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Abstract

Trades in today’s financial system are inherently subject to settlement uncertainty.

This paper explores tokenization as a potential technological solution. A token sys-

tem, by enabling programmability of assets, can be designed to eradicate settlement

uncertainty. We study the allocations achieved in a decentralized market with either

the legacy settlement system or a token system. Tokenization can improve efficiency

in markets subject to a limited commitment problem. However, it also materially al-

ters the information environment, which in turn aggravates a hold-up problem. This

limits potential gains from resolving settlement uncertainty, particularly for markets

that depend on intermediaries. We show that optimal design hinges on joint design

of settlement and trading systems, and in particular, that token systems work best

when matched with direct trading.
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1 Introduction

Two traders agree on an asset sale. How can each party ensure that, when the time
comes to settle the trade, the other will keep their side of the bargain? Markets have
adopted various solutions to resolve the age-old problem of limited commitment. Third-
party intermediaries and platforms, such as exchanges or sponsors, facilitate the orderly
settlement of transactions. Margin requirements and other uses of collateral ensure that
future payments tied to contractual obligations are serviceable. Traders build long-term
relationships and a reputation for credibility.

Despite these practices, trades commonly fail to be settled (Fleming and Garbade,
2005). The potential for systematic settlement fails was put on full display during the
Global Financial Crisis. In 2008, settlement fails in Treasury markets reached a daily
volume of 400 billion dollars per day. Chronic settlement fails in the Treasury market
lead the Treasury Market’s Practices Group (TMPG) to introduce a “fails charge” to
decrease traders’ incentives to fail (see (Garbade et al., 2010)).1 While the fails charge
was effective at reducing the incidence of chronic fails, some fails continue to occur as
described by Fleming and Keane (2016). Fails reflect the institutional and technological
feature of the current settlement system – settlement depends on traders individually
submitting settlement instructions that correspond to their contractual obligations from
trading activity. When incentives break down, so does settlement.

This paper explores the potential for a settlement system based on distributed ledger
technology (DLT) as a technological solution to commitment problems inherent in the
current settlement system. In this paper, security tokenization refers to the represen-
tation of traditional financial assets and collateral on a distributed ledger.2 The main
innovation of tokenization we focus on is the programmability of assets.3 Programmabil-
ity allows traders to commit to settlement, thereby eliminating the potential for fails.

Does a token system strictly improve upon a legacy settlement system because it can
eliminate settlement risk? In a setting where trading is endogenous, we show that it
is not the case. With the gain of eliminating settlement risk, an information problem
emerges. This is because eliminating settlement risk requires traders to reveal more

1The Treasury Market Practices Group (TMPG) is a group of market professionals committed to sup-
porting the integrity and efficiency of the Treasury, agency debt, and agency mortgage-backed securities
markets. See: https://www.newyorkfed.org/tmpg.

2This is also often referred to as tokenizing “real world assets.”
3The idea of programmability is closely related to “smart contracts.” The Financial Stability Board

notes that “Smart contracts use computer protocols to execute, verify, and constrain the performance of
a contract. In doing so, they can automate decision-making, by allowing self-executing computer code
to take actions at specified times and/or based on reference to the occurrence (or non-occurrence) of an
action or event.” (FSB, 2019)
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information to their counterparties regarding their positions, and this information can
materially impact equilibrium trade.

The intuition is simple but powerful. Suppose that A and B agree on a trade. To
guarantee settlement, A and B must jointly write a program that governs the change of
ownership of assets. In order to program an asset, a trader must have the ownership
right to that asset at the time the settlement must take place. Indeed, if the trader does
not already own the rights to the asset at the time of settlement, it is possible that the
trader will never acquire these rights, which would make ensuring settlement impossi-
ble. Knowing that a trader must own the asset she is trying to sell reveals information
that can be exploited by the buyer. This information can lead to a hold-up problem and
even break down trade altogether.

In our model, there is a market where traders meet bilaterally in sequential meet-
ings, and must enter inter-dependent trades in order to achieve the optimal allocation
of a long-lived asset. In this market, intermediary traders facilitate trade between end-
sellers and buyers and are crucial to attaining the optimal set of trades. A key friction
is limited commitment. After all contracts between traders are negotiated, traders must
deliver assets at a later time in accordance to their agreed upon contractual obligations.
Traders are tempted to break their contracts when they learn that the private value of
holding onto an asset is high ex-post. We compare the effects of the two representa-
tive settlement systems on equilibrium trade: the “legacy system,” which represents the
current settlement system; and the “token system,” which allows for programming of
assets.

In the legacy system, traders must individually take settlement actions in order to
fulfill contractional obligations. As a result, commitment problems sometimes result in
traders choosing to strategically fail to transfer assets as promised. In addition, individ-
ual fails have negative spillover effects on others when it forces others to fail on their
trades as well (e.g. daisy-chain fails) due to traders’ obligations being interdependent.
In contrast, the token system trivially resolves settlement uncertainty arising from com-
mitment issues by equipping traders with technology to commit to future settlement
actions ex ante. Despite this obvious advantage of the token system, other issues be-
come problematic in the market because some traders serve the role of bridging end
sellers and buyers, i.e. act as an intermediary. An intermediary trader may not value
the asset themselves, but may buy an asset in advance in anticipation of a future sale. A
wedge between their private valuation and the purchase price creates circumstances ripe
for a hold-up problem. In particular, having to reveal whether they own the asset exac-
erbates a hold-up problem, as potential buyers may now condition their offer based on
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whether intermediaries already purchased assets that are not privately desirable. When
the hold-up problem binds, intermediaries have no incentive to “make” markets, and
certain trades may altogether fail to occur in equilibrium.

While tokenization is sought as a solution for over-the-counter markets, which of-
ten rely heavily on intermediaries, our results show that trading in a token system de-
signed to resolve settlement uncertainty can inadvertently exacerbate other impediments
to trade that are “latent” under the legacy system. In addition to the hold-up problem
described above, another latent issue that emerges with the token system is an “asyn-
chronicity” problem, whereby the transfer of an asset from end-seller to buyer is only
feasible when a specific sequence of meetings are realized. This is because, in the token
system, a trader can only enter transactions involving assets that she (state-contingently)
owns. In other words, the intermediary trader cannot intermediate an asset on behalf of
a prospective buyer without first meeting with a seller and entering a trade in advance.
The requirement of a specific sequence of meetings in order for intermediation to occur
can be prohibitive. Both issues arise through the interaction between the decentralized
nature of trading, and primitive conditions required by the token system.

In contrast, trading in the legacy system is less likely to be subject to hold-up prob-
lems because settlement in the legacy system ensures maximum privacy by decoupling
trade execution and settlement. In particular, in the legacy system, execution of a trade
does not require possession of the asset being sold, and so a buyer cannot assume that
the seller has already obtained the security she is selling. This, combined with the asyn-
chronous nature of meetings, obfuscates the intermediary trader’s trading history, and
actually strengthens her ability to intermediate trade in equilibrium.

Not only that, we show that in the legacy system, optimal trading is further strength-
ened when the intermediary trader is also subject to limited commitment. A commit-
ment problem of the intermediary trader enhances her ability to intermediate trades
through two channels. First, it strengthens her bargaining position with counterparties
tempted to hold her up, because outside opportunities presented ex-post pose a credible
threat of fail (in the case that the offer price is too low). Second, it creates gains from
trade from intermediation – because all fails are ex-ante costly, an intermediary trader
entering a trade increases costs she faces with failing herself, thereby weakening her
incentives to fail ex-post. In this way, intermediated trade acts as a commitment device.

Our results demonstrate a stark contrast in the compatibility between intermediated
trading, as assumed in our baseline environment, and each type of settlement system.
The dichotomy between legacy and token systems highlights the need for a joint consid-
eration of trading and settlement in the design of financial market systems. To this end,
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we consider an alternative trading system involving “direct trading,” whereby the end
seller is offered the opportunity to receive (simultaneous) offers from all potential end-
buyers for each state-contingent ownership of the asset. In effect, with direct trading,
the optimal allocation of the asset can potentially be achieved without the involvement
of an intermediary.

With direct trading, the end seller enters trades directly with the buyer with the
highest private valuation of the state-ownership of the asset. As a consequence, with
the token system, direct trading resolves both asynchronicity and hold-up problems, as
information regarding ownership and valuations become irrelevant in trades involving
end sellers and buyers. In contrast, for the legacy system, moving from intermediated to
direct trading can potentially magnify commitment problems. This is because settlement
issues are shifted from the intermediary trader, who is better positioned to manage
settlement risk, to the end-seller, who now directly faces settlement risk, as well as
the potential for daisy-chain fails. Consequently, with direct trading, the token system
unambiguously dominates the legacy system. In a broader comparison across trading
and settlement system pairs, we show that the relative efficiency between direct-token
systems and intermediated-legacy systems ultimately depends on the severity of the
commitment problem. Overall, our results point to the co-existence in multiple types of
financial system designs.

Programming assets to guarantee settlement is closely linked to the idea of “instant
settlement.” Instant settlement removes the time gap between trading and settlement,
thereby eliminating settlement uncertainty. This idea generalizes to a setting where the
commitment to future settlement, through programs, and trading happens simultane-
ously (See Lee et al. (2022)). The information problem that arises from instant settlement
is highly relevant given that instant settlement is an explicit goal of several industry
projects. SIX, the company that runs the Swiss central securities depository as well as
the large value payment and repo trading system is building a “digital exchange” that
will have tokenized assets and cash on a blockchain to facilitate trading.4 SIX states
“the most fundamental of these changes is that trading and settlement will no longer be
separated. Instead, they will operate in the same cycle. We call this riskless trading.”
Similarly, Fnality, a project led by some large global banks, aims to provide instant set-
tlement. Finally, the Deutsche Börse is working with R3 to build a blockchain securities
platform HQLAx, which would allow instant settlement.

