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1. INTRODUCTION 

The insight of Arrow [4] and Debreu [7] that uncertainty is easily incor- 
porated into general equilibrium models is double-edged. It is true that 
one need only index commodities by the state of nature, and classical results 
on the existence and optimality of competitive equilibria can be made to 
apply. Yet it seems there are few contingent dealings among agents relative 
to those suggested by the theory. For example, closely held firms issue bonds 
which pay off a fixed constant, independent of investment project returns, at 
least if bankruptcy does not occur. More generally, common forms of debt 
are simple rather than contingent. Similarly, individuals carry insurance 
policies with deductible portions-small losses are uninsured. 

What is needed then are models that explain such phenomena. Arrow [l] 
has argued that the observed absence of contingent dealings is closely related 
to moral hazard and imperfect information. If a contract is contingent on an 
event, then it must be known whether or not the event occurred. Though 
this information is likely to be available to only one party of the contract, the 
range of possible contingent contracts is limited to those which are easily 
verified by both. Radner [16] has formalized this notion by exogenously 
limiting contracts between agents to those which are contingent on the events 
in the information partitions of both agents. Radner also suggests that the 
information structure of an economy may be costly and endogenous. This 

* This paper began as a joint effort with Neil Wallace and reflects that collaboration as 
well as subsequent comments in many ways. I would also like to thank the participants of 
the NSF-NBER Conference on Theoretical Industrial Organization at Carnegie-Mellon 
University, March 1976; my colleagues at Carnegie-Mellon, especially Arthur Raviv and 
Edward C. Prescott; Edward J. Green; and the referees for helpful comments. Partial 
support for this research from the Federal Reserve Bank of Minneapolis is gratefully 
acknowledged. I assume full responsibility for any errors as well as the views expressed 
here. 
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paper elaborates on the themes suggested by Arrow and Radner. A model 
in which agents are asymmetrically informed on the actual state of nature 
and in which this information may be transmitted to other agents only at 
some cost is presented. As will be noted, the model is successful in explaining 
the above-mentioned observations, at least subject to some qualifications. 

This paper begins in Section 2 with a simple, two-agent, pure exchange 
economy in which the endowment of the consumption good of one of the 
agents, say agent 2, is random. Preferences and endowments are such that 
there are gains to trading claims contingent on the realization of the random 
endowment. But any realization is known only by agent 2 unless a verification 
(auditing) cost is borne. A contract in such a setting is a prestate agreement as 
to when there is to be verification and the amount to be exchanged, and a 
contract is said to be consistent (incentive compatible) if agent 2 submits to 
verification and honors claims in accordance with the contract. Pareto 
optimal, consistent contracts are shown in Section 3 to have familiar charac- 
teristics. In particular, there exists a set of realizations over which there is no 
verification. In the case of insurance this corresponds to the region over which 
no claims are filed. For closely held firms this corresponds to the region 
over which bonds pay the stated yield. A verification set is a set of low realiza- 
tions; insurance claims are settled and firms default. 

The next two sections examine the robustness of these results by extending 
the model in several directions. Section 4 introduces a random verification 
procedure and establishes that the random procedure can dominate, in a 
Pareto sense, the optimal contract under the assumed deterministic procedure. 
Though consistent with observations on random audits and the like, this 
finding represents a major criticism of the deterministic scheme. Section 5 
introduces more agents and random variables. Here extensions of the earlier 
results are established, subject to some exogenous restrictions on contingent 
exchange agreements. One restriction is that the m-agent model be essentially 
bilateral in nature. 

Section 6 proposes a competitive equilibrium concept for the m-agent 
model. It is established that, under specified assumptions, an equilibrium 
exists and yields optimal allocations. This section represents an attempt to 
improve our understanding of general equilibrium competitive models with 
moral hazard and costly information (cf., Helpman and Laffont [ll]). It 
also represents a rigorous analysis of incomplete competitive insurance 
markets. 

Section 7 presents some concluding remarks. The proofs of all lemmas and 
propositions are contained in an appendix. 

The remainder of this introduction deals with the relationship of this paper 
to other literature. The characterization of optimal contracts may be viewed 
in part as an extension of the literature on optimal insurance policies. Arrow 
[2, 31 and subsequently Raviv [17] have shown that under certain nonnega- 
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tivity constraints and in the presence of loading, an optimal insurance contract 
can have deductible. It is shown in this paper that consistency conditions 
yield the requisite nonnegativity constraints and that it is costly state verifica- 
tion which can make complete risk-sharing suboptimal. 

This paper is also closely related to the literature on imperfect information 
and principal-agent relationships. In Spence and Zeckhauser [21], Shave11 
[20], and Harris and Raviv [lo] the random output of the consumption good 
is not exogenous, but rather depends on an action taken by the agent. Spence 
and Zeckhauser established in this context that the form of an optimal 
contract depends on the principal’s ability to monitor the state of nature, the 
action taken by the agent, and the output of the consumption good. Sub- 
sequently, Shave11 and Harris and Raviv focused on the case in which the 
output of the consumption good is known to both the principal and the agent, 
in contrast to the model of this paper, but in which the action of the agent 
may or may not be observed. Various assumptions can be made on the 
monitoring technology and the timing of observations. Unlike the model 
of this paper, in which verification is perfect when it occurs, the authors allow 
for observation of the agent’s action with error. Shave11 further allows 
observations on care to be costly and to be taken either before or after the 
realization of output. The model of this paper also emphasizes the costly 
nature of observation, but, in contrast, does not deal at all with the timing 
question. 

Retaining the perfect observation assumption, it might have been sup- 
posed here that the decision to verify could be made ex ante at some fixed 
cost of the consumption good and that subsequently all realizations would be 
observed. This then would be the model suggested by Kihlstrom and Pauly 
[14], and it has the implication that one agent provides either complete 
insurance coverage to the other or no coverage at all. Similarly, in Shavell’s 
model, if care is observed perfectly, then an optimal insurance policy offers 
full coverage. Thus, such an alternative model might explain the complete 
absence of some dealings, but it could not explain the observations on 
noncontingent dealings noted at the outset. 

If in the model of this paper verification were imperfect, and if the verifica- 
tion cost were a function of the actual realization of the endowment, then 
the decision to verify might act as a signal of the realization, and aspects of 
the signaling-incentive literature might be brought to bear. In this regard, 
one might also weaken the assumption that the probability distribution of the 
consumption good is known to both agents. In Ross [lg] the financial 
decision of the manager acts as a signal to uninformed investors of the return 
stream of the firm. An approach that combines the model of this paper and 
that of Ross might suppose the choice of financial structure signals informa- 
tion that reduces ex post auditing costs. In any event, there are many 
aspects of the present model that could be modified in subsequent work. 
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2. AN ECONOMY WITH Two AGENTS AND ONE RANDOM VARIABLE 

It is supposed that each of two agents has an endowment of the single 
consumption good of the model. The endowment of agent 2, denoted yZ , is a 
random variable with cumulative probability distribution F( yZ). It is further 
assumed that yz takes on values in the interval [01, /!I], 01 > 0, and is either 
simple, in which case it has a finite number of realizations, or continuous, 
in which case it is assumed to have a continuous, strictly positive density 
function f( y.J.l The endowment of agent 1, denoted y1 , is not random and 
Yl > 0. 

Each agent j has a utility function Uj over riskless consumption which is 
continuously differentiable, concave, and strictly increasing. It is assumed 
moreover that U, is strictly concave with U;(O) = co and U;1(co) = 0. 
Letting cj( yJ denote the consumption of agent j as a function of yz , feasi- 
bility then requires that cl(yZ) + c,(y,) < yi + yz . Consistent with von 
Neumann-Morgenstern axioms, each agent j has as objective the maximiza- 
tion of expected utility, J Uj[cj( yz)] dF( yZ). 

