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Abstract

| study the set of Pareto efficient tax schedules in Mirrlees’ optimal tax freodteprovide a
simple test for the efficiency of a given tax schedule. The efficiencgition generalizes the
the well-known zero-tax-at-the-top result: taxes should be low in regidresenvthe density
of income falls rapidly. Both the set of efficient and inefficient tax scheslis large. | use
the framework to explore the optimality of a flat tax, to bound the top tax rate ohénear

schedule, and to evaluate the efficiency of a tax system that does mhti@oon observable

traits.
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1. Introduction

This paper derives the restrictions on the income-tax adeathplied by efficiency. | work with
Mirrlees’s (1971) original framework, but, instead of maizing a Utilitarian objective or any
other social welfare function, | derive the conditions reed by constrained Pareto efficiency (e.g.,
(%) and (% %) below)—I adopt the positive aspect of Mirrlees’s model, bat the normative
one. In other words, | characterize tax schedules that ¢drenceformed without harming some
individuals. Conversely, | identify tax schedules that canmdéformed to everyone’s benefit.

The main results of the analysis are as follows:

1. For any increasing income-tax schedule, there exist$ afskill distributions for which
the allocation is Pareto efficient and another for which itas. Thus, theory alone, without
empirical knowledge on the distribution of skills, prové&deo guidanceanything goes

2. Any income-tax schedule in place induces a distributibim@me which identifies the un-
derlying skill distribution (Saez, 2001). One can then eltarize the entire set of Pareto
efficient tax schedules consistent with it. Both the set otiffit and inefficient tax sched-
ules is “large”. In particular, this shows that Pareto edfidy is not a vacuous requirement.

3. | derive a simple test for the efficiency of any current taelexlule. A graphical version of
this test compares the actual distribution of income againdypothetical one, defined as
that which would have made the tax schedule optimal for a Raw(see Figure 2).

4. The restrictions | derive on the shape of the tax scheduide seen as a quantitative gener-
alization of the well-known qualitative “zero-tax-at-tha@p” result.

5. Simple formulas are obtained for the following: (i) tottdge Pareto efficiency of a flat tax;
(i) to bound the top tax rate of a nonlinear schedule; angt@ievaluate the efficiency of a
tax system that does not condition on observable traits.

Looking forward, it might be interesting to see how far ona ga verifying whether the con-
ditions for efficiency hold in the United States and otherrddes. | provide a tentative analysis
along these lines for the United States. The rest of thedntttion discusses related literature.

Diamond (1998) and Saez (2001) reinvigorated the intenegliirlees’ model of optimal tax-
ation. Both papers explored the importance of the underlgkily distribution, as well as other
parameters. | adopt the perspective of Saez (2001) thaigtréodtion of income should be used
to identify the underlying distribution of skills throughe lens of the model. | express my tests
for efficiency directly in terms of the distribution of inc@n

Applied work in this area typically adopts particular weddunctions and explores the so-
lutions to the optimal tax schedule obtained numericalliync® the choice of a welfare function
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cannot be determined empirically, sometimes several veeffanctions are employed and the ef-
fects of this choice are highlighted (Tuomala, 1990; Diathat998; Saez, 2001). In contrast,
my paper inverts the direction of these exercises and askthehan existing or hypothetical tax
schedule is consistent with Pareto efficiehciMore generally, | emphasize studying teet of
efficient tax scheduleas opposed tthe optimal tax schedul®r a particular welfare criterion. |
show that such an approach can yield useful new insightseandins tractable enough for practical
guantitative explorations, of the kind pursued by Saez 12@@d Gruber and Saez (2002).

A more theoretical line of research advocates and exploRegeto efficient approach to opti-
mal taxation (see Stiglitz, 1987, and the references therki particular, Brito, Hamilton, Slutsky,
and Stiglitz (1990) study Pareto efficient taxation andwesome qualitative implications, such as
a “zero-tax-at-the-top” results. However, these resuwdtaat greatly restrict the income tax sched-
ule. Less explored are the implications of Pareto efficietheyoverall shape of the income tax
schedule. In a recent paper, Chone and Laroque (2006) stusiyabpaxation with quasi-linear
preferences. They focus on the optimality of negative nmaigax rates with discrete labor supply
choices, but their approach and methodology is close t@tper in that Pareto efficiency is used
as the criterion for optimality.

In addition to these formal contributions, economists hiagen ardent advocates of various
tax reforms. In particular, flat taxes have been proposedfmieacy, simplicity and even fairness
considerations (e.g. Friedman, 1962; Hall and Rabushk#&,)198t, these proposals are seemingly
at odds with the output from Mirrlees’ (1971) model, whicmststently produces nonlinear tax
schedules. In this paper, | show that this is misleadingtdbets, as well as more progressive tax
systems, may well be Pareto efficient within Mirrlees’ eaoiyo

2. Preliminaries

The model economy is populated by a continuum of workers.skoplicity, | assume additively
separable preferences of the following fotm:

U(c,Y,0) = u(c) — 0h(Y),

whered indexes the heterogeneous disutility from producing ouXpfi It is worth remarking that,
given the focus on Pareto efficiency, no interpersonal corsgas of utility will be needed. Thus,

1Saez (2001, pg. ) suggests, but does not pursue, the pigsilf such an approach.

