 0.

An important peculiarity of the above result is that the suggested approximation

is uniform with respect to the linear null hypothesis tested along with parameters ρ

and α. The intuition of the result is as follows. Under the local-to-unity assumption

the OLS estimate ρ̂ is T -consistent and has a non-standard and non-pivotal asymptotic

distribution, while the OLS estimate α̂ is
√

T -consistent and asymptotically normal. The

parameter u is the measure of sensitivity of the testing problem to a potential presence

of the unit root. The value of u is equal to the ratio of the stochastic uncertainty

introduced into the estimation of γ = A1ρ + A′
2α by the normally behaving coefficients

α to the uncertainty infused by the potentially non-standardly behaving coefficient ρ.

Assume for simplicity that one has an AR(2) process, and thus α is a scalar. If one

uses the local-to-unity modeling assumptions, ρT = 1+c/T , then u will be asymptotically

proportional to the ratio of weights A2

√
T

A1
put on the coefficients by the hypothesis. So,

if there is a sequence of hypotheses for which A2

√
T

A1
→ 0, then no weight is put on α

asymptotically (u → 0), and I obtain the local-to-unity limit t ⇒ tc. If, on the contrary,

A2

√
T

A1
→ ∞, then (u → ∞), that is, the short-term dynamics dominate the stochastic

component, and t ⇒ N(0, 1). In general, the finite sample distribution of the t-statistic

is approximated by a random mixture of the two extremes.

The uniformity of the approximation over the set of linear hypotheses will be impor-

tant since impulse responses at different horizons place different asymptotic weights on

α and ρ. Let fk denote the IRF at horizon k. The ratio of derivatives ∂fk

∂ρ
/∂fk

∂α
changes

approximately as const·k when k increases (i.e. the dependence of the IRF on ρ increases
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with the horizon). Consider a linear hypothesis that places weights on ρ and α that are

proportional to the corresponding partial derivatives. When one models the horizon k

as fixed, asymptotic normality coming from the estimation of α stochastically dominates

the non-standard stochastic component introduced by the super-consistent estimation of

ρ. As a result, the asymptotic distribution of the test statistic for a linearized hypothesis

about fk will be the same as if ρ were known. That is, this asymptotic distribution

does not depend on any nuisance parameters, and the usual bootstrap will work (Inoue

and Kilian (2002)). However, if kT = [δT ], the horizon proportionally increases with the

sample size as in Gospodinov (2004) and Pesavento and Rossi (2006), then the ratio of

derivatives
∂fkT

∂ρ
/

∂fkT

∂α
increases at speed T . As a result, the influence of the non-standard

distribution of ρ on the test statistic stochastically dominates the normal component,

and the non-standard asymptotics should be used.

When the horizon kT is changing between the two described extremes, the limit

distribution of the t-statistic is a mixture of the classical (normal) term and the non-

standard local-to-unity limit distribution tc. The weights with which two distributions

enter the mixture depend on the parameter u, which is proportional to kT√
T
. Section 4

shows that the test statistic for the IFR behaves in the same manner as its linearized

version, and the analog of Theorem 2 holds for IRF uniformly over different horizons.

3.2 Accuracy of the restricted estimator

For the grid bootstrap discussed in the sections below, I will need the restricted estimates

of (ρ, α); that is, the estimates calculated under the restriction that the null hypothesis

be satisfied. In this section, I show that the parameter u introduced in the previous

section is closely related to the accuracy of the restricted estimate of c.

Lemma 1 Let us have an AR(p) process yt defined in (1) with error terms satisfying

Assumption A. Assume that the null hypothesis H0 : (ρ, α′)A = γ0 holds. Then uniformly

over the parameter space Rδ and over the space of all linear hypotheses A ∈ Rp, the

following representation holds:

√
TF−1


 ρ̃− ρ

α̃− α


 ∼=


 0

ξ


 + uη(u, c), (9)

where ξ ∼ N(0, Ip−1), and the vector of random variables η(u, c) is uniformly bounded in

probability over c and 0 ≤ u ≤ U for any fixed, positive U . That is, for any U > 0 and

11



any ε > 0 there exists a constant C < ∞ such that

sup
−∞≤c≤0

sup
0≤u<U

P{|η(u, c)| > C} < ε.

To interpret Lemma 1, consider the local-to-unity asymptotics. That is, assume

that the largest root, λp = 1 + c/T , converges to a unit root while all other roots

|λ1| ≤ ... ≤ |λp−1| < δ remain fixed. In the described setting the OLS estimate ρ̂ is

T -consistent, that is, T (ρ̂ − ρ) has a non-degenerate limit distribution depending on c,

while α̂ is
√

T -asymptotically normal. As a result, ĉ = −T 1−ρ̂

1−∑p−1
j=1 α̂j

, a natural OLS

estimate of c, will not be consistent. Rather it converges to a stochastic limit. Given

that the approximating family t(c, u) obtained in the previous section depends on c in

a non-trivial way, the inability to estimate c may pose a problem for making inferences.

Lemma 1 shows that the restricted estimate may be better if u is small. If I consider a

sequence of testing problems indexed by the sample size T such that uT → 0, then I can

estimate c consistently, and uT will be related to the speed of convergence.

Indeed, under the local-to-unity assumptions matrix F−1 has asymptotically a block

diagonal form. It follows from Lemma 2 that the upper left element of F−1 is asymp-

totically behaving like
√

T
−2c

. That is, the normalization
√

TF−1 in statement (9) treats

ρ and α differently, it pre-multiplies (α̃ − α) by
√

T while it pre-multiplies (ρ̃ − ρ) by

T . The main message of Lemma 1 is that, unlike the OLS estimate, T (ρ̃− ρ) converges

to 0 if uT → 0. That is, in such a case the parameter c is consistently estimable, and

uT characterizes the accuracy of the estimator. Therefore, c̃ = −T 1−ρ̃
1−∑

α̃j
is a consistent

estimate of c if uT → 0.

The intuition of this result is as follows. If uT → 0, the null hypothesis of interest

puts disproportionately large weight on the “persistence coefficient” ρ, and thus, it is

highly informative about ρ. The restricted estimator uses this information. Think about

the limit case, imagine that the null is H0 : ρ = ρ0 a hypothesis about ρ only. It will

produce u = 0. In this case the restricted estimate is equal to the true value of ρ: ρ̃ = ρ0.

It also worth noticing that one is better at estimating c in exactly the situations one

needs it the most. According to Theorem 2 the smaller u corresponds to the approxima-

tion that puts greater weight on the local-to-unity distribution tc.

12



3.3 Grid bootstrap and why it works

As will be shown formally in the next section, the LR± statistic for an impulse response

can be approximated by a family of distributions t(u, c) indexed by two parameters -

the local-to-unity parameter c and the relative importance of normal and local-to-unity

component u. And the approximating family of distributions consists of weighted sums

of normal and local-to-unity limits. The grid bootstrap procedure, inspired by Hansen

(1999), is an attempt to base inferences on the both terms.

The idea of the grid bootstrap was initially introduced by Hansen (1999) for the sum

of AR coefficients’ confidence set construction. It has been shown that the grid bootstrap

produces uniform inference on ρ (Mikusheva (2007a)). Here I modify Hansen’s (1999)

idea for the IRF.

The key problem here is that the local-to-unity parameter c needed to produce valid

critical values cannot be consistently estimated by OLS. The idea behind the grid boot-

strap is to use the information contained in the null hypothesis whenever one is tested.

The restricted estimate under the null tends to be better, and in fact, sometimes will

even be consistent.

The grid bootstrap procedure is as follows. To test the hypothesis H0 : f(ρ, α) = γ0

based on a sample YT = (y1, ..., yT ) one should:

(1) calculate the test statistic W (YT ) (in our case W (YT ) is either LR or LR±) and the

restricted estimates (ρ̃, α̃) from the sample YT ;

(2) simulate samples Y ∗
b,T = {y∗b,1, ..., y∗b,T}, b = 1, ..., B from an AR(p) with coefficients

(ρ̃, α̃) and errors drawn randomly with replacement from the OLS residuals or

simulated from the standard normal distribution, that is,

y∗b,t = ρ̃y∗b,t−1 +

p−1∑
j=1

α̃j∆y∗t−j + ε∗b,t,

where ε∗b,t are i.i.d. The number of simulations B handles the accuracy of quantile

simulation and should be large.

(3) for each simulated sample, Y ∗
b,T , calculate the test statistic wb = W (Y ∗

b,T );

(4) sort wb in ascending order: w(1) ≤ ... ≤ w(B). Perform the test by comparing the

test statistic W (YT ) with the quantiles of the simulated distribution of W (Y ∗
T ). If
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one uses the LR statistic, then the test accepts whenever W (YT ) ≤ w(bB(1−α)c) (here

bxc stays for the whole part of x). When LR± is used, the test accepts whenever

w(bBα/2c) ≤ W (YT ) ≤ w(bB(1−α/2)c).

As an asymptotically equivalent way of realizing grid bootstrap,4 one may substitute

steps (3) and (4) with the following step

(3’) calculate the implied values of c̃ and ũ using formula (8) and c̃ = −T 1−ρ̃
1−∑

α̃j
. Then

find quantiles of the distribution t(c̃, ũ) for the LR± statistic or of distribution

t(c̃, ũ)2 for the LR statistic.