As in our model, the knowledge of ownership of an asset at the time of trade is a start-
ing point for all the existing designs of smart contract protocols. Thus, the implications

4Another relevant project is Broadridge’s Distributed Repo.
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of our paper are orthogonal to other important design considerations, including consen-
sus mechanisms, privacy features, and commitment tools. In particular, our insight on
limitations of token systems apply to ongoing developments in cryptography aimed at
increasing privacy, which typically take as given an agreement to transfer, and examine
whether the transfer can be accomplished without revealing more detailed information
regarding identity.

Our results are also orthogonal to the prevalent use of collateral observed in decen-
tralized finance (DeFi). Collateral is commonly used in environments of limited commit-
ment, and may not only protect lenders from credit risk, and but also improve debtors’
incentives to fulfill obligations. In our model, programmability resolves settlement risk,
eliminating the need to provide debtors with incentives to fulfill their obligations. An
added benefit is that programmability enables traders in the tokenized market to enter
trades that are, de-facto insulated from credit and counterparty risk. Specifically, the
immutable transfer of assets in future periods ensures that future transfers will occur
regardless of a counter party’s solvency. In this respect, token systems are “liquidity-
efficient” – they require minimal tie-up of liquidity, such as collateral, commonly needed
to secure transactions. This, of course, does not rule out arrangements where credit-risk
sharing is desirable.5

A new and growing literature examines the implications of blockchain technology in
financial settings (Townsend (2019)). This paper is the first, to our knowledge, to theoret-
ically examines the impact of tokenization on markets with inter-dependent trades. At
heart, our paper provides a novel consideration in key design features widely shared by
initiatives to develop tokenized markets. Several papers examine the use of blockchain
technology in financial markets. A key focus in these papers is the potential for de-
centralization, whether in the context of cryptocurrencies (Chiu and Koeppl (2017)),
settlement (Chiu and Koeppl (2019)), or applications of smart contracts (Cong and He
(2019)). In this context, important consideration are costs and incentives for validators
(Abadi and Brunnermeier (2018), Easley et al. (2019)). Several consider how greater
transparency of a public ledger environment affects informational problems, including
the potential for front-running from identity revelation (Malinova and Park (2016)) or
collusion (Cong and He (2019)). While the protocols considered in our paper are po-
tentially implementable in a decentralized manner, this is not the contribution nor the
focus. The primary application is to tokenization of traditional financial markets, in
which adoption likely involves strong guarantees on the preservation of private infor-
mation, including ownership. In our context, we highlight the informational impact of

5For examples of credit risk in settlement risk free systems, see Lee et al. (2022).
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key design features of tokenized markets, and outline how these can adversely affect
market efficiency. We do so by taking as given a token system that resolves settlement
risk, and consider how trade is endogenously determined. Lee et al. (2022) explicitly
studies the design problem of zero settlement risk token systems, taking as given a fixed
set of trades.

Our paper contributes to studies of how the post-trade environment affects mar-
kets. Tokenized securities share properties of real-time gross settlement, which have
been studied extensively in the context of wholesale payments. Martin and McAndrews
(2008) explores how liquidity-saving mechanisms can enhance real-time gross settlement
systems, which resolve counterparty and credit risk but can be taxing on liquidity. This
tradeoff is explored in the context of clearing by Koeppl et al. (2012). Khapko and Zoican
(2020) explore how the option to choose faster settlement can lead to inefficiencies. We
highlight a novel concern that arises in the context of real-time gross settlement – the
implicit requirement that underlying assets must be owned at the time of settlement.
This novel form of inefficiency only arises when trade and commitment to settlement
happen simultaneously – something that has become an increasingly relevant design
consideration with tokenization.

Our paper is related to the potential impact of post-trade information disclosure on
markets. Garratt et al. (2019) analyzes post-trade disclosure in the context of inter-dealer
markets, and shows that strategic platforms may choose inefficient disclosure policies.
Our paper shows that even though both the legacy and token system, within the context
of our framework, do not have access to timely, sensitive information, tokenization can
exhibit dramatic difference in equilibrium trade.

The remainder of the paper is organized as follows. Section 2 introduces our theoret-
ical environment. Equilibrium analysis is provided in 3. In Section 4, we explore direct
trading and further consider the joint determination of trading and settlement systems.
We make concluding remarks in Section 5. Proofs not provided in the text can be found
in the Appendix.

2 Model

We consider an asset market where traders enter bilateral trades that are interde-
pendent, in the sense that an asset may be sold from one trader to another, and then
sold further to a third trader. Whether such trades maximize surplus and are success-
fully settled, can depend on the underlying settlement environment. We consider two
settlement systems: a legacy system, which represents the current system where trade
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and settlement happen sequentially and independently; and a token system, which uses
programs to put in place irrevocable settlement instructions concurrently with trade.

Agents and Asset. There are three risk-neutral traders, i = {A, B, C}, and one indivisible
asset, which is initially owned by A. The model is divided into two stages: the trading
stage and the settlement stage. The model begins with the trading stage, during which
traders bilaterally meet with each other and negotiate trades. There are two meetings
that occur sequentially, which we represent as t = m1, m2. One of these meeting is
between A and B and the other is between B and C. The order of these meetings is
random. A and C never meet. In this sense, B is a potential intermediary that can
facilitate transfers of the asset between A, who owns the asset in the beginning of the
model, and C, who can make better use of the asset in certain future periods. While
the role of B as an intermediary is assumed, for simplicity, it is important to recognize
that intermediaries can play an essential role in facilitating transactions that might not
otherwise occur. Specifically, in a more complex model, trades may not occur even if A
and C can meet. We expect that our results would extend to an environment where B
arises as an intermediary endogenously.

After the trading stage, the settlement stage starts. In the settlement stage, assets
are transferred between traders over three dates t = 1, 2, 3. In essence, the trades made
in t = m1, m2 consist of promises to exchanges ownership of the asset, with the actual
exchange scheduled to occur at dates t = 1, 2, 3.

Trader i derives some payoff vi
t from holding the asset at dates t = 1, 2, 3. Each trader

is endowed with multiple accounts where the asset can be held, and the ownership and
contents of accounts are assumed to be private. At any date t = 1, 2, 3, the asset must be
in the account of one of the traders and can be in only one account. We say that trader i
owns the asset at date t, and derives the associated payoff, if the asset is in one of trader
i’s account on that date.

Payoffs (summarized in Figure 1) vary between traders and across periods, and can
take values H, M, L, or 0, where H > M > L > 0. A derives a payoff of L, L, and H
for holding the asset in t = 1, 2, 3, respectively. B derives a payoff of H, M̃ ∈ {0, M},
and 0 for holding the asset in t = 1, 2, 3, respectively. M̃ = M with probability λB and 0
otherwise. B privately learns M̃ in the beginning of date t = 2. C derives a payoff 0, H,
and H̃ ∈ {0, H} for holding the asset in t = 1, 2, 3, respectively. H̃ = H with probability
λC and 0 otherwise. C privately learns H̃ at the beginning of t = 3. Importantly, M̃ and
H̃ are both revealed to B and C, respectively, in the settlement stage, after trading has
occurred. This forms the basis for B and/or C wanting to sometimes break agreements
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made in the trading stage.
Traders’ time-dependent payoffs motivate trade. In each period, a different traders

has the highest ex-ante expected payoff from owning the asset. In t = 1, B obtains H; in
t = 2, C obtains H; in t = 3, A obtains the H. Figure 2 depicts the transfer of the asset
that maximizes the joint expected payoffs of the traders from an ex ante perspective.

Meetings. All trading occurs in pair-wise meetings, which take place sequentially in the
trading stage t = m1, m2. B is matched with A and C, sequentially, but not necessarily
in that order. Matches between A and C never occur.6 With probability 1

2 , B is matched
with A first and then C; with equal probability, B is matched with C first. The order of
realized matches is known only to B, who participates in both matches. Communication
between traders is assumed to only occur during meetings. In other words, at any point
outside of meetings, traders are unable to send messages regarding who they met, the
contents of their accounts, or their private realizations.

0

H

L

H

M̃

L

H̃

0

H

C

B

A

t = 1 t = 2 t = 3

Figure 1: Traders’ payoffs. This figure shows the payoffs of traders A, B, and C over
t = 1, 2, 3.

During a meeting, traders negotiate a contract. Each trader knows only their history
and the current state of their own accounts. Given some price P, a contract Cτ1τ2

ij (P) is
a securities lending agreement that specifies the lender, trader i; the borrower, trader j;
the date τ1 at which the asset is transferred from i to j; and the date τ2 at which the
asset is transferred back from j to i. We use Pτ1τ2

ij for shorthand to denote the price
corresponding to contract Cτ1τ2

ij (P), where j pays i at τ1, the date when the asset is first
transferred, for borrowing the asset. Note that an agreement to trade according to a
contract occurs during meetings t = m1, m2, whereas the actual exchange of the asset

6As a result, we preclude any multilateral trading scheme.
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and payments occur later in the settlement stage at t = 1, 2, 3. For example, if A agrees
to lend the asset to B for one period at price P, starting at t = 1, the contract is C12

AB(P).
To summarize, three obligations arise under contract Cτ1τ2

ij negotiated at some price Pτ1τ2
ij :

• at τ1, trader i transfers the ownership of the asset to trader j;

• at τ1, trader j transfers Pτ1τ2
ij to trader i; and

• at τ2, trader j returns asset to trader i.

We assume there exists some DvP settlement between assets and some numeraire used
for the exchange between traders i and j at τ1.7

For simplicity, the borrower j of the asset is assumed to make a take-it-or-leave-it
offer.8 This means that for the A− B pair, B makes a take-it-or-leave-it offer to A, and
for the B − C pair, C makes a take-it-or-leave-it offer to B. As a tie-breaking rule, we
assume that all else equal, traders prefer to trade.

