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Abstract

I study the set of Pareto efficient tax schedules in Mirrlees’ optimal tax model and provide a

simple test for the efficiency of a given tax schedule. The efficiency condition generalizes the

the well-known zero-tax-at-the-top result: taxes should be low in regions where the density

of income falls rapidly. Both the set of efficient and inefficient tax schedules is large. I use

the framework to explore the optimality of a flat tax, to bound the top tax rate of a nonlinear

schedule, and to evaluate the efficiency of a tax system that does not condition on observable

traits.
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1. Introduction
This paper derives the restrictions on the income-tax schedule implied by efficiency. I work with

Mirrlees’s (1971) original framework, but, instead of maximizing a Utilitarian objective or any

other social welfare function, I derive the conditions required by constrained Pareto efficiency (e.g.,

.F/ and .FF/ below)—I adopt the positive aspect of Mirrlees’s model, butnot the normative

one. In other words, I characterize tax schedules that cannot be reformed without harming some

individuals. Conversely, I identify tax schedules that can be reformed to everyone’s benefit.

The main results of the analysis are as follows:

1. For any increasing income-tax schedule, there exists a set of skill distributions for which

the allocation is Pareto efficient and another for which it isnot. Thus, theory alone, without

empirical knowledge on the distribution of skills, provides no guidance:anything goes.

2. Any income-tax schedule in place induces a distribution of income which identifies the un-

derlying skill distribution (Saez, 2001). One can then characterize the entire set of Pareto

efficient tax schedules consistent with it. Both the set of efficient and inefficient tax sched-

ules is “large”. In particular, this shows that Pareto efficiency is not a vacuous requirement.

3. I derive a simple test for the efficiency of any current tax schedule. A graphical version of

this test compares the actual distribution of income against an hypothetical one, defined as

that which would have made the tax schedule optimal for a Rawlsian (see Figure 2).

4. The restrictions I derive on the shape of the tax schedule can be seen as a quantitative gener-

alization of the well-known qualitative “zero-tax-at-the-top” result.

5. Simple formulas are obtained for the following: (i) to test the Pareto efficiency of a flat tax;

(ii) to bound the top tax rate of a nonlinear schedule; and (iii) to evaluate the efficiency of a

tax system that does not condition on observable traits.

Looking forward, it might be interesting to see how far one can go verifying whether the con-

ditions for efficiency hold in the United States and other countries. I provide a tentative analysis

along these lines for the United States. The rest of the Introduction discusses related literature.

Diamond (1998) and Saez (2001) reinvigorated the interest in Mirrlees’ model of optimal tax-

ation. Both papers explored the importance of the underlyingskill distribution, as well as other

parameters. I adopt the perspective of Saez (2001) that the distribution of income should be used

to identify the underlying distribution of skills through the lens of the model. I express my tests

for efficiency directly in terms of the distribution of income.

Applied work in this area typically adopts particular welfare functions and explores the so-

lutions to the optimal tax schedule obtained numerically. Since the choice of a welfare function
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cannot be determined empirically, sometimes several welfare functions are employed and the ef-

fects of this choice are highlighted (Tuomala, 1990; Diamond, 1998; Saez, 2001). In contrast,

my paper inverts the direction of these exercises and asks whether an existing or hypothetical tax

schedule is consistent with Pareto efficiency.1 More generally, I emphasize studying theset of

efficient tax schedules, as opposed tothe optimal tax schedulefor a particular welfare criterion. I

show that such an approach can yield useful new insights and remains tractable enough for practical

quantitative explorations, of the kind pursued by Saez (2001) and Gruber and Saez (2002).

A more theoretical line of research advocates and explores aPareto efficient approach to opti-

mal taxation (see Stiglitz, 1987, and the references therein). In particular, Brito, Hamilton, Slutsky,

and Stiglitz (1990) study Pareto efficient taxation and derive some qualitative implications, such as

a “zero-tax-at-the-top” results. However, these results do not greatly restrict the income tax sched-

ule. Less explored are the implications of Pareto efficiencythe overall shape of the income tax

schedule. In a recent paper, Chone and Laroque (2006) study optimal taxation with quasi-linear

preferences. They focus on the optimality of negative marginal tax rates with discrete labor supply

choices, but their approach and methodology is close to thispaper in that Pareto efficiency is used

as the criterion for optimality.2

In addition to these formal contributions, economists havebeen ardent advocates of various

tax reforms. In particular, flat taxes have been proposed on efficiency, simplicity and even fairness

considerations (e.g. Friedman, 1962; Hall and Rabushka, 1995). Yet, these proposals are seemingly

at odds with the output from Mirrlees’ (1971) model, which consistently produces nonlinear tax

schedules. In this paper, I show that this is misleading: flattaxes, as well as more progressive tax

systems, may well be Pareto efficient within Mirrlees’ economy.