The model described thus far can be given various interpretations. For 
example, agent 2 can be viewed as a firm engaged in an investment project 
with random return yZ . Agent 2 may issue an asset to agent 1 where 
the asset is some claim on the returns of the project. The problem is to 
determine the type of asset that is mutually agreeable to both parties. 
Alternatively, agent 2 can be viewed as an individual who is to suffer some 
random loss p - yz , and would like to purchase insurance from agent 1. 
Under either interpretation, exchange is motivated by risk-sharing considera- 
tions. 

If both agents were always fully informed ex post as to the realization 
(state) of y, , then they could agree to an exchange contingent on the realiza- 
tion. In general any such exchange which results in a (full information) 
Pareto optimal allocation will be a nontrivial function of y, . But the purpose 
of this paper is to explain the absence of such contingent dealings: firms issue 
bonds which pay out a fixed constant, independent of investment project 
returns, and individuals hold insurance contracts with deductible portions. 
Consequently the full information assumption must be weakened. 

Here then it is supposed that the realization of yZ is known only by 
agent 2 unless there is verification. If there is verification, yZ is made 
known without error to agent 1. Verification is costly in that some 
specified amount of the consumption good is forfeited by agent 2 and dis- 
appears from the model. The idea here is that it is costly for a firm to make 
known its project return to outside investors. Perhaps independent auditors 

IIn what follows I disregard sets of probability zero and properties of functions on 
sets of probability zero, at least where no ambiguity results. 
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must be hired, and costly state verification can be interpreted as costly 
auditing. Similarly, it is costly for individuals to establish claimed losses; 
the extent of damages must be verified.2 

Resources are allocated in this model in accordance with specified rules 
on the execution of a contract. First a contract must be defined. Prior to 
the realization of yz , agents agree to a contingent exchange. Let g(y& 
denote the actual poststate net transfer of the consumption good from agent 2 
to agent 1 as a function of y, . Then let g denote the prestate contractual 
choice of the function g. Similarly, prior to the realization of yz , agents 
agree as to when there is or is not to be verification, contingent on yZ . A 
verification region S (with complement S’) is a set of realizations of y, such 
that there is verification. Then let S and s’ denote the prestate contractual 
choices of S and S’, respectively. Thus, a contract [g, S] is a prestate contin- 
gent specification of when there is to be verification and the amount to be 
transferred. 

Subsequent to the realization of y 2, agent 2 announces whether there is or 
is not to be verification. If there is verification, specified amounts of the 
consumption good are forfeited by agent 2, y, is made known to agent 1, and 
agent 2 transfers what was agreed upon. (In terms of the notation, if yZ E S, 
g(yJ = g(y&.) If there is not verification, then agent 2 may transfer any 
amount consistent with the prior specification of the amount to be transferred 
when there was not to be verification. That is, agent 2 may transfer g(x) 
for any x in 9. Of course, agent 2 will transfer the least amount possible, 
so in fact g( yz) = min,,g, &v).~ Finally, to resolve any indeterminacy, it is 
assumed that if agent 2 is indifferent between asking for verification or not, 
then he does not ask for verification. 

The cost of verification can be modeled formally in several ways. One 
natural specification is that the cost of verifying yz is some constant, say 
p > 0, independent of the actual realization; this specification is pursued 
further below. The cost also may be supposed to depend on y, , either directly 
or, alternatively, through the agreed-upon transfer. This latter specification is 
also pursued below. That is, let 4[ g( y2)] be the cost of verifying the realization 
yz .4 One may argue, for example, that the cost of auditing a firm in bank- 
ruptcy proceedings depends on outstanding claims.5 Finally, note that setting 

2 Of course there are no independent third parties such as auditors in the model. Also, 
it may be natural to view insurance companies as bearing the costs of verifying claimed 
losses. In this regard the assumption that the cost is borne by the insured is not restrictive 
as these costs may be passed along to the insurer in an optimal exchange. 

J It may be assumed without loss of generality that ,!? is closed. 
4 Analytically this will be equivalent to letting the verification cost depend on the actual 

transfer, g(yz). 
5 At this level of abstraction, however, this latter specification of the verification cost 

may seem somewhat unnatural and is motivated, as will be seen below, by analytic con- 
venience. 
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&g(y,)] E ~1, one obtains the first specification, a constant cost of verifica- 
tion. 

With this notation, we may now examine the nature of contracts in this 
model. A contract [g, S] is said to be consistent if 

(i) S = S; 

00 g(uJ = E(YJ Y&Y 81. 
Thus, under a consistent contract, agent 2 has no incentive to misrepresent, 
relative to the prior agreement, whether there is or is not to be verification or 
to not pay off what was agreed upon. It is perhaps obvious that under a 
consistent contract the agreed-upon transfer from agent 2 to agent 1 cannot 
depend on information which is known only to agent 2. That is, the function g 
must be identically equal to some constant C whenever there is not to be 
verification, yZ E 3’. Similarly, as agent 2 determines whether there is to be 
verification, he must have an incentive to ask for verification when he is 
supposed to do so. That is, the transfer plus verification cost must be less 
than C on S. These conditions are stated formally in 

LEMMA 2.1. A contract [g, S] is consistent if and onZy if g(yz) equals 
some constant c on S’ and g(y.J + [[g(y,)] < 2; on s. 

In what follows attention is limited to consistent contracts. But intuitively, 
at least, this restriction should be without loss of generality; given a contract 
[g, S] each agent knows the allocation rules and can determine the actual 
transfer g(g, S) and verification region S( g, S) implied. Both know that in 
essence they have agreed to a contract [fi, T] where tE = g( g, 3) and T = 
S(g, 3). The implication is summarized in 

LEMMA 2.2. Given any contract [g, S], there exists a consistent contract 
[ti, T] which achieves the same allocation of resources. 

Thus the restriction to consistent contracts is without loss of generality. 
It is in this sense that the problem of “moral hazard” is internalized in this 
model. It should be noted that this notion of consistency is closely related 
to the notion of incentive compatibility as discussed by Hurwicz [13]. A 
contract that is not consistent would require that agent 2 act in a way that is 
inconsistent with his own (maximizing) inclinations under the rules of the 
allocation process. 

Returning to the interpretations of the model, recall that agent 2 may be 
viewed as a firm with investment project return yZ . Then a consistent contract 
[g, S] may be viewed as a bond which promises to pay some fixed constant c 
unless bankruptcy is declared by agent 2. In that event verification (bank- 
ruptcy) costs are incurred, and something less than the fixed yield is paid. 
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(The payment may be negative.) This interpretation offers a simple theory of 
closely held corporations. In the model a share would be a claim on some 
proportion of the profits (project return) of the firm. Individuals such as 
agent 1, who are not “insiders” but who hold shares, must verify claimed 
profit levels. Publicly held shares thus require more verification than other 
forms of debt. (Of course, the model of this paper does not purport to explain 
the financial structure and bankruptcy decisions of all corporations.) 

Alternatively, agent 2 can be viewed as an individual who is to suffer 
some random loss #? - yz and purchases an insurance contract [g, S] from 
agent 1. (See Arrow [2, 31 and Raviv [17].) Here e is the premium, paid to 
agent 1 independent of the loss, and I(y,) = C - g(uz) is the insurance 
payment to agent 2 for loss /3 - yz if a claim is filed, in which case verification 
costs are incurred. Thus if yz E S’, then I(y,) = 0. Alternatively, if y, E S, 
then consistency requires that g(yJ + e[ &,)I < C so that f(y,) - 
[[&,)I > 0. This interpretation will motivate some further restrictions on 
&g(y,)] in the analysis that follows. 

3. A CHARACTERIZATION OF OPTIMAL CONTRACTS 

The objective in what follows is to characterize the set of optimal contracts. 
An allocation of the consumption good is said to be optimal if it is Pareto 
optimal among the set of allocations which can be achieved by consistent 
contracts, and any contract which achieves an optimal allocation is itself said 
to be optimal. It should be noted that the consistency conditions and verifica- 
tion costs require that optimal contracts be defined relative to the initial 
endowments.s It should also be noted that optimal contracts are defined 
relative to the deterministic verification procedure described above. (Stochas- 
tic procedures are discussed in Section 4.) 