Trades are “promises” made between traders. Whether these promises are kept de-
pends on whether settlement, the transfer of the asset from an trader to another, takes
place as stipulated in agreements made in the trading stage. Hence, the set of trades
agreed upon at the trading stage determines the transfers required in the settlement
stage. Depending on the settlement technology, traders face a set of actions required
in order to fulfill their settlement obligations. We turn now to the description of the
settlement technology.

Settlement. We consider two different type of settlement technology, which represent
the legacy system and the token system.

Under the legacy system, the asset moves out of an account only if the owner of the
account initiates a transfer. Formally, at dates t = 1, 2, 3, a trader currently in possession
of the asset unilaterally decides whether to transfer the asset to the account of another
trader or to keep it. The legacy system does not offer traders the ability to commit, so
the option not to transfer the asset holds regardless of existing contractual obligations.
As such, at each date in which a settlement action is required, traders explicitly choose
whether to execute the transfer of the asset pertaining to an outstanding trade or strate-
gically fail. To fix ideas, suppose that traders A and B entered a trade at either t = m1

7In a settlement system like Fedwire securities, settlement is initiated by the seller of the securities.
Upon sending securities, cash is automatically transferred from the account of the buyer to the account of
the seller.

8As will be evident, the lender in the sequence of trades will be privately informed. We adopt the
convention that the party without private information is making the offer, which simplifies the analysis
and is not crucial for the main results.
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or m2 that specifies that the asset must be transferred from A’s account to B’s account at
date 1. Then, at date 1, A can choose to initiate the transfer to B’s account, as specified in
the trade, or can choose not to do so and “fail.” A trader that fails to settle suffers a cost
∆, which can be thought of as a reputational cost or penalty. We make several parametric
assumptions held throughout the paper. First, to allow for strategic fails to sometimes
be attractive, we assume an intermediate range of ∆, which motivates a commitment
problem:9 Second, we assume that throughout that M ≤ ∆ + L.

Assumption 1. ∆ ∈ (2L, 1
2 H) and M ≤ ∆ + L.

The second condition on M ensures that there are no gains from trade that arise
between A and B from B failing on A at t = 2 for better ex-post allocation.10

Under a token system, an asset can be “programmed” during the trading stage with
transfer instructions to be completed in the settlement stage at future dates. This allows
traders to commit to settlement taking place as specified in the contract. The transfer
instructions associated with a contract are self-executing, so that the asset moves from
account to account without the need for any trader to take an action. Moreover, a trader
is unable to prevent a programmed transfer from occurring.

To add a transfer instruction to an asset, however, a trader must be the current holder
of that asset at the time the contract specifies it is to be transferred, and new instructions
must be feasible given all instructions already programmed in the asset. In the context
of our model, a trader making an agreement to lend the asset at the trading stage, as
per endowments or previous trade agreements, can program the asset to also make
sure that the asset will be returned at a specific date, as specified by the contract . This
eliminates the commitment problem discussed above for the legacy system. Importantly,
this requires that bargaining over the terms of the trade and programming the asset occur
simultaneously. In this sense, programming assets according to contracts at the time of
negotiation achieves the same effect as if trades are immediately settled. As such, while
the actual settlement takes place in the future, we refer to the process by which assets are
irrevocably programmed to move in the future as constituting “immediate settlement.”
The operational features of a token system free of settlement risk is studied formally by
Lee et al. (2022). An implication is that both parties of a negotiated trade confirm that

9If ∆ is sufficiently high, no trader would enter a contract that they do not intend to honor. For similar
reasons, we do not consider collateralized contracts, which could remedy commitment issues if traders
are unconstrained. The lower bound on ∆ reduces the number of cases to consider, but our core results
do not depend on this assumption.

10This assumption is made purely to simplify the analysis, and lets us focus on strategic fails that arise
primarily due to the commitment problem.
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the conditions of the trade are satisfied.11

This requires that a contract must be feasible, as defined below:

Definition 1 (Feasibility Condition). A contract is feasible if at the time of agreement, the
terms of the contract can be settled immediately.

Equilibrium. Given a settlement system, a Perfect Bayesian equilibrium is a set of
traders’ offer strategies, acceptance strategies, and settlement strategies such that:

1. Traders’ offer and acceptance strategies maximize their expected payoffs;

2. Traders’ settlement strategies maximize their conditional expected payoffs;

3. Traders’ beliefs are consistent with Bayes’ Rule.

0

H

L

H

M̃

L

H̃

0

H

C

B

A

t = 1 t = 2 t = 3

Figure 2: Optimal allocation of asset. This figure shows the optimal asset allocation
between A, B, and C over t = 1, 2, 3, which is achieved through two contracts: C13

AB
and C23

BC. The red indicates ownership and transfer of the asset between traders. In the
beginning of t = 1, A starts with the asset, passes the asset to B, who holds it for one
period. Then, B passes the asset to C, who holds it for one period to the end of t = 2. At
the beginning of t = 3, the asset is transferred from C back to B to A, who holds it for
the final period.

11The requirements for programming asset under the token system free of settlement risk are consistent
with those found in Lee et al. (2022), which formally studies operational features of token settlement
systems to achieve zero-settlement risk.
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3 Equilibrium Trade and Settlement

The first-best allocation is a useful benchmark. The valuations of each trader lend
themselves to a clear first-best allocation. Figure 2 depicts the optimal transfer of the
asset. This corresponds to the asset being under ownership of B at t = 1, C at t = 2, and
A or C at t = 3.

In this section we consider whether the first-best allocation can be achieved in a legacy
and in a token settlement system. We derive the equilibrium under the legacy system in
section 4.1. We solve the problem by backward induction, analyzing the settlement stage
first, in section 4.1.1, and then the trading stage, in section 4.1.2., taking into account the
possible settlement outcomes. We consider the equilibrium under the token system in
section 4.2. Because the token system eliminates settlement uncertainty, the trading and
settlement stage are no longer analyzed sequentially – instead, the incentives to trade
directly relate to whether desirable transactions are achieved.

3.1 Equilibrium under the Legacy System

There are two channels through which the first-best allocation may not be attained
in equilibrium. The first is a limited commitment problem and the second is a hold-up
problem. The commitment problem arises because the legacy system relies on incentive
compatibility of settlement actions. The fact that traders may strategically fail on their
obligations in the settlement stage must be taken into account by the agents at the trading
stage. The hold-up problem arises because the value that B creates by intermediating
between A and C can exceed the value she derives from the ownership of the asset. C can
exploit this situation by making a “low-ball” offer to B. Taking this risk into account, B
may prefer not to intermediate. In the remainder of this section we consider each friction
in turn.

In the legacy system, traders may find it ex-post optimal to renege on contractual
obligations. In the context of the model, this problem arises when a trader chooses not
to return an asset at the designated date for private benefits. We refer to this choice as
failing. As an example, consider the case of C. Since H > ∆, if C is able to acquire the
asset at any date prior or equal to t = 3 and her value for the asset is H at t = 3, then C
will renege on any promise to return the asset at t = 3, as the cost ∆ is not sufficient to
deter a fail:

Lemma 1 (Strategic Fail). Suppose that C obtains the asset at t = 2 with a contractual obliga-
tion to return the asset at t = 3. C strategically fails on this promise if H̃ = H.
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Settlement stageTrading stage

t = m1

C learns his pri-

vate value, decides

whether to return

asset to B.

t = m2 t = 1

A transfers asset

to B.

t = 2 t = 3

B learns his pri-

vate value, decides

whether to transfer

asset to C.

Figure 3: Settlement in Legacy System. This figure highlights key decisions that take
place in the settlement stage conditional on C13

AB and C23
BC. At t = 3, H̃ is realized, and C

decides on whether to return the asset to B (which is then returned to A). At t = 2, M̃ is
realized, and B decides on whether to transfer the asset to C.

A owns the asset initially and strictly prefers owning the asset at t = 3. As a result, A
may only agree to lend the asset to B, knowing that B will lend it to C, if A believes that
the likelihood of getting the asset back is sufficiently high, and/or if he is compensated
for taking on the risk.

The second channel is a hold-up problem. B is the only trader who is matched with
both the lender A and the borrower C.12 For C to acquire ownership of the asset in
t = 2, B must successfully negotiate two sides of the intermediation chain. As trades
occur asynchronously, this requires B to “make markets” by completing one side of the
chain in advance of the other, anticipating the outcome of that other trade.

It is common knowledge that gains from trade arise whenever the asset is transferred
from A to C in t = 2. Furthermore, when B’s valuation of t = 2 ownership (E[M̃]) is
lower than the valuation of A or C, B’s incentives are aligned with acting strictly as an
intermediary, by running a “matched book.” If the possibility of successfully building
a matched book is low, B would be reluctant to make markets on behalf of the other
traders.

Herein lies the potential for a hold-up problem. As B privately values the asset
less than its owner A, she must pay a price in excess of her own valuation in order to
acquire the asset on behalf of C. This creates the potential for C to strategically make a
discounted offer, based on the possibility that B has already acquired the asset from A.

With these two tensions in mind, let us consider the equilibrium under the legacy
system. We solve by backward induction. The optimal allocation requires traders to

12This is reminiscent of over-the-counter markets, where intermediaries commonly play an outsized role
in reallocating assets between final buyers and sellers.
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successfully negotiate two trades in the trading period: C13
AB, which transfers the asset

from A to B for dates t = 1, 2, and C23
BC, which transfers the asset from B to C in t = 2.

In order for these trades to occur in equilibrium, we must verify whether it is incentive
compatible for traders to settle accordingly, and to enter such trades in the first place.

