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Pfeifenbergerb, Paul L. Joskowc, Richard Schmalenseed 
 
 

ABSTRACT 

The final version of this paper will appear as Chapter 6 in the forthcoming MIT Energy Initiative 

study, The Future of Storage.  Chapters referred to in this paper will be included in that study 

when it is published.  In order to illuminate the role of energy storage in future decarbonized 

electric power systems, we construct detailed models, calibrated to mid-century, of optimal 

assets and hourly operation of power systems under a range of assumptions about generation 

and storage technologies’ availability and cost.  We model three US regions: The Northeast, the 

Southeast, and Texas. These regions differ in many dimensions, notably in the quality of their 

variable renewable energy (VRE, wind and solar) resource and load profiles. We find that nearly 

complete decarbonization of all three systems using only VRE generation and (very little) natural 

gas, along with Lithium-ion storage, can be achieved without reduced reliability or very large 

increases in system average electricity cost. The incremental cost of going to complete 

decarbonization of the electric power system without any offsets from other sectors is very high, 

however, comparable or higher than estimated costs of negative emissions technologies. If 

technologies more suitable for long-duration storage are available, they optimally substitute for 

dispatchable natural gas capacity and, under plausible assumptions, produce only moderate 

reductions in system average electricity cost. Substantial industrial demand for hydrogen would 

make its use for storage in the electric power system more attractive. In decarbonized power 

systems, the distribution of the hourly marginal value of energy (MVE), which corresponds 

roughly to the wholesale spot price, will be drastically different from the distributions of spot 

prices in current systems: there will be more hours of high MVEs and many more hours of very 

low MVEs.  In order to encourage efficient economy-wide decarbonization, wholesale markets 

and retail rate structures will need to be significantly modified.  In addition, research in the 

design, operation, and regulation of decarbonized systems should be a high priority. 
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6.1 Introduction 

6.1.1 Chapter Overview 

As policy makers across the world design and implement policies to achieve long-term deep 
decarbonization of the power sector, the share of variable renewable energy (VRE) generation 
(i.e., wind and solar) is expected to grow substantially in the next few decades.1 Unlike 
“dispatchable” generation that can be turned up and down by the system operator to balance 
supply and demand, VRE generation increases and decreases with exogenous variations in wind 
speed and direction and solar irradiation. The large-scale integration of wind and solar 
generation is contingent on designing flexible power systems that can balance variations in wind 
and solar output to continuously meet electricity demand, consistent with reliability criteria. 
Today, dispatchable generation (e.g., natural gas, nuclear, coal, and reservoir hydropower) 
provides this kind of balancing service. But in low-carbon systems dominated by VRE generation, 
the availability of dispatchable resources will be severely limited. 
 
In such systems, power system flexibility can be enhanced by deploying energy storage along 
with other enhancements to legacy electric power systems: (1) transmission network expansion 
to increase the geographic footprint of balancing areas and better exploit spatiotemporal 
variations in demand and weather-driven VRE resource availability; (2) demand flexibility and 
demand response; and (3) deployment or retention of some dispatchable zero or low-carbon 
generation. Here, we use systems modeling approaches to examine the value of energy storage 
for achieving the deep decarbonization of the electric sector and the implications for storage 
technology development and electricity market design under a wide range of technological and 
economic assumptions. The findings in this chapter focus on the role for grid-scale storage in 
developed country settings, such as the United States, with relatively high levels of grid 
reliability, universal access to electricity, well-developed wholesale electricity markets or 
regulated vertically integrated utilities, and increases in electricity demand driven by the 
electrification of segments of the transportation, buildings, and industrial sectors that currently 
use fossil fuels.  
 
Specifically, we analyze power system evolution in three U.S. regions—the Northeast, Southeast 
and Texas, as well as, with less detail, at a national level. All these regions, and the United States 
as a whole, experienced significant reductions in carbon dioxide (CO2) emissions from electricity 
generation between 2005 and 2018—both in absolute terms (tons CO2) and in terms of 
emissions intensity (grams CO2 per kilowatt-hour or gCO2/kWh). These reductions reflect the 
combined effects of stagnant electricity demand; a large reduction in coal-fired generation in 
favor of natural gas generation, largely for economic reasons; and significant increases in VRE 
generation, importantly (but not exclusively) driven by public policy. Notwithstanding these 
trends, electricity generation remains a major source of energy-related CO2 emissions in the 
United States, accounting for roughly 31% of the nation’s total energy-related CO2 emissions in 
2018 (EIA, 2021).2  
 

 
 
1 For example, the International Energy Agency’s Roadmap to Net Zero by 2050 assumes that solar PV and wind will 
account for 70% of global electricity generation in 2050 (IEA, 2021).  Strictly speaking, run-of-the-river hydroelectric 
generation is also both variable and renewable.  We do not model it here because it is not expected to expand 
significantly in coming decades in developed countries, and its primarily seasonal variability does not pose the sort 
of challenges associated with wind and solar generation, which are our focus.   
2 In addition to CO2, there are also other greenhouse gases (GHG) that contribute to global warming, including 
methane (CH4) (10% of U.S. GHG emissions in 2019); nitrous oxide (N2O) (7%); and hydrofluorocarbons (HFCs), 
perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3) (2.8%) (EPA, 2021). 
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Given the central role for electrification in long-term U.S. decarbonization efforts, the model-
based findings in this chapter primarily rely on electricity demand projections from a high-
electrification scenario developed by the National Renewable Energy Laboratory (NREL) for its 
2018 Electrification Futures (EFS) study. In NREL’s high-electrification scenario, U.S. electricity 
consumption increases by a factor of 1.6 by 2050 relative to the 2018 level of roughly 4,000 
terawatt-hours (TWh) (Mai, et al., 2018). Subject to these demand assumptions, which in turn 
rest on assumptions regarding policy support for electrification of other sectors, we analyze 
power system evolution for different 2050 power system decarbonization targets, defined in 
terms of CO2 emissions produced per kWh of electricity dispatched, for three different regions 
of the country in 2050. In our study, we focus on four emissions constraints: 0 gCO2/kWh, 5 
gCO2/kWh, 10 gCO2/kWh, and 50 gCO2/kWh. We also consider an unconstrained (“No Limit”) 
case that provides a consistent benchmark to compare the impact of imposing different 
emissions constraints; additionally, we include some modeling runs with a 1 gCO2/kWh 
constraint for Texas. Since we do not consider technologies for removing CO2 from the 
atmosphere (sometimes called “negative emissions technologies”3), the 0 gCO2/kWh case 
represents a stricter constraint compared to the more common goal of achieving a “net-zero” 
power system, where a net-zero system could allow for the deployment of one or more negative 
emissions technologies that we do not include in our analysis.  
 
When contemplating the common goal of “net-zero” carbon energy systems, where the term 
“net-zero” is understood to allow for the inclusion of negative emissions technologies, the 5 
gCO2/kWh or even the 10 gCO2/kWh emissions constraint modeled here is likely more 
informative than the very strict 0 gCO2/kWh constraint. At the 2018 level of electricity demand, 
reducing the average carbon intensity of generation for the U.S. electricity grid to 5 gCO2/kWh 
or 10 gCO2/kWh from the nation-wide average of 449 gCO2/kWh in 2018 (Table 6.1) would result 
in total U.S. CO2 emissions from electricity generation of 21 million metric tons (MMT) or 42 
MMT respectively, delivering reductions of 99.2% or 98.3% respectively relative to 2005 
electricity sector emissions of 2,544 MMT (EIA, 2021).4 To meet a higher, 6,700-TWh level of 
demand (the load projected for 2050 in NREL’s EFS high-electrification scenario), these same 
intensity targets would deliver reductions of 98.7% or 97.4,% respectively, relative to emissions 
if average intensity remained at the 2005 level. While our analysis focuses on grid 
decarbonization by 2050, achieving zero or net-zero carbon emissions from electricity 
generation sooner than 2050, say by 2035 (consistent with some decarbonization goals), would 
require more rapid shifts in the generation mix and possibly an expanded role for energy storage 
(for both short-duration and long-duration uses).  It could involve much higher costs than those 
modeled here since our analysis incorporates significant reductions in the costs of VRE 
generation and storage by 2050.  These cost reductions are unlikely to be realized by 2035.  
Accordingly, if 2035 is the target year for “net-zero” emissions it would likely have to be achieved 
with higher-cost technologies than those incorporated into our analyses for 2050. 
 
 
 
 
 
 

 
 
3 Examples of such technologies include biomass for energy production coupled with carbon capture and 
sequestration (CCS) or systems that capture CO2 directly from the ambient air (sometimes called ‘direct air capture’) 
(Daggash et al. 2019; Fajardy et al. 2021). 
4 The United States, Canada, Japan, Australia, and many other countries use 2005 as the baseline year for emission 
reduction commitments. Many European countries use 1990 as their baseline year.  
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    2005     2018   

Electricity Generation         

  TWh % 2050  TWh % 2050 
 U.S. Total 4,055 61%  4,178 62% 

 Northeast 283 62%  238 52% 

 Southeast 824 115%  834 117% 
 Texas 397 27%  477 33% 
       

Electricity-Related CO2 Emissions     
 
 

MMT gCO2/kWh  MMT gCO2/kWh 

 U.S. Total 2,544 627  1,874 449 

 Northeast 118 416  55 232 

 Southeast 485 589  327 392 

  Texas 261 659   230 482 

Table 6.1: Electricity generation and electricity-related emissions (U.S. total and three regions modeled in this 
study). Regional figures are based on summing up emissions for the various states part of each region. Data source: 
“U.S. Electric Power Industry Estimated Emissions by State” (EIA, 2021).  

6.1.2 Roles of Storage in Power Systems 

There is growing interest in deploying energy storage for a variety of applications on the 
electricity grid. For example, the U.S. Energy Information Administration (EIA) classifies battery 
projects based on 11 leading applications that overlap to some extent, including frequency 
regulation as well as other ancillary services (e.g., spinning reserves, voltage support), storage 
for excess wind and solar generation, load management, system peak shaving, transmission and 
distribution network deferral, backup power, and energy arbitrage (where arbitrage involves 
effectively moving the electricity from one time period to another) (DNV GL 2017; EIA 2020). 
The latter enables time-shifting of energy supply and is functionally central to the other grid 
applications provided by energy storage. The model results presented in this chapter focus on 
the value of energy storage enabled by its arbitrage function in future electricity systems. Energy 
storage makes it possible to defer investments in generation and transmission, reduce VRE 
curtailment, reduce thermal generator startups, and reduce transmission losses.  
 
While these use cases are likely to have the greatest long-term impact on grid evolution, there 
are other valuable use cases for energy storage that we do not consider. These include: (1) 
deployment of storage at the level of the distribution network for operational or investment 
deferral reasons, which can be valuable, but generally represent context-specific opportunities 
that cannot be easily generalized; and (2) consumer adoption of storage to reduce consumption 
during peak demand hours, which can enable large users to manage demand charges that may 
constitute a significant part of their total bill and which can also increase the value of rooftop 
photovoltaics (PV) for all types of customers under alternative tariff structures (Neubauer and 
Simpson 2015; Darghouth, et al. 2020). These use cases are strongly affected by available retail 
tariff structures as well as by the methods used to value rooftop PV injections back to the grid; 
thus, they cannot be generalized. A third use case we do not consider is storage to provide a 
variety of ancillary services that are required to meet reliability criteria at the bulk power system 
level. These reliability needs tend to be smaller than capacity requirements for electricity supply 
and thus are mainly important as short-term drivers for storage value and deployment. The 
distribution network and customer-level use cases for storage are partly addressed in Chapter 7 
in the context of developing country settings. 
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6.2 Systems Modeling Approach 

6.2.1 Capacity Expansion Modeling (GenX) 

Our analysis uses an open-source capacity expansion model (CEM) called GenX ( (MITEI and 
Princeton University, 2021). GenX takes the perspective of a cost-minimizing central planner to 
determine the optimal generation, storage, and transmission investments needed to meet a 
pre-defined time-path of system demand, while adhering to various grid operational constraints, 
resource availability limits, and other imposed policy/environmental constraints. Similar to 
other state-of-art CEMs (Brown, Hörsch and Schlachtberger; Johnston, et al. 2019; Kuepper, 
Teichgraeber and Brandt 2020), GenX incorporates a detailed temporal resolution of power 
sector operations, based on modeling either representative periods or one or more years at an 
hourly resolution, depending on the model configuration. As noted by recent inter-model 
comparison studies (Mai, Barrows, et al. 2015; EPRI and RFF 2017; Cole, et al. 2017; 
Mallapragada, et al. 2018), increasing temporal resolution and preservation of chronology in 
CEMs allow for improved characterization of the temporal variability of demand or “load,” VRE 
generation, and the inter-temporal dynamics of various generators and energy storage 
technologies. GenX can also be used to model the available suite of demand- and supply-side 
resources and has the capability to represent non-electric energy demand and its impact on the 
power sector.  
 