By definition, optimal allocations constitute the contract curve of the 
two-agent economy. Consistent with the positive intent of this paper, it is 
assumed here that agents will enter into an optimal contract and thus end up 
on the contract curve, though the precise allocation will depend on the 
bargaining power of the two agents. A competitive equilibrium concept 
that is Pareto satisfactory relative to optimal allocations is the subject of 
Section 6. 

In summary, the objective in what follows is to solve7 

6 Here optimal allocations are defined relative to constraints (consistency conditions) 
derived under the particular game described in the text. It is conjectured, however, that 
these constraints will characterize the outcomes of a large class of alternative games. 

’ As consistency conditions are imposed, the - may be dropped from the notation. 
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PROBLEM 3.1. Find a function g(y&, a constant C, and a region S that 
maximize 

subject to 

1 &[YI + dY,)l OF + s,, Uh’, + C] dF(y,) 3 K (3.1) s 

dY2) + i2&)1 < c YeES (3.2) 

Yl + dYz> 2 0 for yz~S and y1+C30 for y, ES’. (3.3) 

Here constraint (3.1) specifies that the expected utility of agent 1 be no less 
than some constant K. It is further required that K > U,(yl) so that agent 1 
is at least as well off as in autarky. Constraint (3.2) is the consistency require- 
ment; that g(y2) E C on S’ has already been imposed by substitution. 
Constraint (3.3) is the nonnegativity constraint on the consumption of agent 1; 
by virtue of the assumption U;(O) = co, the analog for agent 2 need not be 
imposed. 

In what follows solutions to Problem 3.1 are characterized under classical 
and nonclassical assumptions on the verification cost function 5. For the 
classical approach, [ is expressed as a continuously differentiable, convex 
function of the transfer function, and necessary Euler conditions for a maxi- 
mum are utilized. In contrast, with a fixed cost of verification, the analysis is 
more tedious; a condition shown by Rothschild and Stiglitz [19] to be equi- 
valent to risk aversion is utilized. Under either approach the important 
result is that the verification region is a lower interval, [01, r), y < /3. 

The first approach is motivated by the insurance interpretation discussed 
above.8 Let Z(y,) = C - g( y.J where, again, C is viewed as the premium 
and Z( y2) is the insurance payment. Recall that Z = 0 on S’ and Z :> 0 on S. 
Then on s let EkbJ = W(Y,)I w h ere Y(Z) > 0. Hence, in this approach 
the verification cost is assumed to depend only on the size of the insurance 
payment. It is further assumed that Y(Z) is convex and continuously differen- 
tiable. Moreover, defining Y(0) and Y’(0) by taking limits as Z-t 0, it is 
assumed that Y(0) = 0 and Y’(0) < 1. This last condition states that the 
marginal cost of verification at Z = 0 is less than the marginal payoff to 
agent 2 from I. Note that if Y’(0) >, 1 and Y(Z) were convex, then Z - Y(Z) 

8 I am much indebted to Artur Raviv, who pointed out to me the mathematical similarity 
of a preliminary version of Problem 3.1 to one of the insurance literature. The method of 
proof of Proposition 3.1 emanated from the method employed by Raviv [17]. 
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would be everywhere nonpositive, and no insurance would be trivially 
optimal. 

Now consider 

PROBLEM 3.2. Find a function Z(y,) and a constant C that maximize 

subject to 

f 

B 

WY, - Z(Y‘2) + Cl WY,) 3 K a 
Z(Y2) 2 0 (3.5) 

Yl - Z(Y2) + c 2 0. (3.6) 

Under the specified assumptions, if I*, C* is a solution to Problem 3.2, then 
g*, C*, S* is a solution to Problem 3.1 where g*(yJ = C* - I*&) and 
s* = {y2: z*(y,) > O}.V 

This yields 

PROPOSITION 3.1. Any solution I*, C* to Problem 3.2 with either y, 
simple or yz and Z(y,) continuous has the property that S* = { yz: yz < y} 
for some parameter y.la 

Proposition 3.1 would of course be vacuous if the verification region S* 
were always either empty or the entire interval. It is shown here by way of an 
example that S* can depend on the verification cost in a nontrivial way. For 
the example, suppose that U, is linear, Y(Z) = XI with 0 < X < 1, and yz is 
uniformly distributed on [IX, p]. Agent 1 is constrained to have the same 
utility as in autarky. A solution to Problem 3.2 can be characterized on 
adjacent intervals. On [01, p], constraint (3.6) is binding, so Z(y,) = C + y1 ; 
on [p, 71, Z( yz) = (y - y&/(1 - X); and on [y, p], constraint (3.5) is binding, 

9 To see this, transform Problem 3.1 to an equivalent problem by making the substitu- 
tions g&J = C - I&) and &&)I = vZ(y,)]. Next, in lieu of constraint (3.2), impose 
the apparently weaker restriction that Z(JJ~) > 0 on S. From the nature of this modified 
problem and the monotonicity of U, if Z* > 0, then Z* - Y(Z*) > 0 so that a solution 
to the modified problem will satisfy constraint (3.2). Next, recalling that Z = 0 on s’ and 
U(0) = 0, enter the expression Z&J - Y[Z(y,)] in the second branch of the objective 
function of the modified problem and enter I&) in the second branch of constraint (3.1). 
This yields problem (3.2) with S = {ya : It&) > O}. 

lo Existence and uniqueness of a solution is ensured by the continuity and strict concavity 
of the objective function and compactness and convexity of the set of feasible solutions. 
(If y, is continuous, the class of functions Z(y,) is restricted.) 
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so Z(y,) = 0. Hence, for this example, Problem 3.2 is equivalent to finding 
constants y and C which maximize 

subject to 

j” cc + Yl) dY2 + jv NY - YSYU - ~>14J, = w - 4 oi P 

where 01 < y < fl, 0 < C < /?, and p = y - (1 - h)(C + yl). Let yA 
denote a maximizing y given the cost parameter A. If verification is costless, 
i.e., X = 0, full insurance is optimal and verification always occurs, i.e., 
yh = /3. It can also be shown that we approach atuarky as X -+ 1, i.e., 
yA -+ 01. (If X = 1, then there is no role for insurance and the verification 
region is empty.) In fact, yh can take on any value between 01 and p by appro- 
priate choice of X between zero and one.ll 

Under the specified assumptions, the function Y is inconsistent with a 
fixed cost of verification. Yet it has been argued by some that a fixed cost of 
acquiring information is typical. It is now established, at least under some 
further assumptions, that the verification region S will still have the same 
property. 

The analysis is facilitated by the assumption that agent 1 is risk neutral, 
so that the consumption of agent 2 will equal some constant on S. This is 
stated formally in 

LEMMA 3.1. Any solution g*, C*, S* to Problem 3.1 with the cost of 
vertjication equal to some constant p, with agent 1 risk neutral, and with 
nonbinding nonnegativity constraints has the property that the consumption of 
agent 2 equals some positive constant on S*. 

This lemma enables one to prove 

PROPOSITION 3.2. Any solution g*, C*, S* to Problem 3.1 with yz con- 
tinuous; with aJixed verification cost ~1; with agent 1 risk neutral; and with a 
nonnegativity condition on the consumption c$(y2) of agent 2, sup c$(y2) < 
y, + TV - 01, has the property that S* = { yz: yz < y} for some parameter y. 

I1 It should be mentioned here that risk neutrality on the part of agent 1 is not necessary 
for a nontrivial verification region. Also, the example suggests that there might be a more 
general monotone dependence between the verification region and the cost. 
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The contracts characterized in Propositions 3.1 and 3.2 have familiar 
characteristics. Viewing agent 2 as the insider of a firm financing an investment 
project, the propositions assert that the firm will default on a bond promising 
to pay C* and suffer a costly audit only when the firm does poorly, i.e., 
when yz < y. Alternatively, viewing agent 2 as a purchaser of insurance, 
the propositions can be viewed as an extension of some results in the insurance 
literature. Here the insured files a claim only if the loss (/3 - yJ exceeds 
(/? - y). Hence @ - y) may be viewed as a deductible. In the insurance 
literature, nontrivial deductibles (y # 01, /3) are generated by the assumption 
that Z(y,) > 0 and by the assumption of loading, (1 + X) JfZ(yJ dF(y,) < C 
for some positive constant h-that is, the actuarial value of the policy must be 
less than the premium. In this paper the first constraint is motivated by 
consistency considerations, and the loading assumption is replaced by an 
explicit treatment of costly state verification. 