3.1.1 Settlement stage in the legacy system

We start by characterizing traders’ optimal settlement strategies, taking as given a set
of trades agreed upon in the trading stage. Figures 4 summarizes the settlement stage
conditional on the different sets of contracts entered at the trading stage. Of particular
interest is the case of C13

AB and C23
BC, which if settled without fails, achieve the optimal

asset allocation over t = 1, 2, 3.
Figures 4 and 5 summarizes the settlement actions and terminal payoffs given the

sets of contracts arranged at the trading stage. The top panel outlines the case where
traders have agreed to C13

AB and C23
BC. The two main considerations are if and when B and

C choose to fail. By Lemma 1, we already know that C chooses to fail whenever H̃ = H.
The other key settlement decision is made by B at t = 2. In the beginning of t = 2, B
learns M̃. Just as C reneges on his contract if H̃ = H, B may also want to renege on her
contract if profitable. If C12

AB has been negotiated, B’s decision is whether to return the
asset to A at the end of t = 2. If C23

BC has been negotiated, B’s decision is whether to pass
the asset on to C, if C23

BC has been negotiated. Failing is desirable only if holding onto the
asset, net of the penalty ∆, is more profitable than transferring the asset.

Starting with the first panel (C13
AB and C23

BC), B prefers to fail on C if:

M̃− ∆︸ ︷︷ ︸
B’s valuation

> P23
BC − λC∆.︸ ︷︷ ︸

expected payoff from trade

(1)

B’s payoff net of the penalty for failing is M̃− ∆. By delivering the asset to C, B receives
agreed upon price P23

BC from C. However, because B must deliver the asset back to A
at t = 3, whenever C fails on B, B has no choice but to fail on A, resulting in a “daisy
chain” of settlement fails. Consequently, when B delivers the asset to C, she faces an
additional expected cost λC∆. This implies that only when the price P23

BC is sufficiently
high, will B want to honor the trade ex post.

Lemma 2. Suppose that B obtains the asset at t = 1 with a contractual obligation to send the
asset to C at t = 2. B strategically fails on C if:

P23
BC < (M̃− ∆) + λC∆. (2)

15



t=1 t=2 t=3

B

settle with A

fails on C13
AB and C23

BC

B

settle with C

fails on C23
BC

C

settle with B

fails on C23
BC

C learns H̃B learns M̃

B

settles with A

fails on C13
AB

B

settle with A

fails on C13
AB

B

settle with A

fails on C12
AB

B

settle with A

fails on C12
AB

C13
AB and C23

BC

C13
AB

C12
AB

1

2

3

Trading stage Settlement stage

1a

1b

1d

1c

2c

3c

3b

3a

2a

2b

Figure 4: Contracts and settlement actions under legacy system. This figure summa-
rizes the key settlement actions that arise at t = 1, 2, 3 given a set of contracts, specified
on the left. B and C privately learn their t = 2 and t = 3 payoffs M̃ and H̃ in the begin-
ning of t = 2 and t = 3, respectively. Private values factor into their settlement strategies,
where M̃ = M with probability λM, and 0 otherwise; and H̃ = H with probability λH
and 0 otherwise. The terminal payoffs for A, B, and C at the end of t = 3 is provided in
Figure 5.
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Node A’s Payoff B’s Payoff C’s Payoff

C13
AB and C23

BC 1a P13
AB + H -P13

AB + H + P23
BC - P23

BC + H

1b P13
AB -P13

AB + H + P23
BC − ∆ - P23

BC + H + H̃ − ∆

1c P13
AB + H -P13

AB + H + M̃− ∆ 0

1d 2L + H -2∆ 0

C13
AB only 2a P13

AB + H -P13
AB + H + M̃ 0

2b P13
AB -P13

AB + H + M̃− ∆ 0

2c 2L + H -∆ 0

C12
AB only 3a P12

AB + L + H -P12
AB + H 0

3b P12
AB + H -P12

AB + H + M̃− ∆ 0

3c 2L + H -∆ 0

Figure 5: Summary of traders’ payoffs. This figure shows the terminal payoffs for the
three traders conditional on the set of contracts and settlement actions. Nodes starting
with 1 correspond to C13

AB and C23
BC; nodes starting with 2 correspond to C13

AB only; and
nodes starting with 3 correspond to C12

AB. Traders’ payoffs from owning the asset at
t = 1, 2, 3 are as follows: A obtains L, L, H; B obtains H, M̃, 0; and C obtains 0, H, H̃.
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The third panel in Figure 4 considers the case where B entered contract C12
AB with A.

Under the contract, B makes two settlement actions. At t = 1, B must pay P12
AB to A in

order to acquire the asset from A at t = 1. At t = 2, B must return the asset to A. Failing
to do either action constitutes a fail that results in cost ∆.13 Similar to C’s commitment
problem, B may fail to return the asset at t = 2 if M is large enough, namely:

Lemma 3. Suppose that B obtains the asset at t = 1 with a contractual obligation to return the
asset to A at t = 2. B strategically fails on this promise if and only if M̃ = M and M > ∆.

Instead, if M < ∆, retaining the asset at t = 2 is not profitable. It is straightforward
to see that there exists a price P12

AB (e.g. L) that A would accept, and B is strictly better
off paying in exchange for the asset at t = 1.

We complete the analysis with the middle panel in Figure 4, which considers the
case in which B entered contract C13

AB with A but fails to negotiate C23
BC. As shown in

the figure, B faces a settlement decision at t = 1 of whether to execute according to the
contract C13

AB or fail.14 Failing is particularly costly to B, since in addition to the direct
cost of failing, B would have to forgo payoff H associated with obtaining the asset at
t = 1. Honoring the trade associated with C13

AB is optimal if and only if

H + E[M̃]− P13
AB︸ ︷︷ ︸

expected payoff from settling

> −∆.︸︷︷︸
cost of failing

(3)

It will follow from subsequent analysis that under Assumption 1, this inequality will be
always hold.

3.1.2 Trading stage in the legacy system

So far, we characterized traders’ strategies in the settlement stage, taking as given
possible trading outcomes. Traders bargain in the trading stage anticipating these strate-
gies. As shown in Figure 6, two meetings occur sequentially at t = m1, m2, and the order
of meetings is only known to B, who participates in both. Additionally, in the trading
stage, B and C have not yet learned their valuations (e.g. the realized value of M̃ and
H̃).

13In a settlement system like Fedwire securities, the seller of a security can fail by choosing not to send
the security to the buyer, since all settlements are initiated by the seller. The buyer can fail by returning the
security she has received to the buyer. This automatically undoes the transfer of cash that was associated
with the initial settlement of the security.

14B can fail by returning the asset to A. Since we assumed that the system is DvP, this means that B
received his cash back as if no transfer of assets had occurred.
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A and C meet se-

quentially with B

to negotiate trade.

Settlement stageTrading stage

t = m1 t = m2 t = 1 t = 2 t = 3

Figure 6: Trading in Legacy System. In the trading stage, A and C meet sequentially
with B to negotiate trades. However, neither A nor C know the order of meetings.

The main question is if (and when) the optimal asset allocation is achieved in equilib-
rium. In the context of trading, this requires traders to successfully negotiated C13

AB and
C23

BC. With this in mind, let us consider a candidate equilibrium in which traders expect
two trades, C13

AB and C23
BC, to be agreed upon.

As a precursor, note that in the previous section, we showed that both B and C may
want to fail if ex-post valuations are high. Since A anticipates the possibility of fails, A’s
reservation price takes into account expected losses arising from fails. This raises the
possibility that traders may want to outright obtain ”future” claims on the asset, instead
of facing costs associated with fails. Doing so is preferred for B and C, if:

λBM− L ≥ λB(M− L− ∆) (4)

λCH − H ≥ λC(H − H − 2∆) (5)

Under these cases, traders internalize their commitment problems. As we are interested
in cases in which commitment problems persist in the settlement stage, we will preclude
these cases by focusing on the parameter space where this is not desirable. This will also
make clear that deviations from the set of optimal contracts C13

AB and C23
BC result from the

underlying frictions.

Assumption 2. λB < L
L+∆ and λC < H

H+2∆ .

With this, we begin by characterizing B’s optimal strategy in the trading stage. In her
meeting with A, B can either offer C12

AB, or C13
AB. Let A have beliefs whereby he expects B

to intermediate the asset for C if C13
AB is offered. Starting with C12

AB, A’s reservation price,
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and hence, B’s optimal strategy for P12
AB is:

P12
AB =

L + λBL if M > ∆

L if M ≤ ∆
(6)

It follows from Lemma 3 that A expects B to fail to return the asset only if M > ∆ and
M̃ = M. As such, A requires a settlement premium of λBL if M > ∆. B’s payoff from
P12

AB, denoted πB(P12
AB), is given by:

πB(P12
AB) =

(H − L) + λB(M− L− ∆) if M > ∆

H − L if M ≤ ∆
(7)

For C13
AB, A expects that B will transfer the asset to C at t = 2. Hence, A’s reservation

price incorporates his expectation that if C obtains the asset, C will sometimes fail in
accordance to Lemma 1, resulting in a loss of H with probability λC. Consequently, the
lowest offer that is accepted by A for P13

AB is:

P13
AB = L︸︷︷︸

A’s t = 1 valuation

+ L︸︷︷︸
A’s t = 2 valuation

+ λCH︸︷︷︸
settlement risk premium

(8)

This expression represents the reservation price at which A is willing to lend the asset
for t = 1, 2. The first two term are A’s payoffs from holding onto the asset at t = 1, 2,
respectively. A also anticipates that B lends the asset to C, in which case he may not
reacquire the asset. The last term represents the settlement risk premium that A requires for
this possibility. B’s payoff from entering P13

AB, denoted πB(P13
AB, ·), depends on whether

she chooses to trade or not trade with C (e.g. C23
BC), denoted T, NT:

πB(P13
AB, ·) =

H − P13
AB + max{M− ∆, P23

BC − λC∆} if T

H + λBM− P13
AB∆ if NT

(9)

There are two things to note with respect to πB(P13
AB, T). First, the max operator takes

into account B’s option to fail on C later in the settlement stage. Second, whenever B
trades with C, B expects C to fail sometimes. The final term incorporates the cost λC∆
associated with a ”daisy chain” fail, i.e. the expected loss incurred by B when C fails.