The needed quantiles of t(c, u) and t(c, u)2 may be tabulated and stored for a fine grid

of values of c and u to improve the speed of the algorithm. The algorithm with step (3’)

is less computationally intensive, but it may have less favorable finite-sample properties,

since the bootstrap tends to provide a second-order improvement in the classical setting,

which may be important for non-linear functions.

If one wants to construct a confidence set for the parameter γ = f(ρ, α) via the grid

bootstrap, then one has to test all possible hypotheses H0 : f(ρ, α) = γ0 as described

above. The confidence set consists of all γ0 for which the corresponding hypothesis is

accepted. Notice that for different γ0 one must use different critical values since the

corresponding restricted estimate (ρ̃(γ0), α̃(γ0)) changes. In practice this is accomplished

on a fine grid of γ0. In our extensive simulation experiments we have never observed

a disjoint confidence set for an IRF. Even though I do not formally prove that the

confidence set is an interval, if one agrees to use it as an assumption, then the task is

to find the two ends of the confidence interval. This task can be solved with very high

accuracy at a relatively low computational cost if one uses the bisection method. The

OLS estimator always belongs to the confidence set, as LR statistic is equal to zero, and

the corresponding hypothesis is accepted. If one wants to find the left end of the interval,

one should move to the left from the OLS estimator with a step of length one until the

hypothesis is rejected. In such a way one finds the interval of unit length containing the

left end of the confidence set. Then one has to divide the resulting interval into halves,

test the middle point and determine to which half the end point belongs. The division

should be repeated several times until the desired accuracy is achieved.

4I am grateful to an anonymous referee for pointing this out.
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The grid bootstrap approximates the finite-sample distribution of the LR statistic by

t2(c̃, ũ) and the distribution of LR± by t(c̃, ũ). Unlike the classical bootstrap, the grid

bootstrap uses the restricted estimates (ρ̃, α̃) to simulate the critical values, while the

classical bootstrap uses (ρ̂OLS, α̂OLS). OLS produces an always-inconsistent estimate of c

with a large bias in a stationary direction, while the restricted estimate can be consistent

in some situations, in particular when uT → 0.

Lemma 1 shows that the accuracy of the restricted estimate is directly connected with

u. The impulse response at long horizons (small u) heavily depends on the persistence ρ,

and thus, the null hypothesis about it contains a lot of information about ρ. This allows

one to estimate c well, and the grid bootstrap critical values are close to correct. A

hypothesis about a short horizon impulse response does not contain as much information

about the persistence, but a good estimate of c is not as needed either, since both the

sample and simulated statistics are asymptotically close to χ2 (normal) anyway. In

principle, problems could arise for medium horizons. Results from the simulation of the

asymptotic size of the grid bootstrap reported in Section 6 show that the size distortions

are relatively small.

4 Inferences about Impulse responses

In the previous sections, I circumvented non-linearity issues by assuming that the pa-

rameter of interest is a linear function of the coefficients. One of the implications of this

assumption is that the Wald statistic is equal to the LR, and the t-statistic is equal to

LR±. However, the IRF is a very non-linear function of the coefficients, and the degree

of non-linearity increases with the horizon. This section examines uniform asymptotic

approximations of the LR and Wald statistics for IRFs. Our goal is to obtain an asymp-

totic approximation that is uniform over the parameter space, Rδ, as well as over all

possible horizons of the impulse response.

4.1 LR statistic for IRF

Let fk(ρ, α) be the impulse response of an AR(p) process with parameters (ρ, α) at the

horizon k; that is, fk(ρ, α) = ∂yt+k

∂et
. Let L be the set of all impulse response functions:

L = {fk(ρ, α), k = 1, 2, ...}. Let LR(f, γ0) be the LR statistic and LR±(f, γ0) be the LR±
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statistic for testing the null H0 : f(ρ, α) = γ0. The theorem below shows that the LR test

for IRFs is asymptotically uniformly approximated by the same family of distributions

as LR statistics for the linearized hypothesis.

Theorem 3 Assume {yt} is an AR(p) process defined as in (1) with error terms sat-

isfying Assumption A. Assume the null hypothesis H0 : f(ρ, α) = γ0 holds. Let A =

∂f
∂(ρ,α′)(ρ, α) and u be calculated as in (8). Then

lim
T→∞

sup
f∈L

sup
(ρ,α)∈Rδ∩H0

∣∣Pρ,α {LR(f, γ0) < x} − P
{
t(c, u)2 < x

}∣∣ = 0,

lim
T→∞

sup
f∈L

sup
(ρ,α)∈Rδ∩H0

∣∣Pρ,α

{
LR±(f, γ0) < x

}− P {t(c, u) < x}
∣∣ = 0.

The non-linearity of the IRF does not matter asymptotically if the LR statistic is

used. The same asymptotic approximation holds as for the linearized versions of IRFs.

The most important feature of the above stated approximation is that the approximation

holds uniformly over the horizon as well as over the parameter space; that is, it works

well for short, long and medium horizons, no matter how one defines them.

The LR statistic has one obvious drawback; it is not robust to heteroskedasticity.

One way to robustify the inferences to conditional heteroskedasticity is to consider the

GMM-based distance metric statistic5

DMT = QT (θ̃)−QT (θ̂),

where θ = (ρ, α′)′, QT (θ) = e(θ)′XΩ−1
T X ′e(θ), X = (Xp+1, ..., XT )′ is a (T − p) × p

regressor matrix, ΩT = 1
T

∑T
t=p+1 XtX

′
te

2
t (θ̂), e(θ) = Y −Xθ, θ̂ is the OLS estimate, and

θ̃ is the restricted estimate of θ. Many of the results pertaining to IRF inferences can

be directly generalized to conditionally heteroskedastic processes. The interested reader

should refer to the Supplementary Appendix for more details.

4.2 IRFs in a VAR with a potential unit root

In this section, some results of the paper are generalized to VAR systems in which at

most one near unit root is present.

Consider a k-dimensional VAR(p) process

yt = B1yt−1 + ... + Bpyt−p + et. (10)

5In the context of testing IRFs, the Distance Metric statistic was mentioned in Gospodinov (2004).
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Imagine for simplicity that one knows the co-integration (near co-integration) relation

and can locate the problematic root. That is, assume that the first component y1,t

has a local-to-unity root, while all other components y−1,t = (y2,t, ..., yk,t)
′ are strictly

stationary. Formally, assume that the VAR lag polynomial B(L) = Ik−B1L− ...−BpL
p

can be factorized in the following way B(L) = (Ik − diag(λ, 0, ..., 0)L)B̃(L).

Assumption VAR1

(i) All roots of the characteristic polynomial B̃ lie strictly inside and are bounded

away from the unit circle. In particular, the process xt given by B̃(L)xt = et can

be written as an MA (∞) process xt = Θ(L)et =
∑∞

j=0 Θjet−j with MA coefficients

satisfying the following condition:
∑∞

j=0 j‖Θj‖ < ∞, where ‖Θj‖ =
√

trace(ΘjΘ′
j).

(ii) yt = Λyt−1 +xt, y0 = 0, where Λ = diag(λ, ..., 0); that is, y1,t = λy1,t−1 +x1,t; y−1,t =

x−1,t. The problematic root λ is local-to-unity, λ = λT = 1− c/T .

(iii) et is a martingale-difference sequence with respect to the sigma-algebra Ft, with

E (ete
′
t|Ft−1) = Ω and four finite moments.

The assumption above is a direct generalization of the local-to-unity asymptotic embed-

ding to a multivariate setting. If Assumption VAR1 holds, the OLS estimator of the

regression in (10) has non-standard asymptotic behavior due to some linear combination

of coefficients being estimated super-consistently. A survey of local-to-unity multivariate

models can be found in Phillips (1988).

Let us interest ourselves in testing a hypothesis about the coefficients H0 : f(B1, ..., Bp) =

0. The following statistic is a generalization of the LR statistic to the multi-dimensional

case:

LR = T · trace(Ω̂−1(Ω̃− Ω̂)) (11)

with Ω(B) = 1
T

∑T
t=1(B(L)yt)(B(L)yt)

′, Ω̂ = Ω(B̂), Ω̃ = Ω(B̃), where B̂ is the OLS

estimator of coefficients in regression (10), while

B̃ = arg min
B=(B1,...,Bp):f(B)=0

Ttrace(Ω̂−1(Ω̂− Ω(B)))

is the restricted estimator.

Consider a hypothesis about the impulse response of the nearly-non-stationary series

y1,t to the jth shock at the horizon h, denote it θh =
∂y1,t+h

∂ej,t
. Assume that the horizon
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h = [q
√

T ] is increasing in proportion to
√

T . This embedding implies that uT converges

to a constant in the AR(p) case and delivers the mixture of local-to-unity and normal

distributions as the limit distribution of the LR± statistic. Lemma 4 in the Supplemen-

tary Appendix points out that the linearized hypothesis about such an impulse response

puts
√

T−increasing weight on the coefficients estimated super-consistently relative to

the weights put on the asymptotically normal coefficients on the stationary regressors.

Let Ã = ∂θh

∂B
. Let the hypothesis H0 : Ã′B = γ0 be the linearized version of the hypothesis

H0 : θh = γ0.