Several major grid operating constraints are activated in GenX for this study. The first is demand 
and supply balance for each hour at the zonal level, considering inter-zonal imports and exports 
as well as the option of shedding load in each zone at a value of lost load (VoLL) equal to 
$50,000/MWh. A high VoLL was chosen to minimize instances of involuntary load shedding and 
incentivize investment in more capacity to meet demand within the energy-only market 
framework implemented in the model. Other operating constraints in the model include 
linearized unit commitment (start-up/shut-down) decisions,5 and minimum up/down times and 
hourly ramping limits for thermal generators; transmission capacity limits and linear line losses,6 
where applicable; inter-temporal constraints governing storage state-of-charge and capacity 
constraints on maximum hourly charge/discharge and stored energy; and renewable resource 
(both VRE and hydropower) availability limits in each hour. To model system evolution to meet 
the decarbonization targets mentioned previously, we include constraints to enforce upper 
limits on annual average CO2 emissions intensity that account for generation and storage 
discharge as well as storage losses. The long-run system-level optimization approach employed 
by GenX and other state-of-art CEMs (Brown, Hörsch and Schlachtberger; Johnston, et al. 2019; 
Kuepper, Teichgraeber and Brandt 2020) captures the declining marginal value of all resources, 
including energy storage, and their resulting least-cost equilibrium penetration levels. The 
shadow prices on the carbon emission limits imposed within the CEM can be thought of as 
carbon prices that are included in system prices when carbon-emitting generation is on the 

 
 
5 Many thermal generators have a non-zero minimum stable power output level below which the plant needs to be 
shut down in case its power output needs to be lowered further. This discontinuity in power output is typically 
captured in power systems models using binary variables that are either 1 or 0 depending on the plant’s 
commitment status (1=committed, 0=not committed). Several operational constraints can be formulated using the 
commitment variable, but these constraints add significantly to computational complexity. Linearized unit 
commitment refers to implementations where the integrality of plant commitment variables is relaxed but the 
associated operational constraints are still enforced. Previous work has shown that this approximation provides a 
reasonable balance between computational tractability and accuracy in power systems planning models (Palmintier 
2013; Poncelet, Delarue and D’haeseleer 2020). 
6 Generally, transmission losses scale as a quadratic function of power flows. To maintain model linearity and thus, 
computational tractability, we approximate transmission losses to be a linear function of power flow across the line 
in each time interval (Brown, et al., 2020). 
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margin (Brown & Reichenberg, 2021). This makes the model suitable for evaluating the impact 
of technology and system drivers on the role for energy storage in future power systems. Like 
most other CEMs, GenX models only bulk power supply and considers the costs of generation 
and storage, as well as additions to the transmission grid, where applicable. It seems likely that 
existing fossil-fuel generating plants will have retired by 2050, so greenfield conditions are 
assumed for this study, with the exception of hydro (Northeast, Southeast) and some existing 
nuclear (Southeast), where available. We do not model distribution costs or compute estimates 
of retail rates. 
 
Like any single-stage CEM, GenX outputs include cost-optimal installed capacities of generation, 
storage, and transmission assets, as well as their hourly utilization to meet the modeled load. 
Constant returns to scale are assumed—that is, investment costs for a facility are assumed to 
be proportional to its capacity. The objective function of the GenX model includes the sum of 
annualized investment cost and operating cost for all resources as well as the cost of non-served 
energy, if any. These outputs can be used to compute a metric called the system average cost 
of electricity (SCOE). SCOE is defined as the total annualized investment and operational cost of 
the modeled system (i.e., the objective function of the GenX model), divided by the total annual 
electricity demand served (Heuberger, Staffell, Shah, & Dowell, 2017). SCOE is distinct from the 
levelized cost of energy (LCOE) or levelized cost of storage (LCOS), both of which are technology-
specific cost metrics that are computed with a static view of the power system and that require 
specifying a fixed dispatch profile for the resource in question, which often leads to misleading 
inter-technology cost comparisons. By contrast, the SCOE metric is computed as an output of 
the CEM—thus, changes in SCOE across different scenarios provide a view of the system impact 
of various technology and policy drivers under assumptions of perfect foresight, constant 
returns to scale, and optimal investment and operation. Further details on the formulation and 
implementation of the GenX model can be found elsewhere, including in prior publications that 
use GenX (MITEI and Princeton University, 2021) and in the open-source model itself (MITEI and 
Princeton University, 2021). 
 
The modeling results presented here should not be viewed as predictions or forecasts. We view 
GenX as a platform for performing a set of internally consistent experiments that in turn reflect 
alternative but realistic assumptions about the attributes of technologies, including their costs 
and availabilities, as well as the level and flexibility of demand and other factors. This allows us 
to examine how variations in these assumptions affect the optimal portfolios of technologies, 
their costs, and implicit bulk system electricity prices. Importantly, the modeling results shed 
light on which variations seem likely to be important and which do not. 
 

6.2.2 Modeling Energy Storage in GenX 

Energy storage technologies are differentiated in the GenX model based on their design as well 
as their assumed cost and performance characteristics. In terms of design, GenX includes two 
broad representations of storage technologies. The first category includes technologies that 
have equal charging and discharging power capacity (e.g., lithium-ion or other electrochemical 
flow batteries, pumped hydro); for these technologies, energy storage capacity and 
charging/discharging power capacity are the two independent design variables and feasible 
ranges for the ratio of energy capacity to power capacity can be specified.7 The second category 
includes technologies where both charging power and discharging power capacity, as well as 

 
 
7 This classification includes the special case where the ratio of energy capacity to power capacity, or storage 
duration, is held constant, either due to lack of data or other factors, so there is only one independent design 
variable. 
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energy storage capacity, are independent design variables (e.g., thermal or hydrogen storage). 
Depending on this classification, storage technologies are characterized by one, two, or three 
independent capital and fixed operations and maintenance (FOM) cost parameters (Table 6.2). 
For technologies where energy storage capacity is an independent design variable, we constrain 
the storage duration (ratio of energy to discharging power capacity) to be less than 300 hours, 
but this constraint is never binding for the results reported here. Additionally, due to data 
limitations, we model pumped hydro storage with fixed storage duration (12 hours) and assume 
total capital costs scale with power capacity alone (Brown, et al. 2020; U.S. Department of 
Energy 2018). 
 

Type Independent design 
variable 

Dependent design variable Classification of storage 
technologies modeled here 

1 Discharge power capacity Charge power capacity, 
energy capacity 

Pumped hydro 

2 Discharge power 
capacity, 
Energy capacity 

Charge power capacity Li-ion, Redox Flow 
batteries, Metal-air 
batteries 

3 Discharge power 
capacity, 
Energy capacity 
Charge power capacity 

- Thermal energy storage, H2 
storage 

Table 6.2: Design variables for different types of storage technologies modeled in this study. 

The inter-temporal operation of storage technologies is modeled using several parameters, 
highlighted in Table 6.3, including the hourly self-discharge rate and the variable O&M cost for 
charging and discharging. We also model energy losses during charging and discharging, by 
parametrizing charging and discharging efficiency for each technology. As with other CEMs, to 
manage computational tractability, we do not model degradation of energy capacity with use, 
or dynamic charging or discharging efficiency as functions of the state of charge of storage. This 
approach, which is similar to the approach taken in other modeling studies, may overestimate 
the benefits of electrochemical storage technologies relative to other storage technologies that 
are less affected by these considerations (Jafari 2020; Sakti 2017). In our analysis, the impact of 
this modeling simplification is partly mitigated by accounting for the periodic replacement of 
energy components in the FOM costs (Cole and Frazier 2020) for the electrochemical energy 
storage technologies considered here. This is akin to paying a fixed annual maintenance fee to 
guarantee a certain level of performance (further details are discussed in Chapter 2). 
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 Tech  
Discharging 

Capital 
Cost 

($/kW) 

Charging 
Capital 

Cost 
($/kW) 

Storage 
Capital 

Cost 
($/kWh) 

FOM 
($/kW-
year) 

FOM 
($/kWh-

year) 

VOM 
($/kWh) 

Efficiency 
Up (%) 

Efficiency 
Down 

(%) 
RTE (%) 

[1] PHS Mid 1,966 - 0.0 41.0 0.0 0.0 89% 89% 80% 

[2] Li-ion Low 32 - 70.9 0.3 1.4 0.0 92% 92% 85% 

[3] Li-ion Mid 110 - 125.8 0.8 2.2 0.0 92% 92% 85% 

[4] Li-ion High 154 - 177.0 1.4 3.2 0.0 92% 92% 85% 

[5] RFB Low 297 - 15.5 4.1 0.0 0.0 92% 88% 80% 

[6] RFB Mid 396 - 48.0 4.1 0.0 0.0 92% 88% 80% 

[7] RFB High 530 - 102.2 4.1 0.0 0.0 92% 88% 80% 

[8] Metal-air Low 595 - 0.1 14.9 0.0 0.0 70% 59% 41% 

[9] Metal-air Mid 643 - 2.4 16.1 0.1 0.0 73% 63% 46% 

[10] Metal-air High 950 - 3.6 23.7 0.1 0.0 72% 60% 43% 

[11] Hydrogen Ultra-Low 1,190 479.3 1.1 11.0 0.0 0.0 77% 65% 50% 

[12] Hydrogen Low 1,150 356.1 6.0 11.0 0.1 0.0 80% 70% 56% 

[13] Hydrogen Mid 1,190 479.3 7.0 11.0 0.1 0.0 77% 65% 50% 

[14] Hydrogen High 1,230 602.4 8.0 11.0 0.1 0.0 60% 60% 36% 

[15] Thermal Low 494 3.3 2.9 3.9 0.0 0.0 100% 55% 55% 

[16] Thermal Mid 736 3.3 5.4 3.9 0.0 0.0 100% 50% 50% 

[17] Thermal High 1,226 3.3 9.0 3.9 0.1 0.0 100% 46% 46% 

Table 6.3: Storage Costs and Operational Assumptions. Values from the Future of Storage technical teams; refer to 
previous chapters for detailed description of individual technologies: hydrogen (Chapter 5); thermal (Chapter 4); 
metal-air, RFB and Li-ion (Chapter 2). PHS = Pumped Hydro Storage, RFB = Redox Flow Battery.  Round-trip efficiency 
(RTE) is the fraction of energy used to charge a device that is available to be discharged; it is the product of Efficiency 
Up and Efficiency Down similarly expressed. Hourly self-discharge rates for storage technologies are also considered 
in the modeling but are very small at 0.002% for Li-ion and metal-air systems and 0.02% for thermal systems. Low-, 
mid-, and high- cost assumptions for hydrogen assume above-ground storage, while ultra-low-cost reflects cost 
assumptions for geological storage. PHS cost data sourced from the 2016 Hydropower Vision report (U.S. 
Department of Energy 2016). 

Our analysis focuses on modeling the supply–demand balance within the bulk power system 
enforced at an hourly resolution for each balancing area within the region considered. Storage 
contributes to the supply–demand balance as both a supply-side resource (via discharging) and 
as a demand-side resource (via charging). In addition, as previously noted, storage can 
contribute to the procurement and supply of grid ancillary services such as operating reserves. 
Since we do not model system operating reserve requirements, however, the benefit of 
providing these services is not captured in our valuation of energy storage technologies. 
Previous research using GenX that included operating reserve requirements has shown that the 
ability to satisfy reserve requirements does contribute significantly to the value of storage when 
storage is deployed at low levels. However, this incremental benefit is lost with increasing 
storage penetration (Mallapragada, Sepulveda, & Jenkins, 2020). This suggests that long-run 
valuations of alternative storage technologies may not be much affected by ignoring their 
participation in operating reserve markets.  
 

6.2.3 Regional Modeling 

Selection of Model Regions 

We focus on three U.S. regions in 2050: the Northeast, the Southeast, and Texas. We do not 
seek to develop detailed trajectories of the evolution of the resource mix in these regions, as 
this evolution will be affected by a range of factors, including the turnover of the existing 
generation fleet, market design, state incentives, permitting rules, etc. Instead, we focus on the 
effects of differences in VRE resource quality and the availability of long-lived, existing low-
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carbon hydro and nuclear generation assets, and pumped hydro storage assets, assuming cost-
efficient investment and operation. The three selected regions differ across several key 
attributes that affect the potential costs and benefits of achieving various decarbonization goals, 
including: (1) wind speeds and solar irradiation, land availability, and resulting installed costs of 
wind and solar generation; (2) hydroelectric and potential hydrogen (H2) storage resources; and 
(3) industry structure and regulation and associated implications for nuclear power 
development. As noted above, we also assume that the existing stock of fossil-fuel generating 
capacity retires by 2050, so that our analysis basically examines a "greenfield" system developed 
to meet 2050 demand, utilizing existing transmission assets and some other existing non-fossil 
assets, with some regional differences (as detailed below). New fossil generating capacity may 
be selected depending on its costs, utilization rates in an optimal system, and the stringency of 
the system-wide carbon constraint. 
 
The Northeast region (New England and New York) is characterized by strong legislative and 
regulatory support for renewable generation, offset by siting difficulties that translate, in some 
cases, into increased infrastructure costs (Wiser & Bolinger, 2018). Most states in this region 
have pledged to reduce their economy-wide greenhouse gas (GHG) emissions by at least 80% 
by 2050, with a few states committing to more ambitious targets.8 The region is largely 
restructured with competitive wholesale markets managed by two independent system 
operators (ISO-NE and NYISO) that govern system operations and partially govern investment in 
new generation and transmission capacity. The region has relatively low-quality solar, but high-
quality onshore and offshore wind. However, siting difficulties have plagued onshore VRE and 
transmission developments, which may explain some of the recent, state-mandated 
procurements of relatively expensive offshore wind and supporting requirements for new 
transmission infrastructure investments. The region also imports non-trivial amounts of 
hydropower from Canada and has its own hydro resources that can help to support VRE 
integration. While the Northeast’s electricity demand profile currently peaks in the summer, 
penetration of electric space heating anticipated to meet decarbonization commitments (and 
included in the NREL high electrification demand scenario), may transform the Northeast into a 
winter-peaking region (Mai 2018; N. A. Sepulveda 2021). All the region’s nuclear power plants 
are merchant plants that must cover their going-forward costs with wholesale market revenues 
to break even. Because many of these plants are financially challenged, and currently depend 
on state subsidies to continue operating, their licenses are unlikely to be renewed beyond their 
current license periods. Accordingly, we assume that all existing nuclear units retire by 2050 (in 
other words, that they do not renew their current operating licenses) and that new nuclear 
plants are not deployed by 2050 based on available information about the technology’s cost and 
public acceptance challenges. We also assume that the existing stock of fossil generating 
capacity retires by 2050, but that existing hydro and pumped storage resources continue to be 
operational in 2050. 
 