With B’s payoffs fully characterized, we can now consider B’s trading strategy with
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C, where the core tension of the model lies. There are two cases to consider: (1) when B
matches with C first at t = m1, and (2) when B matches with C at t = m2, after trading
with A.

Starting with the first case in which B matches with C first at t = m1, B chooses
his trading strategy with A conditional on the trading outcome with C. Suppose that
A believes B will enter C23

BC with probability 1. B accepts an offer P23
BC from C only if

accepting C’s offer at least matches her outside option, where B’s outside option is given
by the payoff she derives from no trade with C:

πB(P13
AB, T) ≥ max{πB(P13

AB, NT), πB(P12
AB)} (10)

The payoff from trading with C, which depends on C’s offer price P23
BC, must be

greater than the continuation value of rejecting C’s offer. The first term in the max oper-
ator represents B’s expected payoff from entering C13

AB, and the second term represents
B’s expected payoff from entering C12

AB.
In the second case, B matches with C only after trading with A. Suppose that B

already agreed with A to C13
AB at t = m1 at price at some price P13

AB. Since B has already
acquired t = 2 ownership of the asset from A, B has two outside options: either to hold
the asset at t = 2 herself, or fail at t = 1. B accepts an offer P23

BC only if:

πB(P13
AB, T) ≥ max{πB(P13

AB, NT),−∆} (11)

The term on the left hand side of the inequality represents B’s payoff from accepting
C’s offer and corresponds to B’s expected payoff in the top panel of Figure 4 (node 1 ).
The term on the right hand side of the inequality represents B’s payoff from rejecting C’s
offer, and corresponds to B’s expected payoff in the middle panel of Figure 4 (node 2 ).

The first term in the max operator is B’s payoff from retaining the asset (node 2a ) and

the second term is the payoff when B fails on the contract with A at t = 1 (node 2b ).
Note, Condition 10 is (weakly) stricter than Condition 11. Intuitively, B’s trading

strategy with C depends on the order of trades, and importantly, her bargaining position
considerably weakens when B enters C13

AB prior to negotiating with C on C23
BC. This

feature previews a key consideration for C’s offer strategy. In principle, C could offer
a ”fair” price that B would always accept in any order of meetings, by offering a price
that satisfies Condition 10. Alternatively, C could offer a ”hold-up” price that B would
reject if they meet at t = m1, but would accept if they meet at t = m2, B having already
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acquired the asset on C’s behalf.
We now analyze C’s optimal offer strategy. C chooses his offer strategy without

knowing whether his meeting with B is taking place at t = m1 or t = m2. Given the fact
that B can reject an offer from C and, even if the offer is accepted, may fail to settle the
trade with C, we can express C’s expected payoff as:

Prob(B accepts)Prob(B settles)

H − P23
BC + λC(H − ∆)︸ ︷︷ ︸

net gain from retaining asset at t = 3

 (12)

In this expression, the likelihood of B accepting the trade, and the probability that B
settles as specified in the contract increase (weakly) in offer price P23

BC, while the payoff
conditional on successful trade and settlement decreases in P23

BC. The lowest possible
price that is accepted with positive probability must satisfy Condition (11), which cor-
responds to the case where B has already acquired the asset from from A.

A special case arises when B’s t = 2 valuation E[M̃] is sufficiently high. If retaining
the asset at t = 2 is sufficiently profitable for B, then hold-up is not possible because
πB(P13

AB, NT) > πB(P13
AB, T) for any price P13

BC < E[M̃] + λC∆. This corresponds to when
λC is small and λB is large. When this is the case, C must offer a price in excess of the
price B pays to A:

Lemma 4. Suppose that B’s t = 2 valuation of the asset is greater than that of A’s t = 2
valuation (E[M̃] > L), and C’s limited commitment problem is not too severe (λC < E[M̃]−L

H+∆ ). B
accepts offer C23

BC only if P23
BC ≥ E[M̃] + λC∆.

When E[M̃] > L and λC < E[M̃]−L
H+∆ , we have that C’s optimal offer is to match B’s

outside option E[M̃] plus the daisy chain premium λC∆. Furthermore, since L > M−∆,
B does not fail on C at this price point. This pins down equilibrium trade under the
conditions laid out in Lemma 4:

Proposition 1 (Equilibrium with no hold-up). Suppose that λC < E[M̃]−L
H+∆ and E[M̃] > L.

In equilibrium, the optimal trades C12
AB and C23

BC are achieved in equilibrium.

When the conditions for Lemma 4 are violated, the price that B must pay to acquire
the asset on behalf of C is strictly greater than his private valuation, i.e. πB(P12

AB) >

πB(P13
AB, NT). This opens up the possibility for C is to hold-up B if profitable. For the

remainder of the section, we work through the parameter space where λC > E[M̃]−L
H+∆ and

E[M̃] < L.
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First, since πB(P12
AB) > πB(P13

AB, NT), observe that the Condition 10 reduces to:

P23
BC ≥

L + λCH + λC∆ + λB(M− L− ∆) if M > ∆

L + λCH + λC∆ if M ≤ ∆
(13)

We show that for any price satisfying Condition 13, B will not find it desirable to fail
ex-post:

Lemma 5. If Condition 10 holds, then Condition 1 is satisfied.

With this, there are (at most) three candidate offer prices for P23
BC, which we summa-

rize below:

1. Fair price (Condition 13);L + λCH + λC∆ if M ≤ ∆

L + λCH + λC∆ + λB(M− L− ∆) if M > ∆
(14)

2. Hold-up price with no fail (Condition 11);λBM + λC∆ if M ≤ 1
1−λB

∆

(M− ∆) + λC∆ if M > 1
1−λB

∆
(15)

3. Hold-up price (Conditions 1 and 11);λBM + λC∆ if M ≤ 1
1−λB

∆
λB

1−λB
∆ + λC∆ if M > 1

1−λB
∆

(16)

The fair price represents the minimum price P23
BC that B always accepts. In the fair

price (Equation 14), the first two terms on the right hand side represent the expected
opportunity cost for A to lend the asset to B, given that B will lend the asset to C. The
third term represents the expected cost of a daisy chain fail for B. As λC increases,
C must pay a steeper price in order to acquire the asset with certainty, because of the
expected cost of a fail on both A and B. Notably, when B also has a limited commitment
problem (i.e. M > ∆), her reservation price has an additional term λB(M − L − ∆),
which is strictly negative. By Lemma 3, when A and B trade in isolation, B is sometimes
tempted to fail ex-post whenever M̃ > ∆. By virtue of entering an arrangement to
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intermediate the asset to C (for which if B fails is costly), B credibly commits to settling
with A. The gains from commitment are internalized by C’s fair price offer.

Hold-up prices (Equations 15 and 16) are prices accepted by B conditional on having
already entered C13

AB. For M < ∆, Equations 15 and 16 are identical and pinned down by
Condition 11, which is simply B’s private valuation and daisy chain premium:

λBM + λC∆. (17)

When M > ∆, C can potentially offer prices that internalize B’s settlement strategy in the
settlement stage. The minimum price at which B chooses not to fail even when M̃ = M
must satisfy:

P23
BC − λC∆ ≥ λBM (18)

P23
BC − λC∆ ≥ M− ∆. (19)

The minimum price is (M − ∆) + λC∆ if M > 1
1−λB

∆, and otherwise λBM + λC∆. Al-
ternatively, C could offer a price that takes into account that B fails if M̃ = M, which
solves:

(1− λB)(P23
BC − λC∆) + λB(M− ∆) = λBM, (20)

and yields P23
BC = λB

1−λB
∆ + λC∆. This price is the minimum hold-up price with fails if

and only if λBM only if M > 1
1−λB

∆.
So, when would C be tempted to offer anything other than the fair price that allows

B to intermediate the asset for C without incurring losses? The main tradeoff in C’s
offer strategy is between (1) the likelihood of trade and settlement and (2) the payoff
conditional on trade.

Since C does not know whether B has met with A prior to their meeting, C cannot
make an offer contingent on the order of matches. In a candidate equilibrium where B
always enters C13

AB, a hold-up price is only accepted when B meets with A first, which
occurs with probability 1

2 . With probability 1
2 , B has not yet met with A and will reject

such an offer. Despite this, C will find it optimal to offer the hold-up price instead of
the fair price if his commitment problem is too severe.15 The next result summarizes the
optimal offer strategy of C, taking as given that B successfully trades C13

AB with A when
matched:

15It is straightforward to verify that B never finds it optimal to renege ex-post on C after accepting an
offer as M ≤ ∆.
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Lemma 6. Suppose that C’s limited commitment problem is severe (λC > E[M̃]−L
H+∆ ), and C

expects that B enters contract C13
AB. C’s optimal strategy is to offer a contract C23

BC at the fair price
if λC < λ̄(λB, M), and a hold-up price λC > λ̄(λB, M), for some threshold λ̄(λB, M).

The offer strategy in Lemma 6 assumes that whenever B matches with A first, B
acquires t = 2 ownership from A prior to matching with C. However, this is an equilib-
rium strategy only if B at least breaks even by doing so. When C finds it optimal to offer
a hold-up price, B’s net payoff from intermediating drops below zero, and B ex-ante
strictly prefers C12

AB (node 3 ) to C13
AB (node 1 ) and intermediation breaks down:

Lemma 7. Suppose that C’s limited commitment problem is severe (i.e. λC > E[M̃]−L
H+∆ ) and B

believes that C will offer a hold-up price. Then, B’s optimal trading strategy with A is to offer
contract C12

AB.