Theorem 4 Let yt be a k×1 VAR(p) process satisfying Assumption VAR1. Assume that

the linearized version of the hypothesis H0 : θh =
∂y1,t+h

∂ej,t
= γ0 at the horizon hT = q

√
T

is tested using the statistic defined in equation (11). Then LR ⇒ (t(u, c))2 as T → ∞
for some u.

Theorem 4 states that in the multivariate VAR model with at most one local-to unity

root the asymptotic behavior of the LR test statistic for the impulse response at horizon

proportional to
√

T is of the same nature as the corresponding statistic in the univariate

AR(p).

4.3 Wald statistic for the IRF

It is well known that different statistics behave differently for very curved parameters.

The t-statistic is not invariant to a monotonic transformation of the null-hypothesis or

a re-parametrization of the model. Gregory and Veall (1985) showed that the results

of the Wald test can change dramatically under a monotonic transformation of the null

hypothesis. The LR test, however, is invariant to such transformations.6 Hansen (2006)

shows that in a classical OLS setting that the GMM-distance statistic (of which the LR

statistic is a special case) is second-order better approximated by a χ2-distribution when

compared to a Wald statistic.

Below I show that the approximation as stated in Theorem 3 for the LR statistic

does not hold for the Wald statistic. For simplicity, the problem is illustrated in an

6Due to the invariance of the LR statistic to monotonic transformations, the LR statistic for a test

about an IRF in an AR(1) model is equal to the LR statistic for a test about the coefficient ρ only. The

validity of the grid bootstrap for such a test in an AR(1) model is proven in Mikusheva (2007a).
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AR(1) model. A treatment of the more general AR(p) case is left to the Supplementary

Appendix.

Consider an AR(1) process in a classical setting; that is, yt = ρyt−1 + et, with 0 <

ρ < 1 being fixed, and the sample size growing to infinity. Consider an IRF fk(ρ) = ρk

where the horizon is modeled as changing with the sample size kT = [
√

T ]. In this case

dfk(ρ)
dρ

= kρk−1, and I can write the t-statistic (Wald statistic equals a t-statistic squared).

t =
ρ̂kT − ρkT

kT ρ̂kT−1

√
T

1− ρ̂2
=

ρ̂
√

T − ρ
√

T

ρ̂
√

T−1

√
1

1− ρ̂2
.

Since |ρ| < 1 is fixed, ρ̂ →p ρ and
√

T (ρ̂ − ρ) ⇒ N(0, (1 − ρ2)−1). I can re-write the

t-statistic as follows:

t =


1−

(
1 +

1√
T

√
T (ρ̂− ρ)

ρ̂

)√
T

 ρ√

1− ρ2
.

Since (1 + x√
T
)
√

T → ex as T → ∞ uniformly over |x| < C for any positive constant C,

one obtains that

t ⇒
(

exp

(√
1− ρ2

ρ2
ξ

)
− 1

)
ρ√

1− ρ2
,

where ξ ∼ N(0, 1). The limit distribution is not normal, as one might have expected.

The limit distribution of the t-statistic does not belong to the family of distributions

t(u, c). This implies that the approximating family of distributions for the t-statistic

(or Wald statistic) for a highly non-linear hypothesis may differ from that for a linear

hypothesis. This section demonstrated that handling the t-statistic (Wald statistic) for

a highly non-linear null hypothesis is a more delicate task than dealing with LR-type

statistics. I leave finding approximations for Wald statistics for future research.

5 The Asymptotic Size of Different Methods

Section 4 establishes a uniform approximation for the LR, and LR± statistics for testing

hypotheses about impulse responses. The suggested asymptotic approximation holds uni-

formly over the horizon of the impulse response. In this section, I discuss the asymptotic

size properties of some known methods for impulse response inference.

Let Y = {y1, ..., yT} be a sample from an AR(p) process described in (1) with error

terms satisfying Assumption A. The hypothesis H0 : f(ρ, α) = γ0 is tested, where f ∈ A.
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In our case, A is the set of impulse responses. Let ψ(Y, f) ∈ {0, 1} be a test of H0 (if

ψ(Y ) = 1 the test will reject the null). Then the finite sample size of φ is Eρ,αψ(Y, f). The

uniform approximation obtained before allows one to characterize for many known tests

how well the test maintains size asymptotically. The characterization is done through

the function φ(c, u) such that:

lim
T→∞

sup
f∈A

sup
(ρ,α)∈Rδ∩H0

|Eρ,αψ(Y, f)− φ(c, u)| = 0.

A test that maintains its size uniformly well for all parameter values and all functions

from A would have φ(c, u) ≤ φ0 for all c ≤ 0 and u ≥ 0, where φ0 is the declared size. It

should be emphasized that φ(c, u) characterizes the asymptotic size of a procedure. The

finite sample size properties are discussed in Section 6.

Table I provides the values of the parameter u for tests of the impulse response at

different horizons in the AR(2) model. One can observe that u becomes very close to 0, i.e.

the majority of the weight is put on the local-to-unity term, when the horizon increases,

however, u is large at shorter horizons, especially when there is a positive second root.

Due to the fact that the impulse response is a non-linear function of coefficients, the

value of u depends on both roots. As Table I shows, u is an increasing function of both

roots in the AR(2) case.

h = 2 h = 3 h = 4 h = 5 h = 10 h = 15

λ = 0.99 µ = −0.6 1.2 1.7 0.2 0.9 0.1 0.1

µ = −0.3 1.3 1.6 1.0 0.8 0.4 0.2

µ = 0 3.4 2.2 1.6 1.3 0.6 0.3

µ = 0.3 5.9 3.9 2.8 2.2 0.9 0.5

µ = 0.6 9.6 7.1 5.4 4.3 1.8 1.0

λ = 0.98 µ = −0.6 1.0 1.2 0.3 0.5 0.0 0.1

µ = −0.3 0.8 1.0 0.6 0.5 0.1 0.0

µ = 0 2.4 1.5 1.1 0.8 0.3 0.1

µ = 0.3 4.1 2.7 1.9 1.5 0.5 0.3

µ = 0.6 6.8 4.9 3.8 2.9 1.2 0.6

Table I: Value of u for a hypothesis about the impulse response at horizon h for an AR(2) process with

roots λ and µ. A simplified explicit formula for u in the AR(2) model can be found in the Supplementary

Appendix.

Let qt
φ0,i(c, u) be the φ0-equi-quantiles of statistics t(c, u); that is, P{t(c, u) < qt

φ0,1(c, u)} =

φ0/2 and P{t(c, u) > qt
φ0,2(c, u)} = φ0/2. Also let qW

φ0
(c, u) be the 1 − φ0 quantile of
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t2(c, u), that is, P{t2(c, u) > qW
φ0

(c, u)} = φ0.

5.1 Classical bootstrap

The classical bootstrap is the following procedure. One estimates the coefficients (ρ̂, α̂) by

OLS and calculates the test statistic (signed or squared). Then one simulates an AR(p)

model with coefficients (ρ̂, α̂), calculates the test statistic for the simulated model, and

computes its quantiles.

As a direct corollary of Theorem 3 the asymptotic size for the bootstrap of the LR is

φ(c, u) = P
{
t2(c, u) > qW

φ0
(û, ĉ)

}
;

and for signed statistics is

φ(c, u) = 1− P
{
qt
φ0,1(û, ĉ) < t(c, u) < qt

φ0,2(û, ĉ)
}

.

Here ĉ = c +
∫ 1
0 Jc(t)dW (t)∫ 1

0 J2
c (t)dt

is a random variable defined on the same probability space as

t(c, u), where W (t) and Jc(t) are the same as in the definition of t(c, u) (see (7)), and

û = u
√

ĉ
c
.

0

5

10

15

0

5

10

0

0.1

0.2

0.3

0.4

U−c

re
je

ct
io

n 
ra

te
 if

 b
oo

ts
tr

ap
 c

v 
us

ed

Figure 1: Rejection rate of the classical bootstrap LR test. The nominal significance level is 5%. A

linear trend is assumed. Based on 5000 simulations.

It is interesting to note that even though the bootstrap was initially justified for

impulse responses by proving that the t-statistic converges to a normal distribution, it
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Figure 2: Rejection rate of the classical bootstrap LR± test. The nominal significance level is 5%. A

linear trend is assumed. Based on 5000 simulations from an asymptotic distribution.

eventually uses approximation with both terms through simulations. It employs the OLS

estimates of c and u, rather than the true values (which are not known). It is well-known

that the OLS estimate of c is not consistent. In fact, ĉ is asymptotically highly biased

to the left, thus the estimated model looks more stationary than it actually is. The

OLS estimate û tends to somewhat overestimate u, and thus, it puts more weight on the

stationary component than it should. Both facts lead to size distortions, which become

unimportant if either c → −∞ (very stationary series) or u → ∞ (hypothesis is about

stationary coefficients only). The function φ(c, u) for the bootstrap applied to signed and

squared statistics is depicted in Figures 1 and 2. It has very significant distortions.

5.2 Gospodinov’s method

Here I consider a method for constructing a confidence set that was suggested by Gospodi-

nov (2004). For the null hypothesis H0 : f(ρ, α) = γ0, one calculates the LR test statistic

(signed or unsigned) and the restricted estimates (ρ̃, α̃). One also calculates the implied

value of the local-to-unity parameter c̃ corresponding to the restricted estimates of the

coefficients. The test compares the value of the statistic with the quantiles of the local-

to-unity limit tc (or (tc)2) evaluated at c̃. Gospodinov’s method uses only tc = t(c, u = 0)
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ignoring the stationary part of t(c, u).