The Southeast region (Tennessee, Alabama, Georgia, North and South Carolina, and Florida) is 
characterized by the presence of regulated, vertically integrated utilities; the absence of 
organized wholesale markets; prevalence of winter-peaking demands for some states within the 
region; and an extensive nuclear generation fleet, which contributed 28% of the region’s power 

 
 
8 For example, the Massachusetts’ Global Warming Solutions Act of 2008 requires at least an 80% reduction in 
carbon emissions by 2050 (below a 1990 baseline level) (Massachusetts Executive Office of Energy and 
Environmental Affairs, 2021). New York has a mandated goal to achieve zero-emissions electricity by 2040, including 
70% renewable energy generation by 2030, and to reach economy-wide carbon neutrality by 2050 (NYSERDA, 
2021).  
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generation in 2018.9 While nuclear plant economics have been adversely impacted in other parts 
of the United States that are currently served by wholesale electricity markets, the economics 
of nuclear generation remain more favorable in the regulated, vertically integrated utility 
environment of the U.S. Southeast (U.S. DOE 2017; Szilard 2017). Continued reliance on this 
regulatory structure in the U.S. Southeast, combined with greater public acceptance of nuclear 
energy, makes it more likely that nuclear plant operators will apply for, and be granted, second 
license renewals that extend the remaining life of the region’s existing plants beyond 2050. Thus, 
our analysis includes existing nuclear plants in the region with an initial operating date of 1975 
or later, which could operate to or beyond 2055 with a second license renewal (see Appendix 
Table A-1). We assume that 25 gigawatts (GW) of existing nuclear capacity will still be online 
through 2055 (assuming an 80-year lifetime for nuclear plants). Nuclear, as a dispatchable low-
carbon resource, could partially mitigate the need for VRE resources and storage technologies 
and has the potential to lower the system costs of achieving deep decarbonization (Buongiorno 
2018; Sepulveda 2018). The political environment in the Southeast is also more conducive to 
building new nuclear plants; indeed, the only two nuclear units currently under construction in 
the United States (Plant Vogtle) are in Georgia.10 The Southeast region is also endowed with 
relatively good-quality solar resources. While offshore wind may be a possibility in this region, 
we have not modeled its availability due to a lack of reliable data to characterize the resource. 
Thus, we model the Southeast as a mostly a "greenfield" system in 2050, but for the continued 
operation of significant existing nuclear capacity and any existing hydroelectric resources. 
 
Texas is characterized by high-quality wind and solar resources, an organized wholesale market 
serving a restructured electricity sector, summer-peaking demand with a strong component of 
relatively inflexible air conditioning demand, significant penetration of weather-sensitive 
electric heating, proximity and access to CO2 sequestration sites, and strong industrial energy 
demand. Notably, the petrochemical industry, which uses almost all the hydrogen produced 
today for feedstock purposes, is concentrated in Texas and the other Gulf Coast states. As 
economy-wide decarbonization advances, there may be additional demand for hydrogen in 
energy applications. Supplying this incremental demand using electrolyzers11 coupled with 
hydrogen storage could add demand flexibility to the grid. Texas also has underground salt 
caverns, which can serve as a cheaper medium than above-ground tanks for the long-duration 
storage of hydrogen. This allows us to use Texas to test our hydrogen storage cost sensitivities 
and hydrogen-as-a fuel sensitivities. We assume that the state’s two existing merchant nuclear 
plants (four units) retire and are not replaced by 2050. The only brownfield resources are Texas’s 
(minimal) existing hydroelectric resources, which are assumed to continue operating in 2050. 
 
As we will see in later sections, the availability of dispatchable low-carbon resources and the 
relative resource quality of solar and wind have significant implications for modeled system 
costs and for the optimal amount of storage. Differences across the three modeled regions and 
obvious differences between these regions and other parts of the United States (i.e., 
exceptional-quality solar in the Southwest and extensive hydro in the Northwest) mean that 
there is no credible way to generalize or aggregate our regional results to produce national 
totals. 
 

 
 
9 Total electricity generation (866 TWh), and nuclear generation (241 TWh) from the U.S EIA (2021). 
10 We assume these units will be part of the 2050 existing nuclear fleet for the Southeast. 
11 Electrolysis technologies considered here generally split water at or near ambient conditions and are capable of 
flexible operation over nearly the entire range of power loadings. Further description of electrolyzer technologies 
can be found in a 2019 IEA report, The Future of Hydrogen (IEA 2019). 
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Regional Commonalities in Modeling 

In GenX, each scenario is characterized by zonal hourly VRE capacity factors and demand, 
investment and operational parameters (e.g., costs, ramp rates, minimum generation levels) for 
each technology, and different carbon emission constraints (Table 6.4). Across all three regions, 
we use the latest mid-range EIA fuel-price projections for 2050 and NREL’s Annual Technology 
Baseline 2020 (ATB) to characterize the capital cost of various generation technologies (Table 
6.5) as well as lithium-ion (Li-ion) battery storage.12  
 

Key Inputs Key Outputs 

• Solar PV and wind hourly capacity 
factor 

• 2050 hourly demand profile from 
NREL Electrification Futures Study 

• Fixed (capital and O&M) and 
variable (O&M and fuel) costs for 
each resource technology 

• Operational parameters for each 
technology 

• Fuel parameters such as CO2 
emissions rate and cost 

• Optimal installed electricity 
generation capacity mix 

• Total system cost 
• Hourly operation of each resource 

technology 
• System carbon emissions 
• Energy contribution and capacity 

factor for each technology 

Table 6.4: Inputs and Outputs of the GenX Model. See  
Figure 6.2 and Appendix A for further details. 

  Tech Capital Cost 
($/kW) 

FOM ($/kW-
year) 

VOM 
($/MWh) 

Modeled in 
Regions 

[1] Onshore Wind 1,085 34.6 0.01 NE, SE, TX 

[2] Offshore Wind 2,179 58.8 0.01 NE 

[3] Utility-Scale Solar 725 8.5 0.00 NE, SE, TX 

[4] Distributed Solar 924 8.0 0.00 NE 

[5] CCGT 936 12.9 2.16 NE, SE, TX 

[6] OCGT 854 11.4 4.50 NE, SE, TX 

[7] CCGT_CCS 2,080 27.0 5.72 NE, SE, TX 

[8] Allam 1,929 48.0 2.07 TX 

[9] Nuclear 6,048 119.0 2.32 SE 
Table 6.5: Mid-cost assumptions for VRE and natural gas generating resources. The “Modeled in Regions” column 
indicates where the technologies are assumed to be available. Projected costs from NREL ATB 2020. For onshore 
wind, we applied a 1.5x multiplier in the Northeast to reflect difficulties in siting and interconnection. “Allam” refers 
to the supercritical CO2-based oxy-combustion power concept, also referred as the “Allam-Fetvedt” cycle (Weiland 
and White 2019). 

Per our (mostly) greenfield modeling assumption, we restrict investment to the following 
technologies: utility-scale solar and onshore wind (as well as offshore wind and distributed solar 
in the Northeast); natural gas-fired plants (open cycle gas turbine (OCGT) and combined cycle 
gas turbine (CCGT)), with and without amine-based carbon capture and storage (CCS) 

 
 
12 We assume 2045 technology costs from the 2020 NREL Annual Technology Baseline (ATB) database, reflecting 
the fact that the stock of resources in 2050 will likely have been built/financed a few years earlier. 
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technology; and hydro resources where they play a major role (Northeast, Southeast).13 We do 
not consider coal as a viable generating technology in 2050 in the United States, given its 
declining cost-competitiveness and diminishing role in the U.S. power mix over the past few 
years, as well as its high carbon emissions. The exceptions to greenfield modeling are for existing 
hydro and pumped hydro storage in the Northeast and Southeast, existing nuclear in the 
Southeast that would still be operational in 2050 under an assumed 80-year lifetime (see Table 
A-1 in Appendix A), and existing transmission capacities in the Northeast and Southeast. As 
discussed below, we modeled Texas as a single transmission zone. In stand-alone regional case 
studies, we also assess the impact of new nuclear and emerging natural gas-based power 
generation technologies with CCS (e.g., Allam-Fetvedt cycle (Weiland and White 2019), and 
hydrogen for industrial uses). 
 
The model characterizes hourly demand for each region using the 2050 demand profiles 
developed by NREL for its EFS study (specifically, NREL’s high-electrification-with-moderate-
technology-advancement scenario) (Mai, et al., 2018). These demand profiles correspond to 
2012 weather year variations.14 They assume a high degree of electrification in residential and 
commercial buildings (e.g., 61% of space heating, 52% of water heating, and 94% of cooking 
services) and transportation (e.g., plug-in electric vehicles account for 84% of light-duty vehicle 
stock in 2050), which collectively results in electricity providing 41% of final U.S. energy demand 
in 2050 as compared to 19% in 2016. We take as given that policies necessary to encourage 
these levels of electrification have been implemented and consider the incremental effects of 
limits on carbon emissions from the power sector. The projected demand profiles are also 
available with a breakdown of hourly demand among various end-use segments, which we use 
to explore the impact of demand flexibility for certain end uses, such as electric vehicle (EV) 
charging.  
 
To represent PV and wind resources at a high level of spatial and temporal resolution, we follow 
the approach documented by Brown and Botterud (2021): (1) we develop supply curves of 
available land area for PV and wind development (excluding water bodies, national parks, urban 
areas, mountain ranges, and Native American territories) and (2) we quantify the cost of spur 
lines to connect new VRE generation to existing transmission infrastructure. For each site, the 
hourly capacity factor (CF) for PV is simulated assuming a horizontal one-axis-tracking PV system 
and using 2007–2013 satellite data from the National Solar Radiation Database (NSRDB). The 
hourly CF for wind is simulated using climate reanalysis data from the WIND Toolkit and 
manufacturer power curve data for the Gamesa G126/2500 turbine at 100-meter height. We 
develop different “quality bins” for VREs (based on the levelized cost of energy, considering 
generation and interconnection costs) by aggregating over these individual sites. Further details 
are provided in the Supplemental Information (Note S2) to Brown and Botterud (2021). 
 

Regional Differences in Modeling 

Since the sources of storage value we are trying to capture are highly sensitive to temporal 
resolution, we opted to model operational decisions on an hourly basis, to better capture the 

 
 
13 Many of our capital cost assumptions were taken from the 2020 edition of the NREL annual technology baseline 
(ATB) report (National Renewable Energy Laboratory (NREL), 2020). In the 2021 edition of the ATB, mid-cost 
projections for Li-ion battery power capital costs were higher than the values in the 2020 edition, while energy 
capital costs were lower. Using projections from the 2021 edition of the ATB would presumably increase the 
duration of Li-ion storage deployment across the scenarios evaluated in this study.  
14 Presumably, the NREL load projections do not account for the impacts of climate change on electricity demand, 
which, according to recent literature, could be important to consider in system planning, along with climate change 
impacts on generation (Ralston Fonseca, et al. 2021; Steinberg, et al. 2020). 
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power system’s inter-temporal ramping and balancing needs with high VRE penetration and to 
estimate how these needs affect the value of different storage resources. Our emphasis on high 
temporal resolution leads to necessary trade-offs between the level of chronological and 
network detail we consider in the analysis to keep the model computationally tractable. 
 
About 90% of electricity supply in Texas is managed by a single ISO, the Electric Reliability Council 
of Texas (ERCOT). Because ERCOT is almost completely electrically isolated from the rest of the 
country and because transmission capacity between wind-rich areas (designated as 
“Competitive Renewable Energy Zones”) in the northwestern and western portions of the state 
and demand centers in eastern and southern Texas have relatively recently been greatly 
expanded (Hulbert, Chernyakhovskiy, & Cochran, 2016), we decided to model all of Texas as a 
single zone. With this simplified spatial resolution, we were able to include the maximum 
temporal resolution of grid operations in the CEM, limited only by data availability: seven years 
at hourly resolution.  
 
In contrast, the Northeast and Southeast regions of the United States are relatively large and 
geographically diverse, and they have well-documented intra-regional transmission constraints. 
This makes it important to consider intra-regional transmission expansion. For these two 
regions, we elected to use a spatially resolved network representation, which in turn meant that 
we had to use a lower temporal resolution to keep the model computationally tractable. We 
model annual grid operations in these two regions based on 35 representative periods of 10 
days each (corresponding to 8,400 hours), which are sampled from the available time series data 
of seven years at an hourly resolution. Such a time-domain reduction approach is often 
employed in CEM studies to balance spatial/temporal resolution and level of operational detail 
(Heuberger, Staffell, Shah, & Dowell, 2017; Kotzur, Markewitz, Robinius, & Stolten, 2018; 
Mallapragada, Papageorgiou, Venkatesh, Lara, & Grossmann, 2018). (Mallapragada, 
Papageorgiou, Venkatesh, Lara, & Grossmann, 2018)The selection of 35 representative periods 
(350 days x 24 hours/day) follows an iterative clustering approach, as further described in 
Appendix B.  
 