4. STOCHASTIC VERIFICATION 

Thus far attention has been limited to a deterministic verification procedure. 
That is, verification occurs with probability one or zero, depending on 
whether or not agent 2 asks for verification. This may be contrasted with 
schemes in which the decision to verify is determined in a random way. One 
might conjecture that random procedures can lessen the resource cost of 
verification while the threat of verification induces honesty. Indeed this 
turns out to be so; this section describes a stochastic verification scheme that 
can dominate the deterministic procedure. It goes without saying that this 
result limits the force of the results presented in this paper for deterministic 
verification. 

For the purpose of establishing that stochastic verification schemes can 
dominate the deterministic procedure, it is enough to provide a simple, but 
hopefully generic, example. Consequently, it is assumed throughout this 
section that yz is simple with only two realizations, J+&) and yz(z), 0 < JJ~(S) < 
yz(t), with probabilities p(s) and p(t), respectively. 

The stochastic scheme is as follows. Prior to the realization of y2 , agents 1 
and 2 agree to exchange specified amounts contingent on the realization. 
The amount to be transferred depends on whether there is or is not verifica- 
tion, and the latter is determined in a random way. Agent 2 begins by 
claiming a realization of yz , either yz(s) or y.Jt). Let n(w) denote the agreed- 
upon probability that there is verification given that yz(w) is claimed, w  = 
S, t. (Presumably there is some machine (urn) that is known by both agents 
to generate outcomes with the specified probabilities.) Let h(w) denote the 
number of units of the consumption good to be transferred from agent 2 
to agent 1 given that yz(w) is claimed by agent 2 and there is not verification. 

642/21/2-5 
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Let d(w, w’) denote the amount to be transferred if uz(w) is realized, y&w’) is 
claimed, and there is verification. Let TV denote the fixed cost of verification as 
incurred by agent 2 if there is verification. 

It should be noted that the scheme just described differs in various ways 
from the allocation procedure of Section 2. There agent 2 merely announced 
whether or not there was to be verification, and then, if there was any dis- 
cretion, determined the transfer. Here agent 2 announces a particular realiza- 
tion of yZ , and, subsequent to his announcement, the transfer is completely 
determined, albeit in a random way. Yet these schemes are not dissimilar; it is 
established below that any allocation of resources achievable by the deter- 
ministic procedure is achievable here without randomization. 

It remains to show that the present scheme can generate a (random) 
allocation of resources which both agents can count on. That is, that there is 
some known relationship between actual realizations of yz and announced 
realizations. A condition on the probabilities r(w) and transfers h(w), 
d(w, w’) which ensures such a relationship is 

[1 - dw>l wJ4w) - 441 + 44 U2Mw) - 4% 4 - PI 
2 [1 - ‘rr(w’)l fx.Y2(w) - 441 + nr(w’) U,[Yz(W) - 4w, w’> - PI 

(4.1) 

for w, w’ = s, t. Inequality (4.1) states that, given the realization y&w), the 
expected utility of agent 2 if he claims yZ(w) as a realization is no less than 
his expected utility if he claims yZ(w’). With an indifference convention, then, 
(4.1) ensures that agent 2 would claim yZ(w) whenever y2(w) is realized, 
w  = s, t. 

For the purpose of establishing that the above-described stochastic 
scheme can dominate the deterministic procedure, one may consider 

PROBLEM 4.1. Find the n(w), h(w), and d(w, w’) that maximize 

u,z tPh91[l - 441 UYz(W) - h(w)1 + 44 WYz(W> - 4% 4 - Al 
(4.2) 

subject to (4.1) and 

,; t PWi[l - 441 w3 + h(w)1 + 44 WY, + 4w WI> 2 K (4.3) 

CIMW)l 2 0 (4.4) 

0 < n-(w) < 1. (4.5) 

Here constraint (4.3) bounds the expected utility of agent 1, (4.4) is the non- 
negativity constraint on the consumption of agent 1, and (4.5) restates that 
the n(w) are probabilities. 
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Now suppose a solution g*, C*, S* to Problem 3.1 has the property 
that there is verification at y&s), but not at y&). Then there is a feasible 
solution to Problem 4.1 which achieves the same allocation of resources.12 
For let n(s) = 1, m(t) = 0; that is, verify with probability one or zero at s 
and t, respectively. Also, let h(t) = C*, d(s, s) = g*[y,(s)], and d(t, s) = 
yz(t) - p. Then by constraint (3.2), d(s, s) + p < h(t). It follows that 

G[Y,W - d(s, 4 - PI > mY,w - WI (4.6) 

Gh2(~) - WI > &h@) - 4c s) - PI (4.7) 

where yz(t) - h(t) > 0. With V(S) = 1 and n(t) = 0, inequalities (4.6) and 
(4.7) are consistent with constraint (4.1), and hence, the desired allocation 
can be achieved. 

It is now established that this feasible solution to Problem 4.1 is not 
maximizing. In addition to the above specification let h(s) = g*[y&)]. 
Then keeping n(s) = 1 and r(t) = 0, (4.6) and (4.7) can be rewritten as 

WY&> - WI > [1 - 4Gl wJ&) - WI + 44 m4~> - 44 4 - PI. 

Note that y&) - h(s) > 0 and yz(t) - d(t, s) - p = 0. It follows that, 
ceteris paribus, r(s) can be diminished somewhat without changing the 
direction of the inequality in (4.9). As for constraint (4.8), note that with 
h(s) = d(s, s) = g*[y,(s)], agent 2 is clearly better off without verification 
at y2(s) by virtue of the resource savings CL. Hence a diminution of n(s) will 
not cause constraint (4.8) to be violated. With the transfer to agent 1 indepen- 
dent of verification at y&), constraints (4.3) and (4.4) will still be satisfied. 
Hence there exists a feasible solution to Problem 4.1 with n(t) = 0 and 
0 < n(s) < 1 which dominates the (deterministic) solution to Problem 3.1. 

Given the dominance of stochastic verification, some further comment on 
Problem 4.1 and its solutions would seem to be in order. First, one may 
question whether the constraints (4.1) may be imposed without loss of 
generality, as were the consistency conditions in Section 2. That is, suppose 
the n(w), h(w), and d(w, w’) were such that both of the constraints (4.1) 
were violated. Then there is a specification of transfers (essentially a relabel- 
ing) which achieves the same allocation and satisfies constraints (4.1). If 
only one constraint is violated, say for example, agent 2 would always an- 
nounce that yZ(s) is realized, then there is a modjied game in which agent 2 

Ia A similar argument establishes that whatever the relationship between VT(S) and n(t), 
the allocation achieved in a solution to Problem 3.1 is also attainable under the stochastic 
scheme with nonrandom verification. 
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must always announce y&s), effecting either h(s), d(s, s), or d(t, s). Hence 
there is a modified, albeit more complicated, version of Problem 4.1 which 
may be imposed without loss of generality. 

As to the nature of solutions to problems similar to 4.1, little has been 
determined-l3 One might conjecture, based on the results for deterministic 
verification, that the probability of verification should be a nonincreasing 
function of yz and perhaps should be zero in states with high realizations. It 
may be noted in this regard that, in the example discussed above, resource 
savings are limited by the extent to which V(S) can be diminished without 
creating an incentive for agent 2 to cheat at yz(t). If U, were unbounded from 
below, then it seems that the value of the objective function could be made 
arbitrarily close to the corresponding value with optimal contracts and cost- 
less verification by making the n(w) arbitrarily close to zero, w  = s, t. For let 
g*(w) denote a maximizing transfer as a function of w  with costless verifica- 
tion. Then, ignoring nonnegativity constraints, let h(w) = d(w, w) = g*(w). 
Since U,(c) -+ -co as c -+ 0, n(w) can be made arbitrarily close to zero by 
appropriate choice of d(w, w’) without violating the constraints (4.1).14 

In summary, stochastic verification procedures can dominate deterministic 
procedures. In fact, stochastic procedures are not uncommon. The timing of 
bank audits by government agencies is somewhat random. Similarly, cor- 
porations use stochastic procedures in monitoring internal divisions. It is 
also said that tax audits by the IRS are determined in part at random. 