2Chone and Laroque (2005) study the Rawlsian optimal taxdsdbeand compare it to the optimal tax schedule
for a Utilitarian planner.

3However, some of the notation | employ in what follows is mgemeral, in preparation for a possible extension
to the more general case

4This specification obtains from a common utility functionthvheterogeneity in productivity if the disutility of
effort is a power function.



the cardinality of preferences is completely irrelevard anly the ordinal features of preferences
matter. Let the expenditure functiettv, Y, ) represent the inverse 6f(-, Y, ). Let F(0) be the
distribution off in the population. | assume there are no mass points, sohgaaligtribution can
be represented by its density6).

Now take any tax functioff’ (Y'). Workers maximize their utility and obtain

v(0) = myaxU(Y —T(Y),Y,0).

For a worker of typé, letc(0) andY (0) be the resulting allocation (solving this maximization) fo
consumptiony —T'(Y), and output}’, respectively. Note that another expression for conswnpti
isc(0) =e(v(0),Y(0),0).

An allocation(c(0), Y (0)) is resource feasiblé

/ (Y(6) — ¢(8)) dF(6) + ¢ > 0

wheree is the net endowment (non-labor output net of governmenswmption). The allocation
generated by some tax schedule is (constraiRad@to efficienif there is no other tax schedule
that induces a resource feasible allocation where nobodgrise off and some workers are strictly
better off.

On first pass, | simplify by assuming thatY) is differentiable and induces a continuous,
differentiable and strictly monotone allocation (i.e.,"bbanching”). It will be useful to define the
marginal tax rate

Uy (c(9). Y(©).0) _ | 0h'(¥(9))

(O =T'(Y(6) =1+ Uc(c(0).Y(0).0) ~ u'(c(6)

=1—-ey(v(0),Y(0),0).

3. Conditions for Pareto Efficiency

In this section | introduce the Pareto planning problem aedve the necessary and sufficient
conditions for optimality.

3.1. The Planning Problem

An allocation(c (), Y(0)), that delivers utilityv(0), is Pareto efficienif and only if (Y (6), v(0))
solves the following planning problem:

51f some feasible allocation does not solve this problem there exists an alternative allocation where the resource
constraint is slack that provides the same or more utilitpaketo improvement would always be possible: if another
allocation provided the same utility but increased netueses, then these resources can be used to construct another
allocation that increases utility for some workers and sotece feasible. Conversely, if an allocation solves this
problem, then all alternative allocations that provide shene or more utility cannot satisfy the resource constraint



max / (Y (0) —e(5(0),Y (0),0)) dF (6)
Y, v

subject to,

5
0(6) = 5(0) —/0 Up(e(3(2).Y (2).2). Y (2).2)dz
Y (9) nonincreasing
0(60) = v(0)

wherev(60) represents the our original utility profile. The objectigetd maximize aggregate net
resources, output minus consumption. The first constraistmply the familiar condition that
v = Uy, but in integral form. The second constraint imposes thgiuilbe monotone decreasing
in 6, so that more skilled workers produce more. Together thesebnstraints ensure incentive
compatibility. The last constraint requires that workees ot made worse off.

To verify whether the original allocation solves this plamghproblem, | evaluate first-order
conditions at the original allocatio(¥' (), v(0)). Since first-order conditions are necessary, if
they are violated it indicates that the original allocat@annot be Pareto efficient. Conversely,
because a transformed version of this problem (chodsimgtead ofY') is convex, the first-order
conditions are sufficient. Hence, if they are verified theyioal allocation solves the planning
problem.

To derive the first-order conditions, define the Lagrangian

£ E/(?(e)—e(ﬁ(e),?(e),e)) dF(0)

0
+/ (5(9)—5(é)+/0 Uo(e(ﬁ(Z),f(z),z)j(z),z)dz) du(9).

Integrating the second term by parts,

£ =/(Y(9)—e(5(9),f(9),9)) dF () = 5(O)(9) + n(@)o (o)

+/ﬁ(@)du+/M(Q)Ug(e(ﬁ(e),Y(B),Q),Y(Q),@)d@.

since if there were another allocation with higher utility 5ome workers that yields the same net resources, then one
can find another one that increases net resources thaesisfliesv (6) > v(6).