We also consider other regional differences with respect to resource quality and regulatory 
environment. Notably, we apply a 50% cost premium to onshore wind development in the 
Northeast to reflect well-documented siting challenges—this multiplier is consistent with 
regional multipliers for the Northeast used in other studies (Brown, et al., 2020). To reflect 
difficulties in expanding transmission into and out of the New York City area (zone 4 in  
Figure 6.2), we apply a two-times (2x) expansion limit, based on existing transfer capacities. 
Finally, we include offshore wind as a viable technology with no limits on maximum deployable 
capacity in the Northeast, due to favorable water depths and supportive deployment policies at 
the state level.  
 
As described previously, we use the NREL EFS high-electrification load scenario in our base case 
(other assumptions in our base case are discussed in the next section), to reflect the levels of 
electrification needed to achieve deep decarbonization on an economy-wide basis by 2050. The 
high-electrification load scenario assumes an increased role for electricity in meeting final 
energy demand compared to the reference scenario (41% vs. 23% in 2050).  Regional differences 
arise due to local weather conditions and electrification potential. For example, in comparison 
to the NREL EFS reference load scenario case, the high-electrification load scenario has a 65% 
higher system peak and 52% higher annual demand in the Northeast region, and a 36% higher 
system peak and 32% higher annual demand in Texas (Table 6). Under the high-electrification 
scenario, winter electricity consumption increases most substantially in the Northeast, due to a 
greater role for electrified space heating via cold-climate heat pumps. This partly explains the 
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larger impact of electrification (high vs. reference scenario) on peak and annual electricity 
demand for the Northeast as compared to Texas (Figure 6.1). 
 

  System Peak (GW)   Annual Demand (TWh) 

  
High-

electrification Reference-electrification High-electrification 
Reference-

electrification 

Northeast 94 57  454 298 

Texas 151 111  715 543 

Southeast 298 205   1,457 1,051 

Table 6.6: EFS 2050 demand assumptions for the Northeast, Southeast, and Texas. Hourly system peak (GW) and 
total annual demand (TWh) are shown for both the high and reference electrification scenarios.  

 
Figure 6.1: Example electricity demand in New York State in select hours in January 2050. High electrification 
includes higher levels of electrified space heating (commercial and residential HVAC) and transportation (mainly 
light-duty electric vehicles). H Electrification = high electrification scenario; R Electrification = Reference 
electrification. HVAC = Heating Ventilation & Air Conditioning. HD = Heavy-duty, LD = Light-duty; MD = Medium-
duty. Data source: NREL Electrification Futures Study (Mai, et al., 2018) 

6.2.4 Model Limitations 

Before describing our results and key findings, we note some limitations in our modeling 
approach. Our use of historical weather to simulate multi-year VRE capacity factors provides 
range and variation for VRE availability; however, it does not capture correlations between the 
effects of extreme weather events on generation and their effects on demand. Thus, we can 
only partly capture events like the ERCOT outages experienced in Texas in February 2021. As 
with most other capacity expansion models, our hourly supply–demand balance assumes 
perfect foresight with respect to VRE availability and demand—in reality, forecasting is not 
perfect, and technologies that provide flexibility (e.g., storage) will be needed to manage short-
term deviations from forecasts. The assumption of perfect foresight thus serves to produce a 
lower bound on storage capacity requirements. A second limitation is that we model intra-
regional transmission in a highly aggregated manner based on a “pipe-and-bubble” formulation 
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(Mai, et al., 2015).15 We also do not model sub-hourly VRE variability or planning reserve margins 
that mimic capacity markets in some jurisdictions. These simplifications have operational and 
cost implications and point to areas that should be considered in future work. Finally, it is 
important to keep in mind that this analysis relies on an optimization model that is designed to 
derive efficient solutions. The model does not account for real-world market imperfections, 
regulatory imperfections, or public policies that may favor one technology over another—all of 
which are likely to make it very difficult to achieve least-cost solutions in practice. Nonetheless, 
our analysis provides a useful benchmark against which real-world results can be compared for 
policy evaluation.  
 

 
 
15 Pipe-and-bubble or transport models for transmission are often used in investment planning to simplify the 
modeling. In these formulations, the transmission of electricity is represented in the same manner as the transport 
of mass, instead of using the more complex laws of physics (Kirchoff’s laws) that actually govern electricity flows. 
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Figure 6.2: Summary of regional modeling features and differences across the Northeast, Southeast, and Texas. Further details available in Appendix A. 
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6.3 Findings from the Modeling Analysis 

6.3.1 Near-Complete Decarbonization with VRE, Natural Gas, and Li-ion Battery 
Storage  

In our “base case” scenario only today’s commercially available technologies, namely lithium-

ion (Li-ion) battery storage, wind and solar generating capacity, and natural gas, with and 

without CCS, can be deployed in 2050, all subject to 2050 mid-cost assumptions. Wind, solar, 

and storage technologies, which have experienced significant cost reductions in recent years 

and are expected to become even less expensive in the future, play a greatly expanded role in 

this scenario even absent power system decarbonization goals—as reflected in our results for 

an emissions policy with no carbon limit.16 For the base case and “No Limit” emissions policy, for 

example, wind and solar account for 73% of generation in Texas in 2050, compared to only 16.5% 

of generation in ERCOT in 2018. 

 

Since we do not model negative emissions technologies, and since the incremental cost of 

driving emissions to zero in our models exceeds the likely per-ton cost of these technologies, we 

emphasize the findings for our 5 gCO2/kWh case as being most representative of an extreme 

decarbonization scenario. Figure 6.3 and Figure 6.4 summarize the key modeled system 

outcomes for scenarios with tightening CO2 limits across the three regions. System impacts can 

be observed in the trade-offs between technology-level installed capacities and system costs, 

and between storage capacities and VRE curtailment.  

 

Base Case Summary System Impacts 

As CO2 limits tighten across the three regions, natural gas generating capacity is incrementally 

replaced by larger buildouts of VRE and Li-ion battery storage, as well as by the deployment of 

gas capacity with CCS. Notably, the capacity factor of CCGTs (without CCS) declines from 36% in 

Texas, 54% in Southeast, and 66% in Northeast under the No Limit case to 2%–5% across the 

three regions in the 5 gCO2/kWh case (see Table D-1 in Appendix D). Relative to the already very 

substantial VRE capacity increases modeled in the No Limit policy scenario, VRE capacity 

increases by 48% (Texas), 139% (Southeast), and 257% (Northeast) in the 5 gCO2/kWh case, and 

by 185% (Texas), 281% (Southeast), and 500% (Northeast) in the 0 gCO2/kWh case. 

  

 

 

 
16 As noted above, this case does assume that government policies outside the power sector have been 
implemented to support the substantial electrification assumed in the NREL demand scenario we employ. 
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Figure 6.3: Installed capacities in the Northeast (NE), Southeast (SE), and Texas (TX) under tightening CO2 
emissions constraints. Left side: installed power capacities (relative to the region’s 2050 peak electricity demand); 
right side: deliverable storage energy capacity to the grid (i.e., product of energy capacity and discharge efficiency, 
relative to the region’s annual electricity demand). Capacity factors of CCGTs can be found in Appendix D (Table D-
1). For the Northeast, “Wind” represents the sum of onshore and offshore capacity. 

 

 

Figure 6.4: Annual generation, VRE curtailment, and system average cost of electricity (SCOE) in the Northeast 
(NE), Southeast (SE), and Texas (TX) under tightening CO2 emissions constraints. SCOE includes total annualized 
investment, fixed O&M, and operational costs of generation, storage, and transmission, as well as any non-served 
energy penalty. Emissions intensity under the No Limit policy case is noted in parentheses in the bottom panel. For 
the Northeast region, “Wind” represents the sum of onshore and offshore wind generation. 
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Across the three regions, the variability of VRE generation is managed in the base case via three 

mechanisms: (1) flexible operation of natural gas generation to handle long periods of low VRE 

output, (2) deployment and utilization of energy storage for shorter periods of low VRE output, 

(3) optimization of the relative capacities of wind and solar generation, and (4) VRE deployment 

in excess of peak load. Use of the latter approach, often referred to as “overbuilding”, makes it 

cost-optimal to limit energy storage capacity to 2–4 hours of mean system load17 in the 5 

gCO2/kWh case. In the regions where the model allows for intra-region transmission expansion, 

we also see 46 GW (Southeast) and 55 GW (Northeast) of added transmission capacity in the 5 

gCO2/kWh scenario to enable maximum utilization of high-quality VRE resource sites to serve 

high-demand areas. In the Southeast region, for example, transmission capacity expands to 

connect VRE sites in Florida to load in Georgia. 

 

The optimal VRE curtailment level depends on the study region’s resource mix and VRE quality 

(Figure 6.4); in the 5 gCO2/kWh scenario, we observe 6%–7% VRE curtailment in the Southeast 

and Northeast regions, respectively, and 17% curtailment in Texas (where VRE generally 

accounts for a larger portion of generation because of higher-quality wind and solar resources). 

Curtailment involves “turning down” VRE generation using administrative or market 

mechanisms. The relatively high capacity cost of Li-ion energy storage under the mid-cost 

assumptions explains why the cost-optimal deployment of this technology has a storage 

duration (i.e., ratio of deliverable energy capacity to discharge power capacity) of less than five 

hours for the 5 gCO2/kWh scenario.  

 

Tightening the emissions constraint down to 5 gCO2/kWh is accompanied by higher costs relative 

to having no CO2 emissions limit (the “No Limit” policy case). In the base case, the percentage 

increase in SCOE to achieve an average grid carbon intensity of 5 gCO2/kWh (relative to the SCOE 

for the No Limit case) depends on resource availability and load variations and differs across the 

three regions, from 21% in Texas to 23% in the Southeast and 36% in the Northeast. This 

translates into an average CO2 abatement cost18 relative to the “No Limit” policy case of $54–

$88 per metric ton of CO2 and marginal abatement costs of $333–$644 per metric ton of CO2 

(Table 6.7). These high marginal costs point to the value of reducing the cost of negative 

emissions technologies and/or long-term storage. They are also, effectively, measures of the 

carbon prices that would be required, absent other policies, to provide sufficient incentives for 

achieving these levels of decarbonization. Across all regions, an increase in investment costs for 

capital-intensive resources like VRE and storage is partly offset by a reduction in operating costs 

as the role of thermal generation resources declines.  

 

 

 

 

 

  Marginal Cost ($/metric ton CO2)   Average Cost ($/metric ton CO2) 

  50g 10g 5g   50g 10g 5g 

 

 
17 Hours of mean system load is computed by taking the ratio of total storage deliverable energy capacity (i.e., the 
product of storage energy capacity multiplied by discharge efficiency) and mean annual system power demand. It is 
a measure of how long storage can serve mean system power demand when fully charged. In absolute terms, the 
deliverable storage capacity of installed Li-ion batteries corresponds to 167–639 GWh in the 5 gCO2/kWh case. 
18 Average CO2 abatement cost to achieve an emissions target is computing by dividing the increase in SCOE 
(relative to the “No Limits” policy case) by the reduction in annual CO2 emissions (relative to the “No Limits” policy 
case). Marginal CO2 abatement costs are obtained as the shadow price of the carbon emissions constraint imposed 
in the capacity expansion model (which is a linear program). 
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Northeast 88 237 644   35 48 55 

Southeast 67 181 333   23 48 54 

Texas 48 246 516   19 73 88 
Table 6.7: Marginal and average costs of carbon abatement for various emission policy constraints.19  

Additionally, the model results show no major effect on non-served energy events (i.e., 

involuntary curtailments of demand) from decarbonizing the grid with VRE and Li-ion battery 

storage, at least when considering the demand and supply balance from an hourly perspective. 

With an assumed value of unserved load of $50,000/MWh, non-served energy events for the 

modeled grid decarbonization scenarios were generally quite small (e.g., 0.0003% of annual 

demand for Texas, as shown in Table 6.8). As described earlier, these findings are based on 

modeling seven years of hourly VRE resource variability with perfect foresight of load (non-

coincident with renewable resource variability) and generation, but they do not account for the 

impact of extreme weather events (e.g., extreme heat waves and cold snaps) on correlated load 

and generation outages. Appendix B describes the approach used in our modeling to ensure 

reliability (measured in terms of non-served energy events) in the Northeast and Southeast 

regions when using representative periods in the CEM. 

 

In the 0 gCO2/kWh scenario, deployment of Li-ion storage increases significantly, to 8–16 hours 

of mean system load across the three regions.20 SCOE also increases (relative to the No Limit 

case), by 62% in the Southeast, 91% in Texas, and 127% in the Northeast. This cost increase 

corresponds to average CO2 abatement costs of $143–$358 per metric ton CO2 and substantially 

higher marginal abatement costs compared to the 5 gCO2/kWh emissions constraint. In the 

Northeast and Southeast, where pumped hydro storage (PHS) can be expanded, we also observe 

increases in installed PHS capacity (with a fixed duration of 12 hours) of 107% and 16% 

respectively, in the 0 gCO2/kWh case. However, as noted above, this scenario represents a strict 

definition of zero-carbon power systems that excludes both any use of natural gas generation, 

even with existing CCS technologies (<100% capture rate), and any use of negative emissions 

technologies. Hence, we emphasize our findings for the 5 gCO2/kWh scenario as more 

representative of a realistic strategy for the deep decarbonization of power systems. The results 

for our 0 gCO2/kWh scenario highlight the value of natural gas or some other dispatchable 

generation capacity, used very sparingly, in moderating the cost of near-zero carbon electricity 

systems with Li-ion batteries as the sole form of energy storage to be expanded. These results 

also illustrate the potential value of low-cost negative emissions technologies. Overall, the 

analysis for our base case indicates that the near-complete decarbonization of electricity 

systems will be feasible, from the perspective of balancing hourly energy supply and demand, 

with bulk power cost increases from 21% to 36% compared to the No Limit case, based on 

projected technology cost declines by 2050.  