2. Preliminaries
The model economy is populated by a continuum of workers. Forsimplicity, I assume additively

separable preferences of the following form:3

U.c; Y; �/ D u.c/ � �h.Y /;

where� indexes the heterogeneous disutility from producing output Y .4 It is worth remarking that,

given the focus on Pareto efficiency, no interpersonal comparisons of utility will be needed. Thus,

1Saez (2001, pg. ) suggests, but does not pursue, the possibilities of such an approach.
2Chone and Laroque (2005) study the Rawlsian optimal tax schedule and compare it to the optimal tax schedule

for a Utilitarian planner.
3However, some of the notation I employ in what follows is moregeneral, in preparation for a possible extension

to the more general case
4This specification obtains from a common utility function with heterogeneity in productivity if the disutility of

effort is a power function.
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the cardinality of preferences is completely irrelevant and only the ordinal features of preferences

matter. Let the expenditure functione.v; Y; �/ represent the inverse ofU.�; Y; �/. Let F.�/ be the

distribution of� in the population. I assume there are no mass points, so that the distribution can

be represented by its densityf .�/.

Now take any tax functionT .Y /. Workers maximize their utility and obtain

v.�/ � max
Y

U.Y � T .Y /; Y; �/:

For a worker of type� , letc.�/ andY.�/ be the resulting allocation (solving this maximization) for

consumption,Y �T .Y /, and output,Y , respectively. Note that another expression for consumption

is c.�/ D e.v.�/; Y.�/; �/.

An allocation.c.�/; Y.�// is resource feasibleif

Z

�

Y.�/ � c.�/
�

dF.�/ C e � 0

wheree is the net endowment (non-labor output net of government consumption). The allocation

generated by some tax schedule is (constrained)Pareto efficientif there is no other tax schedule

that induces a resource feasible allocation where nobody isworse off and some workers are strictly

better off.

On first pass, I simplify by assuming thatT .Y / is differentiable and induces a continuous,

differentiable and strictly monotone allocation (i.e., no“bunching”). It will be useful to define the

marginal tax rate

�.�/ � T 0.Y.�// D 1 C
UY .c.�/; Y.�/; �/

Uc.c.�/; Y.�/; �/
D 1 �

�h0.Y.�//

u0.c.�//
D 1 � eY .v.�/; Y.�/; �/:

3. Conditions for Pareto Efficiency
In this section I introduce the Pareto planning problem and derive the necessary and sufficient

conditions for optimality.

3.1. The Planning Problem

An allocation.c.�/; Y.�//, that delivers utilityv.�/, is Pareto efficientif and only if .Y.�/; v.�//

solves the following planning problem:5

5If some feasible allocation does not solve this problem thenthere exists an alternative allocation where the resource
constraint is slack that provides the same or more utility. APareto improvement would always be possible: if another
allocation provided the same utility but increased net resources, then these resources can be used to construct another
allocation that increases utility for some workers and is resource feasible. Conversely, if an allocation solves this
problem, then all alternative allocations that provide thesame or more utility cannot satisfy the resource constraint,
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max
QY ;Qv

Z

�

QY .�/ � e. Qv.�/; QY .�/; �/
�

dF.�/

subject to,

Qv.�/ D Qv. N�/ �

Z N�

�

U�

�

e. Qv.´/; QY .´/; ´/; QY .´/; ´
�

d´

QY .�/ nonincreasing

Qv.�/ � v.�/

wherev.�/ represents the our original utility profile. The objective is to maximize aggregate net

resources, output minus consumption. The first constraint is simply the familiar condition that

Pv D U� , but in integral form. The second constraint imposes that output be monotone decreasing

in � , so that more skilled workers produce more. Together these two constraints ensure incentive

compatibility. The last constraint requires that workers are not made worse off.

To verify whether the original allocation solves this planning problem, I evaluate first-order

conditions at the original allocation.Y.�/; v.�//. Since first-order conditions are necessary, if

they are violated it indicates that the original allocationcannot be Pareto efficient. Conversely,

because a transformed version of this problem (choosingh instead ofY ) is convex, the first-order

conditions are sufficient. Hence, if they are verified the original allocation solves the planning

problem.

To derive the first-order conditions, define the Lagrangian

L �

Z

�

QY .�/ � e. Qv.�/; QY .�/; �/
�

dF.�/

C

Z

 

Qv.�/ � Qv. N�/ C

Z N�

�

U�

�

e
�

Qv.´/; QY .´/; ´
�

; QY .´/; ´
�

d´

!

d�.�/:

Integrating the second term by parts,

L D

Z

�

QY .�/ � e. Qv.�/; QY .�/; �/
�

dF.�/ � Qv. N�/�. N�/ C �.�/ Qv.�/

C

Z

Qv.�/d� C

Z

�.�/U�

�

e
�

Qv.�/; QY .�/; �
�

; QY .�/; �
�

d�:

since if there were another allocation with higher utility for some workers that yields the same net resources, then one
can find another one that increases net resources that still satisfiesQv.�/ � v.�/.
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3.2. Efficiency Conditions

The first-order condition forQY .�/ evaluated at.Y.�/; v.�// gives

�

1 � eY .v.�/; Y.�/; �/
�

f .�/ D ��.�/
�

U�c

�

e
�

v.�/; Y.�/; �
�

; Y.�/; �
�

ev.v.�/; Y.�/; �/

C U�Y

�

e
�

v.�/; Y.�/; �
�

; Y.�/; �
��

;

implying

�.�/ D �.�/
f .�/

h0.Y.�//
: (1)