3.2. Efficiency Conditions
The first-order condition fo¥ (9) evaluated afY (8), v(6)) gives

(1= ey (0(6). Y(0),0)) £(6) = —(0) (Use (e(v(0). Y(6).6). Y(8), 0) e, (v(6). Y(9). 0)
+ Upy (e(v(e), Y(6).6).Y(9). 9)),

implying £6)

n(0) = f(e)m. (1)

The first-order condition fov(6) givesu(6) > 0. Likewise, if  is bounded away from zero, the
first-order condition fow () givesu(0) < 0. Thus,

7(#) >0 and z(6) <O. 2)
For interior@, the first-order condition with respect ig6) evaluated atY (6), v(0)) gives

[1(0) < ey (v(6),Y(6),0) £(6). (3)
Differentiating equation (1) gives

| O £1O) WY
) = (o) [ * _
#) =l )(r(m 70 T W)

Substituting equations (1) and (4) into the first-order ¢boid (3) and rearranging gives

Y/(Q)) . (4)

(dlogr(e) dlog f(8) dlogh’(Y(6))
7(9) -

dlogo d log 6 d log 6 ) =1-700), (%)

a restrictions on the shape of the tax function and the ailmtét generate§.The integral form of
this efficiency condition is

7
©6)70) +/0 f(8)dé is nonincreasing (/%)

h'(Y(8)) ' (c(0))

which is derived formally in Appendix A, requires weakerfdientiability requirements on the tax
schedule and the resulting allocation.

This expression resulted in an effort to find a simple expoesdut unnecessarily assume®) > 0 so that
log z(0) is well defined. This will be rewritten in future versions.



Proposition 1. Given the utility functiorU/(c, Y, ) and a density of skillsf(8), a differentiable
tax function7 (Y') inducing an allocationc(6), Y(0)) is Pareto efficientf and only if condition
(/%) holds, wherer (§) = T'(Y(6)).

Notably, the distribution of skills, through its effect @nlog f(0)/d log9, is key. Indeed, for
any initial tax schedule and allocation one can violatesatisfy the inequality by an appropriate
choice of the distribution of skills. The next result follewummediately from this observation.

Proposition 2. For any tax schedul& (Y') and its resulting allocation there is a set of skill distri-
butions F(#) and net endowmentsfor which the outcome is Pareto efficient and another set of
skill distributions F(0) and net endowmentsfor which it is Pareto inefficient.

Suppose one is given the utility functiomsnd the disutility of labor functioh. Condition(%)
can then be implemented after identifying the distributbdrskills and the implied allocation as
a function off. This can be easily done. First, for any smooth tax schefigl€), the workers’
maximization problem gives an allocation for outpi() € argmaxtU(Y —T(Y), Y, #). Second,
any worker’s choice of output uniquely determines éhfeom the first-order condition

u'(Y —T())

0Y)=(01-T'(Y)) W)

Now suppose one observes the distribut®( ) of outputY across workers. This implies the
relation F(6(Y)) = 1 — G(Y). If we assume the tax schedule is sufficiently smooth, soithat
induces a distribution of output representable by a detiséy /(0(Y)) = —g(Y)/0'(Y). Thus,
in this way, one identifies the skill distribution for skilisom the distribution of observed output
and the tax function (see Saez, 2001).

It is also possible to rewrite conditiof) in a number of ways. Appendix B shows how it
can be expressed directly in terms of the density over owtptl) and the tax schedulE(Y) as
follows:

() dlogd—-T7T'(Y)) dlogh’(Y) dlogg(Y) 1 dlogegy
dlogY dlogY dlogY dlogY
dlogd-T'(Y dlogh’(Y dlogu’'(Y —=T(Y
<2 a( (¥)) gh'(Y) dlogu'( (¥)) (%)
dlogY dlogY dlogY

whereeg y is the elasticity ob(Y') with respect tar’,

_|YOY)|  dlog(l—T'(Y)) dlogu'(Y —T(¥)) . dlogh'(Y)
Y =1y | T d1ogY dlogY dlogY

Although more involved thait¥), this condition can be evaluated directly with informatiom
output and taxes, without the need to transition throughdéetification ofé and its distribution.
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It is useful to think of this result as a test for efficiency ofyariplet (U, T, g). The formal proof
of this result is in Appendix A.

Proposition 3. Given the utility functionU(c, Y, 8), a tax function7' (Y') inducing a density of
outputg(Y) is Pareto efficientf and only if condition (s %) holds.

A few remarks on tax schedules that are not differentialdeimorder. In the model, if the
tax schedulél’ (Y') has concave kinks then some mass of workers will accumutdteese points
(convex kinks are irrelevant). Even in such bunching casmsditions(sk) and( %) continue to
be sufficient for optimality; these inequalities are alsogssary over intervals where agents are not
bunched. Note that the skill densif(#) over an interval of workers that are bunched at a kink in
the tax schedule cannot be identified by observing theindgwipoices. Then, without independent
information on the skill distribution, it follows that coitins (3%) and (% %) are also necessary
for optimality.