 

 

 

CO2 Constraint 
(gCO2/kWh) 

Number of NSE 
events 

Max duration of 
a single event 

(hours) 

Total NSE 
(GWh) 

Max hourly 
demand 
loss (%) 

Total NSE as 
fraction of 

nominal load 
0 0 0 0 0 0 
5 0 0 0 0 0 

 

 
19 We ran experiments at 1 gCO2/kWh in the Texas region and found that the marginal costs of carbon abatement 
at that level are eight times the marginal cost of abatement at the 5 gCO2/kWh emissions limit. 
20 Based on modeled demand across the three regions, this corresponds to 797–1,307 GWh of deliverable Li-ion 
storage capacity. 
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10 0 0 0 0 0 
50 1 2 4.2 3.9 <10-6 
NL 1 2 14.0 6.4 <10-5 

Table 6.8: Base case reliability results in Texas. Non-served energy events are identified in the dispatch decisions 
optimized over the full 2007–2013 period. Appendix B describes the reliability simulation approach used for the 
Northeast and Southeast regions, and associated reliability results. 

Finding: Near-complete decarbonization of electricity systems appears feasible, from an 
hourly energy supply and demand balance perspective, using renewables, natural gas, and Li-
ion battery storage alone, without creating significant reliability issues or very large increases 
in system average cost. 

Base Case Regional Differences 

It is interesting to note that in the absence of any CO2 emissions policy, the three U.S. regions 

studied here achieve very different CO2 emission intensities, based on our 2050 technology cost 

assumptions and demand projections, which are based on NREL’s high-electrification scenario 

(Mai, et al., 2018) for end-uses.  The difference between actual emissions intensity in 2018 and 

modeled emissions intensity in 2050 in the No Limit case can be explained by three factors: (1) 

we are not modeling existing thermal generation assets that are assumed to retire by 2050; (2) 

even with no carbon constraint, deployment of new VRE and natural gas generation is 

economically favorable and is expected to largely replace existing assets; and (3) electricity 

demand in 2050 is projected to be much higher than demand in 2018 and is also expected to 

have a different temporal profile owing to the electrification of additional end-uses. The precise 

share of VRE generation in the No Limit policy case is driven both by the quality of wind and 

solar resources in each region and by changes in demand profiles and overall demand as a result 

of expanded electrification of end-uses in sectors such as transportation and heating. 

 

The level of electrification affects VRE penetration and subsequent needs for energy storage. 

Relative to NREL’s reference-electrification scenario, the high-electrification scenario results in 

increased power and storage capacity requirements, but it has only minor impacts on VRE 

curtailment and average system cost (Figure 6.5). For instance, we observe only a 5% increase 

in SCOE for the 5 gCO2/kWh policy case. The impact of electrification on emissions intensity is 

most notable when there are no emission constraints. In our No Limit case, average system-wide 

emissions in the Northeast under the high-electrification demand scenario are 253 gCO2/kWh—

11% higher than in the reference-electrification case (228 gCO2/kWh). The change in demand 

profile due to increasing electrification of space heating and transportation reduces the value of 

VRE resources and increases the optimal level of dispatchable natural gas generation, which 

leads to higher system-average emissions intensity.   
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Figure 6.5: System impacts of varying levels of electrification in the Northeast and Texas. Scenarios show the impacts 
of assuming the NREL EFS reference- vs. high-electrification load scenarios on installed power capacity, storage 
capacity, and VRE curtailment, across a range of CO2 emission policies. Under the high-electrification load 
assumptions, both system peak and annual demand are higher (see Table 6 for details). 

With high-electrification load assumptions, we observe the following regional emission 

intensities in our No Limit policy case: 92 gCO2/kWh in Texas, 158 gCO2/kWh in the Southeast, 

and 253 gCO2/kWh in the Northeast. Based on these results, the amount of decarbonization 

predicted to occur by mid-century, even without any carbon constraints, is particularly striking 

in Texas, where modeled emissions intensity in 2050 is 81% lower than (actual) 2018 emissions 

intensity (Table 6.9). This is because, in Texas, low-cost VRE technologies combined with good-

quality VRE resources drive the displacement of higher-capital-cost thermal generators based 

on economics alone. In the Northeast, by contrast, modeled 2050 emissions intensity in the No 

Limit case is 2% higher than actual emissions intensity in 2018. This could partly be due to a 

substantial increase in annual demand, including a shift from summer peaking to winter peaking; 

the relatively small role for coal-based power generation in the region’s power mix as of 2018;21 

the presumed retirement of existing nuclear generation by 2050; and the lower quality and 

higher cost of VRE resources in the Northeast (based on historic patterns, we assume the 

region’s VRE capital costs are 50% greater than in Texas and the Southeast).  

 

Achieving an emissions intensity goal of 5 gCO2/kWh requires a 98% reduction in power sector 

CO2 emissions from 2018 levels and 90% carbon-free electricity in the Northeast by 2050; a 99% 

reduction in carbon emissions from 2018 levels and 93% carbon-free electricity in the Southeast 

by 2050; and a 99% reduction in carbon emissions from 2018 levels and 92% carbon-free 

electricity in Texas by 2050. Table 6.9 shows how these model results translate into other 

commonly used metrics of decarbonization (such as percentage emission reductions relative to 

historic emissions and low-carbon generation as a share of total generation). 

 

 

 

 

 

 

 

 
21 For instance, coal contributed 1% of total annual electricity supply in ISO-New England in 2018 (ISO New England 
2020). 
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  gCO2/kWh NL 50 10 5 0 
Relative to 2018 Levels         

Northeast 249 -2% 80% 96% 98% 100% 

Southeast 387 59% 87% 97% 99% 100% 

Texas 418 78% 88% 98% 99% 100% 
       

Relative to No-Limit Levels         

Northeast 253 0% 80% 96% 98% 100% 

Southeast 158 0% 68% 94% 97% 100% 

Texas 92 0% 46% 89% 95% 100% 
       

Carbon-Free Generation         

Northeast - 26% 85% 86% 90% 100% 

Southeast - 54% 85% 91% 93% 100% 

Texas - 74% 85% 91% 92% 100% 

 

Table 6.9: Modeled emissions results for different decarbonization targets summarized using alternative metrics 
commonly used in policy discourse: (1) reductions relative to 2018 (current) emissions levels; (2) emission reductions 
relative to the No Limit policy case; and (3) carbon-free generation relative to modeled annual generation. For 
presentation purposes, carbon-free generation is defined in the table to include VRE, nuclear, and hydro resources, 
but does not include CCGT + CCS.22 

The Southeast differs from other regions because of the possibility that significant nuclear 

capacity (25 GW) will be available for some years beyond 2050, assuming an 80-year lifetime for 

existing plants.23 Figure 6.6 compares modeling results for scenarios where (1) most existing 

nuclear capacity is retained (as a zero-carbon dispatchable resource) and (2) all existing nuclear 

capacity is retired. We see that in the former case, the availability of existing nuclear reduces 

system-wide cost in the Southeast by 6% in the No Limit scenario, 11% in the 5 gCO2/kWh 

scenario, and 15% in the 0 gCO2/kWh scenario, compared to a scenario where existing nuclear 

is retired. Benefits are derived from the displacement of new capital investments in VRE 

resources (mainly solar) that are not dispatchable. These results are consistent with prior 

research findings on the benefit of dispatchable low-carbon generation in terms of reducing the 

cost of power sector decarbonization (Buongiorno, Corradini, Parsons, & Petti, 2018; Sepulveda, 

Jenkins, de Sisternes, & Lester, 2018). 

 

 

 

 

 
22 If CCGT + CCS were to be included in the definition, the resulting emissions intensity will be lower at emission 
constraints more stringent than 10 gCO2/kWh. At that level, the percentage of “carbon-free” generation is 98% 
across the three regions for 10 gCO2/kWh (compared to 86%-91% without CCS). 
23 Specifically, these are nuclear plants whose current licenses expire in 2055, assuming a second license extension 
(to 80 years of operating life). 
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Figure 6.6: System impacts of nuclear availability in the Southeast. The two scenarios compare optimal generation 
capacity deployed and SCOE under two assumptions: (1) existing nuclear plants remain part of the portfolio and can 
be dispatched to meet demand; and (2) all existing nuclear plants retire by 2050, and no new nuclear is added. 

Finding: In the absence of any CO2 constraint on the power sector, the three U.S. regions 
studied here (Texas, the Northeast, and the Southeast) achieve very different CO2 emission 
intensities for the same set of 2050 technology cost assumptions. These differences primarily 
result from regional variations in renewable resource quality and load profiles. 
 

6.3.2 Impacts of Adding Long-Duration Energy Storage (LDES) 

As the penetration of VRE resources increases, needs for grid balancing on longer time scales 

(i.e., days and weeks) will grow. This could potentially create value for long-duration energy 

storage (LDES) technologies. Compared to Li-ion battery storage, the LDES technologies 

available in 2050 are projected to have lower energy capacity cost, higher power capacity cost, 

and lower overall round-trip efficiency (RTE) (Figure 6.7). 

 

Our analysis considers four distinct LDES technologies, as defined in the earlier, technology-

focused chapters of this report: redox flow batteries (RFBs, Chapter 2), metal-air batteries 

(Chapter 2), hydrogen storage (Chapter 5), and thermal storage (Chapter 4). These technologies, 

which span a range of electrochemical, chemical, and thermal storage systems, are at varying 

levels of maturity; thus, our experimental design is aimed at understanding the relative merits 

of different classes of storage technology rather than identifying the most favorable technology 

within each class. Figure 6.7 highlights the classification of storage technologies based on two 

out of three key design attributes: Class 1 technologies have the lowest power capacity cost, 

relatively high energy capacity cost, and high RTE (e.g., Li-ion batteries); Class 2 technologies 

have mid-range power and energy capacity costs and RTE (e.g., current and future RFBs); and 

Class 3 technologies have high power capacity costs, low energy capacity costs, and low RTE 

(e.g., emerging LDES options including metal-air batteries, hydrogen, and thermal storage).  
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Figure 6.7: Classes of energy storage technologies, grouped by discharge power and storage overnight capital 
costs. We define the classes as: (1) technologies with the lowest power cost, relatively high energy capacity cost, 
high RTE; (2) technologies with mid-range power and energy capacity costs and RTE; and (3) technologies with high 
power costs, low energy capacity costs, and low RTE. Other salient design attributes can be seen in Table 6.3. 
Pumped hydro storage is modeled with a fixed duration of 12 hours for this study; since we do not have a breakdown 
of pumped hydro costs, we do not include this storage option on the chart. 

In addition to the attributes displayed in Figure 6.7, other cost and performance attributes 

(shown in Table 6.3) are also important when comparing storage technologies within and across 

each class. For example, recent studies have shown that in addition to energy capacity cost, 

discharge efficiency is another important technology design attribute that affects the value (i.e., 

cost reduction potential) of LDES in zero-carbon power systems (Sepulveda, Jenkins, Edington, 

Mallapragada, & Lester, 2021).  
 

Impact of Adding Flow Batteries (Class 1, 2) 

We first explore the system impacts of adding RFB storage, using estimated cost and 

performance parameters discussed in Chapter 2. As we note there, RFBs offer potentially lower 

energy capital costs compared to Li-ion batteries; they also have the potential added advantage 

of being able to recover energy capacity loss at a lower cost (either via rebalancing or via the 

replacement of chemicals that make up RFB systems). From a system perspective, this results in 

lower capital and FOM costs for RFB energy capacity compared to Li-ion technology, along with 

comparable RTE. The downside of RFBs compared to Li-ion batteries is their relatively high fixed 

cost for power capacity. This implies that RFBs could be favored over Li-ion batteries for 

applications involving more long-duration storage.  

 

Figure 6.8 compares capacity outcomes for the Northeast and Texas under plausible scenarios 

for future Li-ion and RFB costs.24 When CO2 constraints are binding, RFBs under mid-cost  

assumptions (third row from the bottom in each panel in Figure 6.8) largely (but not completely) 

displace Li-ion storage and increase deliverable energy storage capacity compared to the base 

case (shown in the bottom row in each panel in Figure 6.8). This shift from Li-ion to RFB storage 

has minor impacts on installed VRE capacity and VRE curtailment. Although it is difficult to see 

in the figure, RFBs displace substantial dispatchable fossil-fuel capacity. For the 5 gCO2/kWh 

case, the availability of mid-cost RFB technology (defined in Table 6.3) results in a 9% decline in 

natural gas generation capacity in the Southeast, and a 16% decline in both the Northeast and 

Texas, compared to the base case. This effect increases with more stringent CO2 constraints. 