5. CONSTRAINED OPTIMAL CONTRACTS IN AN m-AGENT ECONOMY 

This section returns to deterministic verification procedures in an attempt 
to generalize the earlier results on other dimensions-the number of agents 
and unobserved random variables. It will be seen that this attempt raises 
some new and interesting problems with regard to the characterization of 
optimal contracts. 

We begin with a symmetric two-agent economy. That is, the realization 
of the endowment yj of each agent j (j = 1, 2) is known only by agent j 
unless a verification cost is borne. Each random variable yj is associated 
with a cumulative distribution function F’( u,) and takes on values in the inter- 
val [q , pj], g > 0. The yj are all either simple or continuous. In the latter 

I3 The difficulty is that constraints (4.1) seem quite messy analytically; examination of the 
necessary conditions for a maximum, as in the proof of Proposition 3.1, has not yet provided 
much insight. In order to avoid putting measures on measures, a restriction to simple 
rather than continuous random variables has been imposed. Yet this seems to make the 
characterization more difficult. 

I4 Note that in such cases, Problem 4.1 cannot attain its supremum; at n(w) = 0 for all 
w there are no disincentives to cheating. 
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case each yj possesses a continuous, strictly positive density function h . It 
is assumed moreover that the yi are independent so that the realization of yj 
conveys no information about yI , i #j. Each agent j has a utility function 
U, over riskless consumption which is continuously differentiable, strictiy 
concave, and strictly increasing with Vi(O) = co and Uj(cc) = 0. 

Prior to the realizations of y1 and yZ , both agents make exchange and 
verification plans which are contingent on the realizations. That is, let 
g(y, , yZ) denote the actual poststate net transfer of the consumption good 
from agent 2 to agent 1 as a function of the realizations of y1 and y2 , and let 
g(yl , y.J denote the poststate contractual choice of this transfer function. 
Also, let Sj denote the set of realizations of yj under which there actually is 
verification of yj , and let Sj denote the prestate contractual choice of this 
set. Thus a contract in this economy is a specification of g, S, , and 
s, . 

Subsequent to the realization of yj , each agent j announces whether there 
is or is not to be verification. If there is verification, yj is made known to 
agent i (i fj) and 4j(yj) units of the consumption good are forfeited by 
agent j.15 It is agreed that if both agents are verified, then they transfer what 
was agreed upon, i.e., g( y1 , ya) = g(y, , yJ. If agent 1 is verified 
but agent 2 is not, then it is agreed that agent 2 can effect any transfer 
consistent with the known value of y1 and any yZ in the agreed-upon non- 
verification region of yZ , i.e., g(y, , y.J = min g(yl , X) where the minimum 
is over x E ,i$ . Similarly, if agent 2 is verified but agent 1 is not, then agent 1 
determines the transfer, i.e., g(y, , yz) = max g(x, yJ where the maximum 
is over xES;. If neither agent is verified, it may be supposed without loss 
of generality that agent 2 determines the transfer, i.e., g(y, , y.,) = min 
g(xi , x,) where the minimum is over (x1 , x2) E Si x SL .I6 Finally, if some 
agent j asks for verification, but yj is not in the agreed-upon verification 
region Sj , then agent j incurs the verification cost, and the transfer is deter- 
mined as if agent j had not asked for verification. Note that this effectively 
precludes such an event, and hereafter we disregard this possibility. (The 
scheme is easily modified to allow for binding nonnegativity constraints.) 
Any remaining indeterminacy is resolved by an indifference convention as in 
Section 2. 

I5 Here it should be understood that the verification cost &(yi) can depend in an exogen- 
ous way on the agreed-upon transfer g, which in turn has y, as an argument. Thus +,&j 
should be viewed as a composite function and is not meant to imply that the costs depend 
in an exogenous way on the reahzation y; . 

I6 Symmetry might suggest that both should determine the transfer, but this leads to an 
obvious inconsistency. The implication of the present specification will be that the agreed- 
upon transfer must be some constant on S; x 8;) an implication that would also follow 
if agent 1 determined the transfer. The constant is determined in a solution to a Pareto 
problem, and thus the process does not favor agent 2 a priori. 
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The strategy of telling the truth for agent j means the poststate announce- 
ment of whether he is or is not to be verified in accord with Sj and Si . Now 
one may define a contract [g, S, , S,] to be consistent if (i) telling the truth 
is a dominant strategy for each agent j, and (ii) g = g. Note that condition (i) 
implies Sj = Si , j = 1, 2, so in this sense the definition of consistency of 
Section 2 has been generalized. 

The implications of consistency should not be too surprising. Under a 
consistent contract the transfer function g cannot depend on information 
that is known only to one agent. That is, the transfer cannot depend on yj if 
agent j is not verified. Also, certain incentive inequalities must be satisfied. 
More formally, we have 

LEMMA 5.1. A contract [g, s, , S,] is consistent if and onZy if g(yl , yz) 
equals some constant C on S; X SL, equals some function g’( yl) on S, X SL, 
equals some function g”( yJ on 3; x S, , and the inequalities below obtain: 

aYl7 Y2) - MYl) > i!2(Y2) (Yl? Y2) ES1 x s2 

‘P(Y1) - MYl) > c Yl E Sl 

E(Yl 2 Y2) + $2(Y2) -=c EYYl) (Yl, Y2) ES1 x s2 

i!"(Yz) + 42CY2) < c Y2ES2 * 

It may also be noted that under the dominant strategy equilibrium concept 
for determining the outcome of a contract [g, S, , S,], consistency require- 
ments may be imposed without loss of generality, as in Section 2. 

One may now proceed in an attempt to characterize optimal contracts. 
Motivated by the classical approach of Section 3, one might hope to formu- 
late an analog to Problem 3.2 in which inequality constraints define the 
space of feasible functions and in which there is no explicit reference to 
regions. First, define functions I,,( yl) and I,,( y2) as follows. Let I,,( yi) = 
gl( yl) - C on S, , I,,( yJ = 0 on s; , I,,( y2) = C - g2(y2) on S, , and 
I,,( y2) = 0 on Si . Also, define a function K( y1 , y2) = g( y1 , y2) - C - 
I,,( yJ + I,,( yJ on S, x S, and zero otherwise. Then by substitution into 
the inequality constraints of Lemma (5.1) one obtains the restrictions 

I,l(Yd - 9dYl) > 0 Yl E Sl (5.1) 

fl2CY2) - 42(Y2) > 0 Y2ES2 (5.2) 

--I,dYd + 4l(Yl> < QYl 3 Y2) 
< Il,(Y,) - 42CY2) (Yl ,Yz)E% x s2. (5.3) 

The difficulty with this approach is constraint (5.3) and the appearance of the 
function R( y1 , y2) on S, X S, . If, however, K( y1 , y2) were restricted 
exogenously to be identically zero, then g( y, , y2) = I,,( y,) - I,,( y2) + c 
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everywhere. One could then postulate that the cost of verification of yi 
depends only on the agreed-upon insurance payment iii . That is, &(yJ = 
Yj[iij(yj)] with ul,(O) = 0. Then, as in Section 3, one could formulate an 
optimization problem with the verification region Sj defined by $ = 
{yi: iij(yj) > O}. This is done below in greater generality. The maximizing 
contract is said to be a constrained optimum. 