We can combine Lemmas 6 and 7 to fully characterize the equilibrium. By Lemma
6, C’s optimal offer, expecting that B will intermediate the asset (by entering C13

AB with
A), is to hold up B whenever λC is greater than λ̄. In turn, Lemma 7 states that if B
anticipates C to attempt a hold-up, B forgoes any attempt to intermediate the asset at
all. Together this implies that whenever λC > λ̄, the asset cannot be intermediated with
probability 1 in equilibrium.

As an intermediary, B can weaken C’s incentives to attempt a hold-up by buying
the asset on behalf of C with probability less than 1. Specifically, whenever B matches
with A first, B can offer C13

AB with some probability µ < 1, and C12
AB otherwise. By

doing so, B lowers the absolute probability that C can obtain the asset, but increases the
relative probability of trade with the fair price (versus a hold-up price). As long as µ is
sufficiently low, C’s dominant strategy is to offer the fair price, which lets B break even
in expectation from intermediation.

The next proposition summarizes the conditions under which, in equilibrium, the set
of optimal trades are achieved under the legacy system:

Proposition 2 (Equilibrium under legacy system). Suppose that trade and settlement occurs
under the legacy system. If C’s commitment problem is not too severe (i.e. λC < λ̄(λB, M)),
there exists an equilibrium in which the optimal trades are achieved with certainty.16 If C’s
limited commitment problem is severe (i.e. λC < λ̄(λB, M)), C obtains the asset with probability
1
2(1 + µ∗) < 1, where µ∗ decreases in λC and µ∗ ∈ [0, 1).

16In the legacy system, the trades are optimal, but the allocation may not be optimal ex-post due to the
positive probability that C fails in t = 3, resulting in a deadweight loss of 2∆.
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In the legacy environment, trades are unrestricted by the feasibility of settlement.
Instead, whether settlement actions consistent with the agreed-upon trades are carried
out ultimately depends on traders’ incentives, given the costs associated with failing to
keep promises. As a result, settlement breaks down whenever the costs of failing are not
high enough to deter traders from reneging on contractual obligations ex-post.

In the context of the model, C’s payoff from retaining the asset at t = 3 is sometimes
too large for the cost ∆ to provide sufficient incentives to return the asset to B. Expecting
C’s commitment problem, both A and B require higher prices to compensate for the pos-
sibility of settlement to fail. This, however, makes a “low-ball” offer even more attractive.
When λC is too large, intermediation completely breaks down as intermediating is no
longer profitable for B.

At the same time, the complete decoupling between trade and settlement enables
traders to enter into a contract without having to explicitly prove to their counterparty
that they can fulfill the terms of that contract. In the context of the model, B is able to
enter C23

BC with C, regardless of whether he has already acquired t = 2 ownership from
A. As a consequence, when B matches with C, B preserves private information about
whether he has met with A or not.

Remarkably, our model illustrates a positive interaction that arises when both B and
C are subject to commitment problems.

Proposition 3. Let the cutoff value λ̄(λB, M) for when M < ∆, M ∈ (∆, ∆
1−λB

), and M ≥ ∆
1−λB

be denoted λ̄1, λ̄2, and λ̄3 respectively.

λ̄1 < λ̄2 < λ̄3. (21)

That is, B’s commitment problem soothes issues arising from C’s commitment problem.

Proposition 3 highlights a striking interaction between B and C’s commitment prob-
lems. As mentioned earlier, when M > ∆, B must pay A a settlement premium λBL
for C12

AB. By intermediating the asset to C, B is able to resolve the temptation to ex-post
fail. Intermediation raises the cost of failing to B, and works as an ex-ante commitment
mechanism. The gains from trade arising from the commitment mechanism are reflected
in the fair price when M > ∆, and thus improves C’s payoff from offering the fair price.
As a result, λ̄1 < λ̄2, λ̄3.

Second, when M > ∆
1−λB

, C must offer a hold-up price that either rises to ensure
B does not fail (e.g. hold-up price with no fail), or is accepted but risks a fail with
probability λB (e.g. hold-up price with fail). In this way, B’s commitment problem
lowers C’s payoff from offering a hold-up price and λ̄2 < λ̄3.
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Consequently, in the true sense of B acting as an intermediary, we see that B’s role
as an effective intermediary is enhanced by the ex-post opportunities presented to her,
which in isolation normally create issues. In the context of our model, we show it relaxes
inefficiencies arising commitment problems in the legacy environment.

Generally, an important takeaway is the interplay between the trading system and the
settlement system. Trading occurs asynchronously, with little transparency over the his-
tory of trades. Taken in isolation, both the opacity of a trading system and the reliance of
a settlement system on ex-post incentive compatibility could be viewed as suboptimal,
from the standpoint of market design. However, we show that, when paired, this combi-
nation is fundamental to facilitating the efficient transfer of ownership between multiple
traders. Even with the potential for a hold-up problem, traders successfully agree to an
interdependent set of contracts, as long as the limited commitment problem is not too
severe (i.e. λC is small enough).

3.2 Tokenized Market

In a token system, traders can program the asset to guarantee the future settlement
of the trade they are negotiating. This commitment technology implies that settlement
occur regardless of whether an trader would like to strategically fail ex post.

Let us revisit the limited commitment problem posed by C’s ex-post incentive to
retain the asset in t = 3. Suppose that, during the trading stage, A and B meet at t = m1
and agree to some contract C13

AB. In a token environment, a corresponding program is
jointly submitted by A and B, which instantly transfers t = 1, 2 ownership of the asset
from A’s to B’s, while guaranteeing that the ownership of the asset is transferred back to
A at t = 3. By entering C13

AB A relinquishes any ownership (and thus control) of the asset
for dates t = 1, 2 the moment they trade; concurrently, B immediately gains the right to
enter any transfer of t = 1, 2 ownership of the asset.

At t = m2, B and C meet and agree to some contract C23
BC. Since B acquired control

over t = 2 ownership of the asset, C23
BC is feasible. C instantly gains the right to enter any

transfer of t = 2 ownership of the asset. However, the asset is programmed to return
to A at date t = 3, and C exercises no control over the asset beyond t = 2. In this way,
the token system resolves settlement uncertainty arising from C’s limited commitment
problem. In a similar vein, B’s commitment issue is also no longer a problem.

Despite its clear advantage over the legacy system in resolving settlement uncertainty,
the token system poses two new issues that were not present under the legacy system.
They both arise due to the requirement that contracts must be feasible.
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[I]

[II]

Trading stage

t = m1 t = m2

B and C meet.
No trade occurs.

A and B meet, and
negotiate C12

AB.

A and B meet, and
negotiate C12

AB or C13
AB.

B and C meet. If B entered
C13

AB with A, negotiate C23
BC .

Figure 7: Trading in Token System. This figure outlines the events under the two
possible sequence of meetings. In sequence [I], B meets with C, then with A. In sequence
[II], B meet with A, then with C.

Critically, when B meets with C, B must reveal to C about whether he has t = 2
ownership of the asset. In the token system, a contract is feasible only if the seller of the
asset already holds the ownership rights of the asset for the date at which the asset must
settle. As such, when B and C negotiate a contract, both traders can verify whether the
terms of negotiation are feasible. In effect, C can verify at the time of trade that B holds
the asset, since otherwise the program corresponding to C23

BC would not be permissible.
This information, which was not revealed in the legacy system, exacerbates the possi-

bility of a hold-up. In contrast to the legacy system, C chooses his offer P23
BC conditional

on verifying that B has already acquired t = 2 ownership of the asset. With this cer-
tainty, the optimal offer strategy of C is always to offer B’s reservation price, E[M̃]. The
revelation of information regarding the order of trades magnifies the hold-up problem
that was possible in the legacy system but not always binding. The hold-up problem
now can directly prevent desired allocations from being achieved in equilibrium:

Theorem 3 (Equilibrium with Tokens). Suppose that trade and settlement occurs under the
token system. For λB > L

M , there exists an equilibrium where B and C enter C23
BC with probability

1
2 . For λB < L

M , C is unable to acquire the asset in equilibrium.

The second issue is an asynchronicity problem that arises from a dissonance between
random matching and the ownership condition required by the token system. In order
for B to enter a contract C23

BC with C, B must at the time of their match own the rights
to the asset at t = 2. The asynchronous nature of trading means that B does not always
trade with A in time to trade with C. This implies that the order of trades directly affects
whether the asset can be intermediated by B, and namely B and C can only trade with
each other 1

2 of the time:
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Corollary 1. C23
BC is a feasible contract only if B matches with A first and obtains t = 2 ownership

of the asset.

An implication is that the intermediation chain between A, B, and C can only arise
with at most probability 1

2 , when B matches with A at t = m1, before matching with C
at t = m2.17

λB

λC

1

1

L
M

λ̂(λB , λC) H − L
2∆

Token
Dominance

Legacy
Dominance

Figure 8: Relative efficiency of settlement systems. This plot shows the relative effi-
ciency of the equilibrium under the legacy system and the token system for λB and λC,
which each capture the degree to which a hold-up or limited commitment problem exist.
Parameters are set at L = 3, H = 12, M = 5, ∆ = 6. Efficiency is greater under the legacy
system in the blue region, the token system in the orange region, and equivalent in the
grey region.