The first-order condition forv. N�/ gives�. N�/ � 0. Likewise, if � is bounded away from zero, the

first-order condition forv.�/ gives�.�/ � 0. Thus,

�. N�/ � 0 and �.�/ � 0: (2)

For interior� , the first-order condition with respect toQv.�/ evaluated at.Y.�/; v.�// gives

P�.�/ � ev

�

v.�/; Y.�/; �
�

f .�/: (3)

Differentiating equation (1) gives

P�.�/ D �.�/

�

� 0.�/

�.�/
C

f 0.�/

f .�/
�

h00.Y.�//

h0.Y.�//
Y 0.�/

�

: (4)

Substituting equations (1) and (4) into the first-order condition (3) and rearranging gives

�.�/

�

d log�.�/

d log�
C

d logf .�/

d log�
�

d logh0.Y.�//

d log�

�

� 1 � �.�/; .F/

a restrictions on the shape of the tax function and the allocation it generates.6 The integral form of

this efficiency condition is

�.�/f .�/

h0.Y.�//
C

Z N�

�

1

u0.c. Q�//
f . Q�/ d Q� is nonincreasing; .

R

F/

which is derived formally in Appendix A, requires weaker differentiability requirements on the tax

schedule and the resulting allocation.

6This expression resulted in an effort to find a simple expression, but unnecessarily assumes�.�/ > 0 so that
log�.�/ is well defined. This will be rewritten in future versions.

5



Proposition 1. Given the utility functionU.c; Y; �/ and a density of skillsf .�/, a differentiable

tax functionT .Y / inducing an allocation.c.�/; Y.�// is Pareto efficientif and only if condition

.
R

F/ holds, where�.�/ D T 0.Y.�//.

Notably, the distribution of skills, through its effect ond logf .�/=d log� , is key. Indeed, for

any initial tax schedule and allocation one can violates or satisfy the inequality by an appropriate

choice of the distribution of skills. The next result follows immediately from this observation.

Proposition 2. For any tax scheduleT .Y / and its resulting allocation there is a set of skill distri-

butionsF.�/ and net endowmentse for which the outcome is Pareto efficient and another set of

skill distributionsF.�/ and net endowmentse for which it is Pareto inefficient.

Suppose one is given the utility functionsu and the disutility of labor functionh. Condition.F/

can then be implemented after identifying the distributionof skills and the implied allocation as

a function of� . This can be easily done. First, for any smooth tax scheduleT .Y /, the workers’

maximization problem gives an allocation for outputY.�/ 2 arg maxU.Y � T .Y /; Y; �/. Second,

any worker’s choice of output uniquely determines the� from the first-order condition

�.Y / D .1 � T 0.Y //
u0.Y � T .Y //

h0.Y /
:

Now suppose one observes the distributionG.Y / of outputY across workers. This implies the

relationF.�.Y // D 1 � G.Y /. If we assume the tax schedule is sufficiently smooth, so thatit

induces a distribution of output representable by a densitythenf .�.Y // D �g.Y /=� 0.Y /. Thus,

in this way, one identifies the skill distribution for skillsfrom the distribution of observed output

and the tax function (see Saez, 2001).

It is also possible to rewrite condition.F/ in a number of ways. Appendix B shows how it

can be expressed directly in terms of the density over outputg.Y / and the tax scheduleT .Y / as

follows:

T 0.Y /

�

�
d log.1 � T 0.Y //

d logY
C

d logh0.Y /

d logY
�

d logg.Y /

d logY
� 1 C

d log"�;Y

d logY

�

� �2
d log.1 � T 0.Y //

d logY
C

d logh0.Y /

d logY
�

d logu0.Y � T.Y //

d logY
.FF/

where"�;Y is the elasticity of�.Y / with respect toY ,

"�;Y �

ˇ

ˇ

ˇ

ˇ

Y� 0.Y /

�.Y /

ˇ

ˇ

ˇ

ˇ

D �
d log.1 � T 0.Y //

d logY
�

d logu0.Y � T .Y //

d logY
C

d logh0.Y /

d logY
:

Although more involved than.F/, this condition can be evaluated directly with informationon

output and taxes, without the need to transition through theidentification of� and its distribution.
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It is useful to think of this result as a test for efficiency of any triplet .U; T; g/. The formal proof

of this result is in Appendix A.

Proposition 3. Given the utility functionU.c; Y; �/, a tax functionT .Y / inducing a density of

outputg.Y / is Pareto efficientif and only if condition.FF/ holds.

A few remarks on tax schedules that are not differentiable are in order. In the model, if the

tax scheduleT .Y / has concave kinks then some mass of workers will accumulate at these points

(convex kinks are irrelevant). Even in such bunching cases,conditions.F/ and.FF/ continue to

be sufficient for optimality; these inequalities are also necessary over intervals where agents are not

bunched. Note that the skill densityf .�/ over an interval of workers that are bunched at a kink in

the tax schedule cannot be identified by observing their output choices. Then, without independent

information on the skill distribution, it follows that conditions .F/ and.FF/ are also necessary

for optimality.