In the real world, however, statutory tax schedules wittk&ido not seem to induce workers
to accumulate at these points. There are several possiplanations for this. For example,
workers may face uncertainty, for any given work effort himit output. In addition to mechanically
avoiding bunching in terms of output, this smooths the relwao their work effort choices which
prevents bunching in terms of work effort. Similar effectaynresult without uncertainty in a
dynamic model where skills are accumulated over the lifdecy@lthough richer models could
incorporate such elements, it seems more sensible witeindhtext of the present static Mirrlees
(1971) to interpret the relevant tax schedule as smooth.

3.3. A Simple Reform and Laffer Effects

| now provide a variational result that provides intuitiamr the form that the efficiency condition
(%) (and by associatiofix %)), and especially for the crucial role played by the disttidou of
skills. The result states that,dflog f(0)/d log 6 is high enough, a particularly simple tax reform
can create a Pareto improvement.

Proposition 4. Suppose an increasing and differentiable tax schedUlE) induces a feasible
allocation such that the inequality

9 d logz(0) 2dlogf(@) dlogh’(Y(9))
T()( dlogf dlogf B dlogf )

< 3(1—-1(9)) (5)

is violated around some interior poiét Then, for some > 0 the alternative tax schedule

Fory {T(Y(en e =70
T(Y) Y # Y(H)



Figure 1: Alocal tax reform that reduces taxes discontisiyoat one poinf’. Neighboring worker
to the right ofY decrease output and pay less taxes. Neighboring workee teftiincrease output
and may pay more taxes. For a small reform, the net effect>oretzeipts depends critically on
the rate of growth of the densig(Y) (and, hence, of (9)).

induces a feasible allocation that Pareto improves theioagone.

The proof is in Appendix C, but the main argument is as followssat workers are better off
facing a lower tax schedule is immediate. What is less obviswghether tax collections rise
or fall, which is equivalent to asking whether the resultailpcation is resource feasible or not.
The reform induces some neighboring workers to producededsothers to produce more. Tax
receipts are definitely lost from the former group, but cagdi@ed from the latter. This situation
is illustrated in Figure 1. The relative fraction of worken®ving up and down is then critical. A
low enough value o$’(0)/g(0) or a high enough value of’(0)/ f(6) makes the relative fraction
of workers that increase their output favorable enoughhabttx total revenues rise.

A test for efficiency based on conditi¢sk ) is more powerful than one based on inequality’(5).
That is, the simple tax reform used in Proposition 4 is poulezhough to detect some possible
Pareto improvements, but it misses others requiring atemtax reforms.

The simple variation provided by Proposition 4 illustraties general point that a Pareto im-
provement requires a reduction in the tax schedule. Otlsenwfitaxes are higher in some region,
then workers producing there would be better off with thgioal schedule.

Proposition 5. If the tax schedul& (Y') induces an allocation that Pareto dominates that implied

’If condition (%) holds then it is possible to show, using the relation (6) = 6h'(Y(0))/u’(c(9)), that
(0)d log f(0)/d logf < 2(1 — z(0)). This then implies the inequality (5).
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by To(Y), thenT; (Y) < To(Y) foranyY € argmax (Y — T(Y), Y, 6).

If the resource constraint originally held with equalityet the alternative tax schedule must
collect the same or more revenue. In this sense, Pareto vepents require a Laffer-like effect:
lower taxes that do not lower tax revenue, that “pay for thelwes”. However, the point is more
subtle than a lowering of taxes across the board yieldingnarease in revenue or for the revenue
increase to be uniform across workers. In particular, whiax aeform targets a particular point on
the schedule, lowering it, total revenues may rise evereifévenue collected from some workers
falls. Indeed, except possibly at the top, revenues ceitetbm some workers always decrease.

3.4. A Graphical Test with a Rawlsian Connection

| now provide a simple reinterpretation of the test for ogtiity (% % ). If the marginal tax rate
T'(Y) is everywhere positive then this condition is equivalent to

dlogg(Y)

d10gY >a(Y), (k')

wherea(Y) is a function ofY that can be computed given any tax schedul®) and a specifica-
tion for u(c) andi(Y). Leta(Y) be the unique density that satisfies this condition with égua
dloga(Y)/dlogY =a(Y):

exp( [y a(z)dz)
fooo exp(fOY a(z) dz)
This density has the following interpretation. If the taxiedule7 (Y) generates an income den-

sity «(Y') then this schedule is optimal for a Rawlsian social welfarefion. That is it solves
ming v(6) subject to incentive compatibility and resource feadipilequivalently, one can set up

aY) =

the problem as the maximization of net resources, but imgppasmnstant minimum(f) = v. |
call «(Y) the Rawlsian density.
Sinced loga(Y)/d logY = a(Y), condition(k %) is equivalent to

g(Y)
a(Y)

is nondecreasing (k")

This admits a simple graphical interpretation. To satibfg tondition, the density(Y) should
cross the Rawlsian density at most once from below. Indeesthoiild cross any multiple of the
densityAa(Y), forany A > 0, from below at most once. In other words, if one plots the Reanls
density and its family of multiples, then the actual densitputput should cross all of these from
below. Figure 2 illustrates a density that passes the test.
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Figure 2: An example of the graphical test. The dashed lihew $he Rawlsian density and scaled
versions of it. The solid line represents a density thatgmtse test for efficiency.

