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Place-Based Drivers of Mortality: Evidence from Migration†

By Amy Finkelstein, Matthew Gentzkow, and Heidi Williams*

We estimate the effect of current location on elderly mortality by ana-
lyzing outcomes of movers in the Medicare population. We control for 
movers’ origin locations as well as a rich vector of pre-move health 
measures. We also develop a novel strategy to adjust for remain-
ing unobservables, using the correlation of residual mortality with 
movers’ origins to gauge the importance of omitted variables. We 
estimate substantial effects of current location. Moving from a tenth 
to a ninetieth percentile location would increase life expectancy at 
age 65 by 1.1 years, and equalizing location effects would reduce 
cross-sectional variation in life expectancy by 15 percent. Places 
with favorable life expectancy effects tend to have higher quality and 
quantity of health care, less extreme climates, lower crime rates, and 
higher socioeconomic status. (JEL H51, I1, I11)

Mortality rates vary substantially across the United States. Focusing on the 100 
most populous commuting zones (CZs), Chetty et al. (2016) estimates that life 
expectancy at age 40 ranges from a high of 85 in San Jose, California to a low of 
81 in Las  Vegas, Nevada, with a standard deviation across commuting zones of 
1.2 years.1 Murray et al. (2006) estimates that county-level life expectancy at birth 
in 1999 ranged from 66.6 years in Bennett County, South Dakota to 81.3 years in 
Summit County, Colorado. Currie and Schwandt (2016) likewise documents sub-
stantial disparities across county groups in life expectancy at birth as well as in 
mortality at older ages.

Why do people in some parts of the United States live longer than others? The 
long list of possible causes can be divided into two broad categories: differences in 

1 Authors’ calculations based on the publicly reported data provided by Chetty et al. (2016) on life expectancy 
for each commuting zone reported separately by gender, which we use to calculate overall life expectancy assum-
ing equal shares of men and women in each commuting zone. Note that these data include only individuals with 
nonzero reported household income.
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residents’ stocks of health capital (Grossman 1972), and differences in the environ-
ment associated with their current location. Health capital includes genetic endow-
ments, as well as the persistent effects of prior health behaviors (e.g., smoking, diet, 
exercise), prior medical care, and other past experiences that impact current mor-
tality. Potentially mortality-relevant aspects of residents’ current locations include 
the quality and quantity of available medical care, local climate and pollution, and 
risk factors such as crime and traffic accidents. Chetty et al. (2016) finds that the 
main correlates of area mortality in the cross section are health capital factors such 
as smoking, obesity, and exercise; and that correlations with place factors such as 
health care spending or local environmental conditions are weak. Neither they nor 
other past work, however, isolates the causal impact of place effects.

In this paper, we use mortality outcomes of migrants in the elderly Medicare 
population to separately identify the effects of health capital and current location 
on mortality in the United States. We will refer to the impact of current location by 
the shorthand place effects. Our strategy proceeds in two steps. First, we analyze 
mortality differences among movers to different destinations, controlling for both 
their origin locations and a rich vector of pre-move observable health measures in 
Medicare claims data. The idea behind our approach is to take two patients from 
the same origin (say, Boston), one of whom moves to a low-mortality area (say, 
Minneapolis), and the other of whom moves to a high-mortality area (say, Houston); 
and to compare their mortality outcomes after they move. If origin location plus 
pre-move health measures captures all differences in health capital potentially cor-
related with choice of destination, this would provide a valid estimate of the place 
effects.

Second, we apply a novel strategy to try to correct for any remaining selection 
on unobserved health capital. Our strategy builds on prior work (Murphy and Topel 
1990; Altonji, Elder, and Taber 2005; Oster 2019) in using variation in observable 
characteristics to adjust for variation in unobservables. In our context, this amounts 
to using the correlation between movers’ choice of destination and their observed 
health capital to adjust for potential correlation between choice of destination and 
unobserved health capital. We weaken the assumptions of the standard approach by 
using the correlation between origin locations and residual post-move mortality as 
an additional moment to pin down the overall importance of the unobservables.

We use data on all Medicare beneficiaries ages 65 and older from 1999 through 
2014 (CMS 1998–2014). The enrollee-level panel data contain information on zip 
code of residence and date of death (if any), along with demographic variables 
such as age, race, sex, and enrollment in Medicaid (a proxy for low income). The 
claims data provide us with detailed annual measures of health conditions based on 
recorded diagnoses, as well as measures of health care utilization. Our geographic 
unit of analysis is a CZ, a standard aggregation of counties that partition the United 
States and are designed to approximate labor markets. The main outcome we focus 
on is life expectancy at age 65. We model log mortality as an additive function of 
age, place effects, and health capital, following the standard Gompertz specification 
for age-mortality gradients (Olshansky and Carnes 1997, Chetty et al. 2016).

Our analysis depends on two strong simplifying assumptions; we present sup-
porting evidence for both and also assess robustness to possible violations. The first 
key assumption is that health capital and place effects are additively separable in the 
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equation for log mortality. This is analogous to additive separability assumptions 
in prior work using movers. It implies that health capital and place effects enter 
the level of the mortality rate multiplicatively, so that moving to a place with more 
favorable health care or other environmental factors matters more for those in worse 
health to begin with. We see this an appealing implication broadly, but note that it 
rules out factors that induce a constant level shift in mortality and also precludes 
more complex interactions.

The second key assumption is that health capital is constant over the post-move 
time horizon of our analysis. Of course, in general health capital will evolve endog-
enously as a function of environment and health behaviors, and late-life mortal-
ity can depend on health behaviors like smoking and exercise over an individual’s 
entire lifetime. However, we see it as a reasonable approximation to treat health 
capital as constant in the post-65 population over the 1 to 12 years we observe them 
post-move. Conditional on behavior prior to age 65, it seems reasonable to assume 
that the impact of any late-life behavior changes on health capital is relatively mod-
est. Moreover, to the extent that health capital does evolve endogenously following 
a move, this should produce gradual changes in mortality, rather than the on-impact 
changes in mortality we document.

We find that current location has a large impact on mortality. In our analysis 
sample, mean life expectancy at age 65 is 83.3 years, with an across-area standard 
deviation of 0.79 years. Our results imply that moving from an area at the tenth per-
centile of estimated place effects to an area at the ninetieth percentile would increase 
life expectancy at age 65 by 1.1 years, or about half of the 90-10 cross-sectional 
difference. These findings suggest that policies that affect short-run determinants 
of mortality such as medical care or environmental factors can potentially produce 
large and immediate changes in outcomes, as can policies such as the Moving to 
Opportunity Project (Ludwig et al. 2012; Chetty, Hendren, and Katz 2016) that 
relocate small numbers of vulnerable individuals to areas with more favorable 
conditions.

At the same time, our findings suggest that health capital also plays an import-
ant role. We estimate that equalizing place effects across areas would reduce the 
cross-sectional variation in life expectancy at age 65 by 15 percent. By comparison, 
equalizing health capital across areas would reduce the cross-sectional variation by 
about 70 percent. This in part reflects the fact that while our estimated place effects 
are positively correlated with average area life expectancy, this correlation is far 
from perfect. Our place-by-place estimates of these components identify areas such 
as Santa Fe, New Mexico and El Paso, Texas as having negative effects despite 
relatively high average life expectancy, and other areas such as Charlotte, North 
Carolina as having positive effects despite relatively low average life expectancy.

Finally, we present evidence on the observable area-level correlates of our esti-
mated place effects. The results are intuitive. Areas with positive place effects tend 
to have higher-quality hospitals, more primary care physicians and specialists per 
capita, and higher health care utilization. The positive correlation between an area’s 
health care utilization and its impact on life expectancy contrasts with the lack of 
correlation between utilization and average health outcomes which has been empha-
sized in the Dartmouth Atlas literature (Fisher et al. 2003a, b; Skinner 2011) and 
which we replicate here. Areas with favorable place effects also tend to have less 
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extreme climates, less pollution, fewer homicides, fewer automobile fatalities, and 
higher urban shares. They also tend to have higher socioeconomic status as mea-
sured by income and education, as well as better health behaviors, which may reflect 
higher willingness to pay for health care quality and other favorable place char-
acteristics among such individuals. We emphasize that these are simply bivariate 
correlations which need not reflect causal relationships.

We emphasize a number of important caveats for interpreting our findings. A cru-
cial one is that our place effects capture the impact of place in an elderly population for 
whom we treat health capital as approximately constant. These estimates are appropri-
ate for evaluating relatively short-run impacts of policies that change key place char-
acteristics (e.g., improving a local health care system or reducing pollution) or move 
small numbers of people across space. Long-run effects of such policies could differ, 
however, as resulting changes in the evolution of health capital could play a larger 
role. The effect of moving larger numbers of people across space may also differ, as 
the place effects themselves may evolve endogenously due to supply side responses or 
peer effects. Finally, effects could be different in younger populations.

A second important caveat is that mortality is an absorbing state, and so we are 
unable to look at changes in mortality over time for a single individual. This means 
that our identification strategy is similar to that of cross-sectional movers designs 
such as Chetty and Hendren (2018b) and Bronnenberg, Dubé, and Gentzkow (2012), 
and requires stronger assumptions than panel mover analyses such as Finkelstein, 
Gentzkow, and Williams (2016). Although we adjust for selection on unobservables, 
our identifying assumptions are also likely to be stronger than those in papers such 
as Doyle (2011) and Deryugina and Molitor (2018) that study the impact of location 
on mortality using explicit natural experiments to create variation in place factors.2

Our work contributes to the large literature on the determinants of mortality. 
McGovern, Miller, and Hughes-Cromwick's (2014) recent review of studies on 
health determinants concludes that this literature tends to attribute the largest impor-
tance for mortality to health capital—specifically to behaviors (35–50 percent) and 
to genetics (20–30  percent). Among potential place effects, it attributes between 
5–20 percent of the determinants of mortality to environment and around 10 percent 
to medical care. While the methodologies of the studies underlying these estimates 
vary, they generally all rely on correlational analyses to quantify the relative impor-
tance of these different factors.3 Our analysis advances this body of descriptive work 
with a research design that more convincingly isolates causal effects.

Our work is particularly related to prior work on the drivers of geographic  
variation in mortality. This work has also tended to highlight the importance of health 
capital, particularly health behaviors. Fuchs (1974) famously attributed the lower 
mortality rates of clean-living, predominantly Mormon residents of Utah to better 
health behaviors than their neighbors in the more dissolute state of Nevada.4 Chetty 

2 Doyle (2011) uses health emergencies of visitors to different areas of Florida and shows that hospitals in 
high-spending areas produce better outcomes than hospitals in low-spending areas, while Deryugina and Molitor 
(2018) documents that Medicare survivors of Hurricane Katrina who move to lower-mortality regions experience 
subsequently lower mortality than those who move to higher-mortality regions.

3 The underlying studies included in their review are CDC (1980); McGinnis and Foege (1993); Lantz et al. 
(1998); McGinnis, Williams-Russo, and Knickman (2002); Mokdad, Marks, and Stroup (2004); Danaei et al. 
(2009); WHO (2009); Booske et al. (2010); Stringhini et al. (2010); and Thoits (2010).

4 See also Fuchs (1965) on geographic variation in mortality within the United States.
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et al. (2016) shows that geographic variation in life expectancy for low-income indi-
viduals is significantly correlated with health behaviors such as smoking, obesity, 
and exercise, but not significantly correlated with measures of health care quality 
or quantity. This is consistent with the large Dartmouth Atlas literature which has 
found health care utilization to be uncorrelated with mortality (Fisher et al. 2003a, b; 
Skinner 2011).5

Summarizing the state of knowledge on both the determinants of mortality and 
the determinants of geographic variation in mortality, Cutler (2018) concludes, 
“Behavior is the key. When we compare geographic regions, the dominant factor 
driving health differences is how Americans behave. Unhealthy areas smoke more, 
drink more and eat to excess; healthier areas avoid these behaviors.” The large role 
we estimate for health capital is consistent with this conventional wisdom. However, 
our results also show that there is a substantial impact of place-based factors that this 
conventional wisdom may understate.

Our empirical strategy for correcting for selection on unobservables may have 
applications in other contexts. Oster (2019) emphasizes the sensitivity of the stan-
dard approach to assumptions about the overall explanatory power of the observ-
ables, and notes that direct information to guide such assumptions is often limited. 
We propose weaker assumptions under which this decision can be guided by the 
data. Our approach is most obviously relevant to other contexts in which individuals 
move across geographies, firms, or other units of analysis, and in which selection 
on unobserved individual characteristics is a potential confound; this could arise 
due to data limitations (e.g., Bronnenberg, Dubé, and Gentzkow 2012) or because 
an outcome cannot be measured repeatedly in individual panel-level data (such as 
mortality in our case or intergenerational mobility in Chetty and Hendren 2018b). 
It may also be applied to other settings where there are auxiliary variables whose 
relative correlation with observables and unobservables is plausibly similar to that 
of the treatment of interest.

The rest of the paper proceeds as follows. Sections I and II describe our model 
and empirical strategy, and Section  III presents our data and summary statistics. 
Section IV presents evidence on the selection of movers across origins and destina-
tions and describes how our empirical strategy addresses this selection. Section V 
presents our main results on the impact of current environment on life expectancy, 
and explores some observable correlates of the place effects. Section VI provides 
additional support for some of our key assumptions and shows robustness of our 
main results to alternative specifications. The last section concludes.