In the real world, however, statutory tax schedules with kinks do not seem to induce workers

to accumulate at these points. There are several possible explanations for this. For example,

workers may face uncertainty, for any given work effort, in their output. In addition to mechanically

avoiding bunching in terms of output, this smooths the rewards to their work effort choices which

prevents bunching in terms of work effort. Similar effects may result without uncertainty in a

dynamic model where skills are accumulated over the life cycle. Although richer models could

incorporate such elements, it seems more sensible within the context of the present static Mirrlees

(1971) to interpret the relevant tax schedule as smooth.

3.3. A Simple Reform and Laffer Effects

I now provide a variational result that provides intuition for the form that the efficiency condition

.F/ (and by association.FF/), and especially for the crucial role played by the distribution of

skills. The result states that, ifd logf .�/=d log� is high enough, a particularly simple tax reform

can create a Pareto improvement.

Proposition 4. Suppose an increasing and differentiable tax scheduleT .Y / induces a feasible

allocation such that the inequality

�.�/

�

d log�.�/

d log�
C 2

d logf .�/

d log�
�

d logh0.Y.�//

d log�

�

� 3.1 � �.�// (5)

is violated around some interior pointO� . Then, for some" > 0 the alternative tax schedule

OT .Y / D

8

<

:

T .Y. O�// � " Y D Y. O�/

T .Y / Y ¤ Y. O�/
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Y

T(Y)

g(Y)

YY1 Y2

Figure 1: A local tax reform that reduces taxes discontinuously at one pointOY . Neighboring worker
to the right of OY decrease output and pay less taxes. Neighboring worker to the left increase output
and may pay more taxes. For a small reform, the net effect on tax receipts depends critically on
the rate of growth of the densityg.Y / (and, hence, off .�/).

induces a feasible allocation that Pareto improves the original one.

The proof is in Appendix C, but the main argument is as follows.That workers are better off

facing a lower tax schedule is immediate. What is less obviousis whether tax collections rise

or fall, which is equivalent to asking whether the resultingallocation is resource feasible or not.

The reform induces some neighboring workers to produce lessand others to produce more. Tax

receipts are definitely lost from the former group, but can begained from the latter. This situation

is illustrated in Figure 1. The relative fraction of workersmoving up and down is then critical. A

low enough value ofg0.�/=g.�/ or a high enough value off 0.�/=f .�/ makes the relative fraction

of workers that increase their output favorable enough, so that tax total revenues rise.

A test for efficiency based on condition.F/ is more powerful than one based on inequality (5).7

That is, the simple tax reform used in Proposition 4 is powerful enough to detect some possible

Pareto improvements, but it misses others requiring alternative tax reforms.

The simple variation provided by Proposition 4 illustratesthe general point that a Pareto im-

provement requires a reduction in the tax schedule. Otherwise, if taxes are higher in some region,

then workers producing there would be better off with the original schedule.

Proposition 5. If the tax scheduleT1.Y / induces an allocation that Pareto dominates that implied

7If condition .F/ holds then it is possible to show, using the relation1 � �.�/ D �h0.Y.�//=u0.c.�//, that
�.�/d logf .�/=d log� � 2.1 � �.�//. This then implies the inequality (5).
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byT0.Y /, thenT1.Y / � T0.Y / for anyY 2 arg maxQY . QY � T . QY /; QY ; �/.

If the resource constraint originally held with equality, then the alternative tax schedule must

collect the same or more revenue. In this sense, Pareto improvements require a Laffer-like effect:

lower taxes that do not lower tax revenue, that “pay for themselves”. However, the point is more

subtle than a lowering of taxes across the board yielding an increase in revenue or for the revenue

increase to be uniform across workers. In particular, when atax reform targets a particular point on

the schedule, lowering it, total revenues may rise even if the revenue collected from some workers

falls. Indeed, except possibly at the top, revenues collected from some workers always decrease.

3.4. A Graphical Test with a Rawlsian Connection

I now provide a simple reinterpretation of the test for optimality .FF/. If the marginal tax rate

T 0.Y / is everywhere positive then this condition is equivalent to

d logg.Y /

d logY
� a.Y /; .FF0/

wherea.Y / is a function ofY that can be computed given any tax scheduleT .Y / and a specifica-

tion for u.c/ andh.Y /. Let ˛.Y / be the unique density that satisfies this condition with equality

d log˛.Y /=d logY D a.Y /:

˛.Y / D
exp

�

R Y

0
a.´/ d´

�

R1

0
exp

�

R Y

0
a.´/ d´

� :

This density has the following interpretation. If the tax scheduleT .Y / generates an income den-

sity ˛.Y / then this schedule is optimal for a Rawlsian social welfare function. That is it solves

min� v.�/ subject to incentive compatibility and resource feasibility. Equivalently, one can set up

the problem as the maximization of net resources, but imposes a constant minimumv.�/ D v. I

call ˛.Y / the Rawlsian density.