By implication, to pass the test for efficiency, a distribataf income must first-order stochasti-
cally dominate the Rawlsian distribution of income. Thushd distribution of income is stochasti-
cally dominated by the Rawlsian distribution, then the téhesluile in question cannot be efficient.
The Rawilsian distribution is the lowest distribution (in thense of first order dominance) that
passes the efficiency test.

3.5. Quantifying Potential Inefficiencies

Suppose a tripletU, T, g) does not pass the test for Pareto efficieyk). This is a qualitative
conclusion, but what is a natural quantitative measurei@irmportance of the inefficiency?

The analysis suggests using the difference between themized net resources, obtained the
planning problem, and the original value of net resources

A= / (Y*(6) — &*(8)) dF(6) — / (Y(6) — ¢(8)) dF(8).

The welfare gain measure requires computing the solutidghgglanning problem, after identi-
fying the density of skillsf(0) (as discussed in Section 3). This measure is expressed in con
sumption units and represents the additional resourcéstldd be saved by implementing the
planning problem’s solution. Of course, such resourcenggvcould then be used, at another step,
to increase the utility of some workers still further.

In addition to saving resources, the planning problem’stsmh makes some workers strictly
better off. The measurA does not account for these gains. However, this omissiontiacci-
dental: while information on these utility improvementsyniee of complementary interest, any
attempt to summarize them into a single number runs countitiet Pareto-efficiency spirit of the
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exercise. One cannot do so without making interpersonapemisons, or using some particular
social welfare functiof.

4. Some Explorations

In this section | explore implications of efficiency conditiderived in the previous section.

4.1. The Tax Rate at the Top

If 6 is not bounded away from zero (i.e., productivity is unbceohébove), the support for the
distribution of output is potentially unbounded above. WHestrictions does Pareto efficiency put
on this top tax rate? In this subsection | show that it impasespper bound.

Suppose one is asked to verify the efficiency of a tax schdduighich the asymptotic tax rate
T = limgot(f) = limy_ T'(Y) exists and is positive and less than 1. In addition, suppose
the tax schedule is such that the limits of all the termg-kwk) exist. Assume power utility
u(c) =c'79/(1 —o)andh(Y) = kYY" foro > 0,7 > 1 andk > 0.

Asymptotically, many of the terms ik %) vanish. Sincel”’(Y) and ey y converge to a
constant and the limits are assumed to exist,

im dlog(1—-T'(Y)) —0 and d logeg.y _

Y =00 dlogY dlogY

Furthermore, for high income, consumption becomes prapwtto income, so that

jim 4109 (Y —T)) _ g im
Y —o0 dlogY Y- dlogY

dlogh'(Y)
—— L —p—1.

Substituting these expressions into conditigék) gives the following upper bound on the top
tax rate:

. _o+n-—1
T<————.
¢+n—2
wherep = —limy_ o %ﬁ;g). The value ofp — 1, which must be positive to ensure that income

has finite mean, is called the asymptotic Pareto parartfeter.

Note that the boundis less than 1 ifand only#1 > 0. Saez (2001) argues that for the United
Statesp ~ 3, which implies that this condition has bite for < 2. Recall that our specification
of preferences is free of cardinality. Thusshould not be interpreted as risk-aversion, but rather

8In particular, some welfare function may be completely tewéd, or trivially so, by increases in utility for some
particular set of workers, while others may be particuladypsitive to these increases. This ambiguity cannot be
resolved without taking a stand on the social welfare fumcti

9See Diamond (1998), Saez (2001) and Roberts (2000) for aptar rate formulas derived for specific welfare
functions.

10The Pareto distribution had a density that is a power fungtigY ) = AY ~¢, so thatd logg(Y)/d logY = —o¢.
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as controlling the income and substitution effects for faline natural benchmark is logarithmic
utility o = 1, where income and substitution effects for labor canceliaat the balanced-growth
specification. Another is the quasi-linear case witk= 0, which may be sensible given the low
estimates of income elasticities for labor. The quasidirspecification was adopted by Diamond
(1998).

The upper bound accords well with intuition. As — oo, for fixed o andn, the income
distribution has a very thin upper tail and the upper boundhentax rate converges to 0. Thus,
the case with thin tails behaves as the case with bounddsd, siilere the tax rate must be zero at
the top. Also, for fixedr andg, asn — oo the bound converges to 1. Thus, any tax rate may be
justified on efficiency grounds when labor supply is infinjtelelastic.