I. Model

We consider a set of individuals indexed by ​i​ and a set ​​ of locations indexed by ​j​. 
We analyze a continuous-time survival model in which an individual’s mortality 
rate at a given age depends on her accumulated stock of health capital ​​θ​i​​​ and the 

5 In addition to geographic variation in medical care, a number of studies have examined the correlates of 
another natural component of place effects—current environmental factors such as air pollution—with regional 
variation in mortality rates (e.g., Dockery et al. 1993, Samet et al. 2000). For example, Dockery et al. (1993) 
estimates that across-city variation in air pollution is positively associated with deaths from lung cancer and car-
diopulmonary disease.
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place effect ​​γ​i​​​ associated with her current location.6 The individuals are either (i) 
movers who live in an origin location ​o  ∈ ​ ​​ in years ​t  < ​ t​ i​ ⁎​​, move in year ​​t​ i​ ⁎​​ from ​o​ 
to ​j  ∈ ​ ​​, and then live in destination location ​j​ thereafter; or (ii) non-movers who 
live in the same location ​j  ∈ ​ ​​ throughout the sample, and to whom we assign a 
reference year ​​t​ i​ ⁎​​ as discussed below.

We follow Chetty et al. (2016) in adopting a Gompertz specification in which the 
log of the mortality hazard rate ​​m​ij​​ ​(a)​​ that individual ​i​ would experience at age ​a​ if 
she lived in location ​j​ is linear in age:

(1)	​ log​(​m​ij​​ ​(a)​)​  =  βa + ​γ​j​​ + ​θ​i​​.​

This specification embeds two key simplifying assumptions. The first is that age, 
place effects, and health capital are additively separable. Analogous assumptions 
are standard in the literature using changes in residence or employment to sepa-
rate effects of individual characteristics from geographic or institutional factors 
(e.g., Card, Heining, and Kline 2013; Chetty and Hendren 2018a, b; Finkelstein, 
Gentzkow, and Williams 2016).

This is a strong assumption, but we see it as a reasonable one in our setting. It has 
the intuitive implication that health capital and current location affect the level of 
mortality multiplicatively, and, thus, that the level of mortality of individuals with 
poor health capital (high ​​θ​i​​​) will vary more across areas than that of individuals 
who have better health capital (low ​​θ​i​​​); this has indeed been documented by Chetty 
et al. (2016). More concretely, suppose that there are two possible levels of health 
capital, such that in an average location, individuals have either a 0.1 percent annual 
mortality hazard or a 10 percent annual mortality hazard. The additive separability 
assumption implies that anything about the current environment that reduces mor-
tality—such as the quality of health care or the air quality—will reduce mortality 
by a constant proportion for all individuals, with a larger percentage point effect on 
individuals with worse health capital. Our specification rules out place effects that 
cause the same level shift in mortality for all patients regardless of their health capi-
tal. For example, if some places have a higher risk of death from auto accidents and 
this probability is independent of health capital, our assumption would be violated. 
We present empirical support for additive separability in Section VI below.

The second key assumption is that both ​​γ​j​​​ and ​​θ​i​​​ are time constant, with the 
only systematic changes in mortality risk over time coming from aging and changes 
in location. In general, ​​θ​i​​​ will evolve endogenously as a function of an individu-
al’s genetic endowment, health behaviors such as exercise and smoking, and the 
health care and other environmental factors she experiences. Importantly, this evo-
lution may be affected by the locations where she lives. Different locations will 
affect the environmental factors she experiences, and may also change her health 
behaviors through channels including prices, information, and peer effects. Thus, in 
general, current location may impact mortality both through the contemporaneous 
causal effect ​​γ​j​​​ and through changes in the future values of ​​θ​i​​​. We abstract from this 
endogenous response of health capital to current location, and instead assume that 

6 More precisely, ​​γ​j​​ − ​γ​k​​​ is the causal effect on log mortality of living in place ​j​ rather than place ​k​.
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health capital is approximately constant in the elderly population we study over 
the relatively short time horizon of our sample post-move (1 to 12 years). This 
strikes us as a reasonable approximation: it seems likely that any changes in health 
behavior in an elderly population upon moving will be modest and gradual, and 
any impacts on mortality from such behavioral changes in turn should cumulate 
over longer time horizons.7 We present evidence in support of this approximation in 
Section VI below.

To define the main quantities we will seek to measure, we let ​​​θ – ​​j​​​ denote the 
average health capital of non-movers in ​j​. In order to mirror the literature, which 
focuses on race and sex adjusted mortality rates as the object of interest, in com-
puting ​​​θ – ​​j​​​ we assign each area ​j​ the national average racial and gender compo-
sition. We define the mortality rate of an average non-mover in ​j​ at age ​a​ to be  
​​​m – ​​j​​​(a)​  =  exp​[βa + ​γ​j​​ + ​​θ – ​​j​​]​​. We refer to the sum ​​(​γ​j​​ + ​θ​i​​)​​ as the mortality index  
of individual ​i​, and to ​​(​γ​j​​ + ​​θ – ​​j​​)​​ as the average mortality index in area ​j​.

Our main outcome of interest is life expectancy at age 65—hereafter, life expec-
tancy. Given a generic continuous mortality hazard rate ​m​(a)​​, the probability the 
individual survives to age a, conditional to surviving to age 65, is given by the sur-
vival function ​S​(a)​  = ​ e​​ −​∫ 65​ 

a ​​ m​(v)​dv​​. The life expectancy of an individual who survives 
until age 65 is ​65 + ​∫ 65​ 

∞​​S​(a)​ da​.8 We define the life expectancy at 65 of an average 
non-mover in j by substituting ​​​m – ​​j​​​(a)​​ into these expressions. We will denote this ​​L​j​​​, 
and refer to it simply as average life expectancy in area ​j​.

Our ultimate goal is to estimate the causal effect on life expectancy of living 
in area ​j​. We define this by considering a thought experiment in which an individ-
ual with average health capital is assigned to live counterfactually in each loca-
tion ​j​ beginning at age 65. Letting ​​θ – ​​ denote the average health capital over the 
full population of non-movers, this defines a set of counterfactual mortality rates  
​​​m – ​​ j​ ⁎​​(a)​  =  exp​[βa + ​γ​j​​ + ​θ – ​]​​ that differ across ​j​ only because of the place 
effects ​​γ​j​​​. Substituting ​​​m – ​​ j​ ⁎​​(a)​​ into the expression for life expectancy yields the coun-
terfactual life expectancy ​​L​ j​ ⁎​​. Letting ​​γ – ​​ denote the population-weighted average of 
the ​​γ​j​​​, and letting ​​L 

–
​​ denote the life expectancy associated with mortality hazard  

​exp​[βa + ​γ – ​ + ​θ – ​]​​, we define the treatment effect of area ​j​ to be ​​L​ j​ ⁎​ − ​L 
–
​​.

II. Empirical Strategy

A. Observables and Unobservables

We assume that health capital ​​θ​i​​​ can be decomposed into a component that 
depends on demographics ​​X​i​​​, a component that depends on observed health ​​H​i​​​, 

7 Note that the contemporaneous causal effect ​​γ​j​​​ may also work through changes in behavior. For example, the 
structure of different cities may influence the decision to drive or take public transport, and someone who chooses 
to drive may expose themselves to higher mortality risk. Such induced behavior changes do not represent changes 
in health capital but rather differences in contemporaneous mortality risk.

8 Let ​F​(a)​​ and ​f ​(a)​​ denote the distribution and density of age at death conditional on living to age 65, which 
we assume is a continuous random variable. We have ​S​(a)​  =  1 − F​(a)​​. The hazard function is ​m​(a)​  =  f ​(a)​/S​(a)​  
=  − ​(d/(da))​log S​(a)​​. Integrating both sides of this equation yields ​log S​(a)​  =  − ​∫ 65​ 

a ​​ m​(v)​ dv​. Life expectancy at 
age 65 is ​​∫ 65​ 

∞​​af ​(a)​ da​. Integrating by parts, and assuming a finite end time, shows this is equal to ​65 + ​∫ 65​ 
∞​​S​(a)​ da​.
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a series of terms capturing unobserved health capital orthogonal to ​​X​i​​​ and ​​H​i​​​ but 
correlated with locations, and an orthogonal residual:

(2)	​ ​θ​i​​  = ​ X​i​​ ψ + ​H​i​​ λ + ​η​ j​(i)​​ 
nm ​ + ​η​ 

o​(i)​​ 
orig​ + ​η​ j​(i)​​ 

dest​ + ​​η ̃ ​​i​​.​

Here, both ​​X​i​​​ and ​​H​i​​​ are measured as of year ​​t​ i​ ⁎​ − 1​, i.e., the year prior to 
move. We let ​j​(i)​​ denote the observed location of individual ​i​ (permanent location 
if ​i​ is a non-mover, and destination if ​i​ is a mover), and ​o​(i)​​ denote the observed 
origin of mover ​i​.9 We define ​​η​ j​(i)​​ 

nm ​​, ​​η​ 
o​(i)​​ 
orig​​, and ​​η​ j​(i)​​ 

dest​​ to be the fixed effects from a 
hypothetical regression of ​​θ​i​​​ on ​​X​i​​​, ​​H​i​​​, and fixed effects for non-movers’ loca-
tions, movers’ origins, and movers’ destinations respectively. (We fix ​​η​ j​(i)​​ 

nm ​  =  0​ 
for movers and ​​η​ 

o​(i)​​ 
orig​  = ​ η​ j​(i)​​ 

dest​  =  0​ for non-movers.) We define ​​​η ̃ ​​i​​​ to be the resid-
ual from this regression. We thus have ​E​(​​η ̃ ​​i​​ | ​X​i​​, ​H​i​​, o​(i)​, j​(i)​)​  =  0​ for movers and  
​E​(​​η ̃ ​​i​​ | ​X​i​​, ​H​i​​, j​(i)​)​  =  0​ for non-movers by construction.

Our definition of ​​​η ̃ ​​i​​​ as a residual that is orthogonal by construction mirrors Altonji, 
Elder, and Taber (2005) and Oster (2019). It means that the coefficients ​ψ​ and ​λ​ cap-
ture both the causal effects of ​​X​i​​​ and ​​H​i​​​ and the effects of any unobservables that may 
be correlated with ​​X​i​​​ and ​​H​i​​​. It is natural to assume that such correlations will exist, 
as unobserved determinants of health capital such as smoking will generally be cor-
related with observed measures of health capital such as diagnoses of hypertension. 
This means that equation (2) does not define a structural relationship, and the ​η​ terms 
include only the components of the unobservables orthogonal to ​​X​i​​​ and ​​H​i​​​.

B. Estimation and Identification

Our main goal in estimation is to identify the place effects ​​γ​j​​​. This will in turn 
allow us to recover the average health capital ​​θ​i​​​ of movers and non-movers in each 
location. Combining equations (1) and (2) yields the following estimating equation 
for the realized mortality rate ​​m​i​​​(a)​​:

(3)	​ log​(​m​i​​​(a)​)​  =  βa + ​X​i​​ ψ + ​H​i​​ λ + ​τ​ 
o​(i)​​ 
orig​ + ​τ​ j​(i)​​ 

dest​ + ​τ​ j​(i)​​ 
nm ​ + ​​η ̃ ​​i​​​,

where ​​τ​ 
o​(i)​​ 
orig​​, ​​τ​ j​(i)​​ 

dest​​, and ​​τ​ j​(i)​​ 
nm ​​ are fixed effects for movers’ origins, movers’ destinations,  

and non-movers’ locations respectively, and we have ​​τ ​ 
o​(i)​​ 
orig​  = ​ η​ 

o​(i)​​ 
orig​​,  

​​τ ​ j​(i)​​ 
nm ​  = ​ γ​j​(i)​​​ + ​η​ j​(i)​​ 

nm ​​, and ​​τ​ j​(i)​​ 
dest​  = ​ γ​j​(i)​​​ + ​η​ j​(i)​​ 

dest​​.
We estimate this model by maximum likelihood. Given the estimated 

parameters, we can consistently estimate the area j mortality rate ​​​m – ​​j​​ ​(a)​​ by  
​​​m ˆ ​​j​​​(a)​  =  exp​[​β ˆ ​a + ​​X 

–
 ​​j​​​ψ ˆ ​ + ​​H 

–
 ​​j​​​λ ˆ ​ + ​​τ ˆ ​​ j​ nm​]​​, where ​​​X 

–
 ​​j​​​ and ​​​H 

–
 ​​j​​​ are the averages of ​​X​i​​​ 

and ​​H​i​​​ over non-movers in ​j​.10 Consistent with the definition of ​​​θ – ​​j​​​ above, when we 
compute ​​​X 

–
 ​​j​​​ we set the elements of the vector associated with race and sex to their 

national rather than their area averages. We compute estimates ​​​L ˆ ​​j​​​ of average life 
expectancy ​​L​j​​​ in area j by substituting ​​​m ˆ ​​j​​​(a)​​ for ​​​m – ​​j​​​(a)​​ in the derivation of ​​L​j​​​ in 

9 We abuse notation slightly in using ​j​ to denote a generic location and also letting ​j​(i)​​ denote the observed 
location of individual ​i​. Similarly, we use ​o​ to denote a generic origin location and ​o​(i)​​ to denote the observed 
origin of mover ​i​.

10 Note that ​​​θ – ​​j​​  =  ​​X 
–
 ​​j​​ ψ + ​​H 

–
 ​​j​​ λ + ​η​ j​(i)​​ 

nm ​​, and so ​​​X 
–
 ​​j​​​ψ ˆ ​ + ​​H 

–
 ​​j​​​λ ˆ ​ + ​​τ ˆ ​​ j​ nm​​ converges in probability to ​​γ​j​​ + ​​θ – ​​j​​​.
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Section  I. All of our reported estimates of average life expectancy in area ​j​ are 
therefore race  and sex adjusted.