Sinced log˛.Y /=d logY D a.Y /, condition.FF0/ is equivalent to

g.Y /

˛.Y /
is nondecreasing: .FF00/

This admits a simple graphical interpretation. To satisfy this condition, the densityg.Y / should

cross the Rawlsian density at most once from below. Indeed, itshould cross any multiple of the

densityA˛.Y /, for anyA > 0, from below at most once. In other words, if one plots the Rawlsian

density and its family of multiples, then the actual densityof output should cross all of these from

below. Figure 2 illustrates a density that passes the test.
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Figure 2: An example of the graphical test. The dashed lines show the Rawlsian density and scaled
versions of it. The solid line represents a density that passes the test for efficiency.

By implication, to pass the test for efficiency, a distribution of income must first-order stochasti-

cally dominate the Rawlsian distribution of income. Thus, ifthe distribution of income is stochasti-

cally dominated by the Rawlsian distribution, then the tax schedule in question cannot be efficient.

The Rawlsian distribution is the lowest distribution (in thesense of first order dominance) that

passes the efficiency test.

3.5. Quantifying Potential Inefficiencies

Suppose a triplet.U; T; g/ does not pass the test for Pareto efficiency.FF/. This is a qualitative

conclusion, but what is a natural quantitative measure for the importance of the inefficiency?

The analysis suggests using the difference between the maximized net resources, obtained the

planning problem, and the original value of net resources

� �

Z

�

QY �.�/ � Qc�.�/
�

dF.�/ �

Z

�

Y.�/ � c.�/
�

dF.�/:

The welfare gain measure requires computing the solution tothe planning problem, after identi-

fying the density of skillsf .�/ (as discussed in Section 3). This measure is expressed in con-

sumption units and represents the additional resources that could be saved by implementing the

planning problem’s solution. Of course, such resource savings could then be used, at another step,

to increase the utility of some workers still further.

In addition to saving resources, the planning problem’s solution makes some workers strictly

better off. The measure� does not account for these gains. However, this omission is not acci-

dental: while information on these utility improvements may be of complementary interest, any

attempt to summarize them into a single number runs counter to the Pareto-efficiency spirit of the
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exercise. One cannot do so without making interpersonal comparisons, or using some particular

social welfare function.8

4. Some Explorations
In this section I explore implications of efficiency condition derived in the previous section.

4.1. The Tax Rate at the Top

If � is not bounded away from zero (i.e., productivity is unbounded above), the support for the

distribution of output is potentially unbounded above. Whatrestrictions does Pareto efficiency put

on this top tax rate? In this subsection I show that it imposesan upper bound.9

Suppose one is asked to verify the efficiency of a tax schedulefor which the asymptotic tax rate

N� � lim�!0 �.�/ D limY !1 T 0.Y / exists and is positive and less than 1. In addition, suppose

the tax schedule is such that the limits of all the terms in.FF/ exist. Assume power utility

u.c/ D c1��=.1 � �/ andh.Y / D �Y � for � > 0, � > 1 and� > 0.

Asymptotically, many of the terms in.FF/ vanish. SinceT 0.Y / and "�;Y converge to a

constant and the limits are assumed to exist,

lim
Y !1

d log.1 � T 0.Y //

d logY
D 0 and

d log"�;Y

d logY
D 0:

Furthermore, for high income, consumption becomes proportional to income, so that

lim
Y !1

d logu0.Y � T .Y //

d logY
D �� and lim

Y !1

d logh0.Y /

d logY
D � � 1:

Substituting these expressions into condition.FF/ gives the following upper bound on the top

tax rate:

N� �
� C � � 1

' C � � 2
:

where' � � limY !1
d logg.Y /

d logY
. The value of' � 1, which must be positive to ensure that income

has finite mean, is called the asymptotic Pareto parameter.10

Note that the bound is less than 1 if and only if'�1 > � . Saez (2001) argues that for the United

States' � 3, which implies that this condition has bite for� < 2. Recall that our specification

of preferences is free of cardinality. Thus,� should not be interpreted as risk-aversion, but rather

8In particular, some welfare function may be completely unaffected, or trivially so, by increases in utility for some
particular set of workers, while others may be particularlysensitive to these increases. This ambiguity cannot be
resolved without taking a stand on the social welfare function.

9See Diamond (1998), Saez (2001) and Roberts (2000) for optimal tax rate formulas derived for specific welfare
functions.

10The Pareto distribution had a density that is a power function, g.Y / D AY �' , so thatd logg.Y /=d logY D �'.
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as controlling the income and substitution effects for labor. One natural benchmark is logarithmic

utility � D 1, where income and substitution effects for labor cancel out, i.e., the balanced-growth

specification. Another is the quasi-linear case with� D 0, which may be sensible given the low

estimates of income elasticities for labor. The quasi-linear specification was adopted by Diamond

(1998).

The upper bound accords well with intuition. As' ! 1, for fixed � and �, the income

distribution has a very thin upper tail and the upper bound onthe tax rate converges to 0. Thus,

the case with thin tails behaves as the case with bounded skills, where the tax rate must be zero at

the top. Also, for fixed� and', as� ! 1 the bound converges to 1. Thus, any tax rate may be

justified on efficiency grounds when labor supply is infinitely inelastic.