4.2. A Flat Tax

Suppose a proportional tax is in place, so thal') = tY. Then the calculations are very similar
to those from the previous subsection and yield

_ o+n—1
T < . (6)
= " dlogg(Y)
_dlogY +n—=2

Now suppose that taxes are linear, but not necessarily pgropal. Specifically, assumg(Y) =
7Y — T, with a positive transfef, > 0. Then

= <
dlogY Tty °T—i+Tyr - *

Cdlogu'(Y =T(Y))  1-T'(Y) _ -7

which starts a0 for Y = 0 and rises monotonically te for Y — oo, so that

d logepy -
dlogY

It follows that (6) remains a necessary condition e ) and, thus, for the efficiency of a flat
tax.

Additionally,
d log _dlogu’(Y —T())\ dlog 1—-1 B To/Y -
dlogY dlogY T dlogY \1—T+Ty/Y) 1—-7T4+Ty)Y ~
implying
d logepy - o

dlogY “o+4+n-—1
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Hence a sufficient condition fark %) to hold is that

n—1 n—1

< .
dlogg(Y) dlogg(Y)
~dogy tN24 55 gy TN

T <

(7)

4.3. Observable and Unobservable Heterogeneity

Suppose that, in addition to skill heterogenéityworkers are sorted into groups which affect their
preferences and the distribution of skills within their gpo For example, one group may supply
labor more elastically than another, or one group may hayeeniaverage skills than another. In
general, a worker’s group membership may be observed onnibightax authority. We treat both
cases in turn; Combining the two is straightforward.

Specifically, suppose there are= 1, ..., I groups, with fractionsr!, ..., =’ of the popula-
tion. Workers in group have utility U’ (c, Y, 8). The skill @ within groupi is distributed with
density f7(6"). Each worker knows their own group and skill type.

When the group membership of a worker is observed by the tehodtyt then it has the
potentialto condition taxes on it. That is, it can tailor a tax schedli¢Y) for each group.
Within each group, the analysis is then exactly as beforectndition for efficiency(%) should
hold for each worker group = 1,..., I, evaluated separately using each group’s tax schedule
T'(Y) and resulting allocation.

It then follows that, although group-contingent tax scHedare possible, it may be Pareto
efficient to offer the same schedule to all groups, i.e., tal%¢Y) = T/ (Y). That is, although
taxing an observable trait is feasible it may be Pareto efitanot to do so. This is the case as long
as condition(%) holds for each group, when each group faces the same schéchiteis more
likely whenever workers different across groups, but naidmymuch—since then if conditiofy)
holds for one group it will hold for similar another.

This conclusion contrast with the implications of the tygicormative analysis conducted
within the Mirrlees (1971) model and and other optimal-taoastudies that adopt a Utilitarian
social welfare function. In such settings, conditioningadiravailable information is strictly opti-
mal. For example, if a certain trait is associated with higlells, then the optimal solution will
generally tax this trait to redistribute towards other waysk

When a worker’s group membership is not observed by the tehoaty, then it cannot do
better than by imposing a single tax schediilg”) for all worker groups = 1,...,7. We now
ask, what is the necessary condition for Pareto efficienghigicase? It turns out that it can be

13



iy (g = 10,000 of Average Income Over Varying Time Periods i the Uniled Sates ansity (bandwidth = 10,000) of Average Income Over Varying Time Periods in the United States

——>=10 years during 1979-1990 |
1982-1986 —— >=10 years during 1979-1990
18 1987-1990 ——— 1982-1986

1987-1990

0 0.5

1 15 2 2.5 2 4 6 8 10 12 14 16 18
Average Income (in 1990 dollars) <10 ° Average Income (in 1990 dollas) <10 ¢

Figure 3: Density of income(Y). Figure 4: Implied elasticity”—g(’g).

expressed as an appropriate average of condison

( 7 (0) (d|ogrf(9) dlogf"(e)_dlogh"’(Y"(G)))_l)<o (8)
| <0.

N
i iYi .
2 78 (Y'(6) —7i0) \ dlogo 41090 d1og6

i=1
The proof of this condition is omitted, but will be includedl latter versions of the paper. It is
worth briefly remarking that the analysis behind this ddiradoes not require heterogeneity
across worker groups to satisfy single-crossing condstion

The same analysis applies when a worker’s group membessbiyservable to the government,

but we limit the tax authority to offering a single tax schkxior any other reason. This allows us
to entertain the possibility that some notion of fairnestanizontal equity may compel societies
not to tax workers of different traits differently. That enditioning taxes on traits, such as looks,
may be viewed as morally unacceptable, even if would allomes®areto gains. The efficiency
condition (8) is then the relevant one. It ensures that netBamprovements are possible using a
single tax schedule.