The central challenge is identification of ​​γ​j​​​. Simply comparing average mortality 
rates across areas in the cross-section does not recover ​​γ​j​​​, because locations may dif-
fer in their average health capital ​E​(​θ​i​​ |  j​(i)​  =  j)​​. An optimistic assumption would 
be that ​​X​i​​​ and ​​H​i​​​ absorb all such differences. In this case, ​​η​ j​ nm​​, ​​η​ o​ orig​​, and ​​η​ j​ dest​​ would 
be equal to 0 for all ​j, o  ∈ ​ ​​, and we would not need to use movers at all; we could 
simply estimate equation (3) using non-movers and the ​​​τ ˆ ​​ j​ nm​​ would be consistent 
estimators of ​​γ​j​​​.

A more plausible assumption would be that ​​X​i​​​ and ​​H​i​​​ do not absorb all area 
differences in health capital, but that the remaining differences for movers are 
absorbed by the origin fixed effects ​​η​ o​ orig​​, so that ​​η​ j​ dest​  =  0​ for all ​j​. In this case, 
the estimated destination fixed effects ​​​τ ˆ ​​ j​ dest​​ from equation (3) would be consistent 
estimators of ​​γ​j​​​. This assumption would follow from a model in which the loca-
tions where people are born and live up to age 65 or older may be related to their 
genetic endowments, health behaviors, and other determinants of health capital, but 
in which late-life moving decisions are driven by idiosyncratic factors.

Our findings below are qualitatively consistent with this intuition, in the sense 
that conditioning on movers’ origins eliminates a significant amount of nonrandom 
selection on observables. However, our results also suggest that some nonrandom 
selection may remain, implying that ​​η​ j​ dest​  ≠  0​ and thus that ​​​τ ˆ ​​ j​ dest​​ may not exactly 
recover ​​γ​j​​​. The selection correction strategy we develop in the next section  is 
designed to deal with any such remaining selection.

Given consistent estimates ​​​γ ˆ ​​j​​​ of ​​γ​j​​​, we can estimate the treatment effects  
​​L​ j​ ⁎​ − ​L 

–
​​ of each area ​j​. To do so, we estimate ​​θ – ​​ as the mean across all non-movers  

of ​​X​i​​​ψ ˆ ​ + ​H​i​​​λ ˆ ​ + ​​τ ˆ ​​ j​ nm​ − ​​γ ˆ ​​j​​​, a consistent estimator of ​​​θ ˆ ​​i​​​. We estimate ​​γ – ​​ by the 
non-mover population-weighted mean of the ​​​γ ˆ ​​j​​​. We then substitute these estimates 
in place of their population counterparts in the definitions of ​​L​ j​ ⁎​​ and ​​L 

–
​​ in Section I.

We will at various points form estimates of variances of CZ-level terms such 
as ​​γ​j​​​. Unless otherwise noted, all such estimates ​​  var​ ​(z)​​ for CZ-level variables ​z​ 
are based on a split-sample approach in which we randomly partition our sample 
into two parts, form separate estimates ​​​z ˆ ​​​ 1​​ and ​​​z ˆ ​​​ 2​​ using the two samples, and then 
define ​​  var​ ​(z)​  =  cov​(​​z ˆ ​​​ 1​, ​​z ˆ ​​​ 2​)​​. We compute confidence intervals via 100 iterations of 
the Bayesian bootstrap procedure (Rubin 1981).11

When we report individual values of the place effects ​​​γ​j​​ ˆ ​​ or the life expectancy 
treatment effects that depend on them, we adjust the ​​​γ ˆ ​​j​​​ estimates for sampling 
error using a standard empirical Bayes’ procedure, producing adjusted estimates 
we denote ​​​γ ˆ ​​ j​ EB​​. This closely follows the approach of Chetty and Hendren (2018b) 
and Finkelstein et al. (2017). Online Appendix A provides more detail on this 
procedure.

11 The Bayesian bootstrap smooths bootstrap samples by reweighting rather than resampling observations. For 
a recent application see Angrist et al. (2017); its online Appendix provides implementation details that we follow.
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C. Adjusting for Selection on Unobservables

In this section, we introduce our strategy to allow for the possibility that mov-
ers’ destinations are correlated with their unobserved health—i.e., that ​​η​ j​ dest​ ≠  0​. 
Our approach builds on the now-standard methodology developed by Murphy and 
Topel (1990) and Altonji, Elder, and Taber (2005), and expanded on by Oster (2019), 
which uses variation in observables to make inferences about the likely bias due to 
unobservables.

The standard approach relies on two key assumptions. The first is that the rela-
tionship between the treatment of interest and the index of observables is similar to 
the relationship between the treatment of interest and an index of unobservables. 
Altonji, Elder, and Taber (2005) and Oster (2019) refer to this as the equal selec-
tion assumption. Intuitively, it allows us to learn about the direction of bias induced 
by the unobservables from the bias induced when we omit the observables. In a 
standard labor economics context where we would attempt to measure returns to 
education, equal selection would imply that if education is increasing in observed 
proxies for worker skill, it will be increasing in unobserved skill as well. In our 
context, equal selection implies that if movers to a particular destination tend to 
have unusually good observed health capital they will probably have unusually good 
unobserved health capital as well.

The second assumption pins down the overall importance of the unobservables 
relative to the observables. Oster (2019) operationalizes this as an assumed value for 
the ​​R​​ 2​​ of a hypothetical regression of the outcome on the treatment, the observables, 
and all the relevant unobservables.12 We will refer to this as the ​​R​​ 2​​ assumption. 
Intuitively, specifying this value allows us to determine the magnitude of the bias 
induced by the unobservables. In the labor economics example, the bias would be 
small if there is very little variation in unobserved skill conditional on the observed 
proxies, or large if this variation is large. In our context, the bias would be small if 
observed proxies captured most of the variation in health capital, and so the variance 
of the unobserved components was small. Oster (2019) emphasizes that the choice 
of the ​​R​​ 2​​ value is by necessity arbitrary in typical applications, and suggests some 
benchmark values researchers could use to obtain conservative bounds.

What distinguishes our strategy from prior work is that we use an additional 
moment of the data to weaken the ​​R​​ 2​​ assumption. That moment is the variance of 
the origin component of unobserved health—​​η​ o​ orig​​ in equation (2), which we recall 
is consistently estimated by the origin fixed effect ​​​τ ˆ ​​ o​ orig​​ from equation (3). If our 
observable measures ​​H​i​​​ captured all relevant dimensions of health capital, movers’ 
origins would have no further predictive power, and we would have ​​η​ o​ orig​  =  0​ for 
all ​o​. The extent to which origins remain predictive of mortality after we control 
for ​​H​i​​​ is a gauge of the extent to which important unobserved components remain.

To apply this logic formally, we first introduce some new constructs and notation. 
First, define a “treatment” indicator ​​T​ij​​ =  1​( j ​(i)​  =  j)​​ for movers equal to 1 if ​i​’s 
destination is ​j​. Second, as an input to our selection correction strategy, we will need 
to estimate the components of observed health capital related to movers’ origins and 

12 Altonji, Elder, and Taber (2005) does not name this assumption, but they implicitly assume that the rele-
vant ​​R​​ 2​​ is 1.
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destinations respectively. Let ​​h​i​​ = ​ H​i​​ λ​ (where ​λ​ is defined in equation (3)) be the 
index of observed health capital for individual ​i​; we refer to it throughout as “observed 
health” for short. Define the following regression in the sample of movers:

(4)	​ ​h​i​​  = ​ β​​ h​ a + ​X​i​​ ​ψ​​ h​ + ​h​ 
o​(i)​​ 
orig​ + ​h​ j​(i)​​ 

dest​ + ​​h ̃ ​​i​​ ,​

where ​​h​ 
o​(i)​​ 
orig​​ and ​​h​ j​(i)​​ 

dest​​ are origin and destination fixed effects respectively and ​​​h ̃ ​​i​​​ 
is a residual. We refer to ​​h​ 

o​(i)​​ 
orig​​ and ​​h​ j​(i)​​ 

dest​​ as the origin and destination components 

of observed health respectively. These are by construction the residual compo-
nents of observed health after partialing out age and demographics. We nor-
malize ​​h​ 

o​(i)​​ 
orig​​ so the population mean of ​​h​ j​(i)​​ 

dest​​ is 0. To estimate these terms, we 

first form ​​​h ˆ ​​i​​  = ​ H​i​​​λ ˆ ​​ using the estimates ​​λ ˆ ​​ from equation (3). We then estimate  
equation (4) replacing ​​h​i​​​ with ​​​h ˆ ​​i​​​.

Our two key assumptions can now be stated as follows.

ASSUMPTION 1 (Proportional Selection): ​corr ​(​T​ij​​, ​h​ j​(i)​​ 
dest​)​  = ​ φ​1​​ corr ​(​T​ij​​, ​η​ j​(i)​​ 

dest ​)​​ in 
the sample of movers for all ​j  ∈  ​, where ​​φ​1​​​ is a constant.

ASSUMPTION 2 (Relative Importance): ​​ 
std​(​η​​ j​(i)​​​ 

orig​)​
 _______ 

std​(​h​​ j​(i)​​​ 
orig​)​

 ​  =  ​φ​2​​​ 
std​(​η​​ j​(i)​​​ 

dest​)​
 _______ 

std​(​h​​ j​(i)​​​ 
dest​)​

 ​​ in the sample of 

movers, where ​​φ​2​​​ is a constant.

Assumption 1 is a version of the equal selection assumption of Altonji, Elder, and 
Taber (2005) and Oster (2019) applied to our setting. There are two key differences. 
First, we weaken their assumption to allow selection on unobservables to be propor-
tional to selection on observables, with a coefficient of proportionality of ​​φ​1​​​; this nests 
the special case of equal selection (i.e., ​​φ​1​​ =  1​). Second, our setting differs from the 
one they consider in that our “treatment” is multidimensional—a vector of indicators 
for moving to the various destinations in ​​​​. To map this back to the standard case, 
we imagine a setting where the treatment of interest was the effect of moving to one 
particular destination ​j​, and so the treatment variable is just the binary indicator ​​T​ij​​​. We 
then assume the assumption applies separately for each possible destination ​j  ∈ ​ ​​.13

Assumption 2 allows us to use information from origin unobservables in place 
of the ​​R​​ 2​​ assumption. Rather than assuming an arbitrary value for the variance of 
the destination unobservables ​var​(​η​ j​(i)​​ 

dest​)​​ as the standard approach would dictate,  
we assume that the variance of these unobservables relative to the variance of the 
destination observables ​var​(​h​ j​(i)​​ 

dest​)​​ is proportional to the corresponding ratio for 
movers’ origins, with a coefficient of proportionality of ​​φ​2​​​. Again,  this nests as 
a special case the assumption that the ratios are not just proportional, but are in 
fact equal (i.e., ​​φ​2​​  =  1​). Combining these two assumptions allows us to consis-
tently estimate the key unobservables ​​η​ j​ dest​​ for each j from observed moments of the 
data, given assumed values of ​​φ​1​​​ and ​​φ​2​​​. We impose ​​φ​1​​  = ​ φ​2​​  =  1​ in our baseline 
results and assess robustness to alternative values of ​​φ​1​​​ and ​​φ​2​​​.

13 Our assumption also differs in that we state it in terms of correlations rather than regression coefficients.
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Assumptions 1 and 2 are strong, but they follow naturally from economic 
primitives. They will hold in a broad class of models of selective migration so 
long as selection of locations is related to overall health capital but not differ-
entially to the observed and unobserved components. We show this formally 
in online Appendix  B. Specifically, we show that under some additional struc-
ture on the distributions of observables and unobservables, Assumptions  1 
and 2 with ​​φ​1​​  = ​ φ​2​​  =  1​ are both implied by the assumption that selec-
tion of origins and destinations may depend on the single index ​​​θ ̃ ​​i​​  = ​ h​i​​ + ​η​i​​​, 
where ​​η​i​​  = ​ η​ 

o​(i)​​ 
orig​ + ​η​ j​(i)​​ 

dest​ + ​​η ̃ ​​i​​​ , but that origins and destinations are independent 
of ​​h​i​​​ and ​​η​i​​​ conditional on ​​​θ ̃ ​​i​​​.

If the dimensions of health capital relevant to selection are not captured by a 
single index, our baseline assumption of ​​φ​1​​  = ​ φ​2​​  =  1​ requires that the relative 
importance of unobservable to observable health in determining origin must be the 
same as the relative importance of unobservable to observable health in determining 
destination. This could be violated if, for example, observed dimensions of health 
capital such as diabetes are more strongly related to people’s choice of where to 
live when young, while unobserved dimensions such as physical mobility are more 
strongly related to their migration decisions when they are elderly. It could be vio-
lated if late-life events such as widowhood affect both the likelihood of moving 
to different destinations and mortality but are uncorrelated with observed health 
capital. We provide empirical support for the assumptions behind our selection cor-
rection approach in Section VID below.