4.2. A Flat Tax

Suppose a proportional tax is in place, so thatT .Y / D N�Y . Then the calculations are very similar

to those from the previous subsection and yield

N� �
� C � � 1

�d logg.Y /

d logY
C � � 2

: (6)

Now suppose that taxes are linear, but not necessarily proportional. Specifically, assumeT .Y / D

N�Y � T0 with a positive transferT0 > 0. Then

�
d logu0.Y � T .Y //

d logY
D ��

1 � T 0.Y /

1 � T .Y /=Y
D �

1 � N�

1 � N� C T0=Y
� �;

which starts at0 for Y D 0 and rises monotonically to� for Y ! 1, so that

d log"�;Y

d logY
� 0:

It follows that (6) remains a necessary condition for.FF/ and, thus, for the efficiency of a flat

tax.

Additionally,

d log

d logY

�

�
d logu0.Y � T .Y //

d logY

�

D
d log

d logY

�

1 � N�

1 � N� C T0=Y

�

D
T0=Y

1 � N� C T0=Y
� 1;

implying
d log"�;Y

d logY
�

�

� C � � 1
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Hence a sufficient condition for.FF/ to hold is that

N� �
� � 1

�d logg.Y /

d logY
C � � 2 C �

�C��1

<
� � 1

�d logg.Y /

d logY
C � � 1

: (7)

4.3. Observable and Unobservable Heterogeneity

Suppose that, in addition to skill heterogeneity� , workers are sorted into groups which affect their

preferences and the distribution of skills within their group. For example, one group may supply

labor more elastically than another, or one group may have higher average skills than another. In

general, a worker’s group membership may be observed or not by the tax authority. We treat both

cases in turn; Combining the two is straightforward.

Specifically, suppose there arei D 1; : : : ; I groups, with fractions�1; : : : ; �I of the popula-

tion. Workers in groupi have utility U i.c; Y; �/. The skill � within group i is distributed with

densityf i.� i/. Each worker knows their own group and skill type.

When the group membership of a worker is observed by the tax authority, then it has the

potential to condition taxes on it. That is, it can tailor a tax scheduleT i.Y / for each groupi .

Within each group, the analysis is then exactly as before: the condition for efficiency.F/ should

hold for each worker groupi D 1; : : : ; I , evaluated separately using each group’s tax schedule

T i.Y / and resulting allocation.

It then follows that, although group-contingent tax schedules are possible, it may be Pareto

efficient to offer the same schedule to all groups, i.e., to set T i.Y / D T j .Y /. That is, although

taxing an observable trait is feasible it may be Pareto efficient not to do so. This is the case as long

as condition.F/ holds for each group, when each group faces the same schedule. This is more

likely whenever workers different across groups, but not bytoo much—since then if condition.F/

holds for one group it will hold for similar another.

This conclusion contrast with the implications of the typical normative analysis conducted

within the Mirrlees (1971) model and and other optimal-taxation studies that adopt a Utilitarian

social welfare function. In such settings, conditioning onall available information is strictly opti-

mal. For example, if a certain trait is associated with higher skills, then the optimal solution will

generally tax this trait to redistribute towards other workers.

When a worker’s group membership is not observed by the tax authority, then it cannot do

better than by imposing a single tax scheduleT .Y / for all worker groupsi D 1; : : : ; I . We now

ask, what is the necessary condition for Pareto efficiency inthis case? It turns out that it can be

13
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g.Y /
.

expressed as an appropriate average of condition.F/:

N
X

iD1

� igi.Y i.�//

�

� i.�/

1 � � i.�/

�

d log� i.�/

d log�
C

d logf i.�/

d log�
�

d loghi 0.Y i.�//

d log�

�

� 1

�

� 0: (8)

The proof of this condition is omitted, but will be included in latter versions of the paper. It is

worth briefly remarking that the analysis behind this derivation does not require heterogeneity

across worker groups to satisfy single-crossing conditions.

The same analysis applies when a worker’s group membership is observable to the government,

but we limit the tax authority to offering a single tax schedule for any other reason. This allows us

to entertain the possibility that some notion of fairness orhorizontal equity may compel societies

not to tax workers of different traits differently. That is,conditioning taxes on traits, such as looks,

may be viewed as morally unacceptable, even if would allow some Pareto gains. The efficiency

condition (8) is then the relevant one. It ensures that no Pareto improvements are possible using a

single tax schedule.

4.4. Quantitative Exploration using US Data

In this subsection I provide a preliminary examination of the test for efficiency for the United

States. For this purpose, I use the 1979-1990 panel of US Federal Income Tax returns from the

IRS’s SOI Public use files. The idea is to produce the empiricalanalog of the theoretical Figure 2.

Since the Mirrlees model is static, it is best interpreted ascapturing lifetime decisions over

income and consumption. Likewise, the tax schedule should also be interpreted in this lifetime

context.11 This suggests using income averages in the panel as a proxy for lifetime income. Only

taxpayers that are married and filing jointly are included, and those older that 65 are also dropped.

Figure 3 plots the estimated distribution for three samples: (a) using only individuals with at

11This lifetime perspective is likely to smooth out the relevance of any kinks in the yearly tax schedule.
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least 10 years of observations; (b) individuals appearing every year from 1982 to 1986; and (c)

individuals appearing every year from 1987 to 1990. (Incomewas adjusted by the CPI to 1990

dollars. The bandwidth was set at 10.000 dollars.) The implied elasticitiesYg0.Y /=g.Y / from

the kernel estimate of the density are shown in Figure 4. The overall picture confirms the cross-

sectional evidence in Saez (2001). Our estimates ofYg0.Y /=g.Y / become quite variable at high

income levels.