One should consider the implication of the constraint E(yl, yJ = 0.l’ 
Roughly speaking, this restriction precludes certain risk-sharing arrange- 
ments. To get some feel for this suppose U,(c) = cy+l/(y + l), U,(c) = 
cp+l/(p + 1) with y = --a and p = -4. Then the optimal (full information) 
transfer function g* is of the form 

2g*(y, ) yJ = (X-4 + 2yJ It {(k4 + 2Y,Y - 4(Yz2 - h-4Y3Y’2, 

where X is some positive constant. To be noted is that g* is not separable 
with respect to y1 and yZ as is required by the exogenous restriction. Thus it 
seems that, among other things, the transfer function is constrained in the 
region in which both agents are verified. 

For the remainder of this section we consider the m-agent generalization 
of the symmetric two-agent economy. Much of the notation introduced at 
the outset of this section applied in an obvious way. For example, yj denotes 
the endowment of each agentj, where now j = I,2 ,..., m. Let F( y, , yZ ,..., ym,J 
denote the joint distribution of the endowments. Again, independence is 
assumed. Any realization of yj is assumed to be known only to agent j 
unless a verification cost is borne; in that event yj is made known to all agents. 
Let gij(Yl , YZ ,.-p y,J denote the net transfer of the consumption good from 
agent i to agent j as a function of the realization of each of the endowments.ls 
Then a social contract {gij}cj=l, {s,>i”,l is a prestate agreement as to the 
amounts to be transferred and when there is to be verification. Such a 
contract is said to be consistent if: (i) telling the truth is a dominant strategy 
for each agent j, and (ii) gij = gij , i, j = 1, 2 ,..., m. 

Again, one would like to find an analytically tractable maximization 
problem whose solutions characterize an optimal social contract. Unfortu- 
nately this is done here only after imposing several exogenous restrictions 

I7 The intent here and below is to impose enough exogenous restrictions that Proposition 
3.1 can be generalized. It is hoped that the reader finds these restrictions, motivated as 
they are by technical considerations, as unpleasant as the author. It may be noted, however, 
that under these restrictions feasible contracts seem to mimic what we actually observe in 
some insurance markets; each agent pays a premium independent of the state and receives 
compensation only as a function of his own loss. Additional work should be devoted to 
finding an environment under which these restrictions are endogenous so that Proposition 
5.1 and the results of Section 6 below have more force. 

I8 Thus g,, = -g,, . Also, it is convenient in what follows to define gi, = 0 and similarly 
(except in Section 6) for all variables with an identical double subscript. 
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on the exchanges, including that they be bilateral in nature. That is, the 
agreement &, is restricted to depend at most on y, and yj . It bears repeating 
that this restriction is imposed for analytical convenience and is not motivated 
by economic considerations.19 Given this restriction it may be presumed 
that each pair of agents i and j adopts a resource allocation procedure 
virtually identical to the two-agent procedure described above, and, in 
similar fashion, restrictions on the transfer function gij analogous to those 
of the first part of Lemma 5.1 may be derived, with subscripts i and j where 
appropriate. Imposing restrictions analogous to K(*, .) = 0, the & can be 
shown to be of the form &(yi , yj) = Iij( yj) - f&J + Cii where Cij is 
some constant and Iij(yj) = 0 on Si . Also impose the restrictions that 
MYj) b 0. 

Now suppose the cost of verifying yi depends only on the sum of the 
“insurance payments” from other agents. That is, let the verification cost be 
Y&Z’ifij( yj)] where Y’j is a continuously differentiable, convex function with 
Y,(O) = 0 and Y,(O) < 1. 

Motivated by this discussion, then, a prestate social contract (&}& , 
{S,}j”_l is restricted to be of the form 

Sj = ) )'j: T fij(Yj) - yj [T iij(Yj)] > 01 

S; = { yj: iij( yi) = 0 for all i}. 

By construction, such a social contract is consistent, and subsequently the 
- may be dropped from the notation. 

One may now characterize a constrained optimal social contract by consider- 
ation of 

PROBLEM 5.1. Find functions Iij and constants Cj , i, j = 1, 2,..., m that 
maximize 

I8 Jerry Green [8 1, among others, has stressed the need for bilateral models of exchange, 
but their study here (making the restriction endogenous, perhaps by an explicit treatment 
of the technology of communication) would constitute a separate paper. In contrast 
Wilson [23] has stressed the collective nature of decisions under risk. 
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subject to 

X WY, 3 YZ >...) urn) >, Kj j = 2, 3,..., m (5.4) 

rij(Yj) 2 O i,,j = 1, 2 ,..., m (5.5) 

f Cj = 0. (5.6) 
j=l 

Here & is defined by Si = (yj: JY<Zij(yj) > O}. Here also the constants C, 
may be interpreted as a premium received by agent j independent of the 
realization of the yi . Note that these completely determine the desired 
constants Cij .20 Also impose the better-than-autarky condition, Kj >, 

J uj(Yi> dFCYj). 
Finally, we obtain the sought-after analog of Proposition 3.1 in 

PROPOSITION 5.1. Any solution Z$ , Cj* to Problem 5.1 with either the 
yi simple or the yi and the Z$ continuous has the property that each SF = 
{yj: yj < yj} for some parameter yj . 

6. A PARETO SATISFACTORY COMPETITIVE EQUILIBRIUM 

The purpose of this section is to analyze the properties of a competitive 
equilibrium concept for the m-agent economy. In particular it is established 
that a competitive equilibrium exists and that any equilibrium allocation is a 
constrained optimum, i.e., can be achieved with a constrained optimal social 
contract. This result is important in establishing the way in which agents 
end up on the contract curve and thereby supports the contention that 
optimal trades will be observed. 

For the purpose of this section each yj will be taken to be simple with n 
possible realizations.21 The realization yj(sj) occurs with probability pi(sj), 
sj = 1, 2,..., n. The commodities which are traded in competitive markets 
prior to the realization of the endowments are claimscontingent on the realiza- 
tion of each endowment and unconditional claims.22 Let Jd,(Sj) denote the 
number of claims contingent on the s,th realization of y, purchased by agent i, 
where one such claim entitles the holder to one unit of the consumption good 

20 The relationship is xi Crj = Cj , where as usual C,, = 0 and C,, = -Cij . 
a1 One could easily permit a different number of realizations for each agent. 
*B For an earlier discussion of the relationship between insurance coqtracts and con- 

tingent commodity markets in the standard competitive model see Kihlstrom and Pauly 
v41. 
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if y&)is realized and zero otherwise. The direction of trade in such contingent 
claims is restricted: Agent i can purchase claims contingent on his own 
endowment and issue claims contingent on the endowments of others. That is, 
J&J > 0, and J&J < 0, i # j. Let q,(sJ denote the price of a unit claim 
contingent on v&). Let Di denote the number of unconditional claims on the 
consumption good purchased by agent i in the market for claims, where one 
such claim entitles the holder to unit of the consumption good regardless of the 
realization of the endowments. There is no direct restriction on the direction 
of trade in such unconditional claims. Let r denote the price of one such 
unconditional claim. After the realization y&Q, each agent i must decide 
whether (or not) to collect the “insurance payment” J&), incurring the 
verification cost YJJ&)]. 

All agents take the prices q&J and r as parameters and maximize expected 
utility subject to the budget constraint. That is, each agent i chooses the 
J&J and Di to maximize 

X ui Y&) + f J&j, + Di - Y’J[J,,(s,)] 
/ j=l 

subject to 

(6.1) 

(6.5) 

Here, (6.2) is the budget constraint, (6.3) restricts the direction of trade, as 
noted, (6.4) ensures that the proceeds of insurance cover verification costs, 
and (6.5) is the nonnegativity constraint on consumption. Note that these 
last two constraints could be suppressed. 

A competitive equilibrium is a set of nonnegative prices qj*(sJ and r* (not 
all zero) and commodity demands J&q) and Df for each agent i such that 

(i) J$(sJ and Df maximize (6.1) subject to constraints (6.2)-(6.5), and 

(ii) C& Jz(.sJ < 0, CL1 D? < 0 (market clearing). 
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The existence and constrained optimality of such an equilibrium is estab- 
lished. 

PROPOSITION 6.1. Under the assumptions of the model there exists a 
competitive equilibrium. 