PROPOSITION 1: Assumption 1 is equivalent to

(5)	​ ​η​ j​ dest​  = ​  1 ___ ​φ​1​​ ​  ​ 
std​(​η​ j​(i)​​ dest​)​ _ 
std​(​h​ j​(i)​​ dest​)​

 ​ ​h​ j​ dest​ .​

PROOF: 
Recalling that ​​h​ j​(i)​​ dest​​ and ​​η​ j​(i)​​ dest​​ are normalized to have mean 0, it is  

straightforward to show that ​cov​(​T​ij​​, ​h​ j​(i)​​ dest​)​  = ​ (N/N′)​​h​ j​ dest​ p​(1 − p)​​ and  
​cov​(​T​ij​​, ​η​ j​(i)​​ dest​)​  = ​ (N/N′)​​η​ j​ dest​ p​(1 − p)​​, where ​N​ is the total number of movers, ​N′​  
is the number with ​​T​ij​​  =  0​, and ​p  =  Pr​(​T​ij​​  =  1)​​.14 Assumption 1 is then equiv-
alent to

	​​ 
​ N __ 
N′ ​ ​h​ j​ dest​ p​(1 − p)​

  _________________  
std​(​T​ij​​)​std​(​h​ j​(i)​​ dest​)​

 ​  = ​ φ​1​​ ​ 
​ N __ 
N′ ​ ​η​ j​ 

dest​ p​(1 − p)​
  _________________  

std​(​T​ij​​)​std​(​η​ j​(i)​​ dest​)​
 ​ .​

14 Since ​​T​ij​​​ is a binary variable, ​cov​(​T​ij​​, ​h​ j​(i)​​ dest​)​  =  ​[E​(​h​ j​(i)​​ dest​ | ​T​ij​​  =  1)​ − E​(​h​ j​(i)​​ dest​ | ​T​ij​​  =  0)​]​p​(1 − p)​​, 
where ​p  =  Pr​(​T​ij​​  =  1)​​. Let ​I​ be the set of all movers and let ​​I ′ ​​ be the set of movers for 
whom ​​T​ij​​  =  0​. We know ​E​(​h​ j​(i)​​ dest​ | ​T​ij​​  =  1)​  =  ​h​ j​ dest​​ and ​E​(​h​ j​(i)​​ dest​ | ​T​ij​​  =  0)​  =  (1/N′ ) ​∑ i∈I′​    ​​​h​ j​(i)​​ dest​  
=  (N/N′)​((1/N) ​∑ i∈I​   ​​  ​h​ j​(i)​​ dest​ − (1/N) ​∑ i∈I\I′​    ​​​h​ j​(i)​​ dest​)​​. Since our normalization implies the population mean  

(​1/N) ​∑ i∈I​    ​​ ​h​ j​(i)​​ dest​​ is 0, and noting that ​(1/N) ​∑ i∈I\I′​    ​​ ​h​ j​(i)​​ dest​  =  ​((N − N ′ )/N)​​h​ j​ dest​​, we have 

	​ cov​(​T​ij​​, ​h​ j​(i)​​ dest​)​  =  ​h​ j​ dest​​[1 + ​ N − N ′ _______ 
N′ ​ ]​​ ​p​(1 − p)​​

​​	​ = ​  N _______ 
N′ ​​ ​​h​ j​ dest​p​(1 − p)​​.

The steps for ​​η​ j​(i)​​ dest​​ are analogous.
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Canceling terms yields the desired result.∎

This proposition is intuitive. It says that under our proportional selection assump-
tion, the destination component ​​η​ j​ dest​​—i.e., the average unobserved, residual health 
in destination ​j​—is equal to the observed term ​​h​ j​ dest​​ scaled by a constant. Under our 
baseline assumption (​​φ​1​​  =  1​) the value of that constant is the ratio of the standard 
deviations of ​​η​ j​(i)​​ 

dest​​ and ​​h​ j​(i)​​ 
dest​​, and it can be interpreted as the relative importance of 

the unobserved and observed components of health capital correlated with destina-
tions. Assumption 2 then allows us to estimate this ratio using the analogous ratio 
for movers’ origins.

COROLLARY 1: Let ​​  std​​(​τ​ 
j​(i)​​ 
orig​)​​ and ​​  std​​(​h​ 

j​(i)​​ 
orig​)​​ be consistent estimators of the stan-

dard deviations of ​​τ​ 
j​(i)​​ 
orig​​ and ​​h​ 

j​(i)​​ 
orig​​ and define ​φ ≡ ​φ​1​​ ​φ​2​​​. Under Assumptions 1 and  2,

(6)	​ ​​η ˆ ​​ j​ dest​  = ​  1 __ φ ​  ​ 
​̂  std​​(​τ​ 

j​(i)​​ 
orig​)​
 ________ 

​̂  std​​(​h​ 
j​(i)​​ 
orig​)​

 ​ ​​h ˆ ​​ j​ dest​​

is a consistent estimator of ​​η​ j​ dest​​, and ​​​γ ˆ ​​j​​  = ​​ τ ˆ ​​ j​ dest​ − ​​η ˆ ​​ j​ dest​​ is a consistent estimator 
of ​​γ​j​​​ .

III. Data and Summary Statistics

A. Data and Variable Definitions

We use administrative data on Medicare enrollees for a 100  percent panel of 
Medicare beneficiaries—both traditional Medicare and Medicare Advantage—from 
1999 to 2014 (CMS 1998–2014).15

We observe each enrollee’s zip code of residence each year. We define a year ​t​ 
for the purposes of our analysis to run from April 1 of calendar year ​t​ to March 31 
of calendar year ​t + 1​ since, for most years, we observe residence as of March 31st 
of that year.

For each enrollee, we observe time-invariant indicators for race and gender. We 
observe time-varying indicators for age, as well as enrollment in Medicaid (the 
supplemental public health insurance program for low income elderly), Medicare 
Parts A and B, and Medicare Advantage. We observe all claims for inpatient and 
outpatient care for enrollee-years in traditional Medicare. For individuals who die 
during our sample, we observe the date of death.

Our primary analysis focuses on a sample of movers and non-movers defined 
below. We restrict attention to movers whose CZ of residence changes exactly once. 
For each mover, we define year ​​t​ i​ ⁎​​ (an individual’s “move year”) to be the year in 

15 About one-third of Medicare beneficiaries are enrolled in Medicare Advantage, a program in which private 
insurers receive capitated payments from the government in return for providing Medicare beneficiaries with 
health insurance. Because insurance claims (and hence health care utilization measures) for enrollees in Medicare 
Advantage are not available, the literature on geographic variation in health care spending and health outcomes 
for Medicare enrollees has focused primarily on traditional Medicare. However, the Medicare data do contain 
demographic, health, and mortality information for both traditional Medicare and Medicare Advantage enrollees.
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which their location changes and ​​t​ i​ ⁎​ + 1​ to be their first full year in the new location. 
For non-movers, we define ​​t​ i​ ⁎​​ to be the second year we observe them in the data 
without any missing covariates, so that we can measure their characteristics in the 
prior year. As discussed below, we restrict our analysis to beneficiaries enrolled in 
traditional Medicare during year ​​t​ i​ ⁎​ − 1​.

We use the Chronic Conditions segment of the Master Beneficiary Summary 
File from 1999 to 2014 to define 27 health status indicators for each person-year, 
with each indicator capturing the presence of a specific chronic condition (CMS 
1998–2014). Examples include lung cancer, diabetes, and depression; the share of 
patients with each of these conditions and the estimated coefficients for each from 
the Gompertz mortality hazard model (equation (3)) can be seen in online Appendix 
Table  A.1. The algorithms defining these measures are publicly available16 and 
are based on definitions used in the medical literature.17 Importantly, because we 
measure observed health ​​H​i​​​ pre-move, and equation (3) controls for origin fixed 
effects, we are not concerned about bias arising in our estimation from the type of 
place-specific measurement error of health in claims data that prior work has high-
lighted (Song et al. 2010; Finkelstein, Gentzkow, and Williams 2016; Finkelstein et 
al. 2017).

We measure total health care utilization for each person-year in traditional 
Medicare, defined to be total inpatient and outpatient spending, adjusted for price 
differences following the procedure of Gottlieb et al. (2010).18 Because we restrict 
our analysis sample to those enrolled in traditional Medicare in year ​​t​ i​ ⁎​ − 1​, total 
health care utilization is observed in that year for all individuals in our analysis 
sample, even if those individuals may be enrolled in Medicare Advantage (and 
hence have unobserved health care utilization) during years other than ​​t​ i​ ⁎​ − 1​.

We define areas ​j​ to be CZs. Specifically, we use the 709 CZs defined by the 
Census Bureau in 2000. These are aggregations of counties designed to approximate 
local labor markets. CZs have been used previously to analyze geographic variation 
in life expectancy (e.g., Chetty et al. 2016).19

All of the enrollee-level covariates in our analysis (i.e., ​​H​i​​​ and ​​X​i​​​) are measured 
as of year ​​t​ i​ ⁎​ − 1​. In our baseline specification, observable health (​​H​i​​​) is a series of 
indicator variables for each of the 27 chronic conditions in the Chronic Conditions 
segment of the Master Beneficiary Summary file and log(utilization + 1). The 
term ​​X​i​​​ is a set of indicators for race (White or non-White), gender, and their inter-
action; we also include an indicator variable for Medicaid status (as a proxy for low 
income), a series of indicator variables for the calendar year corresponding to ​​t​ i​ ⁎​​, 
and a constant.

16 See https://www.ccwdata.org/documents/10280/19139421/original-ccw-chronic-condition-algorithms.pdf.
17 See  https://www.ccwdata.org/documents/10280/19139421/original-ccw-chronic-condition-algorithms-

reference-list.pdf.
18 Specifically, we follow the approach from Finkelstein, Gentzkow, and Williams (2016), except that we 

exclude physician services (“carrier files”) because these files are only available for a 20 percent subsample.
19 See https://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/ for more details.

https://www.ccwdata.org/documents/10280/19139421/­original-ccw-chronic-condition-algorithms.pdf
https://www.ccwdata.org/documents/10280/19139421/­original-ccw-chronic-condition-algorithms-reference-list.pdf
https://www.ccwdata.org/documents/10280/19139421/­original-ccw-chronic-condition-algorithms-reference-list.pdf
https://www.ers.usda.gov/­data-products/­commuting-zones-and-labor-market-areas/


2711FINKELSTEIN ET AL.: PLACE-BASED DRIVERS OF MORTALITYVOL. 111 NO. 8

B. Sample Restrictions and Summary Statistics

Our data contain approximately 81 million people and over 665 million 
person-years. We drop from this sample person-years in which the enrollee is 
younger than 65 or older than 99.20 This leaves us with a core sample of about 
69  million beneficiaries; we exclude a few hundred thousand beneficiaries with 
incomplete data.

To define our non-mover sample, we begin with the 62 million enrollees whose 
CZ of residence does not change over the years we observe them. We need to assign 
each non-mover a valid reference year ​​t​ i​ ⁎​​ such that we are able to see observable 
health characteristics in year ​​t​ i​ ⁎​ − 1​. We therefore eliminate all non-movers who do 
not have a pre-2012 year ​​t​ i​ ⁎​​ such that they are 99 or younger and alive until the end 
of that year, and also on traditional Medicare during year ​​t​ i​ ⁎​ − 1​. We take a random 
10 percent sample of the remaining 43 million non-movers and define their ​​t​ i​ ⁎​​ to be 
the second year they are in the sample. When we estimate equation (3) using the 
pooled sample of movers and non-movers, we upweight the non-movers by ten.

To define our mover sample, we begin with the 7 million enrollees whose CZ 
of residence changes at least once during our sample period. To ensure changes in 
address reflect real changes in location, we define a mover’s “claim share” in a par-
ticular year to be the ratio of the number of claims located in their destination to the 
number located in either their origin or their destination. We then follow Finkelstein, 
Gentzkow, and Williams (2016) in excluding those for whom the claim share does 
not increase by at least 0.75 in their post-move years relative to their pre-move 
years. Online Appendix C provides more detail.

A natural question is of course why individuals in this sample are choosing 
to move. In Finkelstein, Gentzkow, and Williams (2016), we use the Health and 
Retirement Study (HRS) data to tabulate survey responses about why individuals in 
this age group move; Choi (1996) provides a similar tabulation in the Longitudinal 
Survey of Aging, and both datasets lead to similar conclusions. The most frequently 
reported reason for moves in this age group is to be near/with children or other kin, 
followed by health reasons, financial reasons, or other amenities.21

We further restrict the sample to movers who are not on Medicare Advantage in 
the year immediately prior to or immediately after the move (since we need to mea-
sure claim shares in those years) and who moved in years 2000–2012 (so that we 
can observe pre-move characteristics and post-move mortality).22 We also exclude 
those who move at age 99 or later or do not survive through the end of their move 
year (​​t​ i​ ⁎​​). Our final sample contains 6.3 million individuals, of whom 2 million 
are movers. Online Appendix C provides more detail on the sample restrictions. 
By construction, we are able to observe mortality for all beneficiaries for at least 

20 Individuals younger than 65 appear in our data if they are disability eligible (through Social Security disability 
benefits) rather than age eligible for Medicare.

21 Online Appendix Section 3.1 of Finkelstein, Gentzkow, and Williams (2016) presents a detailed analysis of 
this issue.

22 In our previous paper, Finkelstein, Gentzkow, and Williams (2016), our outcome of interest—health care 
spending—was only observed for individual-years enrolled in Medicare fee for service, whereas an advantage of 
this setting is that individuals’ locations and mortality are observed whether or not they are in Medicare Advantage. 
Robustness analysis in our previous paper suggested that selective attrition due to Medicare Advantage was likely 
to be small.
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one year following ​​t​ i​ ⁎​​. We are able to observe mortality at least 7 years after ​​t​ i​ ⁎​​ for 
63 percent of movers and at least 10 years after ​​t​ i​ ⁎​​ for 35 percent of movers.