There are two things to note. First, due to the requirement of matching orders, the
equilibrium with tokens fails to achieve ex-ante first-best allocations. This result, which
arises due to the random match sequence, is not, in general a problem when trade and
settlement are segregated, as in a typical legacy system. This points to an efficiency
loss that can arise when immediate settlement is implemented. Second, the hold-up
problem becomes acute with C’s revelation of B’s ownership of the asset (and the order
of trades). In fact, when A values t = 2 ownership of the asset strictly less than L, C will

17Of course, this inefficiency is borne directly from our simplifying assumption that the sequence of
matches are random. One could consider an environment where B could take (costly) actions to endoge-
nously determine the order of matches. As discussed earlier, this alone will not materially improve the
outcomes in token system as it does not address the hold-up problem.
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always finds it profitable to offer a low price, which B accepts conditional on owning the
asset. However, anticipating this, B opts not to acquire the asset in the first place, thus
thwarting intermediation. The next theorem summarizes the relative efficiency between
a legacy and token system:

Theorem 4 (Relative Efficiency). Suppose that λB < L
M . Then, efficiency is greater under the

legacy system if λC < H−L
2∆ , and equivalent when λC > H−L

2∆ . If λB > L
M , then efficiency is

greater under the token system if λC > λ̂ and lower when λC < λ̂, for some threshold λ̂ > λ̄.

The main takeaway is that token systems are not unambiguously superior to the
legacy system. Rather, our model highlights two key issues that arise in decentralized,
heavily intermediated markets. First, the scope of intermediation drops under tokeniza-
tion, as intermediaries’ valuations play a much more significant role in their ability to
assist with the reallocation of the asset. Second, while tokenization can eradicate settle-
ment uncertainty when two parties can agree to a desirable trade, the fact that each trade
must be feasible at the time of trade puts undue emphasis on the need for the sequence
of meetings to coincide with the order of intermediation.

Our results motivate a natural question on what solutions could address potential
inefficiencies arising with token systems. The two key sources of inefficiency arise due
to the revelation of information regarding ownership at the time of trade. Our results
might suggest that another solution is to relax the conditions of trade, so that traders
could enter trades without revealing this information. At first glance, it seems like it
could resolve the issues pertinent to the token system. In the context of our model, this
would be akin to enabling B and C to enter a state-contingent contract, whereby a trade
is executed only if at the end of the trading stage, B’s account holds t = 2 ownership of
the asset.

However, allowing for such a contract re-introduces a commitment problem and with
it settlement fails. A small modification of the model suffices using an argument related
to that made by (Lee et al., 2022). Suppose that B’s valuation of the asset at t = 2 for a
range between 0 and H, and B learns it after the meeting at t = m2. The state-contingent
contract introduces a “gap”, whereby B now has the option to forgo his trade with C by
failing to satisfy the conditions of trade. In particular, even if B obtains t = 2 ownership
of the asset from A, if B wants to hold onto it for himself, then B simply needs to hold
ownership in a separate account unknown to C. This means that B honors the trade with
C only when his t = 2 valuation is realized as low. It is straightforward to see that, in
equilibrium, C would offer a price less than H, which means that, generically, trade fails
with a positive probability. In other words, there is an implicit form of settlement failure
that arises due to ex-post strategic considerations.
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Proposition 4. Consider a modified token system that permits state-contingent programs. Effi-
ciency improves only if H ≥ M(1 + λB). Otherwise, settlement fails occur with probability λB.
Furthermore, if λB > 1

2 , then C is strictly worse off due to the introduction of state-contingent
programs.

An overaching question is whether token systems should incorporate certain levels
of settlement risk tolerance.18 In the exercise above, we demonstrate that relaxing the set
of permitted programs, which opens the market to the possibility of settlement fails, can
sometimes be beneficial. However, as Proposition 4 highlights, even small changes to the
environment can lead to new commitment issues that can worsen overall efficiency.

4 Joint Determination of Trading and Settlement Systems

Our results show that token systems may sometimes reveal too much information in
environments where optimal allocations depend on intermediaries. A broad takeaway
from our analysis is the importance for settlement to be compatible with the trading
environment. In our baseline model, intermediated trading is assumed, such that any
transactions between A and C require B in between. The underlying rationale is that
for markets have adopted intermediated trading to overcome various (unmodeled) fric-
tions.19 Thus, end-sellers and end-buyers, like A and C, may prefer trading through B
rather than directly.

We demonstrated a synergy between intermediated trading and the legacy settle-
ment. In contrast, we find incompatibility with the token system, due to both the trade
asynchronicity and information problems. This dichotomous result strongly suggests
the need for the joint consideration of trading and settlement in the design of financial
market systems.

This section takes a step to make this insight concrete, by considering the optimal
design of financial markets in totality. We consider a simple alternative trading system
that directly and simultaneously matches end-seller and end-buyers for each unit-period
claim, which we refer to as direct trading.

Direct Trading. Consider the following alternative trading stage. Instead of sequential
matching, we assume that at the trading stage (e.g. t = m1), B and C each simultaneously

18In a related study, Danos et al. (2020) consider the design of programs to that use flexible settlement
to improve allocations.

19There is a large literature that specifically studies why intermediation occurs; offering an exact reason
in our setting is not necessary for the results, nor within the scope of this paper.
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post ultimatum offers on t = 1 and t = 2 ownership to A, i.e. C12
Aj and C23

Aj. After receiving
offers, A chooses the offers (if any) to accept at t = m2. To account for unmodeled
frictions that create a natural preference toward trading through an intermediary, we
assume that A incurs a cost φ ≥ 0 whenever trading directly with C.20

4.1 Equilibrium Efficiency with Direct Trading

The legacy settlement strengthens intermediation through two channels. The legacy
system allows B to negotiate C without revealing trading history. Second, the legacy
system permits B to fail, and when B’s ex-post options improve, so does her ability
to intermediate. These two channels dampened the potential for hold-up problems to
actualize in equilibrium.

Direct trading offers a direct solution to the potential for breakdown in trade arising
from hold-up problems. End-buyers (i.e. B and C) must now offer prices that satisfy the
reservation price of the end-seller (i.e. A). As such, one might expect direct trading to
unambiguously improve outcomes.

However, in contrast with intermediated trading, a daisy-chain settlement fail can
now arise from B’s commitment problem. Whenever A enters the pair of contracts C12

AB

and C23
BC, A must transfer the asset between B and C at t = 2, effectively ”intermedi-

ating” ownership. Then, whenever B fails to return the asset to A at t = 2, A also
fails on his obligation to C. In contrast to the benefits of B’s commitment problem with
intermediated trading, B’s commitment problem drags efficiency with direct trading.

As a result, direct trading is more efficient in the legacy system only if φ is below
some cutoff φlegacy, and additionally, the cutoff φlegacy is lower when B is prone to fail
(M > ∆):

Proposition 5 (Direct Trading with Legacy System). There exists a cutoff φlegacy, such that
efficiency is greater with intermediated trading than with direct trading with the legacy system if
φ > φ̄legacy. Furthermore, φ̄legacy is lower when M > ∆.

Next, consider direct trading in the token system. Direct trading improves outcomes
in a token system in two critical ways. First, it resolves asynchronicity issues, since C is
able to directly match with A. Second, without any potential for a hold-up problem, C is
able to make a credible offer for t = 2 ownership of the asset to A, negating potential for
issues arising from strategic behavior. As such, direct trading unambiguously improves
efficiency in the token system as long as cost φ is not too high:

20While we view this as the most natural, other cost structures work as well.
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Proposition 6 (Direct Trading with Token System). There exists a cutoff φtoken, such that
efficiency is greater with intermediated trading than with direct trading in the token system if
φ > φtoken, where:

φtoken =

H − L if λBM < L
1
2(H − λBM) if λBM ≥ L

(22)

As foreshadowed in the discussion for Propositions 5 and 6, direct trading dispro-
portionately improves outcomes for the token system relative to the legacy system. It
also implies generally:

Corollary 2. φlegacy ≤ φtoken.

As a final result, we consider the relative efficiency of four systems: (1) the intermediated-
legacy system; (2) the direct-legacy system; (3) the intermediated-token system; and (4)
the direct-token system. Following Proposition 6, as long as φ ≤ H − L, a direct-token
system dominates intermediated-token system. Second, even if λC < λ̄, a direct-token
system dominates a direct-legacy system, because it achieves the same set of trades
without ex-post fails. In contrast, relative efficiency between an intermediate-legacy sys-
tem can dominate a direct-token system is determined by the cost associated with fails
(2λC∆) and φ, summarized below:

Theorem 5 (Optimal Design). Let φ ≤ H − L and λC < λ̄. Efficiency is greatest for:Intermediated trading with legacy system if φ ≥ 2λC∆

Direct trading with token system if φ < 2λC∆
(23)

Theorem 5 offers a rebalanced perspective on the merits of considering a token sys-
tem. If Theorem 4 showed that gains from direct applications of tokenization to re-
solve settlement uncertainty in heavily-intermediated markets can be underwhelming
and even backfire, Theorem 5 states that gains can be significant when the token system
is paired with a compatible trading environment.

5 Conclusion

This paper studies how tokenization affects equilibrium trade in a theoretical model
of an over-the-counter market. Tokenization has clear advantages: We illustrate how
tokenization it can eliminate a limited commitment problem, by committing settlement
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actions at the time that contracts are forged. Collapsing trade and settlement, however,
comes at a cost. We show that doing so necessitates that traders reveals more private
information relative to the traditional environment. This creates a hold-up problem and
may destory an intermediation chain necessary for efficient outcomes.

Whether a settlement protocol is efficient is intricately tied to the whether it is paired
with a congruent trading mechanism. Due to the potential for decentralization, tok-
enized markets have been viewed as particularly disruptive for over-the-counter mar-
kets. However, some features are not amenable to the current market structure, which
depends highly on intermediaries to facilitate complex intermediation chains. Our paper
offers a concrete illustration of this problem.
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Proofs

Proof of Lemma 1. Follows from text.