PROPOSITION 6.2. The allocation of any competitive equilibrium is a 
constrained optimum. 

An equilibrium concept may be said to be Pareto satisfactory if any 
equilibrium allocation is optimal and if any optimal allocation can be 
supported as an equilibrium. (See Hurwicz [13].) Proposition 6.2 establishes 
the first property. As for the second, it is clear that if agents were endowed 
with the unconditional and contingent claims associated with a constrained 
optimal allocation, then there would exist an autarkic competitive equilib- 
rium. Hence the equilibrium described in this section is Pareto satisfactory 
relative to the constrained optimal allocations described in the previous 
section. 

Finally, some unusual characteristics of this equilibrium concept should be 
noted. The contingent claims which are traded in this model are not anonym- 
ous. A contingent claim on yj is associated with agent j. Though for large m 
there are many possible sellers of such commodities, there is only one possible 
buyer, agent j. Hence the assumption that agent j is a price taker may be 
troublesome. Ideally, the way to proceed in this context is to formulate a 
game with endogenous price setters, and with restrictions on trade tied 
closely to incentive compatibility conditions, and to establish that the equi- 
librium allocations of such a game approach in the limit those of the compe- 
titive equilibrium (as defined above) as the economy is replicated. It would 
seem crucial in establishing such a result that the “bargaining power” of 
any agent become negligible in the limit, despite the fact that for any finite 
economy traders do not have identical initial endowments. Caspi [6] provides 
evidence to this effect in a simpler (full information) context: in a pure 
exchange economy in which traders have identical preferences and indepen- 
dent but identically distributed random endowments, a vanishing function 
of traders receive in the core a claim which differs from the mean of their 
common endowment as the economy is replicated. The point is that in the 
context of Caspi’s model the monopsony power of each buyer is limited 
because of the presence of near ex ante substitutes. One strongly suspects 
this result will carry over to the limited information context of this model, 
despite the need for idiosyncratic verification.as 

23 Again it may be noted that competitive insurance markets seem consistent with the 
imposed restrictions. 
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7. CONCLUDING REMARKS 

Perhaps one of the more interesting aspects of this paper is the attempt to 
explain the financial organization of firms by way of information asymmetries. 
As Ross [18] indicates in taking a similar approach, attempts to reconcile 
observations on financial structure with the Miller-Modigliani theorem 
have been less than satisfactory. Yet on this account, at least, this paper 
cannot be termed a success. The model as it stands may contribute to our 
understanding of closely held firms, but it cannot explain the coexistence of 
publicly held shares and debt. And one would like to model bankruptcy at a 
deeper level. Thus this paper can only be regarded as a first step. 

The extent to which a model may be said to explain economic phenomena 
depends on the nature of exogenous restrictions on the behavior of agents of 
the model, that is, restrictions which are not implied by the environment. 
Perhaps the most troublesome is the restriction to deterministic verification. 
There are also exogenous restrictions on feasible transfer functions. Risk- 
sharing arrangements when each of two agents is verified are restricted in a 
way which is motivated by technical considerations, and mutually advantage- 
ous trades contingent on the realized endowment of a third party are also 
excluded. Clearly here as in much of the contract literature more work is 
needed in multiagent environments. In this regard we may note again that the 
existence and optimality of the competitive equilibrium concept of Section 6 
are established subject to these exogenous restrictions. As is well known, the 
presence in some settings of exogenous restrictions can affect the existence 
of equilibrium. It is hoped that the analysis of this paper will prove useful in 
subsequent work in characterizing optimal contracts and in establishing the 
existence of equilibrium when fewer exogenous restrictions are imposed. Of 
course, the propositions of this paper will have more force to the extent that 
the restrictions which have been imposed here can be derived endogenously 
in environments with more structure, with limitations on multilateral 
communication, for example. 

For the most part, the model deals with information in an entirely classical 
way. There has been some discussion in the literature to the effect that there 
are increasing returns to scale in the production of information; see for 
example Wilson [22] and Radner [16]. Grossman and Stiglitz [9] have shown 
that costly information can be revealed completely by the equilibrium prices 
of competitive markets. In contrast Hirshleifer [12] has argued that competi- 
tive markets induce the acquisition of too much information. The results of 
this paper would seem to illustrate that the nature of information varies 
with the phenomena of interest to economists and that one should be wary of 
generalizations. 

The model provides an example of the suggestion by Radner [16] that 
convexity in the technology of information production is reasonable in 
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situations in which information depends on actions which can be scaled 
down to any desired size; it is postulated that resources used in state verifica- 
tion vary directly with the size of insurance claims. However, convexity is 
lost under the apparently reasonable specification that there is a fixed cost of 
verification. It may be argued by way of Proposition 3.2 that the characteriza- 
tion of optimal contracts will remain valid even under such a specification. 
But nonconvexities can be the source of considerable difficulty in establishing 
the existence and optimality of a competitive equilibrium. Ongoing joint 
research with Edward C. Prescott [15] indicates that, in some contexts, 
these difficulties may be overcome by stochastic schemes. This leads us back 
again to Section 4 and the very real possibility of obtaining existence and 
welfare results with stochastic verification. But this must be the subject of 
another paper. 

APPENDIX 

Prbof of Lemma 2.1. First, note that given any contract [g, S], if yz is 
such that there is not to be verification (i.e., y2 ES’), then agent 2 has no 
incentive to ask for verification. For if agent 2 were not to ask for veriI?cation, 
he would transfer min,,s. g(x) to agent 1. Alternatively, if agent 2 were to ask 
for verification, then t[ g(y2)] would be used in verification and g(yz) would 
be transferred. Clearly agent 2 can only be made worse off by asking for 
verification. 

Necessity is now established. If a contract [g, S] is consistent, then 
g( yz) is identically equal to some constant c on s’. This may be established by 
contradiction. Let K = rninZGs, g(x), and suppose for some yz E 9, g( yJ > K. 
If this yz were realized, there would not be verification. Consequently, the 
actual transfer g(y.J would be K, which is less than g(yz), contradicting 
condition (ii). 

If a contract [g, S] is consistent, then g(‘y.J + f[ g&,)1 < C for all yZ 
such that there is to be verification (i.e., yz ES). Again, arguing by contra- 
diction, suppose this property fails to hold for some yz E S. Then, if this yZ 
were realized, agent 2 would not ask for verification, contradicting condition 
(0. 

Sufficiency is now established. If y, ES’, there will not be verification 
(so yZ ES’), and c will be transferred (so g(yz) = g(y.J). If y, E S, there will 
be verification (so yZ E 5’), and g(y& will be transferred (so g(yJ = g(y.J). 

Proof of Lemma 2.2. The contract [fi, m as defined in the text is consis- 
tent. 

Proof of Proposition 3.1. If yz is continuous, among the necessary Euler 
conditions for a maximum are 
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u - w*L41> WY, + I*(Y,) - c* - Wolff 

- ~:W.Y, - Z*(Y,) + C*lfb4 + @XYZ) - MERCY,) = 0 (Al) 
e: > 0 

fmy,) 3 0 z*(h) > 0 c(h) z*ch) = 0 
e,*(h) 2 0 y1 - Z*CY,) + c* 2 0 mh)b, - z*w + C*I 

Let y be chosen so that 

p - Y(O)] ugy - c*) - el*u;(yl + c*) = 0. 

Suppose I*&) = 0 for some y, E [01, r). Then from (A2) 

~1 - ww  u;(Y, - C*MY,) - 6+w5 + C*ML-) > 0. 

642) 

(A3) 

With Z*(y,) = 0, it follows that @(y,) > 0 and @(yJ = 0, and therefore 
(A3) contradicts (Al). 

Similarly, suppose Z*(y& > 0 for some yz E [y, /I]. Then I*( y.J - 
Y[Z*(yd] > 0, and from (A2) 

- w;h - z*bd + c*m,) < 0. (A4) 

With I*&) > 0 it follows that @( uz) = 0 and @( uz) > 0, and therefore 
(A4) contradicts (Al). 

If yz is simple, the proof proceeds as above with obvious changes in 
notation. 