Because our strategy for estimating place effects requires that we observe a sig-
nificant number of movers to each area, we aggregate CZs that receive small num-
bers of movers to form larger areas within states. Specifically, we first collect the 
bottom quartile of CZs by the number of incoming movers. Then, in any case where 
a state contains two or more such CZs, we consolidate those CZs into a single area. 
Online Appendix Figure A.1 shows the locations of the bottom quartile of CZs; they 
are predominantly in the Great Plains. The number of movers to these CZs ranges 
from 2 to 359, with a median of 155. Our final sample has 528 CZs and 35 aggre-
gated CZs; these are the areas corresponding to the ​j​ index in our model and we 
refer to these simply as CZs in what follows.23 Online Appendix Table A.2 shows 
summary statistics on the number of movers to each CZ; the minimum number of 
movers to a CZ is 48, and the median is about 1,500.

Table 1 reports summary statistics for comparable samples of movers and 
non-movers. The first row shows our full sample, which consists of roughly 2 mil-
lion movers and 4.3 million non-movers. The remainder of the table shows charac-
teristics of a subsample of movers and non-movers with reference year ​​t​ i​ ⁎​  =  2006​. 
We focus on this subset to facilitate comparison of movers’ and non-movers’ char-
acteristics.24 Movers tend to be older than non-movers, are slightly more likely to 
be female and White, and slightly less likely to be on Medicaid. Not surprisingly 
given the age differences, movers are also less healthy as measured by their count of 
chronic conditions and their one and four year mortality.

IV. Preliminary Evidence

A. Patterns of Mortality and Migration

Figure 1 shows our estimates ​​​L ˆ ​​j​​​ of average non-mover life expectancy by area, 
constructed from the estimated model of equation (3) as described in Section IIB. 
The average life expectancy across areas is 83.3 years, with a standard deviation of 
0.79 years. Our life expectancy estimates for the 100 largest CZs are highly cor-
related (nearly 0.9) with the life expectancy estimates at age 40 of Chetty et al. 
(2016), as shown in online Appendix Figure A.2.

Since moves will be key to identifying place effects, we briefly discuss the char-
acteristics of moves in our sample. There is substantial variation across moves in the 
destination-origin difference in non-mover life expectancy (​​L​j​​​). The standard devia-
tion of this gap is roughly one year, and the share of movers to higher life expectancy 
destinations (48 percent) is similar to the share of moves to lower life expectancy 
destinations (52 percent); online Appendix Figure A.3 shows more detail on the 
destination-origin differences in average life expectancy. Conditional on origin, the 
average standard deviation of destination life expectancy across CZs is 0.67.

23 Note that 11 of these bottom quartile CZs are within a single state and therefore remain disaggregated. This 
procedure causes us to omit roughly 3,000 movers who move across small CZs within the same state.

24 For completeness, online Appendix Table A.3 reports the same summary statistics on the full set of 2 million 
movers and 4 million non-movers used to estimate equation (3), but the two sets of statistics are not directly com-
parable given the differences in how the two samples are defined.
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We next examine the extent to which the observed health of movers differs sys-
tematically according to their destinations. In panel A of Figure 2, we compare 
the average observed health of movers to different destinations adjusted for age 
and demographics (​​X​i​​​). For each area ​j​, we compute the mean across movers to ​j​ 
of the residuals from a regression of our observed health index ​​​h ˆ ​​i​​  = ​ H​i​​​λ ˆ ​​ on age 
in year ​​t​ i​ ⁎​ − 1​ and demographics ​​X​i​​​. The left-hand figure shows the distribution 
of these average values across destinations. If movers were randomly assigned to 
destinations, these averages should vary little; this is not the case. The right-hand 
figure is a binned scatterplot showing how these average observed health values 
for movers to different destinations are correlated with the average estimated mor-
tality index ​​γ​j​​ + ​θ​i​​​ of non-movers in each destination. The relationship is signifi-
cant and positive, suggesting that low-mortality destinations tend to attract healthier  
movers.

In panel B of Figure 2, we partial out fixed effects for movers’ origins (in addi-
tion to the age and demographics that were already partialed out in panel A). These 
values capture the extent to which healthier movers from a given origin select sys-
tematically different destinations. The results indicate that conditional on origin, 
mover observed health is still correlated with destination mortality, but conditioning 
on origin lowers the slope from 0.24 to 0.15. While the selection on observed health 

Table 1—Summary Statistics

Movers Non-movers
(1) (2)

Estimation sample (number of individuals) 2,032,872 4,312,726

2006 comparison sample (number of individuals) 168,853 168,853

Age:
  65–74 0.48 0.54

  75–84 0.35 0.35

  85+ 0.17 0.11

Female 0.60 0.57

White 0.89 0.86

Region:
  Northeast 0.19 0.20

  South 0.43 0.37

  Midwest 0.19 0.27

  West 0.19 0.16

On Medicaid 0.10 0.12

Average number of chronic conditions 3.08 2.82

1-year mortality 0.09 0.05

4-year mortality 0.29 0.20

Notes: The first row shows the sample size for the full estimation sample. The summary 
statistics on movers in the comparison sample are restricted to those who moved in the year 
2006 (8.30 percent of movers in the whole sample). A random subset of non-movers that meet 
sample restrictions in 2006 are included, with their reference years set to 2006, such that the 
number of movers is equal to the number of non-movers. Rows for female, White, age, and 
region report the share of individuals with the given characteristics. Time-varying characteris-
tics are measured in the year prior to each enrollee’s reference year.
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shown here will be accounted for by the explicit ​​H​i​​​ controls in our model, it suggests 
that there may be remaining selection on unobserved health which we will need to 
address with our selection correction strategy.

B. Inputs to Selection Correction

Table 2 shows the standard deviations of the components of health capital that 
enter our selection correction. For each component, we report the standard devi-
ation across CZs, estimated using our split-sample strategy, as well as 95 percent 
confidence intervals based on our Bayesian bootstrap. The magnitudes are not easily 
interpretable, as they are in units of the log mortality rate ​log ​(​m​i​​)​​, but to get a sense, 
note that a 65-year-old with average health capital ​​θ 

–
 ​​ and sample-wide average place 

effect ​​γ – ​​ (which is 0 by construction) has an annual mortality rate of ​m  =  0.013​, and 
increasing her health capital by one standard deviation (among 65-year-olds) would 
increase her mortality rate by 0.005.

The first two rows report the estimated standard deviations of the components  
​​h​ 

j ​(i)​​ 
orig​​ and ​​η​ 

j ​(i)​​ 
orig​​ correlated with movers’ origins. Recall that our estimators of these 

terms are the origin fixed effects from equations (3) and (4) respectively. We find 
that the standard deviation of the unobservable component ​​η​ 

j ​(i)​​ 
orig​​ is 0.061, and the 

standard deviation of the observable component ​​h​ 
j ​(i)​​ 
orig​​ is 0.037. This suggests that, 

despite the richness of our observable health measures, the remaining systematic 
variation in health capital correlated with locations is substantial. The ratio of these 

Figure 1. Age 65 Life Expectancy

Notes: Figure reports estimated life expectancy at age 65 for non-movers in each CZ ​​(​L​j​​ )​​. Average life expectancy 
at 65 in each CZ is computed assuming a non-mover with the average characteristics in that CZ, except for race and 
sex for which national averages are used. Note that small CZs have been aggregated within each state (see online 
Appendix Figure A.1) and a single life expectancy estimate is reported for each aggregate CZ.
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Figure 2. Observable Health and Non-Mover Mortality

Notes: The left panels plot the distribution across CZs of the average observable, residualized health of movers to 
CZ ​j​. Specifically, the top left panel plots average residual observed health (​​​h ˆ ​​i​​​), conditional on ​​X​i​​​ and age. The bot-
tom left panel plots ​​​h ̂ ​​ j​ dest​​as defined in the text, and also conditions on origin fixed effects in addition to ​​X​i​​​ and age. 
All estimates are normalized such that the mean (across movers) of each is 0; both panels also report the cross-CZ 
standard deviation. The right panels show binned scatterplots of these two measures of average, residualized observ-
able health of movers to CZ ​j​ against the average mortality index in CZ ​j​ (​​​m – ​​j​​​).The average mortality index estimates 
come from the sample and model estimates of only non-movers (i.e., the same estimates as are used in Figure 1). 
The regression line and standard errors are both estimated using the CZ level data.
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Table 2—Inputs to Selection Correction

Standard deviation

Origin components:
  Observed health ​​(​h​ 

j​(i)​​ 
orig​)​​ 0.037

[0.036, 0.037]
  Unobserved health ​​(​η​ 

j​(i)​​ 
orig​)​​ 0.061

[0.058, 0.064]
Destination components:
  Observed health ​​(​h​ j​(i)​​ 

dest​)​​ 0.024
[0.024, 0.025]

 � Unobserved health ​​(​η​ j​(i)​​ 
dest​)​​, inferred based on Corollary 1

 
0.040

[0.037, 0.043]

Notes: Standard deviations are computed using the split-sample approach, and are weighted 
by the number of movers with each CZ as their destination. Confidence intervals are computed 
using 100 replications of the Bayesian bootstrap.
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terms ​0.061/0.037  =  1.65​ is the key conversion factor that is used in Corollary 1 
to pin down the relative importance of unobservables and observables.

The last two rows report the estimated standard deviations of the components  
​​h​ j​(i)​​ 

dest​​ and ​​η​ j​(i)​​ 
dest​​ correlated with movers’ destinations. The ​​h​ j​(i)​​ 

dest​​ components are esti-
mated by the destination fixed effects in equation (4); we find that their standard 
deviation is 0.024. The ​​η​ j​(i)​​ 

dest​​ components cannot be directly estimated, and are the 
key objects our selection correction is designed to infer. Applying Corollary 1 with 
our baseline constants ​​φ​1​​  = ​ φ​2​​  =  1​, we estimate that the standard deviation 
of ​​η​ j​(i)​​ 

dest​​ is ​0.024 × 0.061/0.037  =  0.040​.

V.  Main Results

A. Place Effects

Table 3 reports our decomposition of the area average mortality index ​​γ​j​​ + ​​θ – ​​j​​​. 
As shown in the first row, the standard deviation across CZs of this index is 0.099.

The following three rows report the decomposition of this index when we do not 
apply our selection correction—i.e., when we assume ​​η​ j​ dest​  =  0​ for all ​j​. In this 
case, our estimate of the place effects ​​γ​j​​​ is simply the destination fixed effects ​​​τ ˆ ​​ j​ dest​​ 
from equation (3), and average health capital ​​​θ – ​​j​​​ is given by the average value of the 
remaining terms in that equation (excluding the age term ​​a​i​​ β​, and taking the national 
average of race and sex as discussed in Section IIB). In this case, we estimate that 
the standard deviation of the place effects is 0.077, or three-quarters of the standard 
deviation of the overall index. The standard deviation of average health capital is 
0.073, and the correlation between the two components is slightly negative.

The bottom three rows report our preferred estimates applying the selec-
tion correction. Here, our estimate of the place effects ​​γ​j​​​ is the difference  
​​​τ ˆ ​​ j​ dest​ − ​​η ˆ ​​ j​ dest​​, where the unobservable component ​​​η ˆ ​​ j​ dest​​ is inferred following the steps 
broken out in Table 2. Average health capital ​​​θ – ​​j​​​ is again given by the average value 
of the remaining terms in equation (3) (excluding the age term ​​a​i​​ β​, and taking 
the national average of race and sex as discussed in Section  IIB). The standard 
deviation of the selection-corrected place effects is 0.054, about one-third smaller 
than the uncorrected version, and roughly half the standard deviation of the overall 
index. The standard deviation of average health capital is 0.088, and the correlation 
between the two components remains negative.

Figure 3 shows a map of our estimated treatment effects (​​L​ j​ ⁎​ − ​L 
–
​​). These are 

defined in Section I and capture the impact of moving to an area on life expectancy 
for a mover with average health capital. Places with the most favorable effects are 
found along the east and west coasts as well as in major cities such as Chicago. 
Many of the places with the most adverse effects are in the deep South (Alabama, 
Arkansas, Georgia, Louisiana, and parts of Florida) and in the Southwest (Texas, 
Oklahoma, New Mexico, and Arizona).