Gospodinov (2004) based his method on asymptotic approximations obtained under

the assumption that the length of the horizon is proportional to the sample size, kT =

[δT ]. This corresponds in our notation to uT → 0, and it leads to using quantiles of

tc = t(c, u = 0). Gospodinov (2004) checks the robustness of the method in a Monte-

Carlo study, and he finds that his LR test becomes conservative on short horizons. He

also notices that the rejections of the LR tests are mainly one-sided and suggests using

the signed statistic LR±.
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Figure 3: Rejection rate of Gospodinov’s LR test. The nominal significance level is 5%. A linear trend

is assumed. Based on 5000 simulations.

As a direct corollary of Theorems 2 and 3 and Lemma 1, one has that for the LR test

φ(c, u) = P{t2(c, u) ≥ qW
φ0

(c̃, u = 0)}

and for LR±:

φ(c, u) = 1− P{qt
φ0,1(c̃, u = 0) ≤ t(c, u) ≤ qt

φ0,2 (c̃, u = 0)},

where c̃ is defined as the right side of (9).

To understand the size properties of Gospodinov’s method several facts should be

taken into account: 1) if u 6= 0, then c̃ is biased negatively; 2) the distribution of (tc)2 first-

order stochastically dominates the distribution of (tc1)2 if −c < −c1; 3) the distribution of
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(tc)2 first-order stochastically dominates χ2
1; 4) distributions tc and N(0, 1) have different

locations.

First, let us consider the LR statistic. From 1) and 2) one might expect that there

would be slight over-rejection for small non-zero values of u, since for those values of u the

persistence is slightly underestimated. For relatively large values of u (that correspond to

moderate or short horizons) the true distribution of the LR statistic is a squared mixture

of tc and normal, but the quantiles of the local-to-unity distribution are used, which

in light of fact 3) are larger. As a result, Gospodionov’s method for the LR statistic is

conservative at medium and short horizons. This fact was observed before in simulations,

but only now has received any explanation.

Now let me turn to the signed statistic LR±. In light of fact 4), one should expect

that Gospodinov’s (LR±) should over-reject when u is high (short horizons) and c is close

to 0 (persistent case). The rejection rate increases with u and at the limit (c = 0, u = ∞)

becomes close to 40% (for a 5% declared level). The conservativeness of the method for

the LR and over-rejection of the LR± are demonstrated on Figures 3 and 4.
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Figure 4: Rejection rate of Gospodinov’s LR± test. The nominal significance level is 5%. A linear trend

is assumed. Based on 5000 simulations.
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Figure 5: Rejection rate of grid bootstrap LR test. The nominal significance level is 5%. A linear trend

is assumed. Based on 5000 simulations.
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Figure 6: Rejection rate of grid bootstrap LR± test. The nominal significance level is 5%. A linear

trend is assumed. Based on 5000 simulations.
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5.3 Grid bootstrap

As we have seen above, the classical bootstrap approximates the finite sample distribu-

tion of the test statistic by a mixture of the t(c, u)-type, but it uses a very biased estimate

of c (ĉOLS). The bias of the estimate is particularly bad when the process is very persis-

tent. The highest distortions of the classical bootstrap happen when the local-to-unity

distribution has the highest weight (u = 0). Gospodinov’s method uses a better estimate

of c, the restricted estimate c̃. The estimate c̃ is especially good when u is very close to

0 (Lemma 1). The idea of marrying the two methods in order to fix the drawbacks of

each is realized in the grid bootstrap. The procedure is described in Section 3.3, and it

approximates the unknown finite-sample distribution of the test statistic by t2(c̃, ũ) for

squared and by t(c̃, ũ) for signed statistics.

Maximal actual size Nominal size

0.025 0.05 0.1

1-sided(LR) 0.052 0.099 0.18

2-sided (LR±) 0.036 0.064 0.12

Table II: Maximal over u and c asymptotic size of grid bootstrap procedure for a given nominal size.

Based on 10000 simulations.

The potential usefulness of the grid bootstrap is that if 0 < u < ∞, then the asymp-

totic distribution of both the sampled and simulated statistics will have the classical and

local-to-unity terms, unlike the delta-method or Gospodinov’s method that have only

one of the two terms.

Note that if u is close to zero, the estimator c̃ is extremely precise, and the critical

values are close to being correct. If u is large enough, then both the sample and simulated

statistics are asymptotically close to χ2 (normal), and the coverage is close to the declared

coverage. In principle, problems could arise for intermediate values of u. For a series

of experiments that keeps u 6= 0 constant, the estimate of c̃ is not consistent. As a

result, the grid bootstrap does not deliver the asymptotically correct size uniformly, if

uniformity is required over two directions simultaneously: over the AR parameters and

over the hypothesis tested (in this case the horizon of the IRF). As shown in this paper,

no existing procedure is uniform over both dimensions. What we show below is that the

size distortions of the grid bootstrap are very small and in this sense the grid bootstrap

dominates all currently known procedures. Moreover, the grid bootstrap is uniformly
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asymptotically correct if uniformity is required only with respect to the AR parameters.

Simulation results of the asymptotic size of the grid bootstrap appear in Figures 5

and 6. One can see that the grid bootstrap does not to maintain the size uniformly well,

but at the same time the size distortions are relatively small. As mentioned above, due

to the asymmetry of the limit distribution, the LR±-statistic based equi-tailed interval

has better size properties than the symmetric one. The maximum asymptotic size of the

grid bootstrap at different nominal significance levels is reported in Table II.

6 Simulation study.

The comprehensive simulation study of Pesavento and Rossi (2007) compared coverage

(size) of classical methods for performing inference on impulse responses such as the delta-

method, pretest and bootstrap, as well as methods based on a linearly-growing horizon

such as Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). Many of the

observations of Pesavento and Rossi (2007) are explained and theoretically justified in

previous sections.

The main aim of this section is to complete and refine Pesavento and Rossi’s (2007)

study by exploring the finite-sample properties of the grid bootstrap introduced in this

paper. I intend to answer the following two questions: what are the finite-sample size

(coverage) properties of the grid bootstrap? If the grid bootstrap is better at controlling

size, will it provide any gain in terms of length of the corresponding confidence sets when

compared with conservative procedures?

I compare the grid bootstrap with Gospodinov’s method. In Table III, I report the

coverage for sample size of T = 500, while in Table IV the coverage and the average

length of confidence sets for a sample size of T = 250 are reported. In both cases, the

samples are generated from an AR(2). The largest root µ is chosen to produce the same

local parameter c = 5 in both cases: in particular, µ = 0.99 for Table III and µ = 0.98 for

Table IV. The second root takes values inside the unit circle λ = −0.6,−0.3, 0, 0.3, 0.6.

A linear time trend is assumed. I denote as h the horizon of the corresponding impulse

response. The nominal level of all procedures is 90%. For calculation of coverage it is

enough to merely simulate the acceptance rate for the test of the true value; no grid

search is needed. I report coverage probabilities based on 1000 simulations. The average

length of confidence sets in Table IV is calculated based on 100 simulations.
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AR roots method statistics horizon

h=1 h=3 h=5 h=10 h=15 h=20 h=30

µ = 0.99 Grid bootstrap LR 0.90 0.87 0.87 0.90 0.90 0.90 0.89

λ = −0.6 LR± 0.91 0.90 0.89 0.90 0.92 0.91 0.89

Gospodinov LR 0.95 0.92 0.89 0.89 0.90 0.90 0.88

LR± 0.77 0.82 0.87 0.90 0.91 0.90 0.89

µ = 0.99 Grid bootstrap LR 0.90 0.89 0.87 0.89 0.90 0.89 0.88

λ = −0.3 LR± 0.89 0.91 0.89 0.91 0.90 0.91 0.88

Gospodinov LR 0.96 0.91 0.90 0.90 0.90 0.89 0.88

LR± 0.73 0.84 0.84 0.86 0.89 0.91 0.88

µ = 0.99 Grid bootstrap LR 0.89 0.89 0.87 0.88 0.90 0.90 0.90

λ = 0 LR± 0.89 0.90 0.90 0.90 0.90 0.90 0.90

Gospodinov LR 0.96 0.94 0.92 0.89 0.89 0.90 0.89

LR± 0.74 0.80 0.82 0.86 0.87 0.89 0.89

µ = 0.99 Grid bootstrap LR 0.90 0.89 0.90 0.86 0.90 0.89 0.91

λ = 0.3 LR± 0.91 0.90 0.92 0.88 0.90 0.90 0.91

Gospodinov LR 0.97 0.95 0.95 0.88 0.90 0.89 0.90

LR± 0.72 0.77 0.80 0.80 0.88 0.89 0.90

µ = 0.99 Grid bootstrap LR 0.89 0.91 0.88 0.88 0.89 0.88 0.90

λ = 0.6 LR± 0.89 0.90 0.88 0.91 0.91 0.90 0.91

Gospodinov LR 0.96 0.95 0.92 0.89 0.89 0.87 0.89

LR± 0.74 0.75 0.79 0.84 0.88 0.87 0.90

Table III: Comparison of the finite-sample coverage for Gospodinov’s method and the grid bootstrap

(LR and LR± statistics). Samples of size T = 500 are taken from an AR(2) with roots µ and λ and

standard normal errors. A linear trend is assumed. The nominal coverage of all procedures is 90%.