Proof of Lemma 4. Note that E[M̃] > L + λC(H + ∆) for λC > E[M̃−L]
H+∆ , which requires

E[M̃] > L since λC > 0.

Proof of Lemma 5. First, note that if M < ∆, then Condition 1 trivially holds. Let M > ∆.
With Condition 10, we have:

P23
BC − λC∆ ≥ L + λC(H + ∆) + λB(M− L− ∆) (24)

≥ (1− λB) (L + ∆−M)︸ ︷︷ ︸
>0

+λC(H + ∆) + (M− ∆) (25)

> M̃− ∆, (26)

which implies Condition 1.

Proof of Lemma 6. Following the argument in the text, it suffices to consider whether
C finds it optimal to make an offer which is accepted with probability 1, or E[M̃] +

λC∆, which is accepted with probability 1
2 conditional on B already having acquired

t = 2 ownership from A. Consider a price at which B always accepts, which requires
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Condition 10. The minimum price satisfying the condition is L + λCH + λC∆. C’s payoff
for offering L + λCH + λC∆ is greater than offering E[M̃] + λC∆ if:

H − (L + λCH + λC∆) + λC(H − ∆) (27)

≥1
2
(

H − (E[M̃] + λC∆) + λC(H − ∆)
)

(28)

Reorganizing this inequality, we get the inequality holds only if λC <
1
2 H−L+ 1

2 E[M̃]
1
2 H+(1− 1

2 )2∆
. Note,

C’s payoff is positive given price L+λCH+λC∆ only if λC < H−L
2∆ , and (1− 1

2 )H−L+ 1
2 E[M̃]

1
2 H+(1− 1

2 )2∆
<

H−L
2∆ . Also, note that (1− 1

2 )H−L+ 1
2 E[M̃]

1
2 H+(1− 1

2 )2∆
> E[M̃−L]

H+∆ . Hence, for some threshold λ̄ ≡
1
2 H−L+ 1

2 E[M̃]
1
2 H+∆

,

C offers L + λC(H + ∆) for λC < λ̄, and E[M̃] + λC∆ otherwise.

Proof of Lemma 7. Note that given P23
BC = L + λC(H + ∆), B breaks even in expectation.

This implies that any lower price violates B’s participation condition, and the optimal
strategy for B is to make offer P12

AB = L to A. Hence if λC > λ̄, B’s optimal offer strategy
is P12

AB = L.

Proof of Theorem 2. We first show existence of an equilibrium where traders agree to C13
AB

and C23
BC, independent of the order of matches when λC < λ̄. Assume λC > λ̄. A always

accepts B’s offer P13
AB = 2L + λH, which is equal to his reservation price taking into

account C’s strategic fail as outlined in Lemma 1. Under Lemma 6, C’s offer strategy is
P23

BC = L + λC(H + ∆), which B accepts conditional on having or expected to enter C13
AB,

since it is equal to his reservation price and a premium λC∆ associated with the daisy
chain fail.

Next, we show that when when λC > λ̄, there does not exist an equilibrium where C
obtains the asset with probability 1. By Lemma 6, conditional on B always entering C13

AB
with A, C’s optimal offer strategy is P23

BC = E[M̃] + λC∆, which violates B’s participation
condition. Following Lemma 7, B’s dominant strategy to choose P12

AB = L. Together
this implies that C fails to obtain the asset with certainty. We show that there is an
equilibrium where C obtains the asset with some probability µ∗ 1

2 + (1 − 1
2) for some

µ∗ ∈ [0, 1). Consider a candidate equilibrium in which B enters C13
AB with probability

µ, and C12
AB otherwise if matched with A first, and enter C13

AB if he accepts C23
BC when

matched with C first. C maximizes his payoff from offering P23
BC = L + λC(H + ∆) if:

(µ
1
2
+ (1− 1

2
))[H − (L + λCH + λC∆) + λC(H − ∆)] ≥ µ

1
2
[H − (λBM + λC∆) + λC(H − ∆)]

(29)
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Note that the inequality becomes monotonically tighter as µ increases, and holds when
µ → 0. This implies that there exists some µ′ such that equality holds. Let µ∗ be given
by max

{
0, H−L−2λC∆

L+λC H−λB M

}
. Since for price P23

BC = L + λC(H + ∆), B exactly breaks even,

B is indifferent between any µ conditional on P23
BC = L + λC(H + ∆). This establishes

existence.

Proof of Proposition 3. Cutoffs values for each region are given by:

λ̄1 =
H − 2L + λBM

H + 2∆
(30)

λ̄2 =
H − 2L− 2λB(M− L− ∆) + λBM

H + 2∆
(31)

λ̄3 = min{H − 2L− 2λB(M− L− ∆) + (M− ∆)
H + 2∆

,
(1 + λB)H − 2L− 2λB(M− L− ∆) + λB∆

(1− λB)H + 2(1 + λB)∆
}

(32)

Since M− L− ∆ < 0, λ̄2 > λ̄1. For M > ∆
1−λB

, M− ∆ > λBM and λB(H + ∆) > λBM,
which implies λ̄3 > λ̄2.

Proof of Corollary 1. Follows from text.

Proof of Theorem 3. Suppose that the order of matches is B− C and A− B. Since B does
not own any rights to the asset when she matches with C, no contract is feasible. Hence,
trade only occurs between A− B.

Suppose that the order of matches is A− B and B−C. The order of trades is common
knowledge, since trade between B and C requires B to own the asset. Suppose that B
acquires rights to the asset for t = 2 with probability 1. Suppose that C offers λCL. Then,
B accepts with probability 1. Note, however, that B must offer A at least L in order to
obtain t = 2 ownership. Since doing so leads to negative profits, it is optimal for B to
only acquire t = 1 ownership. Hence, in equilibrium C never obtains the asset if λB < 1,
and there exists an equilibrium with intermediation only if λB = 1.

Proof of Theorem 4. First, consider when λB < L
M . In the legacy system, if λC < H−L

2∆ , total
payoff is given by 3H− 2λC∆ for λC < λ̄; 2H + (µ∗ 1

2 + (1− 1
2))(H− 2λC∆) + (1− µ∗)1

2 L
otherwise; In the token system, if λC > H−L

2∆ , total payoff is 2H + L. Hence, payoff is
greater in the legacy system for λC < H−L

2∆ and equal otherwise.
Next, consider when λB > L

M . As before, in the legacy system, if λC < H−L
2∆ , total

payoff is given by 3H− 2λC∆ for λC < λ̄; 2H + (µ∗ 1
2 + (1− 1

2))(H− 2λC∆) + (1− µ∗)1
2 L
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otherwise; if λC > H−L
2∆ , total payoff is 2H + L. In the token system, total payoff is 5

2 H +
1
2 L. Note that µ∗ decreases in λC and 2H + (µ∗ 1

2 + (1− 1
2))(H − 2λC∆) + (1− µ∗)1

2 L →
2H + L as λC → H−L

2∆ . This implies that there exists some cutoff λ̂ ≡ µ∗

1+µ∗
H−L

2∆ ∈ (λ̄, H−L
2∆ )

such that 2H + (µ∗ 1
2 + (1− 1

2))(H− 2λC∆) + (1− µ∗)1
2 L = 2H + 1

2 H + (1− 1
2)L. Hence,

the token system dominates for λC > λ̂.

Proof of Proposition 4. With state-contingent contracts, B can renege if M̃ = M. C can
ensure settlement occurs only with an offer at least as large as M. This is a dominant
strategy only if: H −M > λB(H − λBM), which requires H > M(1 + λB). Since condi-
tional on settlement fail, C’s optimal offer is λBM, C’s expected payoff if H ≤ M(1+ λB)

is λB(H − λBM), which is lower than in the baseline token system if λB < 1
2 .

Proof of 5. Let λBM < L, and first suppose that M < ∆. B and C’s optimal offers are
P12

AB = L and P23
BC = L + λCH + φ, respectively. Since B never fails, the total payoff is:

3H − λC∆− φ, (33)

which is greater than intermediated trading if:φ < λC∆ for λC < λ̄

φ <
(

1+µ∗

2

)
λC∆ +

(
1−µ∗

2

)
(H − λC∆− L) for λC ≥ λ̄

(34)

where µ∗ = max{0, H−L−2λC∆
L+λC H−λB M}.

Now, suppose that M > ∆. Since B fails if M̃ = M, B and C’s optimal offers are
P12

AB = L + λB(L + ∆) and P23
BC = L + λCH + φ, respectively. The total payoff is:

2H + λB(M− 2∆) + (1− λB)(H − λC∆)− φ. (35)

which is greater than intermediated trading if:

φ < λB(M− 2∆)− λB(H − λC∆) + λC∆ for λC < λ̄ (36)

φ <

(
1 + µ∗

2

)
(λB(M− 2∆)− λB(H − λC∆) + λC∆) (37)

+

(
1− µ∗

2

)
((1− λB)(H − λC∆− L)− λB∆) for λC ≥ λ̄ (38)

39



for some µ∗ ∈ [0, 1). Now suppose that λBM > L, and M < ∆. Since the hold-up
problem does not bind, efficiency depends wholly on whether φ is less than the daisy
chain premium, i.e. φ < λC∆.

Proof of Proposition 6. Suppose that λBM < L. Then, B and C’s optimal offer strategy is
L and L for t = 1 and t = 2 respectively. Furthermore, total payoff is 3H − φ, which
dominates as long as φ < H − L.

Now suppose that λBM ≥ L. With direct trading, B offers L and λBM for t = 1 and
t = 2, and C offers λBM + φ for t = 2, yielding total payoff 3H − φ. This dominates
intermediated trading if φ < 1

2(H − λBM). Furthermore, this is more profitable for C as
long as H − λBM− φ ≥ 1

2(H − λBM), which is true as long as φ < H−λB M
2 .
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