Figure 4 shows a scatterplot of these treatment effects against estimated average 
life expectancy ​​​L ˆ ​​j​​​ in each place. The two are positively correlated: a one unit increase 
in average life expectancy is associated with a 0.23 year increase in the treatment 
effect. Interestingly, for Medicare survivors of Hurricane Katrina, Deryugina and 
Molitor (2018) estimates larger effects. They find that moving to a place with a 
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Table 3—Mortality Components

Standard deviation

Mortality Index ​​(​γ​j​​ + ​​θ – ​​j​​)​​ 0.099
[0.095, 0.103]

Unadjusted:
  Place effects ​​(​γ​j​​)​​ 0.077

[0.067, 0.087]
  Health capital ​​(​​θ – ​​j​​)​​ 0.073

[0.057, 0.085]
  Correlation of ​​γ​j​​​ and ​​​θ – ​​j​​​ −0.139

[−0.322, 0.281]

Selection corrected:
  Place effects ​​(​γ​j​​)​​ 0.054

[0.040, 0.069]
  Health capital ​​(​​θ – ​​j​​)​​ 0.088

[0.071, 0.099]
  Correlation of ​​γ​j​​​ and ​​​θ – ​​j​​​ −0.093

[−0.322, 0.413]

Notes: These standard deviations across CZs give equal weight to each CZ; and standard 
deviations for the mortality index, place effects, and health capital use the split-sample 
approach. Ninety-five percent confidence intervals are computed using 100 replications 
of the Bayesian bootstrap. For the “unadjusted” results in the top panel, ​​γ​j​​​ is defined as 
the destination fixed effects ​​​τ ˆ ​​ j​ dest​​ from equation (3), and average health capital ​​​θ – ​​j​​​ is given 
by the average value of the remaining terms in that equation (excluding the age term ​​a​i​​ β​) 
within each bootstrap and split sample. For the “selection corrected” results in the bottom 
panel, ​​γ​j​​​ is defined as the difference ​​​τ ˆ ​​ j​ dest​ − ​​η ˆ ​​ j​ dest​​, where ​​​τ ˆ ​​ j​ dest​​ is the destination fixed effect 
from equation (3) and the unobservable component ​​​η ˆ ​​ j​ dest​​ is inferred following the steps broken 
out in Table  2; average health capital ​​​θ – ​​j​​​ is then calculated using the same approach as in 
the unadjusted results. Within each bootstrap, the correlation of ​​γ​j​​​ and ​​​θ – ​​j​​​ are calculated as  
​​[var​(​γ​j​​ + ​​θ – ​​j​​)​ − var​(​γ​j​​)​ − var​(​​θ – ​​j​​)​]​ / ​[2std​(​γ​j​​)​std​(​​θ – ​​j​​)​]​​, with each variance and standard 
deviation calculated using the split-sample approach.

Figure 3. Life Expectancy Treatment Effects

Notes: The map shows the EB-adjusted estimates of life-expectancy treatment effects (​​L​ j​ ⁎​ − ​L 
–
​​ ). Note that small 

CZs have been aggregated within state (see online Appendix Figure A.1) and a single life expectancy estimate is 
reported for each aggregate CZ.
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1 percentage point higher mortality rate is associated with an increase in migrant 
mortality of approximately 1 percentage point. The fact that they find larger effects 
could reflect the fact that our estimates are adjusted for selection, the specific 
subsample of destinations that their migrants move to, and the specific circum-
stances of the hurricane.

Figure 4 also shows a number of examples that highlight how average life expec-
tancy and treatment effects can diverge. For example, Charlotte, North Carolina 
is a place that in the cross-section has low average life expectancy, despite a rela-
tively favorable treatment effect. The gap reflects Charlotte's unusually poor average 
health capital. At the other extreme, Santa Fe, New Mexico is an example of a place 
with relatively high average life expectancy despite a negative treatment effect. The 
gap reflects the unusually good health capital of Santa Fe residents.

Figure 5 shows the treatment effects–and their 95 percent confidence intervals—
for the 20 most populous CZs. For comparison, we also show average life expec-
tancy in each location. The treatment effects of these locations range from −0.23 
in Denver, Colorado to 1.07 years in New York, New York. Estimates for each CZ’s 
treatment effect and confidence interval are available in the online Appendix.

Table 4 summarizes our estimated treatment effects across CZs. The top row reports 
the standard deviation across CZs of average life expectancy, which is 0.79 years. The 
second row shows the standard deviation of our estimated treatment effects, which is 
0.44, or roughly half of the cross-sectional variation in life expectancy.

Figure 4. Life Expectancy Treatment Effects versus Life Expectancy

Notes: The plot shows a scatterplot of the empirical Bayes (EB)-adjusted age 65 life-expectancy treatment effects 
for CZ ​j​ (​​L​ j​ ⁎​ − ​L 

–
​​) on the average age 65 non-mover life expectancy (​​L​j​​​). The line of best fit comes from a regres-

sion of non-EB-adjusted treatment effects on average non-mover life expectancy. The horizontal and vertical dashed 
lines show the medians of treatment effects and life expectancy, respectively, over all CZs. Confidence intervals for 
the treatment effects and life expectancies of all CZs are provided in the online Appendix.
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To translate these estimates into the impact on life expectancy from moving from 
a place at one part of the distribution of treatment effects to another, we assume the 
treatment effects are normally distributed with a standard deviation equal to our 
estimate in row 2 of the table. This provides a simple summary measure that incor-
porates our split-sample correction for sampling error. This exercise suggests that 
moving from a twenty-fifth percentile area to a seventy-fifth percentile area would 
increase life expectancy by 0.60 years; moving from a tenth to a ninetieth percentile 
area would increase life expectancy by 1.1 years, or roughly half the cross-sectional 
90–10 gap in life expectancy.

The final rows of the table show how much of the cross-sectional variation in life 
expectancy can be explained by our treatment effects. We find that about 15 percent 
of the cross-CZ variance in life expectancy would be eliminated if place effects 
were made equal across areas (with the observed variation in health capital remain-
ing the same). Conversely, we find that about 70 percent of the variation would be 
eliminated if health capital were equalized (with the observed variation in the causal 
effects of place remaining the same).25

25 Note that these shares need not sum to 1, both because of the nonzero correlation between average health 
capital and place effects and because of the nonlinear translation into life expectancy.

Figure 5. Life Expectancy Treatment Effects for 20 Largest CZs

Notes: This figure plots the EB-adjusted life expectancy treatment effect for the 20 most populous CZs (calculated 
using the 2000 and 2010 censuses), sorted by their EB-adjusted life-expectancy treatment effects. Ninety-five per-
cent confidence intervals are calculated as described in online Appendix A using the mean-squared error of each 
optimal prediction of the EB-adjusted life expectancy treatment effect. The x marks indicate the point estimates for 
the age-65 life-expectancy within each CZ.
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B. Heterogeneity

Previous work has found that geographic variation in life expectancy is higher 
for lower-income individuals (Chetty et al. 2016). We replicate this result here, and 
examine to what extent it results from different variances of place effects and health 
capital respectively. We restrict attention to the 100 largest CZs (which constitute 
about half of the non-mover population) to ensure sufficient sample sizes to estimate 
treatment effects for each subgroup.

Table 5 summarizes the results. The first column shows that our main results 
are similar in this restricted sample. The remaining columns re-estimate the model 
separately by race and by Medicaid enrollment (an indicator of low socioeconomic 
status), partitioning both movers and non-movers. Row 2 is consistent with the 
prior Chetty et al. (2016) finding: the standard deviation of life expectancy is larger 
for individuals on Medicaid compared to those not on Medicaid, and larger for 
non-White individuals compared to White individuals. We estimate that the stan-
dard deviation of health capital effects is larger for Medicaid enrollees compared 
to non-Medicaid (row 4), while the standard deviation of treatment effects is more 

Table 4—Life Expectancy Decompositions

Cross-CZ standard deviation of:

(1) Age 65 life expectancy (​​L​j​​​) 0.79
[0.76, 0.83]

(2) Treatment effects (​​L​ j​ ⁎​ − ​L 
–
​​) 0.44

[0.32, 0.55]
(3) Health capital effects 0.73

[0.60, 0.83]
(4) Correlation of treatment and health capital effects −0.04

[−0.15, 0.09]

Share variance would be reduced if:

(5) Place effects were made equal 0.15
[−0.10, 0.46]

(6) Health capital was made equal 0.69
[0.53, 0.83]

Notes: All objects are computed at the CZ level using the split-sample approach described in 
Section IIB and give equal weight to each CZ; 95 percent confidence intervals are computed 
via 100 replications of the Bayesian bootstrap. In row 2, we compute the standard deviation 
of life expectancy if health capital were held constant; specifically, for each CZ ​j​, we compute 
the counterfactual age 65 life expectancy if each CZ had its own ​​γ​j​​​ but the nationally repre-
sentative health capital ​​θ 

–
 ​​ as defined in the text. In row 3, we compute the standard deviation 

in life expectancy if the place effects were held constant; specifically, we define the nationally 
representative place effect as the median of ​​γ​j​​​ among non-movers, and for each CZ ​j​, compute 
the counterfactual age 65 life expectancy where the CZ has its own ​​​θ – ​​j​​​, but a nationally repre-
sentative place effect. Row 4 reports the correlation between the health capital component of 
life expectancy (whose standard deviation is shown in row 3) and the place component of life 
expectancy (whose standard deviation is shown in row 2). This is computed by calculating the 
correlation between the treatment effects in one split sample and the health capital effects in 
the other split sample, and then averaging the resulting correlations from each pair. In row 5, 
we show the share of the variance that would be reduced if place effects were made equal; this 
is computed by calculating the variance of life expectancy with place effects held constant (i.e., 
the square of row 3) and the variance in life expectancy (i.e., the square of row 1), and taking 
1 minus the ratio of these numbers. Row 6 is computed in an analogous fashion. Confidence 
intervals for rows 5 and 6 are computed by using this procedure within each bootstrap.
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similar (row 3). Similar patterns also are apparent for non-Whites compared to 
Whites, although the results are less precise.

These estimates suggest that the greater geographic variation in life expectancy 
for low-income populations may be particularly driven by variation in their health 
capital, rather than by variation in treatment effects of place. This is consistent with 
evidence in Chetty et al. (2016) suggesting that variation in area life expectancy for 
low-income individuals is strongly correlated with health behaviors such as smok-
ing and exercise.

C. Correlates of Treatment Effects

To provide some suggestive evidence on what may drive the treatment effects 
we estimate, we explore their correlation with various observable place characteris-
tics. In keeping with the existing literature, we focus primarily on observables that 
proxy for the environment and for medical care. We present detailed definitions, 
data sources, and summary statistics for these measures in online Appendix D.

Figure 6 reports bivariate correlations of both average life expectancy and our 
estimated treatment effects with various area level characteristics. Each place char-
acteristic has been normalized to have mean 0 and standard deviation 1. We empha-
size that these are simply correlations and need not reflect causal effects. Still, most 
of the results follow intuitive patterns.

The top panel shows that places with favorable treatment effects tend to have 
higher quality and quantity of health care. Treatment effects are significantly posi-
tively correlated with hospital quality (as measured by the Hospital Compare score), 
primary care physicians per capita, and specialists per capita. Areas with favorable 
treatment effects have fewer hospital beds per capita.

Measures of utilization—including utilization itself, along with imaging tests and 
diagnostic tests—are also positively correlated with our treatment effects, though 

Table 5. Heterogeneity by Medicaid Status and Race

Baseline 
(Large CZs)

Medicaid status Race

Non-Medicaid Medicaid White Non-White

(1) Number of movers 710,990 650,246 60,744 629,126 81,864

Cross-CZ standard deviation of:
(2) Life expectancy (​​L​j​​​) 0.66

[0.64, 0.68]
0.63

[0.61, 0.65]
1.54

[1.49, 1.59]
0.56

[0.53, 0.58]
1.35

[1.23, 1.46]
(3) Treatment effects (​​L​ j​ ⁎​ − ​L 

–
​​) 0.47

[0.40, 0.53]
0.46

[0.38, 0.54]
0.72

[0.37, 1.01]
0.48

[0.41, 0.54]
0.74

[0.00, 1.17]
(4) Health capital effects 0.53

[0.44, 0.59]
0.52

[0.44, 0.63]
1.50

[1.30, 1.81]
0.52

[0.45, 0.62]
1.04

[0.72, 1.57]

Notes: This table summarizes the decompositions for the largest 100 CZs by population in 2000, estimated sep-
arately by race and Medicaid status during the year prior to the reference year. Both non-mover and mover sam-
ples are partitioned by race or Medicaid status. Sample sizes in row 1 exclude movers to or from any CZ outside of 
the 100 largest CZs; this leaves us with about one-third of the baseline mover sample. Row 2 shows the cross-CZ 
standard deviation of life expectancy at 65 among non-movers in the indicated sample. All standard deviations in 
rows 2, 3, and 4 are computed using the split-sample approach, giving equal weight to each CZ. Brackets show the 
95 percent confidence intervals computed via 100 iterations of the Bayesian bootstrap. Since standard deviations 
cannot be negative, any split-sample approach that produces a negative result we set to 0.00.
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the magnitudes are smaller than they are for hospital quality or physician quantity. 
Our finding of a positive correlation between an area’s health care utilization and 
its estimated impact on life expectancy is intriguing in light of the large literature 
debating the impact of health care utilization on health outcomes (Chandra and 
Staiger 2007, Doyle 2011, Skinner 2011, Doyle et al. 2015).

The bottom panel examines correlates with various non health care area char-
acteristics. Areas with favorable place effects on life expectancy tend to have less 
pollution, less extreme summer and winter temperatures, fewer homicides, and 

Figure 6. Correlations with Place Characteristics

Notes: The dots in this panel report bivariate variance-weighted least squares regression results of our life expec-
tancy treatment effects (​​L​ j​ ⁎​ − ​L 

–
​​) on z-scores of the indicated place characteristic; online Appendix D provides more 

detail on their definitions. The x marks report bivariate variance-weighted least squares regression results of our 
age 65 life-expectancy estimates (​​L​j​​​) on z-scores of the indicated place characteristic. All regressions are at the CZ 
level, and the regressions are weighted by the inverse variance of each measure. Ninety-five percent confidence 
intervals are based on standard errors from the regressions. In this figure, the sample for each bivariate regression 
is all CZs for which that place characteristic is defined (see online Appendix Table A.11 column 3), although the 
results are nearly identical if we instead use the 554 CZs for which every place characteristic (except homicide 
rates) is defined.
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fewer automobile fatalities. They also tend to have higher income and education, 
which could reflect either greater demand for quality health care and amenities that 
reduce mortality or sorting of people with higher incomes and more education to 
high-treatment-effect areas. These areas also tend to exhibit better health behaviors 
(more exercise, less smoking, and lower obesity), which may similarly reflect either 
demand or sorting. Places with higher shares of urban populations tend to have more 
favorable treatment effects. The share of people over the age of 60 is uncorrelated 
with our treatment effects.