Based on 1000 simulations.

According to our theory, the grid bootstrap should control size very well for short

and long horizons but display some small distortions on medium horizons. As expected,

the grid bootstrap controls size relatively well for both LR and its signed version, LR±.

The results of Gospodinov’s method are essentially indistinguishable from those of the

grid bootstrap on long horizons for both statistics. The horizon for which the results of

the two methods start to look alike depends on the both roots, for Table III it happens

around horizons 10 or 15, while for Table IV it starts from horizons 5 or 10. The two

procedures produce more close results if the second root is negative. On short horizons

Gospodinov’s method has size distortions for the LR± statistic, while it is somewhat

conservative for the LR statistic, as expected from Section 5.2.
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Gospodinov’s Grid bootstrap Gospodinov’s Grid bootstrap

coverage coverage length length

µ λ h LR LR± LR LR± LR LR± LR LR±

0.98 -0.6 1 0.95 0.77 0.90 0.90 0.24 0.17 0.20 0.19

3 0.90 0.84 0.88 0.89 0.25 0.19 0.24 0.20

5 0.90 0.90 0.90 0.91 0.26 0.20 0.26 0.21

10 0.88 0.88 0.89 0.89 0.36 0.29 0.36 0.29

15 0.89 0.88 0.89 0.89 0.42 0.35 0.43 0.35

0.98 -0.3 1 0.96 0.76 0.89 0.90 0.27 0.19 0.22 0.19

3 0.89 0.88 0.88 0.91 0.26 0.20 0.25 0.21

5 0.89 0.89 0.89 0.91 0.31 0.25 0.31 0.25

10 0.90 0.90 0.90 0.91 0.44 0.35 0.44 0.35

15 0.88 0.88 0.89 0.89 0.54 0.46 0.54 0.47

0.98 0 1 0.95 0.75 0.89 0.89 0.28 0.20 0.22 0.21

3 0.88 0.83 0.86 0.89 0.33 0.27 0.31 0.27

5 0.91 0.86 0.91 0.91 0.43 0.36 0.42 0.37

10 0.91 0.90 0.92 0.91 0.61 0.52 0.62 0.53

15 0.89 0.90 0.90 0.91 0.70 0.60 0.72 0.61

0.98 0.3 1 0.95 0.74 0.89 0.89 0.27 0.18 0.22 0.19

3 0.92 0.81 0.89 0.88 0.50 0.41 0.45 0.41

5 0.89 0.85 0.88 0.91 0.64 0.57 0.60 0.56

10 0.88 0.89 0.89 0.91 0.87 0.73 0.88 0.73

15 0.89 0.90 0.91 0.91 1.02 0.89 1.05 0.90

0.98 0.6 1 0.93 0.75 0.88 0.89 0.22 0.15 0.17 0.18

3 0.94 0.79 0.89 0.91 0.70 0.53 0.59 0.56

5 0.90 0.80 0.88 0.89 1.02 0.85 0.94 0.87

10 0.86 0.86 0.88 0.91 1.56 1.49 1.55 1.48

15 0.90 0.89 0.92 0.92 1.86 1.69 1.91 1.69

Table IV: Comparison of Gospodinov’s method and the grid bootstrap in terms of the coverage and

length of the corresponding confidence set. The samples of size T = 100 are taken from an AR(2)

with roots µ and λ and standard normal errors. A linear trend is present. The nominal coverage of all

procedures is 90% Number of simulations for coverage is N = 1000, and for the length N = 100.

Table IV answers our second question comparing the length of the resulting confidence

sets. Again I compare the grid bootstrap with Gospodinov’s method. One can make

several observations. First, using the LR± rather than the LR statistic is beneficial in

terms of the length of the confidence set. It is due to the asymmetry of the signed statistic

LR±, which translates to the observation made by Gospodinov that almost all rejections
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for LR are made on one side of the alternative. Second, the length of the grid bootstrap

LR confidence set at horizon 1 is around 20% shorter than that of Gospodinov’s LR

confidence set. The difference in the length between the two methods for the LR statistic

essentially disappears after horizon 3. The third observation is that the grid bootstrap

LR± in most cases produces intervals of the same average length as Gospodinov’s LR±

method, while coverage of the grid bootstrap LR± confidence set is much better than

that of Gospodinov’s LR± due to better centering.

7 Appendix.

Lemma 2 Let F be a lower-triangular matrix as defined in Section 2.3. Then there exist

constants C1 > 0 and C2 < ∞ such that for all (ρ, α) ∈ Rδ the following holds:

(i) F11 =

√
1−ρ2

C(ρ,α)
, where C1 < C(ρ, α) < C2, and limρ→1 C2(ρ, α) = 1

(1−λ1)...(1−λp−1)
;

(ii) F1i = (1− ρ2)ai−1(ρ, α), where |ai(ρ, α)| < C2.

Proof of Lemma 2. By definition,

1− ρL +

p−1∑
j=1

αjL
j(1− L) = (1− λ1L)...(1− λpL)

with |λ1| ≤ ... ≤ |λp|. Notice that 1 − ρ = (1 − λ1)...(1 − λp). I divide the parameter

space Rδ into two regions AT = Rδ ∩ (|λp| > δ + ε) and BT = Rδ ∩ (|λp| ≤ δ + ε).

Assume that (ρ, α) ∈ AT . Then λp is real and positive (see the definition of Rδ).

Consider a strictly stationary process ut with (1 − λ1L)...(1 − λp−1L)ut = et, and

ỹt = λpỹt−1 + ut, ỹ0 = 0. The process ut has absolutely summable auto-covariances

γ̃k:
∑∞

i=0 |γ̃j| < C(δ) < ∞ (Lemma 8 (b) in Mikusheva (2007b)).Then,

lim
t→∞

V ar(ỹt) =
∞∑
i=0

∞∑
j=0

λi+j
p E(ut−jut−i) = 2

∞∑
i=0

∞∑
j=i+1

λi+j
p γ̃j−i +

∞∑
i=0

λ2i
p γ̃0 =

=
1

1− λ2
p

(γ̃0 + 2
∞∑

k=1

λk
pγ̃k)

It is easy to show that the expression γ̃0 + 2
∑∞

k=1 λk
pγ̃k is bounded from above and away

from zero uniformly over Rδ.

As a result

F11 =
1√

limt→∞ V ar(ỹt)
=

√
1− λ2

p(γ̃0 + 2
∞∑

k=1

λk
pγ̃k)

−1/2 =

√
1− ρ2

C(ρ, α)
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C(ρ, α)2 = (1 − λ1)...(1 − λp−1)
1+ρ
1+λp

(γ̃0 + 2
∑∞

k=1 λk
pγ̃k). Given that |λi| < δ for i =

1, ..., p − 1 and λp > δ + ε it is easy to see that C(ρ, α) is uniformly bounded and

separated from zero uniformly over AT .

Notice that for ρ → 1 one has λp → 1 and

γ̃0 + 2
∞∑

k=1

λk
pγ̃k → γ̃0 + 2

∞∑

k=1

γ̃k =
1

(1− λ1)2...(1− λp−1)2

The last equality is a formula for the long-run variance for an AR(p-1) process ut. From

the formula for C(ρ, α), one has C(ρ, α)2 → 1
(1−λ1)...(1−λp−1)

.

Next consider (ρ, α) ∈ BT . Then (1 − ρ) > (1 − (δ + ε))p. Since limt→∞ V ar(yt) is

uniformly bounded and separated from zero uniformly over BT (Lemma 8 in Mikusheva

(2007b)), the first half of statement (i) holds uniformly over BT .

Part (ii): Again consider (ρ, α) ∈ AT . The matrix F is obtained as the limit (as

t → ∞) in a process of orthogonalization of (ỹt−1, ∆ỹt−1, ..., ∆ỹt−p+1), and as a result,

F1i+1 = lim cov(ỹt−1,∆ỹt−i)
V ar(ỹt−1)

, i = 1, ..., p− 1. Notice that ∆ỹt−j = ỹt−j − ỹt−j−1 = ut−j − (1−
λp)ỹt−j−1:

F1i+1 =
E(ỹt−1ut−j)

V ar(ỹt)
− (1− λp)

cov(ỹt−1, ỹt−j−1)

V ar(ỹt−1)
=

=(1− λp)

(
(1 + λp)E(ỹt−1ut−j)

γ̃0 + 2
∑∞

k=1 λk
pγ̃k

− corr(ỹt−1, ỹt−j−1)

)
= (1− ρ2)ai.

So,

aj =

(
(1 + λp)E(ỹt−1ut−j)

γ̃0 + 2
∑∞

k=1 λk
pγ̃k

− corr(ỹt−1, ỹt−j−1)

)
1

(1− λ1)...(1− λp−1)
.

Since |corr(ỹt−1, ỹt−j−1)| ≤ 1,

|E(ỹt−1ut−j)| = |
∞∑
i=0

λi
pγ̃j−i−1| ≤

∞∑
i=0

|γ̃j−i−1| < 2C(δ).

This proves (ii).