The two other elements that are needed are required to compute the Rawlsian density. We use

specification for utilityU.c; Y I �/ D c1��=.1 � �/ � ��Y �. Following Saez (2001), we simplify

the US tax code to the extreme and assumeT .Y / D :3Y . Figure 5 shows the test for a relatively

high Frisch elasticity of labor 1
��1

D 1 and � D 0; the test shows a region of inefficiency at

intermediate and high levels of income. Figure 6, on the other hand, does the same for a lower

Frisch elasticity of labor, equal to1
��1

D 1
2

and� D 1; in this case the test is passed.

5. Conclusions
In this paper I have characterized the set of Pareto efficienttax schedules in Mirrlees’ (1971)

model. The analysis provides versions of the optimality condition that may be useful in testing

this condition, or in provide a framework for quantitative work, along the lines of Saez (2001). By

avoiding the specification of a normative welfare criterion, the analysis is able to focus on elements

of the positive economy. In particular, the optimality conditions shed new light on the importance

of the skill distribution and other parameters in shaping efficient tax schedules.
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Appendix

A. Proof of Proposition 1

We perform a change in variable and write the planning problem in terms of QH.�/ D h. QY .�//:

max
Qv; QH

Z �

h�1
�

QH.�/
�

� u�1

�

Qv �

Z �

�

QH.´/d´ C � QH.�/

��

dF.�/

subject to,

Qv �

Z �

�

QH.´/d´ � v.�/ � 0 (9)

and QH.�/ 2 NI.‚/, whereNI.‚/ represents the set of nonincreasing real-valued functionsover

‚. This is now a convex optimization problem: the objective tobe maximized is concave and the

constraints are (linear) convex.

We now follow the analysis in Luenberger (1969, Chapter 8) to derive the optimality conditions.

We shall exploit thatNI.‚/ is a convex closed cone (i.e., closed under multiplication by positive

scalars) in the linear space of bounded functionsB.‚/ endowed with the supremum norm. Note

that constraint (9) can be expressed asG. QH/ 2 P , where the mappingG W NI.‚/ ! C.‚/ is

convex, taking nondecreasing functions into continuous functions, andP is the positive cone of

C.‚/, i.e the set of continuous functions. Finally, note that constraint (9) allows for an interior

point (e.g., for anyQv > v.�/ and QH.�/ D H.�/ D h. QY .�//). As a result, all the conditions

required in Sections 8.3 and 8.4 in Luenberger (1969) are met, maximizing the Lagrangian is both

necessary and sufficient for optimality.

Form the Lagrangian

L �

Z �

h�1
�

QH.�/
�

� u�1

�

v �

Z �

�

H.´/d´ C � QH.�/

��

dF.�/

C

Z �

v �

Z �

�

QH.´/d´ � v.�/

�

d�.�/;

for some nondecreasing function�.�/, the multiplier on the inequality (9), normalized so that

�. N�/ D 0.
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Applying the chain rule (Luenberger, 1969, Chapter 7), the Fréchet derivative is given by

@L.H I �v; � QH / D

Z

�

.h�1/0
�

H.�/
�

� QH .�/ � .u�1/0
�

U.�/
�

.�Qv.�/ C �� QH .�/
�

�

dF.�/

C

Z

�Qv.�/ d�.�/;

where

�Qv.�/ D �v �

Z �

�

� QH .´/ d´:

Equivalently, substituting�Qv.�/ out and integrating by parts,

@L.H I �v; � QH / D

Z

�

.h�1/0
�

H.�/
�

� .u�1/0
�

U.�/
�

�
�

f .�/� QH .�/d�

C

Z �Z N�

�

.u�1/0
�

U.´/
�

f .´/ d´

�

� QH .�/ d� C

Z

�.�/� QH .�/ d�

� �v

�

�.�/ C

Z

.u�1/0
�

U.�/
�

f .�/d�

�

Collecting terms:

@L.H I �v; � QH / D

Z

A.�/� QH .�/ d� D � QH .�/

Z N�

�

A.´/ d´ C

Z Z N�

�

A.´/ d´ d� QH .�/; (10)

where

A.�/ �
�

.h�1/0
�

H.�/
�

� .u�1/0
�

U.�/
�

�
�

f .�/ C

Z N�

�

.u�1/0
�

U.´/
�

f .�/ d´ C �.�/:

Since the Lagrangian is convex, the necessary and sufficientconditions forH 2 NI.‚/ to

maximize it are:12

@L.H I �v; � QH / � 0 for all � QH 2 NI.‚/; (11)

@L.H I v; H/ D 0: (12)

From (11), since�v can be positive or negative, we immediately obtain that

�.�/ C

Z

.u�1/0
�

U.�/
�

f .�/d� D 0:

12See Lemma A.2. in Amador, Werning, and Angeletos (2006), which is a simple extension of Lemma 1, pg. 227,
in Luenberger (1969) to allow for Gateaux differentials instead of Frechet derivatives.