In general, the correlation of the characteristic with the estimated place compo-
nent of life expectancy is smaller (in absolute value) than the correlation with the 
cross-sectional life expectancy. This difference is particularly pronounced for health 
behaviors and demographics, consistent with the raw correlations reflecting not only 
the causal effects but also the direct impacts of these variables on health capital.

VI.  Validation and Robustness

A. Additive Separability

Equation (1) assumes that health capital and current place have additively separa-
ble effects on log mortality. As discussed above, we consider this a strong assump-
tion but one that is attractive economically since it has the intuitive implication 
that health capital and current location affect the level of mortality multiplicatively. 
Thus, the level of mortality of individuals with poor health capital (high ​​θ​i​​​) will vary 
more across areas than that of individuals who have better health capital.

One way to assess the validity of the assumption that place effects are separable 
from health capital is to test whether these place effects differ across subsets of 
enrollees. We construct four partitions of our mover sample based on move year, 
gender, age at move, and individual health at move. Each partition results in two 
groups with approximately the same number of movers; we estimate the model sep-
arately for movers in each group. For each partition, we use two summary statistics 
to evaluate the stability of place effects across the two groups. Online Appendix 
Table A.5 shows the results.

First, we analyze the standard deviation of place effects for each group. For 
five of the eight groups, the estimated standard deviations fall within the confi-
dence interval ​​[0.038, 0.067]​​ of our baseline estimates. The three exceptions are 
“young movers” (standard deviation  =  0.075), movers in “good health” (standard 
deviation  =  0.101), and male movers (standard deviation  =  0.068).26

Second, we examine the correlation of place effects between the two groups. 
The correlation of the place effects between the two subsamples ranges from 0.16 
(when we partition by individual health) to about 0.24 (when we partition by gender 
or move year). To assess these correlations, we need to adjust for the role of sam-
pling error, as it reduces the correlation between any two independent subsamples 
even if the true place effects are the same. Online Appendix Figure A.4 compares 
the estimated correlations to the distribution of correlation coefficients produced 

26 Note that observing a higher standard deviation of place effects in logs for movers in “good health” does not 
contradict the fact discussed above that the level effect of place will be smaller for those with better health capital.
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by randomly partitioning the mover sample into two equally sized groups and 
re-estimating the model 200 times. The median correlation of place effects between 
two random partitions is 0.29. For partitions based on age, move year, and gender, 
the correlation coefficients are within the 95  percent confidence interval formed 
from the distribution of correlation coefficients from the random partitions. Only 
the correlation coefficient for the partition based on individual health is outside of 
this interval.

Overall, the evidence for the additive separability assumption is somewhat mixed. 
It is comforting that the estimates are relatively stable across subsamples, and that in 
most cases we cannot reject equality. However, there are some statistically signifi-
cant deviations from additivity, particularly along the dimension of baseline health.

While this is an important point of caution, note that when we split the sample 
by health in the final panel of Table A.5 (and thus relax additivity along this dimen-
sion), the estimated standard deviation of place effects actually increases in both 
subsamples.27 This suggests that any bias due to imposing additivity may render our 
main results conservative.

B. Health Capital Fixed Post-Move

Equation (1) also assumes that health capital ​​(​θ​i​​)​​ is time constant. This means 
that the only systematic changes in health over time allowed by our model are due 
to age and calendar year. While this is a strong assumption, we believe that it is a 
reasonable approximation for our elderly population over the relatively short time 
horizon of our sample (1–12 years post-move).

The key threat to this assumption would be an immediate causal effect of des-
tination on health capital. Movers to some locations might tend to adopt healthier 
eating habits, start exercising, or stop smoking, perhaps due to peer effects and/or 
the supply of complementary amenities. Movers to other locations might see their 
health affected by environmental factors such as pollution. If such changes in behav-
ior or environment translate into large and immediate changes in health capital, 
some of our estimated place effects would partly capture the effect of these health 
capital adjustments. However, our read of the existing literature as well additional 
analyses we conduct of the time path of the treatment effects on mortality suggest 
that any threats to our identifying assumption may be quantitatively modest.

C. Evidence of Behavioral Responses and Their Impact

Three key facts lead us to expect that the magnitude of any such confounds is 
likely to be modest. First, available evidence suggests health behaviors are often 
relatively inelastic to environmental changes, particularly for the elderly. Substantial 
dietary changes are rare among adults of any age, even in the presence of significant 
events such as a diabetes diagnosis or retirement (Hut and Oster 2018). Consistent 
with this, a recent study of the impact of moving on nutrition finds no relation-
ship between the diets of movers and the average nutrition of residents in their 

27 This implies that the contributions of health capital and current place on log mortality differ within these 
subsamples relative to the full pooled sample.
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destinations (Hut 2018).28 Evidence of systematic changes in smoking behavior 
around moves for the general adult population is mixed,29 and rates of starting and 
stopping smoking decline sharply with age.30

Second, the impact of any behavioral change on mortality is also likely to be 
smaller for the elderly, as they have accumulated a large stock of existing health 
capital from experiences earlier in life. For example, Doll et al. (2004) finds that 
the gain in life years from smoking cessation is decreasing in age of cessation, with 
someone who stops smoking at age 60 achieving only 30 percent of the gain of 
someone who stops smoking at age 30.

Third, even if health behaviors did change immediately on move, we would 
still expect the resulting changes in health capital, and thus the observable impact 
on mortality, to cumulate gradually over time rather than changing discretely on 
impact. For example, studies of the impact of smoking cessation on mortality find 
effects that grow gradually over the subsequent 10–15 years; estimated effects in 
the first few years are a small share of the total effect of cessation (Kawachi et al. 
1993, Mons et al. 2015, US Department of Health and Human Services 2020). The 
evidence in the next section suggests that the place effects we measure affect mor-
tality on impact and do not grow over time, making it less likely they are driven by 
the effect of behavioral change.

Time Path of the Treatment Effects of Place.—Results from two types of analy-
ses suggest that the treatment effects of place following moves appear immediately 
upon move and do not grow over time. First, we consider an alternative binary logit 
model of mortality, in which the outcome is mortality within a fixed window of ​n​ 
years. This allows us to estimate effects separately for different window lengths ​n​, 
providing insight into the time path of mortality effects. It also provides a check on 
the robustness of our results to the Gompertz functional form assumed in our main 
model. We replace estimating equation (3) with a binary logit model of ​n​-year mor-
tality. All covariates are the same as in equation (3) except that we include in the ​​X​i​​​ 
a fully interacted set of five-year age bins, race, and sex, rather than including age 
linearly and interacting race and gender. We estimate the logit model for one-year, 
two-year, three-year, and four-year mortality.

28 Relatedly, Allcott et al. (2019) finds economically small effects of supermarket entry on measures of healthy 
eating within eight years of entry.

29 Jokela (2014) finds no evidence that moving to disadvantaged neighborhoods in Australia is associated with 
systematic changes in smoking or physical activities for a broad sample of age groups within a ten-year period. 
Halonen et al. (2016) finds moving to disadvantaged areas in Finland is associated with increased smoking on 
average within five years; Ivory et al. (2015) finds similar results within five years for moves to disadvantaged 
areas in New Zealand, but finds no impact of moves to areas with higher preexisting smoking rates. Pulakka et al. 
(2016) finds in Finland that increases in distance to a tobacco store increase the probability of quitting smoking 
but decreases in distance do not increase the probability of relapse among former smokers within nine years. The 
only one of these studies to look specifically at the over-65 population is Halonen et al. (2016), which finds no 
significant effect.

30 Compared to the population of adult smokers as a whole, smokers who are 65 or older are less likely to want 
to quit (Babb et al. 2017) and smoking rates among the elderly have declined by a much smaller amount than rates 
among the overall adult population between 2005 and 2015 (Jamal et al. 2016). This is consistent with evidence 
that individuals between the ages of 18 and 44 report that they are more likely to attempt quitting to smoke than 
older age groups (Goren et al. 2014). Smoking take-up rates are also much smaller among older individuals, with 
approximately 99 percent of smokers starting before age 26 (US Department of Health and Human Services 2017).
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Table 6 reports the results. The first row reports our baseline estimates of the 
standard deviation of the mortality index ​​(​γ​j​​ + ​​θ – ​​j​​)​​ and the standard deviation of the 
selection-corrected place effects ​​γ​j​​​ from Table 3. In our baseline, the standard devi-
ation of ​​γ​j​​​ is about half the standard deviation of ​​γ​j​​ + ​​   θ​​j​​​. The last four rows show 
the results of the logit model for different horizons. The impact of place shows up 
immediately in the first year after move. Place effects on mortality are similar, and 
statistically indistinguishable, over the first four years post-move. This pattern is 
consistent with our place effects picking up contemporaneous place effects ​​γ​j​​​ rather 
than endogenous health capital changes which we would expect to adjust more 
slowly.

Second, we limit the observation window for movers in our baseline model to 
two​​, four​​, or six​​ years post-move. As with the subsample analyses in Table 5, we 
restrict this analysis to the 100 largest CZs to ensure sufficient sample sizes for 
these subsamples. Online Appendix Table  A.6 shows that the cross-CZ standard 
deviation of treatment effects and health capital effects are similar when we use 
either the full sample or these more limited observation windows. Online Appendix 
Figure A.5 shows the scatterplot of treatment effects and health capital effects for 
the subsample including only moves four years after the move against the baseline 
estimates; the estimates are highly positively correlated, and clustered around a line 
with a slope of 1. As further evidence, the robustness analysis in Section VIE below 
shows similar results when we limit the sample to movers 70 or older (who we 
expect are even less likely to change their health behaviors upon move).

Taken together, this evidence is consistent with our estimated place effects cap-
turing causal effects that affect movers on impact, and argues against bias due to 
endogenous adjustment of health capital. To explain the large effects we see in the 

Table 6—Logistic Model

Standard deviation of  
mortality index ​​(​γ​j​​ + ​​θ 

–
 ​​j​​)​​

Standard deviation of 
place effects ​​(​γ​j​​)​​

(1) (2)

Baseline 0.099
[0.095, 0.103]

0.054
[0.040, 0.069]

Logistic model:
  1-year mortality 0.062

[0.061, 0.063]
0.081

[0.071, 0.090]
  2-year mortality 0.068

[0.068, 0.069]
0.073

[0.062, 0.079]
  3-year mortality 0.077

[0.076, 0.077]
0.083

[0.076, 0.088]
  4-year mortality 0.086

[0.086, 0.086]
0.082

[0.075, 0.089]

Notes: Column 1 reports the cross-CZ standard deviation of our mortality index. Row  1 
reports results for the baseline Gompertz specification (see Table 3). For the baseline specifi-
cation, the mortality index is age, race, and sex adjusted; for the logit specifications it is not. 
Furthermore, in the logit specifications, rather than a ​β ⋅ t​ term, five-year age bins are fully 
interacted with race and sex. Column 2 reports the cross-CZ standard deviation of our place 
effects. Ninety-five percent confidence intervals are reported underneath the point estimates, 
and are computed with 100 replications of the Bayesian bootstrap. All standard deviations are 
computed using the split-sample approach, and all standard deviations in both columns give 
equal weight to each CZ.
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first years post-move, any such bias would need to be associated with large changes 
in behavior that translate into immediate rather than cumulative mortality impacts.

D. Selection Correction Assumptions

The key novel assumption in our selection correction strategy is Assumption 2: 
that the relative importance of the unobserved and observed components of health 
capital correlated with movers’ destinations is proportional to the relative impor-
tance of the components correlated with movers’ origins. In our baseline approach 
we make a stronger assumption and assume that these ratios are not just propor-
tional, but in fact are equal (i.e., that ​φ  =  1​). Here, we provide some support for 
this assumption, and also document the robustness of our findings to relaxing it.

Empirical Support.—One way to provide support for this baseline assumption is 
to ask whether the analogous condition would hold if some of our observed health 
measures had in fact been unobserved. That is, suppose we divide ​​H​i​​​ into ​K​ sub-
sets ​​H​ i​ k​​. For each subset, we imagine a hypothetical world where the elements of ​​H​ i​ k​​ 
are the unobservables and the elements of ​​H​ i​ −k​  = ​ H​i​​ \ ​H​ i​ k​​ are the observables, so 
the analogs of ​​h​i​​​ and ​​η​i​​​ would be ​​h​i​​  = ​ H​ i​ −k​ ​λ​​ −k​​ and ​​η​i​​  = ​ H​ i​ k​ ​λ​​ k​​ (where ​​λ​​ −k​​ and ​​λ​​ k​​ 
are the appropriate subvectors of ​λ​). Denote the associated origin and destination 
components by ​​h​ j,k​ dest​​, ​​h​ j,k​ 

orig​​, ​​η​ j,k​ dest​​, ​​η​ j,k​ 
orig​​. We would like to confirm that

	​ ​ 
std​(​η​ 

j​(i)​,k​ 
orig ​)​
 _ 

std​(​h​ 
j​(i)​,k​ 
orig ​)​

 ​  ≈  ​ 
std​(​η​ j​(i)​,k​ 

dest ​)​
 _ 

std​(​h​ j​(i)​,k​ 
dest ​)​

 ​    ∀ k.​

To implement this test, we define 100 different subsets ​​H​ i​ k​​, each of which is a ran-
dom draw of 13 of the 27 total conditions. In each case we include log utiliza-
tion in ​​H​ i​ −k​​. For each subset, we estimate equation (3) and compute ​​​η ˆ ​​ j,k​ 

orig​  = ​​ τ ˆ ​​ j,k​ 
orig​​,  

​​​h ˆ ​​i​​  = ​ H​ i​ −k​ ​​λ ˆ ​​​ −k​​, and ​​​η ˆ ​​i​​  = ​ H​ i​ k​ ​​λ ˆ ​​​ k​​. We then compute the implied ​​​h ˆ ​​ j,k​ dest​​ and ​​​h ˆ ​​ j,k​ 
orig​​ by 

re-estimating equation (4), and compute ​​​η ˆ ​​ j​ dest​​ from equation (6) maintaining our 
baseline assumption that ​φ  =  1​.