4.4. Quantitative Exploration using US Data

In this subsection | provide a preliminary examination af tiest for efficiency for the United
States. For this purpose, | use the 1979-1990 panel of USr&lddeome Tax returns from the
IRS’s SOI Public use files. The idea is to produce the empidanalog of the theoretical Figure 2.
Since the Mirrlees model is static, it is best interpreteda&sturing lifetime decisions over
income and consumption. Likewise, the tax schedule shdstullze interpreted in this lifetime
context!! This suggests using income averages in the panel as a prolfefime income. Only
taxpayers that are married and filing jointly are includetd those older that 65 are also dropped.
Figure 3 plots the estimated distribution for three sampl@ using only individuals with at

UThis lifetime perspective is likely to smooth out the relewa of any kinks in the yearly tax schedule.
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Figure 5: Test for.ly = 3,0 = 0. Figure 6: Testfor 2y = 1,0 = 1.

least 10 years of observations; (b) individuals appeanmgyeyear from 1982 to 1986; and (c)
individuals appearing every year from 1987 to 1990. (Incomas adjusted by the CPI to 1990
dollars. The bandwidth was set at 10.000 dollars.) The mapélasticitiesV' g’(Y)/g(Y) from
the kernel estimate of the density are shown in Figure 4. Meeadl picture confirms the cross-
sectional evidence in Saez (2001). Our estimatesgdtY )/g(Y) become quite variable at high
income levels.

The two other elements that are needed are required to certipuRawlsian density. We use
specification for utilityU(c, Y;0) = ¢!7° /(1 — o) — Ok Y". Following Saez (2001), we simplify
the US tax code to the extreme and assuniE) = .3Y. Figure 5 shows the test for a relatively
high Frisch elasticity of Iabo;'?i—1 = 1 ando = 0; the test shows a region of inefficiency at
intermediate and high levels of income. Figure 6, on therotla@d, does the same for a lower
Frisch elasticity of labor, equal tﬁ’i—l = % ando = 1; in this case the test is passed.

5. Conclusions

In this paper | have characterized the set of Pareto effit@nschedules in Mirrlees’ (1971)
model. The analysis provides versions of the optimalitydioon that may be useful in testing
this condition, or in provide a framework for quantitativenk, along the lines of Saez (2001). By
avoiding the specification of a normative welfare criterittre analysis is able to focus on elements
of the positive economy. In particular, the optimality cagimhs shed new light on the importance
of the skill distribution and other parameters in shapirigieint tax schedules.
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Appendix

A. Proof of Proposition 1

We perform a change in variable and write the planning probifeterms of H (8) = h(Y (6)):

~ 6 ~ ~
qu/ (h—l(H(e)) —u ! (Q—/ H(z)dz + eH(e))) dF(0)
6

o.H
subject to,

0 ~
g—/ A(z)dz —v(®) > 0 )
")

andH (0) € NI(®), whereNI(®) represents the set of nonincreasing real-valued functives
®. This is now a convex optimization problem: the objectivdéomaximized is concave and the
constraints are (linear) convex.

We now follow the analysis in Luenberger (1969, Chapter 8ktove the optimality conditions.
We shall exploit thatV/(®) is a convex closed cone (i.e., closed under multiplicatippdsitive
scalars) in the linear space of bounded functi®®) endowed with the supremum norm. Note
that constraint (9) can be expressed®$7) € P, where the mapping : NI(©) — C(©) is
convex, taking nondecreasing functions into continuounstions, andP is the positive cone of
C(®), i.e the set of continuous functions. Finally, note thatstoaint (9) allows for an interior
point (e.g., for anyi > v(0) and H(#) = H(0) = h(Y (9))). As a result, all the conditions
required in Sections 8.3 and 8.4 in Luenberger (1969) aremmeetimizing the Lagrangian is both
necessary and sufficient for optimality.

Form the Lagrangian

~ 9 ~
£ = / (h_l(H(G)) —u ! (y—/ H(z)dz + QH(Q))) dF(6)
[

0
+/(y—/0 H(z)a’z—v(@)) dA(6),

for some nondecreasing functidr(), the multiplier on the inequality (9), normalized so that
A(0) = 0.
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Applying the chain rule (Luenberger, 1969, Chapter 7), tiieRet derivative is given by
AL(H; Ay, Agg) = f ((h_l)/(H(Q))AFI(G) — Y (U®))(As(0) + eAﬁ(e))) dF(0)
+ / A(0)dA(0),
where

0
A () = Av—/e A5 (2)dz.

Equivalently, substituting\3(6) out and integrating by parts,

0L(H; Ay, Aﬁ) = / ((h_l)/(H(Q)) — (u_l)/(U(Q))Q)f(Q)AFI(9)d9
]
+/([9 (u_l)/(U(Z))f(Z)dZ)AI:I(Q)d@+[A(9)Ag(9)d9
—A{}@ry/w*ﬂvw»ﬂ@wﬁ

Collecting terms:

8 g
0L(H: Ay, Aj) :/A(Q)AH(O)dQ - Aﬁ(Q)[ A(z)dz—i—// A(z)dz dAz(6). (10)
2 0

where

g
A9) = ((h—l)/(H(e)) — (u—l)’(U(e))e) f(0) + /9 w " (U()) f(0)dz + A(0).