 

 
24 Results for the Southeast are discussed in Appendix D. 
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Exploring the sensitivity of these findings to plausible low-, medium-, and high-cost assumptions 

for Li-ion and RFB storage (defined in Table 6.3), several points emerge: (1) Across all the 

scenarios we analyzed with RFB technology, RFB storage duration was between 7 and 27 hours 

compared to Li-ion storage duration of 1–5 hours. (2) When available, both technologies are 

deployed in all scenarios, indicating that neither technology is dominant from a power system 

perspective. (3) RFB availability enables more buildouts of VRE to substitute for gas capacity, 

reflecting the value of LDES with low energy capital costs. For example, mid-cost and low-cost 

RFB (and mid-cost Li-ion) reduces natural gas capacity in Texas by 9–27 GW and increases VRE 

capacity by 10–23 GW relative to the base case (compared to a system peak load of 151 GW). 

(4) The addition of RFB storage reduces system costs compared to the base case, with the largest 

cost reductions observed in the 5 gCO2/kWh case that includes low-cost assumptions for both 

battery technologies (12% in the Northeast, 14% in Texas, and 16% in the Southeast). 

 
Figure 6.8: System impacts of adding RFB storage for the Northeast and Texas. Scenarios show the impacts of cost 
sensitivities around Li-ion and RFB technology in terms of installed power capacity and storage capacity, across a 
range of CO2 emission policies. They are, in ascending order: (1) base case (i.e., mid-cost Li-ion only, BC); (2) mid-cost 
Li-ion + low-cost RFB (L+RL); (3) mid-cost Li-ion + mid-cost RFB (L+R); (4) mid-cost Li-ion + high-cost RFB (L+RH); (5) 
low-cost Li-ion + low-cost RFB (LL+RL); and (6) high-cost Li-ion + high-cost RFB (LH+RH). Low-, mid-, and high-cost 
assumptions for each storage technology are defined in Table 6.3. 

Impact of Adding Emerging LDES Technologies (Class 1, 2, 3) 

Class 3 LDES25 technologies (represented by the blue box in Figure 6.7) have still lower energy 

capital costs than RFBs, but their power capacity costs are generally higher. Though they 

generally also have much lower round-trip efficiency than either Li-ion or RFB technology, they 

are potentially appealing for much longer-duration energy storage and near-complete 

displacement of dispatchable generation capacity. Given the relative immaturity of this class of 

LDES technologies, we evaluate their potential system impacts one technology at a time, with 

the assumption that any or all these technologies could be commercially scalable by 2050. 

Across the mid-range LDES cost and performance scenarios we evaluated, we find that LDES 

substitutes for natural gas and VRE capacity, leads to reduced curtailment of wind and solar 

generation, and modestly reduces SCOE compared to scenarios without LDES. Figure 6.9 and 

Figure 6.10 summarize key model outputs for different levels of LDES availability across the three 

regions.  

  

 

 
25 For this section, we use “LDES” to refer specifically to storage technologies with the potential for still lower 
energy capital costs compared to RFBs. 
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LDES technologies with lower energy capacity costs and lower discharge efficiency compared to 

Li-ion batteries have the greatest impacts on electricity system decarbonization when natural 

gas generation without CCS is not an option (as in the highly restrictive 0 gCO2/kWh scenario). 

This is because LDES directly competes with natural gas generation in providing supply during 

long periods of low VRE output. How important this is depends on the region’s relative VRE 

resource quality. In the 5 gCO2/kWh case, optimal deployment of LDES (Class 3) resources 

reduces the need for thermal generating capacity (i.e., gas with and without CCS, and nuclear) 

by 9%–45% (Figure 6.9) relative to the base case. Thermal capacity is replaced by VRE capacity, 

which increases by 6%–9% in the Northeast, 5%–14% in the Southeast, and 4%–9% in Texas, 

relative to the base case. In effect, the availability of LDES makes VRE capacity more nearly 

dispatchable and thus increases its value to the power system. Under mid-cost assumptions, the 

incremental availability of low energy capital cost LDES technologies contributes to SCOE 

reductions of between 3% and 9% across the three regions for the 5 gCO2/kWh scenarios shown 

in Figure 6.9. 

 

Our analysis also reveals that there is a clear trade-off between installed storage capacity and 

VRE curtailment in the modeled regions. When it is optimal to employ LDES in the 5 gCO2/kWh 

case, it is generally optimal to have storage durations much greater than those associated with 

Li-ion or RFB storage (Figure 6.10). Across the scenarios analyzed, the storage duration for LDES 

resources ranges between 39 and 59 hours, as compared to Li-ion storage duration of 1–2 hours 

and RFB storage duration of 6–11 hours.26 These storage durations translate to total deliverable 

storage energy capacity (across the various technologies) of 6–18 hours of mean system load 

(across the LDES options and regions modeled). Optimal VRE curtailment in the Northeast and 

Southeast is reduced from 5%–6% without LDES deployment to 2%–6% with LDES deployment. 

Optimal VRE curtailment in Texas is reduced from 19% without LDES to 13%–17% with LDES. 

Relatively higher VRE curtailment in Texas, even with LDES, reflects the region’s higher VRE 

resource quality, which reduces the cost penalty of “overbuilding” VRE capacity and, 

consequently, the marginal value of incremental storage additions. 

 

 

 
26 In absolute terms, results for the deliverable storage capacity of Li-ion batteries, RFB, and LDES in Figure 6.10, 
correspond to 15–41 GWh, 93–983 GWh and 38–1,422 GWh, respectively. 
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Figure 6.9: Impacts of adding RFB+ LDES on installed power capacity and SCOE, across a range of CO2 constraints 
for the Northeast, Southeast and Texas regions. They are, in ascending order: (1) base case (i.e., Li-ion only, BC); (2) 
Li-ion + RFB (L+R); (3-5) Li-ion + RFB + incrementally adding an LDES option in the form of hydrogen (+H2), metal-air 
batteries (+MA), or thermal storage (+Th)—all at mid-cost assumptions. As discussed previously, we evaluate the 
Class 3 LDES technologies one at a time, with the assumption that any or all these technologies could be 
commercially scalable by 2050. Mid-cost assumptions for each storage technology are defined in Table 6.3. 
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Figure 6.10: Impacts of adding RFB+ LDES on installed storage capacity and VRE curtailment, across a range of CO2 
emission constraints. They are, in ascending order: (1) base case (i.e., Li-ion only, BC); (2) Li-ion + RFB (L+R); (3-5) Li-
ion + RFB + incrementally adding an LDES option in the form of hydrogen (+H2), metal-air batteries (+MA), and 
thermal storage (+Th)—all at mid-cost assumptions (as defined in Table 6.3). 

In scenarios where all three classes of storage technology (i.e., Li-ion, RFB, and one Class 3 LDES 

technology) are available, we observe partial substitution of Li-ion batteries by RFB and LDES. 

This substitution is more prominent for energy capacity. For example, in the 5 g CO2/kWh case, 

the deliverable energy capacity of Li-ion storage in the Northeast decreases by 97%–98% when 

both RFB and an LDES technology are considered. This indicates that it is more economically 

efficient to build LDES facilities mainly for longer-duration storage cycles. The availability of LDES 

has less impact on Li-ion discharge power capacity since it remains more efficient to deploy Li-

ion battery storage for short-duration cycles. Substitution is even stronger between Li-ion and 

RFB because these technologies are more similar to each other in terms of power/energy 

capacity costs and RTE. 

 
Given the significant cost and operational variations associated with different classes of LDES 

technology (Table 6.3), we also explore how low- and high-cost assumptions for LDES resources 

affect system outcomes. These experiments lead to the following observations: (1) they 

underscore the finding that LDES has the greatest impacts on electricity system decarbonization 
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when natural gas generation without CCS is not an option (e.g., in the case of the 0 gCO2/kWh 

scenario modeled here); (2) the availability of LDES resources even in our high-cost case  enables 

increased VRE deployment and displaces natural gas capacity, relative to the base case; and (3) 

cost variations between Li-ion and RFB technologies have greater total system impacts than cost 

variations between the specific LDES technologies we modeled. 

 

We show the 0 gCO2/kWh case here, because in the Northeast hydrogen is only deployed in this 

extreme case (Figure 6.11). As discussed earlier, this is a stricter definition of a zero-carbon 

power system than the “net-zero” carbon goal being contemplated by policymakers. Still, the 0 

gCO2/kWh case is helpful for making comparisons across LDES technologies and across the 

modeled regions. In particular, differences in the deployment of hydrogen vs. metal-air batteries 

at this very stringent level of carbon constraint show that technologies with higher discharge 

efficiency are likely to be more valuable for grid-scale energy storage applications (Sepulveda, 

Jenkins, Edington, Mallapragada, & Lester, 2021). In Texas, hydrogen is deployed at lower (less 

stringent) levels of decarbonization—for example, at 5 gCO2/kWh (Figure 6.12). At this emissions 

constraint, the availability of low-cost hydrogen changes the relative mix of wind and solar in 

Texas, but it does not produce a net change in optimal VRE capacity relative to the mid-cost 

hydrogen case. The availability of low-cost hydrogen does, however, reduce natural gas capacity 

by 9% while increasing total deliverable energy capacity by more than ten times (again assuming 

a 5 gCO2/kWh carbon constraint). 

 

Figure 6.11 shows that optimal VRE capacity mix and system costs for the Northeast region do 

not change appreciably in response to the LDES cost variations evaluated here (see results for 

the Texas and Southeast regions in Appendix D).27 For the 5 gCO2/kWh case, low-cost metal-air 

battery storage reduces SCOE by 1%, and high-cost metal-air battery storage increases SCOE by 

1%, relative to mid-cost metal-air. Impacts on storage energy capacity and gas substitution are 

more pronounced than impacts on VRE capacity: with low-cost metal-air, optimal storage 

deliverable energy capacity is 123% higher relative to a scenario that assumes mid-cost metal-

air (optimal storage capacity is 303% higher in the Southeast). This increase in storage capacity 

has the effect of displacing 23% of natural gas capacity (CCGT with and without CCS), relative to 

the scenario that assumes mid-cost metal-air. In terms of storage duration, low-cost metal-air 

makes 61 hours of storage optimal, compared to 34–41 hours in the high- and mid-cost 

scenarios. This translates to deliverable energy capacity equivalent to 21 hours of mean load in 

the low-cost case, 9 hours in the mid-cost case, and less than 3 hours in the high-cost case. 

 

Cost variations for Li-ion and RFB storage affect system costs more strongly than cost variations 

across LDES technologies. In all regions and across all the LDES cost ranges we considered, the 

availability of low-cost Li-ion and RFB technology displaces all need for LDES capacity (top row 

in Figure 6.11 and Figure 6.12). This indicates that system reliability requirements can be met 

economically by shorter-duration storage technologies alone if the costs of those technologies 

are sufficiently low. We should note that the alternative cost assumptions for hydrogen 

considered here and defined in Table 6.3, still reflect costs for above-ground storage of 

compressed gas. Lower storage costs are possible with geological hydrogen storage in some 

locations (see Chapter 5 for further discussion). As discussed later, the availability of geological 

hydrogen storage significantly increases the value of hydrogen storage for grid decarbonization. 

Of course, the large-scale use of hydrogen outside the power sector would also increase the 

value of hydrogen storage.  

 

 
27 Results for the Southeast and Texas are discussed in Appendix D: Figure D-4 and Figure D-3, respectively. 
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Figure 6.11: Impact of low-, mid-, and high-cost hydrogen (top row) and metal-air battery (bottom row) storage 
on installed power capacity, storage capacity, and SCOE, across a range of CO2 constraints for the Northeast 
region. They are, in ascending order: (1) base case (i.e., mid-cost Li-ion only, BC); (2-4) mid-cost Li-ion and RFB + 
incremental additions of high-cost hydrogen or metal-air (L+R+H2/MAH), mid-cost hydrogen or metal-air 
(L+R+H2/MA), and low-cost hydrogen or metal-air (L+R+H2/MAL); and (5) low-cost Li-ion and RFB + high-cost 
hydrogen or metal-air (LL+RL+H2/MAH). Low-, mid-, and high-cost assumptions for each storage technology are 
defined in Table 6.3.  
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Figure 6.12: Impacts of low-, mid-, and high-cost hydrogen on installed power capacity, storage capacity, and 
SCOE, across a range of CO2 constraints for the Texas region. They are, in ascending order: (1) base case (i.e., mid-
cost Li-ion only, BC); (2-4) mid-cost Li-ion and RFB + incremental additions of high-cost hydrogen (L+R+H2H), mid-cost 
hydrogen (L+R+H2), and low-cost hydrogen(L+R+H2L); and (5) low-cost Li-ion and RFB + high-cost hydrogen 
(LL+RL+H2H). Low-, mid-, and high-cost assumptions for each storage technology are defined in Table 6.3. 
Finding: With lower energy capacity costs and lower round-trip efficiency compared to Li-ion 
battery technology, LDES has the greatest impacts on electricity system decarbonization when 
natural gas generation without CCS is not an option (corresponding to our 0 gCO2/kWh policy 
case), under the assumptions used in this analysis. Generally, LDES, when optimally deployed, 
substitutes for natural gas capacity, increases the value of VRE generation, and produces 
moderate reductions in system average electricity cost. 
 