Panel A of Figure 7 shows the results. This figure plots ​std​(​η​ 
j​(i)​,k​ 
orig ​)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ on 

the x-axis and ​std​(​η​ j​(i)​,k​ 
dest ​)​/std​(​h​ j​(i)​,k​ 

dest ​)​​ on the y-axis. If these ratios vary proportion-
ately for any subset of health measures ​k​, they should lie on a line that goes through 
the origin. The results support this; the points have a clear monotonic relationship 
and we estimate an intercept of −0.26.31

Panel B of Figure 7 directly examines how our key estimates vary if we re-estimate 
the entire model using the different subsets of observables ​​H​i​​​ in panel A. It plots the 
distribution of these 100 estimates for the standard deviation of treatment effects 

31 If anything, panel A of Figure 7 suggests that the true constant of proportionality ​​φ​2​​​ in Assumption 2 may be 
somewhat smaller than our baseline assumption of ​​φ​2​​​​  =  1​. If ​​φ​2​​  =  1​, the points should have a slope of 1. The 
observed slope of ​3.86​ is larger. To look at this another way, online Appendix Figure A.6 shows the distribution of 
the ratio of ​std​(​η​ j​(i)​,k​ 

dest ​)​/std​(​h​ j​(i)​,k​ 
dest ​)​​ to ​std​(​η​ 

j​(i)​,k​ 
orig ​)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ across the 100 draws. This ratio is always larger than 

1 with a median value of 1.97.
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(left-hand panel) and the correlation of the estimated treatment effects with our 
baseline estimates (right-hand panel). The results indicate that the standard devia-
tion of treatment effects is lowest in our baseline model, suggesting it is conserva-
tive, and that the correlation of treatment effects with the baseline is high.

Another way to assess the validity of our baseline approach is to apply it to out-
comes that, unlike mortality, are observed repeatedly for the same individual. For 
such outcomes, we can follow Finkelstein, Gentzkow, and Williams (2016) and 
adjust for selection directly by including individual fixed effects. We can then com-
pare the fixed effects estimates for these outcomes to those we obtain using our 
selection-correction approach.

Figure 7. Support for Selection-Correction Assumptions

Notes: Panel A plots ​std​(​η​ j​(i)​,k​ 
dest ​)​/std​(​h​ j​(i)​,k​ 

dest ​)​​ against ​std​(​η​ 
j​(i)​​ 
orig​, k)​/std​(​h​ 

j​(i)​,k​ 
orig ​)​​ for 100 different subsets ​​H​ i​ k​​; each 

point in the scatter plot represents a different definition of ​k.​ For each ​k​, ​​H​i​​​ includes log(overall utilization) and a 
random subset of 13 of the 27 chronic conditions. Panel B reports various summary statistics about the treatment 
effects (​​L​ j​ *​ − ​L 

–
​)​ produced by each of the 100 different definitions of ​k​ in panel A. The left figure in panel B plots 

the standard deviation across CZs of the treatment effects from each of these alternate specifications; the dotted line 
shows the standard deviation across CZs of the treatment effects in the baseline specification (Table 4). All standard 
deviations are computed using the split-sample approach. The right figure in panel B plots the correlation of the 
treatment effects in each of the alternate specifications with the baseline treatment effects.
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The panel regression of Finkelstein, Gentzkow, and Williams (2016) is

(7)	​ ​y​ijt​​  = ​ α​i​​ + ​γ​j​​ + ​ω​t​​ + ​x​it​​ β + ​ϵ​ijt​​​

where ​​y​ijt​​​ is an outcome observed in a panel, such as a particular measure of health 
care utilization; ​​α​i​​​, ​​γ​j​​​, and ​​ω​t​​​ are individual, CZ, and calendar year fixed effects; 
and ​​x​it​​​ consists of dummies for five-year age bins as well as fixed effects for relative 
year for movers.

We consider three panel outcomes ​​y​ijt​​​ that we can construct using the inpatient 
and outpatient claims data: an indicator for any hospital admission, an indicator for 
any emergency room visit, and an indicator for any outpatient visit. For each of these 
outcomes, we first assume that we only observe the outcome once post-move (as we 
do for mortality), and estimate equation (3) for the binary outcome measured one 
year post-move. We report results both with and without the selection correction. We 
then estimate equation (7) and compare.

The results are shown in online Appendix Table A.7. In all cases, the selection 
correction moves the estimates closer to the panel estimates. For both any hospital 
admission and any emergency room visit, this is a substantial change, closing more 
than half the gap between the naive uncorrected estimates and the panel estimates. 
For any outpatient visit, the effect of the selection correction is smaller, though in 
the right direction. These results provide independent validation that our selection 
correction succeeds in reducing bias due to unobservables.

Relaxing the Assumptions.—We assess robustness to relaxing our baseline 
assumptions of equal selection and equal ratios, which together imply ​​ 1 __ φ ​  =  1​. We 
focus on the implied variability of the place effects ​​γ​j​​​ and of the treatment effects  
​​L​ j​ ⁎​ − ​L 

–
​​ as summary outcomes in this exercise. The results are summarized in 

online Appendix Table A.8.
The first row reports results from our baseline approach ​​(​ 1 __ φ ​  =  1)​​; our baseline  

estimate of the standard deviation of treatment effects is 0.44. Row 2 consid-
ers the value of ​​ 1 __ φ ​​ that minimizes the implied ​std​(​γ​j​​)​​. Note, ​std​(​γ​j​​)​​ is not mono-

tonic in ​​ 1 __ φ ​​, but is minimized when ​​ 1 __ φ ​  =  cov​(​τ​ j​ dest​, ​η​ j​ baseline​)​/var​(​η​ j​ baseline​)​​, where  

​​η​ j​ baseline​  = ​ (std​(​τ​ 
j​(i)​​ 
orig​)​/std​(​h​ 

j​(i)​​ 
orig​)​)​​h​ j​ dest​​ is the population value of our baseline esti-

mator ​​​η ˆ ​​ j​ dest​​ in equation (6).32 In our data ​cov​(​τ​ j​ dest​, ​η​ j​ baseline​)​/var​(​η​ j​ baseline​)​  =  1.26​,  
suggesting that assuming our baseline assumption of ​​ 1 __ φ ​  =  1​ implies a conser-
vative estimate of the importance of place effects relative to alternatives ​​ 1 __ φ ​  <  1​ 
or ​​ 1 __ φ ​  >  1.26​. In practice, the results in row 2 indicate that if we choose the 
variance-minimizing value ​​ 1 __ φ ​  =  1.26​, the implied standard deviation of treat-
ment effects falls to ​0.43​. In row 3, we show that if we set ​​ 1 __ φ ​​ equal to the median 

32
 Since ​​η​ j​ dest​  = ​  1 __ φ ​ ⋅ ​η​ j​ baseline​​, we have ​​γ​j​​  = ​ τ​ j​ dest​ − ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​​ and thus

	​ var​(​γ​j​​)​  =  var​(​τ​ j​ dest​)​ + var​(​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​ − 2 ⋅ cov​(​τ​ j​ dest​, ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​.​

Minimizing with respect to ​​ 1 __ φ ​​ yields the desired result. 
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value 1.97 from Figure A.6, the implied standard deviation of treatment effects  
is 0.45.33

In the bottom rows of the table, we show results for the values of ​​ 1 __ φ ​​ that min-
imize the absolute difference between the standard deviation of the place effects 
estimated via the panel approach and via the adjusted cross-sectional approach, 
separately for the different outcome variables from Table  A.7. Specifically, in 
rows 4 through 6 we choose the value of ​​ 1 __ φ ​​ that minimize this difference for the 
outcomes of any emergency room visit, any hospital admission, and any out-
patient visit respectively, while in row 7 we use the value of ​​ 1 __ φ ​​ that minimizes 
the average absolute difference across all three outcomes. The values of ​​ 1 __ φ ​​ range 
from ​1.75​ to ​7.10​, and the resultant standard deviation of the treatment effects is 
increasing in ​​ 1 __ φ ​​, from 0.48 (for ​​ 1 __ φ ​  =  1.75​) to 2.27 (for ​​ 1 __ φ ​  =  7.10)​. We conclude 
that our results are not sensitive to modest deviations from our baseline assump-
tion ​​ 1 __ φ ​  =  1​, and that this assumption is, if anything, conservative in the sense that 
the alternatives imply even larger effects of place.

E. Robustness

Online Appendix Table A.9 reports a suite of additional robustness checks. For 
each, we report a number of key results: the standard deviation of average life expec-
tancy ​​(​L​j​​)​​, the standard deviation of area treatment effects ​​(​L​ j​ ⁎​ − ​L 

–
​)​​, the correla-

tion between the treatment effects estimated in that row and the baseline treatment 
effects, and the correlation between average life expectancy and the treatment effects  
​​(corr ​(​L​j​​, ​L​ j​ ⁎​)​)​​. The first row repeats our baseline estimates for reference; once again, 
we focus on the 100 largest CZs since many of the robustness analyses are con-
ducted on subsamples of the data.

In row 2, we estimate a variant of our baseline model that allows the coefficients 
on age, demographics, and health (​β​, ​ψ​, and ​λ​, respectively in equation (3)) to differ 
for movers and non-movers.

In row 3, we interact the components of observed health ​​H​i​​​ with an enrollee’s age 
in the year prior to their reference year ​​t​ i​ ⁎​​. Since we define ​​H​i​​​ as of ​​t​ i​ ⁎​ − 1​ for all 
enrollees, our baseline specification assumes that the coefficients that relate specific 
chronic conditions to log mortality are independent of age. This robustness check 
relaxes that assumption in a limited way.

In row 4, we add an interaction between gender and age to the Gompertz model.
In row 5, we add average race- and sex-adjusted mortality rates in a mover’s ori-

gin county as a control variable. This adjusts for selection of movers across different 
areas within origin CZs.

In row 6, we restrict the sample of moves to those of more than 100 miles, as 
measured between the centroids of the mover’s origin and destination zip codes.

In row 7, we restrict the sample of movers to those who are 70 or older at the 
time of move and moved after 2003. Given the range of years that we observe in our 

33 The finding that a relatively large change in ​​ 1 __ φ ​​ corresponds to a relatively small change in the standard devi-
ation in treatment effects reflects the fact that our baseline estimate happens to fall on the flat part of the func-
tion relating ​​ 1 __ φ ​​ to var ​​(​γ​j​​)​​. Over this range increasing ​​ 1 __ φ ​​ increases the term ​var​(​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​​ but also increases the 
term ​cov​(​τ​ j​ dest​, ​ 1 __ φ ​ ⋅ ​η​ j​ baseline​)​​ and these two effects approximately cancel out. 
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data, this ensures that movers who joined Medicare at age 65 were observed in their 
origin for at least five years.

In rows 8 and 9, we focus on moves in which the gap between life expectancy in 
the mover’s origin and in her destination is either above or below the median gap 
among all movers.

In row 10, we exclude any moves in which the origin CZ is geographically 
adjacent to the destination CZ.

In row 11, we exclude moves to Florida, Arizona, and California. This provides a 
check that patterns of selection specific to these popular retirement destinations are 
not biasing our results.

Rows 12 and 13 restrict the sample to moves occurring in 1999–2003 or to 
moves occurring in 2004–2012, respectively. In the latter case we define the ref-
erence year ​​t​ i​ ⁎​​ for non-movers to be the second year they appear in the data in the 
2004–2012 period.

In all of these cases, the results are qualitatively unchanged. The correla-
tion between the estimated treatment effects and our baseline treatment effects is 
above ​0.9​ in all but three cases, and above ​0.8​ in all cases.

VII. Conclusion

This paper documents a substantial impact of current locations on mortality. 
We estimate that moving from the tenth percentile area in terms of impact on life 
expectancy to the ninetieth percentile area would increase life expectancy at 65 by 
1.1 years, or about 5 percent of average remaining life expectancy at 65. Equalizing 
place effects would reduce the cross-sectional variation in life expectancy at 65 by 
15 percent.

We emphasize that these findings capture short-run, partial equilibrium impacts 
of place on life expectancy for an elderly population. Effects could well be differ-
ent in younger populations. They could also be different over longer time horizons 
during which health capital itself could be substantially affected by location. We 
consider this a promising area for further work, especially since our results suggest 
an important role for health capital in affecting life expectancy. More work is needed 
to understand what aspects of health capital are important causal determinants of 
life expectancy, and the extent to which current environment in childhood or adult-
hood affects health capital.

Our findings also suggest that it is important to better understand what aspects 
of current environments are important for life expectancy. We present suggestive, 
cross-sectional evidence on the characteristics of places that are more favorable for 
life expectancy. More work is needed to understand the causal mechanisms. In addi-
tion, while our partial equilibrium analysis takes place characteristics as fixed, it 
would be interesting to understand the extent to which they are endogenously deter-
mined by the composition of an area’s population in equilibrium.
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