Since the Lagrangian is convex, the necessary and sufficterditions forH € NI(®) to
maximize it are*?

0L(H; Ay, Agg) >0 forall Ay € NI(O), (11)
9L (H:v, H) = 0. (12)

From (11), since\, can be positive or negative, we immediately obtain that

M@+/w*ﬂwmnwwe=a

12See Lemma A.2. in Amador, Werning, and Angeletos (2006)ckvis a simple extension of Lemma 1, pg. 227,
in Luenberger (1969) to allow for Gateaux differentialst@@sl of Frechet derivatives.
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Since A ;(0) can be positive or negative aml; is nondecreasing it follows that we must have
that

6 6
/ A(z)dz =0 / A(z)dz < 0.
) 6

From (12), if the original allocation hal () = h(Y(0)) strictly increasing in a neighborhood
aroundé then it follows that

6
/A(z)dzzo = A)=0.
6

In addition we must have that the resultib@) is nondecreasing. Using the fact tIQhrl)’(H(G))—
w™1)(U(9))0 = «(0)/h'(Y(9)) and that(u")"(U()) = e, (v(0). Y (). 6), we obtain

7(0)f(0)

6
h’(Y(Q)) + [; €y (U(Z)’ Y(2), Z)f(Z) dz,

—A(0) =

must be decreasing. Differentiating this expression attthge-1'(0) < 0 gives(x).
In aregion whered (0) = h(Y(0)) is constant the optimality condition (12) does not yield any
additional constraints.

B. Proof of Proposition 3

| show that conditior(+) implies condition(% % ). Proposition 1 then implies the result.
TherelationF (8(Y)) = 1-G(Y) implies (using/ log8(Y)/d logY = —egy andd’(Y') < 0)

. g(Y)
FOM) = =54
dlog f(6(Y)) dlogg(Y) dlog—60'(Y) dlogg(Y) dlogegy
—— &9,y = — = +1- €9,y — .
dlogf dlogY dlogY dlogY dlogY

Multiplying (%) through byey y > 0 and substituting this last expression gives

_dlogl=T'(Y)  T'(Y) dlogg(Y) dlogh'(Y) . _ dlogegy -
d |Og Y (1 _ T’(Y)) d IogY d Iog Y 6, Y —d Iog Y = &9y

After rearranging, this yieldéx % ).

C. Proof of Proposition 4

For any such change in the tax schedule there is an intgtvad,] of agents that now prefer
to producel? = Y(é). This induces an allocation that cannot reduce welfare anst strictly
increase it for agents in the interJjal, 6,]. The rest of this proof shows, that for sufficiently small
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¢, the induced allocation is resource feasible.
| shall expres®, = ©,(0;) ande(0;) as functions of);. The two indifference conditions

v(61) = u(é + £(61)) — Ouh,
v(©2(61)) = u(@ + e(61)) — O2(61)h
determine these functions implicitly. Note tf@g(é) =0 ands(é) = 0. Differentiating these

expressions and applying L'Hospital’s rule yields theduling values for the derivatives 6f,(6)
ande(#) which will be needed below:

®,(f)=—-1 and ge)g(é) =— (Y”(Q) + hﬂ(Y(GDY’(éﬁ))

Y'(6))  h(Y(6))
and .
£@) =0 and & (0) = —5(1 —2(0)Y'(H),

which uses the definitioh — 7 (0) = 0h'(Y(0))/u’(c(0)).
The loss in resources is given by

02(61) .
A= [ (YO - c®) (7 -0+ e60) 10

01

with A() = 0.
Tedious calculations establish tma’[(é) = A”(é) =0and

A”(6) = =305 (Y'(0) — ¢'(9)) £(6) — 2(Y"(9) = ¢"(B) + £"(B)) £ (D)
—4HY'(0) —'(0)) f'(0) — 6¢"(0) £ ().
If A’”(é) > 0 then there exists & < 6 close enough td so thatA(6;) < 0 and resources rise

from the perturbation. The perturbation is then resourasifde and creates a Pareto improvement.
Dividing A”(8) by —(Y"(§) — ¢'(8)) £(8) > 0 implies thatA”(8) > 0 if and only if

Vo) '@ L0 L el
v@)-c@d 6 ri6) -6

3 1A
592(9) +
Note thatY’(9) — ¢'(8) = t(9)Y'(0) andY”(§) — ¢"(9) = T (H)Y'(0) + (H)Y"(h) so that

Y'@)—c@) @) YO o Y'(0)—c(0) 6 ()

Y" (@) - c"(0) _ 7' (0) N Y"() g ') 11— r(é).
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Substituting these expressions and the one found earh%@@(é) and cancelling yields condi-
tion (5).
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