Operational Behavior of Short- vs. Long-Duration Storage Technologies  

Our modeling highlights the differing operating patterns of various classes of storage 

technologies, as influenced by the attributes of individual technologies and by system conditions 

(such as the stringency of the CO2 constraint). Figure 6.13 shows how frequently storage 

resources are cycled (deep discharge and charge cycle) in our model of the deeply decarbonized 

Texas system with Li-ion batteries and hydrogen as the available storage technologies. As 

expected, Li-ion batteries, with their relatively low power capacity cost, relatively high energy 

capacity cost, and high RTE are used primarily for short-cycle operations, while hydrogen 

storage, with higher power costs but much lower energy capacity costs and RTE than Li-ion, is 

mostly used for longer-cycle operations. These operational modes are not exclusive to each 

storage technology, however, and we see that Li-ion batteries sometimes perform relatively 

long charge/discharge cycles, while hydrogen systems are sometimes cycled rapidly. Moreover, 

the optimal operating pattern for storage technologies is also influenced by the CO2 constraint: 

tighter constraints lead to longer cycles, as can be seen by comparing the top and bottom 

portions of Figure 6.13. 
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Figure 6.13: Example state of charge (SoC) of Li-ion battery and hydrogen storage systems in Texas. Scenarios 
show the hourly SoC for Li-ion and hydrogen storage for the scenario with mid-cost Li-ion, RFB (not shown), and 
hydrogen storage technologies available across two emissions constraints. Here, we show 12 months of operation. 
Results correspond to mid-cost assumptions for each storage technology as defined in Table 6.3. 

As discussed in Junge, Mallapragada, and Schmalensee (2021), storage technologies do not 

follow simple cycling patterns. Optimal operation is more complex than the marginal cost 

dispatch rule for generation technologies. In effect, the marginal cost of using storage energy 

depends on the (shadow) value of stored energy, which changes from one period to the next.  

 

Frequency analysis28 applied to the time series of the state of charge of storage technologies is 

a useful way to unpack complexity and quantify operating behavior, since this type of analysis 

can be used to quantify the relative importance of different frequencies (or cycling patterns) in 

the modeled storage state of charge. The results of the frequency analysis, applied to the model 

outputs related to storage state-of-charge variables shown in Figure 6.13, are listed in Table 

6.10. The table shows that for the 10 gCO2/kWh case, hydrogen storage behaves mostly in cycles 

that occur within a month (intra-month charge and cycle); for the 1 gCO2/kWh case,29 which we 

consider here as an extreme example,30 the cycles decrease in frequency and become mostly 

seasonal (64%). Conversely, Li-ion battery storage shows a tendency towards daily and weekly 

cycles. In the 10 gCO2/kWh case, daily and weekly charge and discharge cycles account for 73% 

of the operational patterns; they account for only 52% of operational patterns in the 1 

gCO2/kWh case. It is worth highlighting the observation that Li-ion storage in the 1 gCO2/kWh 

case also displays a significant proportion of seasonal cycling (35%), reflecting the fact that this 

technology is used less frequently during some periods of the year than during others. 

 

 

 

 

 

 

 

 
28 Frequency analysis is performed by applying a fast Fourier transform (FFT) to the time-dependent variable 
corresponding to the hourly storage state of charge. Next, the root mean square (RMS) contribution of selected 
frequency bands is computed. The frequency bands of interest are listed in Table 6.10.  
29 For the Texas case study, we also examined scenarios with the 1gCO2/kWh emissions intensity constraint for 
certain technology and system assumptions. However, because we did not evaluate this emissions intensity 
constraint for other regions, we primarily rely on results from the 5g CO2/kWh scenario when describing trends in 
system outcomes under deep decarbonization. 
30 See also note 19, above. 
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Frequency band Mode of operation 10 gCO2/kWh   1 gCO2/kWh 
Li-Ion H2 Li-Ion H2 

Above 365 cycles/year Daily 39% 1%   23% 0% 
52 to 365 cycles/year Weekly 34% 15%   29% 4% 
12 to 52 cycles/year Monthly 12% 59%   12% 32% 
0 to 12 cycles/year Seasonal 16% 25%   35% 64% 

Table 6.10: Relative root mean square (RMS) contribution of different frequency bands to the storage’s State of 
Charge. 

Finding: When it is cost-optimal to deploy multiple storage technologies, the technologies 
with the lowest capital cost of energy storage capacity are generally best suited to provide 
long-term storage. However optimal storage operation, unlike optimal generation dispatch, is 
complicated by the changing shadow value of stored energy. As a result, all storage 
technologies deployed will operate with charge/discharge cycles of various durations. 
Simplified assessments of storage economics based on stylized charge/discharge profiles 
overlook such dynamics and may provide inaccurate assessments of storage value.  

6.3.3 Storage Substitutes for Grid Resources 

Energy market arbitrage involves buying when prices and net demand (the difference between 

demand and VRE output) are low and selling when prices (and net demand) are high. In 

performing arbitrage, energy storage can substitute for other grid resources (and vice versa). 

Candidate substitutes for grid resources include VRE “overbuilding” (i.e., deploying VRE capacity 

in excess of system peak load), demand flexibility, dispatchable generation, and increased 

network capacity (transmission and distribution). The degree to which storage can substitute for 

these resources depends not only on the cost and performance of storage technologies relative 

to competing resources, but also on system conditions, such as the stringency of the carbon 

constraint, the amount of storage deployed already, the availability of demand flexibility 

resources, and the ability to expand transmission. This section quantifies the cost-optimal 

substitution between various types of resources and storage under scenarios for deep grid 

decarbonization. We evaluate four potential substitutions: (1) storage vs. VRE generation 

capacity, (2) storage vs. demand-side resources, (3) storage vs. dispatchable low-carbon 

generation, and (4) storage vs. transmission. The systems modeling framework we employ to 

study the substitutability of storage with other resources (and vice versa) implicitly accounts for 

the fact that the marginal value of all resources, including storage, declines with increasing 

penetration. 

 

Impact of VRE Cost on Storage Deployment  

As discussed above, low-cost storage options can reduce the need to overbuild VRE capacity by 

more effectively balancing VRE intermittency and by, in effect, shifting generation to hours of 

high net demand. The degree to which storage substitutes for VRE capacity in our modeling 

depends on the cost and performance of storage technologies and on VRE resource availability 

and costs. Figure 6.14 explores the sensitivity of storage deployment across a range of VRE 

capital cost scenarios. We find, first, that storage deployment is relatively robust to VRE costs, 

as the deployment of VRE resources is driven more by policy considerations than by cost 

considerations. Second, we find that the impact of VRE costs is most pronounced in the No-Limit 

policy scenario. This is particularly true in regions with lower-quality VRE resources, such as the 

Northeast, relative to regions with higher-quality VRE resources, such as Texas. 

 

When only Li-ion batteries are available as a storage technology and we apply a 5 gCO2/kWh 

carbon constraint, low-cost VRE (where “low-cost” is defined as a 23% cost reduction for utility-
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scale solar and a 33% cost reduction for onshore wind compared to our mid-cost assumptions) 

increases optimal VRE capacity by 2%–10% across the three regions (favoring wind over solar). 

This increased VRE deployment leads to 0%, 6%, and 16% lower delivered energy storage 

capacity compared to the mid-cost VRE scenario in Texas, the Northeast, and the Southeast, 

respectively (5 gCO2/kWh policy case in Figure 6.14 and Figure D-5). The regional differences in 

the impact of low-cost VRE on storage capacity can be explained by differences in the availability 

of dispatchable generation (e.g., nuclear) and the quality of VRE output.31  As expected, over-

building resulting from low-cost VRE increases VRE curtailment —for example, from 17% to 22% 

in Texas in the 5 gCO2/kWh case.  Most noticeably, VRE costs have significant impacts on system 

cost. At the 5 gCO2/kWh emissions limit, assuming optimal deployment, SCOE is 14%–17% lower 

across the modeled regions in the low-cost VRE scenario compared to the mid-cost VRE scenario. 

Conversely, for the same emission policy constraint, SCOE is 12%–15% higher with optimal 

deployment in the high-cost VRE scenario (where “high-cost” is defined as a 29% cost increase 

for solar and a 16% increase for wind compared to mid-cost assumptions). 

 

Across all scenarios we considered, system outcomes are most sensitive to VRE technology costs 

in the No Limit policy case, since this is where VRE deployment is most sensitive to capital costs 

(as opposed to binding carbon constraints). The substitution effect between VRE resources and 

natural gas is most pronounced in regions with lower-quality VRE resources (the Northeast) 

compared to regions with higher-quality VRE (Texas). For example, in the No Limit case, low VRE 

costs increase VRE capacity by 111% in the Northeast, compared to 19% in Texas. As with 

optimal storage deployment at higher levels of decarbonization, low costs for VRE have a greater 

impact in terms of natural gas capacity reductions in Texas (6%) than they do in the Northeast 

(1%). These results are robust to the addition of storage technologies with lower energy capital 

costs. 

 
Figure 6.14: Impacts of low-, mid-, and high-cost VRE on installed power capacity, storage capacity, and SCOE 
across a range of CO2 constraints for the Northeast and Texas regions. They are, in ascending order: (1) high-cost 
VRE (H), (2) mid-cost VRE (M), and (3) low-cost VRE (L). Low-, mid-, and high-cost assumptions for VRE are defined in 
Appendix A. 

Impact of Intra-Day Demand Flexibility 

The potential value of flexibility in electricity consumption for various end-uses increases with 

greater deployment of smart meters and related technologies and expanded electrification in 

sectors such as transportation. Here, we explore how enabling intra-day demand flexibility 

affects the cost-optimal grid configuration and, in particular, how it changes the role for energy 

 

 
31 Low-cost VRE favors “overbuilding” VRE over deploying storage capacity. However, low-cost VRE also improves 
the competitiveness of VRE+ storage to displace dispatchable low-carbon generation (CCGT with CCS). Collectively, 
these two factors explain why storage capacity remains unchanged for Texas when modifying VRE costs from mid to 
low for the 5 gCO2/kWh emissions case. With low-cost VRE, gas capacity declines by 6% compared to the mid-cost 
VRE scenario (Figure 6.14).  
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storage under various CO2 constraints and different assumptions regarding storage technology. 

For these experiments, we consider a very optimistic version of demand flexibility: the ability to 

shift electricity consumption from specific demand subsectors, highlighted in Table 6.11, over 

constrained (feasible) time windows at zero cost and with zero energy efficiency losses.  

 

Our assumptions about demand flexibility are based on the NREL EFS enhanced flexibility 

scenario, which provides potential hours of delay and advance for specific demand subsectors, 

along with the share of the load that can be shifted (Mai, et al., 2018). Since the load from each 

subsector changes over time, potential demand flexibility also varies from hour to hour. For this 

reason, Table 6.11 notes the maximum load that could be shifted for each subsector at any point 

in time for the Texas region in 2050 under the high-electrification load scenario. (Data for 

Northeast and Southeast are shown in Table A-6 in appendix A.) It is important to notice that 

these subsector peaks do not occur at the same time; the actual maximum potential demand 

flexibility in any single hour is 47 GW, which corresponds to 31% of total demand in that hour 

(Mai, et al., 2018). 

 

Since the assumed temporal flexibility of demand-side resources spans hours rather than days, 

we focus on how demand flexibility affects the cost-optimal substitution of short-duration (Li-

ion battery) storage rather than how it affects LDES resources. Figure 6.15 (and Figure D-6) Error! 
Reference source not found.shows the impact of short-term demand flexibility across the three 

regions under various carbon constraints. In all three modeled regions, the impact of demand 

flexibility on optimal deployment of Li-ion storage declines with more stringent emission 

policies. For example, in all regions, demand flexibility substitutes for almost 100% of short-

duration storage in the No Limit case, while in the 5 gCO2/kWh case, it substitutes for just 19% 

of Li-ion storage on an energy basis in the Southeast, 35% in Texas, and 37% in the Northeast. 

Differences in the impacts of demand flexibility across the three regions are partly explained by 

underlying differences in the temporal profiles for demand and zero-carbon resource availability 

(including the hydro available in the Northeast and Southeast, and nuclear in the Southeast). 

 

Figure 6.16 illustrates how the system operates with and without demand flexibility under a 

carbon constraint of 5 gCO2/kWh for the Texas region. The figure shows that charge and 

discharge cycles for Li-ion storage are less frequent when demand flexibility is implemented. For 

this case, the daily component of the frequency analysis, introduced in Table 6.10, decreases by 

20%. The bottom panel in Figure 6.16 shows how the availability of short-duration demand 

flexibility shifts load toward hours with more VRE generation.  

 

Lower requirements for short-term storage with flexible demand translate into reductions in 

SCOE, with cost reductions in line with how much Li-ion storage is displaced. In all three regions, 

cost reductions are modest, ranging from 5%–6 % in the No Limit case to 3% in the 5 gCO2/kWh 

case (shown for the Southeast case in Figure D-6). 
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Demand Subsector Hours 
Delay 

Hours 
Advance 

Share of 
End-Use 
That Is 
Flexible 

Maximum 
Hourly 

Demand 
Flexibility 

[GW] 
Commercial HVAC 1 1 25% 8.6 
Residential HVAC 1 1 35% 7 
Commercial Water 
Heating 

2 2 25% 0.2 

Residential Water Heating 2 2 25% 1 
Light duty vehicles 5 0 90% 33 
Medium duty trucks 5 0 90% 3 
Heavy-duty trucks 3 0 90% 5 

Table 6.11: Demand flexibility assumptions for Texas under 2050 load conditions. HVAC = heating, ventilation, and 
air conditioning. Data sourced from NREL Electrification Futures Study (Mai, et al., 2018). 

 
Figure 6.15: Impacts of demand flexibility in terms of installed power capacity, storage capacity, and SCOE, across a 
range of CO2 constraints for the Northeast and Texas regions. Demand flexibility assumptions are summarized in Table 
6.11.  