Proof of Theorem 1. I divide the space into two regions, as in Mikusheva (2007a),

AT = {(ρ, α) ∈ Rδ : |1 − ρ| < T−1+ε)} for some fixed and positive ε > 0 and BT =

{(ρ, α) ∈ Rδ : |1− ρ| > T−1+ε)}. The former is called the local-to-unity region, and the

latter is the stationary region. Lemma 12 in Mikusheva (2007b) states that uniformly

over the stationary region BT the classical CLT and Law of Large Numbers hold. Namely

lim
T→∞

sup
(ρ,α)∈BT

sup
x∈Rp

∣∣∣∣∣Pρ,α

{
1√
T

T−j∑
t

FXtet < x

}
− P{N(0, Ip) < x}

∣∣∣∣∣ = 0,
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and for any x > 0

lim
T→∞

sup
(ρ,α)∈BT

Pρ,α

{∥∥∥∥∥
1

T

T−j∑
t

FXtX
′
tF

′ − Ip

∥∥∥∥∥
2

> x

}
= 0.

According to Phillips (1987)

√−2c

∫ 1

0

Jc(t)dw(t) ⇒ N(0, 1) and (−2c)

∫ 1

0

J2
c (t)dt →p 1 as c → −∞.

We also have that g(c)(−2c) → 1 as c → −∞. Finally, notice that for c(T, ρ, α) =

T log(|λp|), inf(ρ,α)∈BT
c(T, ρ, α) → −∞ as T → ∞. Putting all of the statements above

together one can see that (4) and (5) hold uniformly over the stationary region BT .

Now let us turn to the local-to-unity region AT . Since ρ → 1 uniformly over AT one

can guarantee that for some large T the root |λp| > δ and thus it is not complex and is

positive (see the definition of the parameter space Rδ). As a result, one can represent

our process as yt = λpyt−1 + ut with (1− λ1L)...(1− λp−1L)ut = et. I apply Lemma 3.1

of Phillips (2007) to ut. It says that there exists on some expanded probability space

a realization of all random variables ut and Sk =
∑k

t=1 ut and a Brownian motion B(·)
with variance ω2 that is equal to the long-run variance of ut, such that

sup
0≤k≤T

∣∣∣∣
Sk√
T
−B(k/T )

∣∣∣∣ = op(T
−1/2+1/4). (12)

In our case ω2 = 1
(1−λ1)2...(1−λp−1)2

= limρ→1 C4(ρ, α).

From (12) one obtains statements (g) and (h) of Lemma 4 in Mikusheva (2007a)

and following the proof of Lemma 5 (d) and (e) in Mikusheva (2007a), one obtains that

uniformly over AT :

1− λ2
p

T

T∑
t=1

y2
t−1

∼= ω2 1

g(c)

∫ 1

0

J2
c (t)dt,

and for any fixed j ≥ 1
√

1− λ2
p

T

T∑
t=1

yt−jut
∼= ω2 1√

g(c)

∫ 1

0

Jc(t)dw(t). (13)

I note that (1−ρ2)ω2

C(ρ,α)2(1−λ2
p)
→ 1 uniformly over AT . For the last statement I observe

that ρ → 1 and thus λp → 1 over AT , (1 − ρ2) = (1 + ρ)(1 − λ1)...(1 − λp), and I use

statement (i) of Lemma 2 and the formula for ω. I obtain that the following statement

holds uniformly over AT :

1− ρ2

TC(ρ, α)2

T∑
t=1

y2
t−1

∼= 1

g(c)

∫ 1

0

J2
c (t)dt. (14)
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Now I prove that the following statement holds uniformly over AT :

√
1− ρ2

√
TC(ρ, α)

T∑
t=1

yt−1et
∼= 1√

g(c)

∫ 1

0

Jc(t)dw(t). (15)

Let us define βi in the following way: (1 − λ1L)...(1 − λp−1L) = 1 −∑p−1
j=1 βjL

j. Then

et = ut −
∑p−1

j=1 βjut−j. We also know that yt−1 = λp
pyt−p−1 +

∑p
j=1 λj−1

p ut−j. As a result,

T∑
t=p+1

yt−1et =λp
p

T∑
t=p+1

yt−p−1et +

p∑
j=1

λj
p

T∑
t=p+1

etut−j =

=λp
p

T∑
t=p+1

yt−p−1(ut −
p−1∑
j=1

βjut−j) +

p∑
j=1

λj
p

T∑
t=p+1

etut−j

Now one would notice that Eetut−j = 0, for any j ≥ 1 and the series ut is stationary

while et is i.i.d., so the Central Limit Theorem holds. It means that uniformly over Rδ

values we have 1√
T

∑T
t=p+1 etut−j = Op(1). Given that

√
1−ρ2

C(ρ,α)
→ 0 uniformly over AT one

obtains that
√

1− ρ2

√
TC(ρ, α)

T∑
t=1

yt−1et =

√
1− ρ2

√
TC(ρ, α)

λp
p

T∑
t=j+1

yt−p−1(ut −
p−1∑
j=1

βjut−j) + op(1). (16)

One can notice that

√
1−ρ2

C(ρ,α)
λp

p(1 −
∑p−1

j=1 βj)
ω2√
1−λ2

p

→ 1 uniformly over AT . Indeed,
√

1−ρ2√
1−λ2

p

→ √
(1− λ1)...(1− λp−1) uniformly over AT , and

1−
p−1∑
j=1

βj = (1− λ1)...(1− λp−1) =
1

ω
= lim

ρ→1

1

C(ρ, α)2
.

Putting the last statement together with (16) and (13) one obtains that (15) holds uni-

formly over AT .

Lemma 11 of Mikusheva (2007b) (in particular, statements (f), (h), (i)) implies the

following:

lim
T→∞

sup
(ρ,α)∈AT

sup
x∈Rp

∣∣∣∣∣Pρ,α

{
1√
T

T∑
t=p+1

Ztet < x

}
− P{N(0, Γ) < x}

∣∣∣∣∣ = 0, (17)

lim
T→∞

sup
(ρ,α)∈AT

Pρ,α





∥∥∥∥∥

√
1− ρ2

T

T∑
t=p+1

Ztyt−1

∥∥∥∥∥
2

> x



 = 0, (18)

lim
T→∞

sup
(ρ,α)∈AT

Pρ,α





∥∥∥∥∥
1

T

T∑
t=p+1

ZtZ
′
t − Γ

∥∥∥∥∥
2

> x



 = 0, (19)
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and for any x > 0. Here Zt = (∆yt−1, ..., ∆yt−p+1)
′ and Γ = limt→∞ EZtZ

′
t. Let x̃t be the

last p− 1 components of FXt. According to statement (ii) of Lemma 2

x̃t = (1− ρ2)a(ρ, α)yt−1 + F̃Zt, (20)

where a(ρ, α) is a vector with supAT
‖ai‖2 < Const, and F̃ is the p−1×p−1 sub-matrix

of F .

√
1− ρ2

T

T−j∑
t

x̃tyt−1 =
√

1− ρ2a(ρ, α)
1− ρ2

T

T−j∑
t

y2
t−1 + F̃

√
1− ρ2

T

T−j∑
t

Ztyt−1.

Statement (14), the fact that the family of distributions 1
g(c)

∫ 1

0
J2

c (t)dt is uniformly

bounded in probability and that 1− ρ2 → 0 uniformly over AT implies that

√
1− ρ2a(ρ, α)

1− ρ2

T

T−j∑
t

y2
t−1 = op(1)

uniformly over AT . The last observation together with (18) gives us that the following

holds uniformly over AT :
√

1−ρ
T

∑T
t=1 yt−1x̃t →p 0.

Similarly, (15), (17) and (20) imply asymptotic normality of the statistics 1√
T

∑T
t=1 x̃tet

uniformly over AT . The observation that the limiting covariance matrix is Ip−1 fol-

lows from the normalization. As a result, one has 1√
T

∑T
t=1 x̃tet ⇒ N(0, Ip−1) uni-

formly over AT . Finally, (18), (19), (20) and the definition of normalization lead to

1
T

∑T
t=1 x̃tx̃

′
t →p Ip−1, which holds uniformly over AT . This implies that (4) and (5) hold

uniformly over AT .

Proof of Theorem 2. Let me denote Qe =




1√
g(c)

∫ 1

0
Jc(s)dW (s)

ξ


 as the right-

hand side, and QeT = 1√
T

∑T
t=1 FXtet the left of equation (4), while QT = 1

T

∑T
t=1 FXtX

′
tF

′

and Q =




1
g(c)

∫ 1

0
J2

c (s)ds 0′

0 Ip−1


 , are the left and the right sides of equation (5) cor-

respondingly. I can re-write equation (6) as follows: t =
(FA)′Q−1

T QeT

σ̂
√

(FA)′Q−1
T FA

.

One needs to prove that one can substitute QeT and QT with their uniform limits

Qe and Q and the uniform approximation would hold. Namely, that t ∼= (FA)′Q−1Qe

σ̂
√

(FA)′Q−1FA

uniformly over Rδ and A ∈ Rp.