Proof of Lemma 3.1. The proof is rather standard and is not given here 
for the sake of brevity. 

Proof of Proposition 3.2. The proof is by contradiction. Suppose S* is 
not a lower interval, i.e., S* # {yz: yz < r} for any parameter y. Then, 
roughly speaking, push the verification region to the left while retaining its 
mass so that it becomes a lower interval. More precisely, let 6 be chosen so 
that Prob([ol, 6)) = Prob(S*) > 0. Then let the verification set be T = 
{yz : 01 < yz < 8) and its complement be T’ = { yz: 6 < yz < p}. A new 
consumption path Q&J will be constructed on T and T’ in such a way as to 
both satisfy constraints (3.1~(3.3) of Problem 3.1 and to increase the value of 
the objective functional, the expected utility of agent 2. See Figs. 1A and 1B. 
This will be the desired contradiction. 

By Lemma 3.1 and the nonnegativity condition, the initial consumption 
path c$QJ equals some constant K* on S*. Of course, c$(yJ = y, - C* on 
S*‘. For purposes of this proof it will be assumed that a: - C* > 0 and 
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K* > #I - C*. The other possible cases can be treated in a similar manner, 
but this is not done here for the sake of brevity. On T' let E,&) = yz - C*. 
Now given some constant a (with a property described momentarily), on T 
let E&J = R if R > yz - C* and let E&J = yz - C* otherwise. The 
constant R is chosen so that the expected consumption of agent 2 is the same 
under the partitions (S*, S*‘} and (T, T’). It is assumed that 6 - C* < 
R < j3 - C*; again, this is a special case, though other cases are similar. 
With the same expected cost of verification, the expected consumption of 
agent 1 will remain unchanged, so constraint (3.1) is satisfied. With the non- 
negativity condition, constraint (3.3) is satisfied. By construction, constraint 
(3.2) is satisfied. 

Let F*(x) and P(X) denote the cumulative distribution functions of c$(yz) 
and &(J& respectively. That is, F*(X) = Prob{c,*(y,) < x}, and so on. 
Under the specified assumptions both c$ and Zz are bounded between 
01 - C* and K*. Then, following Rothschild and Stiglitz [19], agent 2 with 
strictly concave U, will prefer & to cz* if 

s z [F(x) - F*(x)] dx < 0 2 E (cd - c*, K*) (A51 
or-c* 

with a strict inequality for at least one such z and 

s K* [P(x) - F*(x)] dx = 0. a-c* 

F*(x) T 

i-c* 

FIGURE 2 
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Condition (A6) holds since Et and c$ are constructed to have the same mean. 
It remains to verify (A5). 

Now, roughly speaking, F*(x) increases at a rate determined by the density 
f(yJ as yz ranges through S*’ and has flats as y, ranges through S*. The 
mass Prob(S*) is picked up at x = K* and F*(K*) = 1. Also, p(x) remains 
at zero until x = 6 - C*, and then increases at a rate determined byf(y,) as 
yz ranges through T’, with a jump of Prob(T) at x = Z?. Notefi(/? - C*) = 1. 
(Fig. 2 is derived from Fig. 1 on the assumption that yz is uniformly distri- 
buted on [a, 81.) Thus by construction there exists some WE (6 - C*, /3 - C*) 
such that p(x) < F*(x) for 01 - C* < x < W and P(x) 3 F*(x) for W < 
x < /3 - C*. It follows that given (A6), (A5) must hold also. 

Proof of Lemma 5.1. The proof mimics that of Lemma 2.1 and is not 
included here for the sake of brevity. 

Proof of Proposition 5.1. Proceeding as in the proof of Proposition 3.1, 
let yI1 be chosen so that 

- j = 2, Z..., m. (~47) 

Let y1 = max{ril}3”,2 . Then it can be shown by contradiction that there does 
not exist any y1 E [q , rl) such that ZA(y1) = 0 for eachj, and there does not 
exist any y1 E [rl , fll] such that ZjT(y,) > 0 for some j. The (Y~}E~ can be 
found in a similar manner. 

Proof of Proposition 6.1. Construct an (nm + l)-dimensional commodity 
space as follows. Let the first n commodities be associated with the excess 
demand for claims contingent on the realizations { y,(s,); s1 = 1, 2,..., n} of 
the endowment of the first agent as ordered by sl. Let the commodities 
n + 1 to 2n be those associated with the excess demand for claims contingent 
on the realizations {y2(s2); s2 = 1, 2,..., n> of the second agent with 
the obvious ordering induced by s2 . Continue in this way through agent m, 
numbering the first nm elements. Let the nm + 1 commodity be associated 
with the excess demand for unconditional claims. 

For each agent i, i = 1, 2 ,..., m, there is associated a set Xi C Rnnc+l of 
possible consumption vectors (excess demands) defined by (6.3)-(6.5). Thus, 
for agent 1, for example, given some x1 E X, , the first n components of x, 
must be nonnegative, the next (m - 1) n components must be nonpositive, 
and the last component is unrestricted in sign. Also, by construction, Xi is 

642/21/2-6 
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closed and convex for every i. The endowment of agent i in Rnrn+l may be 
taken as the null vector. 

For each agent i there is a preference ordering over Xi as defined by 

for xi E Xi . As Ui is concave and Yi is convex, and both are continuous, this 
ordering is closed and convex. 

Now by suitably modifying the argument of Arrow and Hahn [5] it can be 
established24 that there exists a price vector q* E RTm+l, a utility allocation 
{ V$}cl , and a consumption allocation {~:}im,~ which constitute a compensated 
equilibrium in that q* > 0, CL, XT < 0, xf minimizes q* * xi subject to 
Vi(Xi) > Vt and (6.3)-(6.5), and q* . XT .= 0. 

Associated with q* are the prices r*, {q:(Q). (Recall the labeling conven- 
tion adopted above.) It is claimed that for every j, xy,=, qj&.) < r*. For 
suppose the contrary inequality. Then any agent i #:j could issue claims 
contingent on the realization of the endowment of agent j and purchase 
unconditional claims in such a way as to leave relationships (6.4) and (6.5) 
unaltered and reduce expenditures without limit. This is an obvious contra- 
diction. 

Thus q* # 0 implies r* > 0. Let bi = min, yi(sJ. (Recall y&J > 0 for 
every si .) Then the vector ii = (0, O,..., -bj) E Xi is such that q* . Si < 0. 
Hence, by [7, (1) of Sect. (4.9)], XT is a maximal element in Xi subject to 
4* . Xi < 0. Hence the compensated equilibrium is a competitive equilibrium. 

Proof of Proposition 6.2. It is first established that the allocation of a 
competitive equilibrium is Pareto optimal relative to the commodities 
{Di} and {JJsJ} which are traded. Retaining the notation of the proof of 
Proposition 6.1, note first that as the Ui are strictly increasing, q* > 0, and 
hence XL, xt = 0. Therefore the competitive equilibrium is an equilibrium 
relative to the price system q* as defined in [7, Sect. 6.21, and hence by 
[7, (1) of Sect. 6.31 is also an optimum. 

Finally, note that any allocation such that C&xi = 0 and xi E Xi for each i 
defines a social contract of the restricted form and conversely. For suppose 
the commodities Jii(sJ and Dt are such that CL, xi = 0 and xi E Xi for all i. 
Then --J&.) = xj,i J&Q. Let I&&)] = --J&), j # i. Let gij(vi , yj) = 

M The assumption that Xi C I?+’ m Arrow and Hahn is not crucial to their analysis. 
Here also the set of feasible allocations is convex and compact. Also, the ~9~ = 1, 2,..., m 
as defined below serve as the feasible allocation associated with the null utility which can 
be Pareto dominated. 
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I&J - f&J + Cij where the Cij are determined in the obvious way 
from the Di . Let Si = {~&): J&J > O}. Then from (6.3) and (6.4) 
G Mviwl - YiEj uvi(~i)l~ > 0 on Si and i;g[~i(~i)] = 0 on S; for all j. 
The converse is similarly established. 
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