17



Since� QH .�/ can be positive or negative and� QH is nondecreasing it follows that we must have

that
Z N�

�

A.´/ d´ D 0

Z N�

�

A.´/ d´ � 0:

From (12), if the original allocation hasH.�/ D h.Y.�// strictly increasing in a neighborhood

around� then it follows that

Z N�

�

A.´/ d´ D 0 ) A.�/ D 0:

In addition we must have that the resulting�.�/ is nondecreasing. Using the fact that.h�1/0
�

H.�/
�

�

.u�1/0
�

U.�/
�

� D �.�/=h0.Y.�// and that.u�1/0
�

U.�/
�

D ev

�

v.�/; Y.�/; �
�

, we obtain

��.�/ D
�.�/f .�/

h0.Y.�//
C

Z N�

�

ev

�

v.´/; Y.´/; ´
�

f .´/ d´;

must be decreasing. Differentiating this expression and setting ��0.�/ � 0 gives.F/.

In a region whereH.�/ D h.Y.�// is constant the optimality condition (12) does not yield any

additional constraints.

B. Proof of Proposition 3
I show that condition.F/ implies condition.FF/. Proposition 1 then implies the result.

The relationF.�.Y // D 1�G.Y / implies (usingd log�.Y /=d logY D �"�;Y and� 0.Y / < 0)

f .�.Y // D �
g.Y /

� 0.Y /

�
d logf .�.Y //

d log�
"�;Y D

d logg.Y /

d logY
�

d log�� 0.Y /

d logY
D

d logg.Y /

d logY
C 1 � "�;Y �

d log"�;Y

d logY
:

Multiplying .F/ through by"�;Y > 0 and substituting this last expression gives

�
d log1 � T 0.Y /

d logY
�

T 0.Y /

.1 � T 0.Y //

�

d logg.Y /

d logY
�

d logh0.Y /

d logY
C 1 � "�;Y �

d log"�;Y

d logY

�

� "�;Y :

After rearranging, this yields.FF/.

C. Proof of Proposition 4
For any such change in the tax schedule there is an intervalŒ�1; �2� of agents that now prefer

to produce OY D Y. O�/. This induces an allocation that cannot reduce welfare and must strictly

increase it for agents in the intervalŒ�1; �2�. The rest of this proof shows, that for sufficiently small
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", the induced allocation is resource feasible.

I shall express�2 D ‚2.�1/ and".�1/ as functions of�1. The two indifference conditions

v.�1/ D u. Oc C ".�1// � �1
Oh;

v
�

‚2.�1/
�

D u. Oc C ".�1// � ‚2.�1/ Oh

determine these functions implicitly. Note that‚2. O�/ D O� and". O�/ D 0. Differentiating these

expressions and applying L’Hospital’s rule yields the following values for the derivatives of‚2.�/

and".�/ which will be needed below:

‚0
2. O�/ D �1 and

3

2
‚00

2. O�/ D �

 

Y 00. O�/

Y 0. O�//
C

h00.Y. O�//

h0.Y. O�//
Y 0. O�/

!

and

"0. O�/ D 0 and "00. O�/ D �
1

�

�

1 � �. O�/
�

Y 0. O�/;

which uses the definition1 � �.�/ � �h0.Y.�//=u0.c.�//.

The loss in resources is given by

�.�1/ �

Z ‚2.�1/

�1

�

Y.�/ � c.�/ � . OY � Oc/ C ".�1/
�

f .�/;

with �. O�/ D 0.

Tedious calculations establish that�0. O�/ D �00. O�/ D 0 and

�000. O�/ D �3‚00
2

�

Y 0. O�/ � c0. O�/
�

f . O�/ � 2
�

Y 00. O�/ � c00. O�/ C "00. O�/
�

f . O�/

� 4
�

Y 0. O�/ � c0. O�/
�

f 0. O�/ � 6"00. O�/f . O�/:

If �000. O�/ � 0 then there exists a�1 < O� close enough toO� so that�.�1/ < 0 and resources rise

from the perturbation. The perturbation is then resource feasible and creates a Pareto improvement.

Dividing �000. O�/ by �.Y 0. O�/ � c0. O�//f . O�/ > 0 implies that�000. O�/ � 0 if and only if

3

2
‚00

2. O�/ C
Y 00. O�/ � c00. O�/

Y 0. O�/ � c0. O�/
C 2

f 0. O�/

f . O�/
C 3

"00. O�/

Y 0. O�/ � c0. O�/
� 0:

Note thatY 0. O�/ � c0. O�/ D �. O�/Y 0. O�/ andY 00. O�/ � c00. O�/ D � 0. O�/Y 0. O�/ C �. O�/Y 00. O�/ so that

Y 00. O�/ � c00. O�/

Y 0. O�/ � c0. O�/
D

� 0. O�/

�. O�/
C

Y 00. O�/

Y 0. O�/
and

"00. O�/

Y 0. O�/ � c0. O�/
D �

1

O�

1 � �. O�/

�. O�/
:
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Substituting these expressions and the one found earlier for 3
2
‚00

2. O�/ and cancelling yields condi-

tion (5).
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