According to Theorem 1, QT
∼= Q and QeT

∼= Qe. In addition, given the uniform

boundedness in probability of Qe and Q and that Q is uniformly separated from zero (see

Lemma 10 in Mikusheva (2007a)) one obtains that Q−1
T
∼= Q−1 and Q−1

T QeT
∼= Q−1Qe.
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One also has that B′Q−1B
B′B is bounded in probability and separated from zero uniformly

over c and uniformly over all possible vectors B ∈ Rp. Let me denote FA = B and

re-write t =
B′Q−1

T QeT

σ̂
√

B′B

√
B′B

B′Q−1
T B

. By a standard argument one can obtain that uniformly

over Rδ and over B ∈ Rp it holds that t ∼= B′Q−1Qe

σ̂
√

B′B

√
B′B

B′Q−1B
. It finishes the Proof of

Theorem 2.

Proof of Lemma 1. I write down the first-order condition for the restricted max-

imization problem:




∑T
t=1 XtX

′
t A

A′ 0







ρ̃− ρ

α̃− α

L


 =




∑T
t=1 Xtet

0


 , where L is a

Lagrange multiplier. As a result,


 ρ̃− ρ

α̃− α


 =

(
T∑

t=1

XtX
′
t

)−1 T∑
t=1

Xtet −

(∑T
t=1 XtX

′
t

)−1

AA′
(∑T

t=1 XtX
′
t

)−1 ∑T
t=1 Xtet

A′
(∑T

t=1 XtX ′
t

)−1

A
,

and

F−1


 ρ̃− ρ

α̃− α


 =

(
T∑

t=1

FXtX
′
tF

′
)−1 T∑

t=1

FXtet−

−

(∑T
t=1 FXtX

′
tF

′
)−1

FAA′F ′
(∑T

t=1 FXtX
′
tF

′
)−1 ∑T

t=1 FXtet

A′F ′
(∑T

t=1 FXtX ′
tF

′
)−1

FA
.

Now using the approximation obtained in Theorem 1 I have the following:

√
TF−1


 ρ̃− ρ

α̃− α


 ∼=



√

g(c)
∫ 1
0 Jc(s)dw(s)∫ 1

0 J2
c (s)ds

ξ


−

f1

√
g(c)

∫ 1
0 Jc(s)dw(s)∫ 1

0 J2
c (s)ds

+ f ′2ξ

f2
1 g(c)∫ 1

0 J2
c (s)ds

+ f ′2f2




f1g(c)∫ 1
0 J2

c (s)ds

f2


 =

=


 0

ξ


 + u




u 1√
g(c)

∫ 1
0 Jc(s)dw(s)+η

1+u2 1
g(c)

∫ 1
0 J2

c (s)ds

−
1√
g(c)

∫ 1
0 Jc(s)dw(s)ef+uηef

1+u2 1
g(c)

∫ 1
0 J2

c (s)ds


 ,

where ξ ∼ N(0, Ip−1) and η =
f ′2ξ

f ′2f2
∼ N(0, 1).

Proof of Theorem 3.

Let us consider a null hypothesis H0 : f(ρ, α) = γ0 for some f ∈ L. And let (ρ̃, α̃) =

(ρ̃(γ0), α̃(γ0)) be the restricted estimate. Let us consider the true value of (ρ, α) (for

which the null is satisfied). According to the intermediate value theorem, there exists α∗

lying between α̃ and α, and ρ∗ lying between ρ̃ and ρ, such that:

0 = f(ρ̃, α̃)− f(ρ, α) = A∗
1(ρ̃− ρ) + A∗′

2 (α̃− α);
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here A∗ = (A∗
1, A

∗′
2 )′ = ∂f

∂(ρ,α′)(ρ
∗, α∗). Let also Ã = ∂f

∂(ρ,α′)(ρ̃, α̃), and f(ρ̂, α̂) − γ0 = (ρ̂ −
ρ̃, (α̂− α̃)′)Â. Let us define as before QeT = 1√

T

∑T
t=1 FXtet and QT = 1

T

∑T
t=1 FXtX

′
tF

′,

where F is the normalization described in Lemma 2. The proof is contained in the

following three lemmas.

Lemma 3 Uniformly over Rδ and over the set of functions L one has:

LR ∼=
(
(FA∗)′Q−1

T QeT

)2
(FÃ)

′
Q−1

T FÃ(
(FA∗)′Q−1

T FÃ
)2 ; (21)

LR± ∼=
√

LR · sign




(
(FÂ)′Q−1

T FÃ
)

(FA∗)′Q−1
T QeT

(FA∗)′Q−1
T FÃ


 . (22)

Proof of Lemma 3 It is easy to observe that

LR = ((ρ̃− ρ̂), (α̃− α̂)′)JT


 (ρ̃− ρ̂)

(α̃− α̂)


 ,

where JT =
∑T

t=1 XtX
′
t.

The restricted estimates ρ̃ and α̃ satisfy the following system of equations (the re-

stricted optimization first-order condition):


 JT Ã

A∗ 0







(ρ̃− ρ)

(α̃− α)

λ


 =


 JeT

0


 , (23)

here λ is the Lagrange multiplier for the restricted optimization and JeT =
∑T

t=1 Xtet.

The last equation in the system is the statement that f(ρ̃, α̃) = f(ρ, α) and uses the

definition of A∗ from above. System (23) implies that,

((ρ̃− ρ), (α̃− α)′)′ = J−1
T JeT − J−1

T ÃA∗′J−1
T JeT

A∗′J−1
T Ã

or ((ρ̃− ρ̂), (α̃− α̂)′)′ = −J−1
T ÃA∗

′
J−1

T JeT

A∗′J−1
T Ã

. This implies that LR =

(
A∗
′
J−1

T JeT

)2
Ã
′
J−1

T Ã

(A∗′J−1
T Ã)

2 .

Given that QT = 1
T
FJT F ′ and QeT = 1√

T
FJeT I arrive at (21). Since LR± =

√
LR ·

sign
(
Â′(ρ̂− ρ̃, (α̂− α̃)′)′

)
, Lemma 3 is proven.

Lemma 4 If FA∗√
(FA∗)′FA∗

→p FA√
(FA)′FA

, FÃ√
(FÃ)′FÃ

→p FA√
(FA)′FA

and FÂ√
(FÂ)′FÂ

→p

FA√
(FA)′FA

as T → ∞ uniformly over Rδ and uniformly over f ∈ L, then LR ∼= t(c, u)2

and LR± ∼= t(c, u) uniformly over Rδ and uniformly over f ∈ L.
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Proof of Lemma 4. Due to Lemma 3 formulas (21) and (22) hold. According to The-

orem 1, 1
T
FJT F ′ ∼= Q and 1√

T
FJeT

∼= Qe, where Q and Qe are right sides of equations

(5) and (4) correspondingly. It is also known that QT is uniformly separated from zero,

and both QT and QeT are bounded in probability uniformly over Rδ. Given the condi-

tions of the Lemma one can apply a direct generalization of Slutsky’s Theorem and the

Continuous mapping Theorem to uniform convergence. As a result, LR ∼= ((FA)′Q−1Qe)
2

(FA)′Q−1FA
,

and the right hand side of the last expression equals to t(u, c)2. The proof for LR± is

similar.

Lemma 5 FA∗√
(FA∗)′FA∗

→p FA√
(FA)′FA

, FÃ√
(FÃ)′FÃ

→p FA√
(FA)′FA

and FÂ√
(FÂ)′FÂ

→p FA√
(FA)′FA

as T →∞ uniformly over Rδ and uniformly over f ∈ L.

Proof of Lemma 5. I will prove it only for Ã, the proof for A∗ and Â is analogous.

Let ‖A‖ =
√

A′A be the Euclidian norm. Let me consider separately a subset of Rδ

when |λp| < δ + ε for some small positive ε > 0 and a subset for which λp > δ + ε.

Let assume that |λp| < δ + ε. Then F is positively definite, uniformly separated

from zero and uniformly bounded (Lemma 2). This implies that it is enough to prove:

Ã

‖Ã‖ →p A
‖A‖ . Indeed, if

∥∥∥ Ã

‖Ã‖ −
A
‖A‖

∥∥∥ → 0 then under the condition that ‖F‖ is bounded

one has ∣∣∣∣∣
‖FÃ‖
‖Ã‖

− ‖FA‖
‖A‖

∣∣∣∣∣ ≤
∥∥∥∥∥

FÃ

‖Ã‖
− FA

‖A‖

∥∥∥∥∥ ≤ ‖F‖
∥∥∥∥∥

Ã

‖Ã‖
− A

‖A‖

∥∥∥∥∥ → 0.

If F separated from zero , the last statement also implies that ‖Ã‖
‖FÃ‖ →

‖A‖
‖FA‖ . Since

FA
‖FA‖ = FA

‖A‖
‖A‖
‖FA‖ , one obtains the needed statement. In fact from the reasoning above, it

is enough to prove GÃ

‖GÃ‖ →p GA
‖GA‖ for some positive definite bounded matrix G.

I consider the derivative with respect to the AR coefficients rather than a derivative

with respect to ADF coefficients (ρ, α). Let me denote the AR coefficients φ = (φ1, ..., φp),

that is, yt = φ1yt−1 + ...+φpyt−p +et. There is a linear transformation between (ρ, α) and

φ, this transformation is separated from zero and bounded. Let φ̃ is the AR coefficients

for (ρ̃, α̃). Let θk = fk(φ1, ..., φp) is k-th impulse response. Assume that ∇k = ∂θk

∂φ
(φ)

is the vector of derivatives.So, it is enough to show that for two set of values φ and φ̃ I

have ∇k

‖∇k‖ −
∇̃k

‖∇̃k‖
→ 0 uniformly over k if φ− φ̃ → 0. In fact, it is enough to check that

‖∇k−∇̃k‖
‖∇k‖ → 0.

First, I write down formula for ∇k. Here I use formula from Lütkepohl (1990) (Propo-

sition 1(i)): ∇k,j = ∂θk

∂φj
(φ) =

∑k−j
s=1 θsθk−j−s. Let introduce a k×k matrix L that consists
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of zeros, except the diagonal just below the main diagonal that has all ones. L is the

matrix for the lag operator. Then ∇k = e′k(
∑k

j=0 φjL
j)(

∑k
j=0 φjL

j) = e′kΦkΦk, where

L0 = Ik and Φk =
∑k

j=0 φjL
j. Now

‖∇k − ∇̃k‖
‖∇k‖ =

‖e′k(Φ2
k − Φ̃2

k)‖
‖e′kΦ2

k‖
≤ ‖Ik − Φ−2

k Φ̃2
k‖ ≤ ‖Φ̃2

k‖‖Φ−2
k − Φ̃−2

k ‖

here ‖‖ is the operator norm if applied to a matrix. It follows from Lemma A.5.(i)

in Saikkonen and Lütkepohl (2000) that ‖Φk‖ ≤
∑∞

j=0 θj ≤ const(δ + ε) is bounded

uniformly over k. Formula (A.21) in Saikkonen and Lütkepohl (2000) implies that ‖Φ−1
k −

(Φ̃k)
−1‖ ≤ ‖φ− φ̃‖. Given that φ̃ uniformly converges to φ as the sample size increases,

I proved Lemma 5 in this case.

Now turn to the case when λp > δ + ε. According to formula (2.4.16) in Hamil-

ton(1994) the impulse response function has the form of θs =
∑p

j=1 cjλ
s
j , where λj are

roots of the autoregressive polynomial. Then

∂θk

∂φj

(φ) =

k−j∑
s=1

θsθk−j−s =

p∑
i=1

p∑

l=1

cicl

k−j∑
s=1

λs
iλ

k−j−s
l =

=

p∑
i=1

c2
i λ

k−j
i (k − j) +

p∑
i=1

p∑

l=1,l 6=i

cicl
λk−j

i − λk−j
l

λi − λl

.

I divide the above expression by kλk
p for a fixed 1 ≤ j ≤ p. Then

1

kλk
p

∂θk

∂φj

(φ) = cp
k − j

k
+

1

λj
p

p−1∑
i=1

c2
i

(
λi

λp

)k−j
(k − j)

k
+

1

kλj
p

p∑
i=1

p∑

l=1,l 6=i

cicl

(
λi

λp

)k−j

−
(

λl

λp

)k−j

λi − λl

.

Since (ρ, α) ∈ Rδ and λp > δ + ε I have that
∣∣∣ λi

λp

∣∣∣ < 1 − ε1 for some ε1 > 0 and all

i < p. Now I notice that function l(x) = xk is continuous in x uniformly over |x| < 1− ε1

and uniformly over all positive k. Since autoregressive roots are continuous functions of

the autoregressive coefficients, and ci are continuous functions of roots, and given that

(ρ̃, α̃) →p (ρ, α) uniformly over Rδ, I obtain that 1

kλ̃k
p

∂θk

∂φj
(φ̃) →p 1

kλk
p

∂θk

∂φj
(φ) uniformly over

Rδ and uniformly over k. I also note that 1
kλk

p

∂θk

∂φj
(φ) is separated from zero uniformly

over Rδ and uniformly over k. This implies that ∇̃k

‖∇̃k‖
= ∇̃k

kλ̃k
p

kλ̃k
p

‖∇̃k‖
→ ∇k

‖∇k‖

8 References

Andrews D.W.K. and P. Guggenberger (2009): “Hybrid and Size-corrected Subsample

Methods,” Econometrica, 77(3), 721-762.

38



Bobkoski M.J. (1983): “Hypothesis Testing in Nonstationary Time Series,” Unpub-

lished PhD thesis (Dept. of Statistics, University of Wisconsin, Madison).

Cavanagh, C. (1985): “Roots Local to Unity”, Manuscript (Dept. of Economics,

Harvard University, Cambridge, MA).

Chan N.H. and C.Z. Wei (1987): “Asymptotic Inference for Nearly Nonstationary

AR(1) Processes,” Annals of Statistics, 15(3), 1050-1063.

Christiano L., M. Eichenbaum and C.L. Evans (1999): “Monetary Policy Shocks:

What Have We Learned and to What End?” In Handbook of Macroeconomics, vol. 1A,

J.B. Taylor and M. Woodford, eds. Amsterdam: Elsevier.

Christiano L., M. Eichenbaum and R. Vigfusson (2004): “What Happens after a

Technology Shock?” NBER Working Paper 9819.

Gali, J. (1999): “Technology, Employment, and the Business Cycle: Do Technology

Shocks Explain Aggregate Fluctuations?” American Economic Review, 89(1), 249-271.

Giraitis L., and P.C.B. Phillips (2009):“Mean and Autocovariance Function Estima-

tion Near the Boundary of Stationarity,” Cowles Foundation working paper 1690.

Gospodinov, N. (2004): “Asymptotic Confidence Intervals for Impulse Responses of

Near-integrated Processes,” Econometrics Journal, 7, 505-527.

Gregory, A.W. and M.R. Veall (1985): “On Formulating Wald Tests for Non-linear

Restrictions,” Econometrica, 53, 1465-68.

Hamilton, J.D. (1994): “Time Series Analysis”, Princeton University Press

Hansen, B.E. (1999): “The Grid Bootstrap and the Autoregressive Model,” The Re-

view of Economics and Statistics, 81(4), 594-607.

Hansen, B.E. (2006): “Edgeworth Expansions for the Wald and GMM Statistics for

Nonlinear Restrictions,” Econometric Theory and Practice, D. Corbae, S. N. Durlauf,

and B. E. Hansen (eds.), New York: Cambridge University Press.

Inoue, A., and L. Kilian (2002): “Bootstrapping Autoregressive Processes with Pos-

sible Unit Roots,”Econometrica, 70(1), 377-391.

Kilian, L. (1998): “ Small-Sample Confidence Intervals for Impulse Response Func-

tions,” Review of Economics and Statistics, 80(2), 218-230.

Kilian, L. (1999): “ Finite-sample Properties of Percentile and Percentile-t Bootstrap

Confidence Intervals for Impulse Responses,” Review of Economics and Statistics, 81(4),

652-660.

Kilian, L. and P.L. Chang (2000):“How Accurate are Confidence Intervals for Impulse

39



Responses in Large VAR Models?”, Economic Letters, 69, 299-307.

Lütkepohl, H. (1990): “Asymptotic Distributions of Impulse Response Functions and

Forecast Error Variance Decompositions of Vector Autoregressive Models,” The Review

of Economics and Statistics, 72(1), 116-125.

Mikusheva, A. (2007a): “Uniform Inference in Autoregressive Models,” Econometrica,

75(5), 1411-1452.

Mikusheva, A. (2007b): “Supplement to “Uniform Inferences in Autoregressive Mod-

els”: Supplementary Appendix,”

http://www.econometricsociety.org/ecta/supmat/6254 proofs.pdf

Pesavento, E. and B. Rossi (2006): “Small Sample Confidence Intervals for Multi-

variate Impulse Response Functions at Long Horizons,” Journal of Applied Econometrics

21(8), December 2006, 1135-1155.

Pesavento, E. and B. Rossi (2007): “Impulse Response Confidence Intervals for Per-

sistent Data: What Have We Learned?” Journal of Economic Dynamics and Control 31,

2398-2412.

Phillips P.C.B. (1987): “Toward a Unified Asymptotic Theory for Autoregression,”

Biometrika, 74(3), 535-547.

Phillips P.C.B. (1998): “Impulse Response and Forecast Error Variance Asymptotics

in Non-stationary VARs,” Journal of Econometrics, 83, 21-56.

Phillips P.C.B. (1988): “Regression Theory for Near-Integrated Time Series,” Econo-

metrica, 56 (5), 1021-1043.

Phillips P.C.B. (2007)“Unit Root Log Periodogram Regression,” Journal of Econo-

metrics, 138, 104-124.

Rotemberg, J.J and M. Woodford (1997): “An Optimization-based Econometric

Framework for the Evaluation of Monetary Policy,” NBER Macroeconomics Annual 1997.

Runkle, D.E. (1987): “Vector Autoregressions and Reality,” Federal Reserve Bank

of Minneapolis, Staff Report 107.

Saikkonen and Lütkepohl (2000): “Asymptotic Inference on Nonlinear Functions of

the Coefficients of Infinite Order Cointegrated VAR Processes,” Nonlinear econometric

modeling in time series, eds. Barnett et al., Cambridge Press

Stock J. (1991): “Confidence Intervals for the Largest Autoregressive Root in US

Macroeconomic Time Series,” Journal of Monetary Economics, 28, 435-459.

Wright, J.H. (2000): “Confidence Intervals for Univariate Impulse Responses with a

40



Near Unit Root,” Journal of Business and Economic Statistics, 18, 368-73.

41