 
Figure 6.16: Impact of demand flexibility on system operations in Texas. The figure shows six days of stacked dispatch 
in winter under a CO2 emissions constraint of 5 gCO2/kWh. The upper plot shows the operation of the system without 
demand flexibility; the lower plot shows how the system operates with assumed levels of demand flexibility. Demand 
flexibility assumptions are summarized in Table 6.11. 

Hydrogen Use in Industry 

Whereas prior sections concerned with LDES technologies have focused exclusively on power 

system drivers that affect the value of these technologies, the value of long-duration storage 

options that involve hydrogen could also be affected by the co-existence of non-power-sector 

uses for hydrogen. This creates the opportunity to share hydrogen production technology and 
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associated costs across sectors. Here, we explore the impact of hydrogen demand outside the 

power sector on the cost-effectiveness of hydrogen storage that could be deployed by the 

power sector, using industrial decarbonization as an example. Figure 6.17 highlights the 

potential opportunity to share hydrogen technology components to serve both the power sector 

and external hydrogen demand simultaneously. This is a special case of demand flexibility, 

whereby the use of electricity to produce hydrogen via water-splitting (or electrolysis) can be 

flexibly scheduled because hydrogen can be stored at relatively low energy capital cost (see 

Table 6.3) even though external hydrogen demand is modeled to be constant and inflexible 

across all hours of the year. 

 

We evaluate the impact of varying levels of hydrogen demand on power system outcomes under 

different CO2 intensity constraints, with a focus on Texas because it is one of the largest energy 

consuming states in the country and one in which more than half of overall energy consumption 

comes from industrial activity (EIA 2021). Our industrial hydrogen demand scenarios are 

developed by assuming that this sector adopts hydrogen to substitute for natural gas used in 

process heating. We consider a range of scenarios based on different levels of hydrogen 

substitution for natural gas as a heat source in industrial applications: 0%, 25%, 50%, 75%, and 

100%. Here 100% substitution corresponds to 19.7 GWt (thermal) of hydrogen demand and the 

0% case corresponds to no hydrogen demand. For comparison purposes, a constant 19.7 GWt 

load is equivalent to average power demand of 25.6 GWe assuming mid-range charging 

(electrolyzer) efficiency as per Table 6.3. (Note that 25.6 GWe is equal to approximately 17% of 

projected 2050 peak demand in Texas.) Details of our approach to modeling hydrogen demand 

are provided in Appendix C. 

 

 
Figure 6.17 Representation of how industrial hydrogen demand is modeled within GenX. We assume that a 
portion (0%–100%) of industrial hydrogen demand is met by electricity; this hydrogen can be produced either directly 
through electricity from the grid (electrolysis to H2 demand) or through electricity from storage (electrolysis to 
storage to H2 demand). Storage in this framework can provide hydrogen either for industry (storage to H2 demand) 
or to serve electric load (storage to H2 to power).  

Different levels of hydrogen demand were simulated under a range of power sector CO2 

intensity constraints, including 1, 5, 10, and 50 gCO2/kWh and a No Limit case.32 Our initial results 

assume above-ground storage of hydrogen in tanks, with mid-level costs from Table 6.3. From 

the installed capacity perspective, our findings show that for a given CO2 constraint, increased 

industrial hydrogen demand with incremental hydrogen production using flexible electrolysis 

 

 
32It should be noted that scenarios with industrial hydrogen demand are associated with greater annual electricity 
consumption than scenarios without hydrogen demand.  For example, including constant external hydrogen 
demand at the level of 25.6 GWe translates into incremental electricity consumption of 224.25 TWh or a 31% 
increase in total annual electricity consumption. Consequently, for the same CO2 intensity constraint on dispatched 
generation, power sector CO2 emissions in the case with industrial hydrogen demand will be greater than in the 
case without hydrogen demand. However, overall energy sector CO2 emissions will be lower due to the substitution 
for natural gas by electrolytic hydrogen in the industrial sector. 
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favors the deployment of VRE generation and displaces gas generation (both with and without 

CCS) and Li-ion power capacity (Figure 6.18). For example, in the 5 gCO2/kWh scenario, Li-ion 

and gas power capacities with 100% industrial hydrogen demand are 10% and 23% lower, 

respectively, than in the case without any industrial hydrogen demand (the 0% case).  

 

Including industrial hydrogen demand reduces the percentage increase in power capacity 

optimally built to achieve increasingly stringent CO2 constraints. Whereas installed power 

capacity increases 53% from the No Limit case to the 1 gCO2/kWh case without hydrogen 

demand, the increase falls to 35% for the case of 100% hydrogen substitution. A second, related 

effect of increased hydrogen demand is a reduction in VRE curtailment. Across the range of 

carbon constraints we considered, VRE curtailment is 30% lower on average with 100% 

hydrogen substitution than with zero industrial hydrogen demand. (It is 46% lower in the 1 

gCO2/kWh case.)  

 

Higher industrial hydrogen demand enables improved utilization of both electrolyzer and VRE 

assets, which leads to a lower SCOE to achieve the same CO2 intensity target (Figure 6.19). The 

magnitude of the maximum SCOE reduction depends on the stringency of the CO2 constraint; in 

our modeling results it ranges from a 3% reduction (in the No Limit case) to a 14% reduction (in 

the 1 gCO2/kWh case). Stated another way: As compared to the No Limit case, achieving a grid 

emissions intensity of 1 gCO2/kWh increases SCOE by 37% without industrial hydrogen demand 

and by 22% with 100% hydrogen substitution (Figure 6.19). For context, the modeled increase 

in SCOE as a result of going from the No Limit case to the 1 gCO2/kWh case with LDES but without 

industrial hydrogen demand is 31%. 

 

The diminishing marginal benefits of increasing industrial hydrogen demand are reflected in 

increasing marginal hydrogen production costs, shown in Figure 6.19. This suggests that 

strategies that are purely based on electrolytic production of hydrogen to meet non-power 

hydrogen demand may be limited in the quantity of hydrogen that can be cost-effectively 

supplied. As our analysis does not account for other means of hydrogen production or for 

hydrogen imports, and because we model industrial hydrogen demand as constant and 

inflexible, increasing industrial hydrogen demand under a given CO2 intensity constraint results 

in increased marginal hydrogen production cost. This effect is explained by the fact that extra 

electricity generating capacity (mostly VRE) and hydrogen storage are needed to satisfy 

increased industrial demand. 
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Figure 6.18. Impacts of serving 0%–100% of baseline industrial hydrogen demand (19.7 GWt) with electricity in 
terms of installed power capacity, storage capacity, electrolyzer capacity, and electrolyzer capacity factor, across a 
range of annual CO2 emission constraints for the Texas region. Hydrogen technology assumptions reflect mid-range 
costs as reported in Table 6.3. The base case corresponds to 0% industrial hydrogen demand. 
 

 
Figure 6.19. Cost and VRE curtailment impacts of alternative industrial hydrogen demand levels. Scenarios show 
the impacts of serving 0%–100% of baseline industrial hydrogen demand (19.7 GWt) with electricity in terms of 
SCOE,33 VRE curtailment, and marginal hydrogen production, across a range of CO2 constraints for the Texas region. 
Hydrogen technology assumptions reflect mid-range costs as reported in Table 6.3. 

To explore the broader potential of a system in which hydrogen is partly used to meet industrial 

demand for process heat as well as for storage in the electric power system, we consider the 

effects of the availability of underground geological storage as a potential technology that can 

be deployed by the model. The main difference between geological and tank storage of 

hydrogen is the investment needed per unit of stored energy (assumed to be 84% less for 

geologic storage compared to the mid-level cost projections for above-ground hydrogen 

 

 
33 In the context of producing hydrogen for industrial heat, the system cost of electricity (SCOE) is computed as the 
ratio of total system cost to total served demand, where the latter includes both the electric demand in the power 
system and the equivalent electrical energy used to produce hydrogen for industry. 
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storage; see "ultra-low” value reported in Table 6.3 and Chapter 5 for further discussion). Our 

findings (Figure 6.20) show that geological hydrogen storage has a positive effect across the 

different metrics we consider. In the 1 gCO2/kWh case with 100% hydrogen substitution, relative 

to tank storage the availability of underground geological storage results in a 91% increase in 

optimal storage capacity, a 3.5% reduction in SCOE, a 30% reduction in natural gas capacity, an 

11% decrease in VRE curtailments, and an 11% reduction in VRE capacity. 

 

 
Figure 6.20 System impacts of the availability of underground geological hydrogen storage. The base case 
assumes 0% industrial hydrogen demand; the other scenarios involve 100% hydrogen substitution (19.7 GWt). The 
Figure shows impacts on power capacity mix, storage capacity, SCOE and VRE curtailment across a range of CO2 
emissions constraints. Hydrogen technology assumptions reflect mid-range (tank storage) and ultra-low 
(underground storage) costs as reported in Table 6.3. 

Competition with Low-Carbon Dispatchable Resources 

Storage makes it possible to shift VRE generation over time, thus increasing the value of VRE 

resources. This can place storage resources in direct competition with dispatchable low- or zero-

carbon resources. We examine this competition by comparing storage penetration and 

utilization with the deployment of two dispatchable low-carbon resources: (1) an advanced 

natural gas power plant with close-to-100% CO2 capture (also known as “Allam” or “Allam-

Fetvedt” cycle) (Weiland & White, 2019) and (2) new nuclear capacity. In our modeling, the 

advanced natural gas technology with CCS is made available in Texas, where CO2 sequestration 

appears most viable (see cost assumptions in Table 6.5); substituting LDES with new nuclear 

capacity is an option in the Southeast region.  

 

If the Allam cycle becomes commercially available, 34 our modeling predicts that it will dominate 

CCGT+CCS deployment in Texas. Compared to a scenario in which this technology is not 

available, the option to deploy the Allam cycle increases total gas capacity by 13% and reduces 

VRE capacity by 7% in the 5 gCO2/kWh case, for mid-cost hydrogen in Texas (Table 6.12). The 

Allam cycle can serve as a partial substitute for storage, as evidenced by a reduction in modeled 

deliverable storage capacity of 28% with LDES in the form of hydrogen storage, 20% with LDES 

in the form of metal-air battery storage, and 3% with LDES in the form of thermal storage.35 

Table 6.12 documents the (relatively small) incremental SCOE reductions obtained by adding the 

Allam cycle to a system with hydrogen storage under different cost assumptions. Table D-2 in 

Appendix D presents the similar results obtained by adding the Allam cycle to a system with 

 

 
34 As per recent announcements, prototype near-zero-emission natural gas power plants are being developed and 
have reached various stages of technology readiness. For an example, see McMahon (2021).  
35 The results for metal-air systems can be found in (Appendix D, Table D-2). 
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metal-air storage. Collectively, the availability of the Allam cycle along with LDES enables SCOE 

reductions of 5%–13% relative to the base case across low-, mid-, and high-cost assumptions for 

all three LDES technologies under the 5 gCO2/kWh emissions policy case.   
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  Low-Cost Hydrogen   Mid-Cost Hydrogen   High-Cost Hydrogen 

  
Without Allam 

Cycle 
With Allam 

Cycle % Diff   
Without Allam 

Cycle 
With Allam 

Cycle % Diff   
Without Allam 

Cycle 
With Allam 

Cycle % Diff 

Firm Dispatchable Installed Capacity (GW)             

CCGT 17.6 19.4 10%  17.0 19.3 14%  17.0 19.3 14% 

OCGT 10.1 12.2 21%  12.1 13.1 8%  12.2 13.1 7% 

CCGT_CCS 16.6 0.0 -100%  19.4 0.0 -100%  19.6 0.0 -100% 

Allam 0.0 20.1 -  0.0 22.3 -  0.0 22.3 - 

Total 44.2 51.7 17%   48.5 54.7 13%   48.8 54.7 12% 
            

VRE Installed Capacity (GW)                   

Wind 102.6 94.7 -8%  99.4 93.8 -6%  99.2 93.8 -5% 

Utility PV 142.7 137.2 -4%  146.7 135.9 -7%  147.0 135.9 -8% 

Total 245.3 231.9 -5%   246.1 229.6 -7%   246.2 229.6 -7% 
            

Energy Storage (Li-ion + RFB + LDES)                 

Power (GW) 55.3 48.8 -12%  55.4 46.0 -17%  55.3 46.0 -17% 

Energy (GWh) 817 542 -34%  510 369 -28%  484 369 -24% 
            

System Cost of Electricity                   
Average 

$/MWh 42.2 41.7 -1%   42.4 41.7 -2%   42.4 41.7 -2% 
Table 6.12: System impacts of a dispatchable low-carbon generating technology in Texas. Scenarios show the impact of low-, mid-, and high-cost hydrogen with and without the Allam cycle 
in terms of installed power capacity, storage capacity, and SCOE, across 5 gCO2/kWh emissions scenarios. Low-, mid-, and high-cost assumptions for hydrogen storage are given in Table 6.3. 
Cost assumptions for the Allam cycle are given in Appendix A. 
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We also tested the impact of allowing for new nuclear builds in the Southeast region. At an 
assumed completion cost of $6,048/kW (2020 NREL ATB), the model does not choose to deploy 
new nuclear capacity under the 5 gCO2/kWh emission constraint. This result differs from findings 
in the 2018 MIT study, The Future of Nuclear in a Carbon-Constrained World, for two main 
reasons. First, following NREL, we assume higher costs for new nuclear generation ($6,048/kW 
vs. $5,500/kW in the Future of Nuclear study). Second, this study assumes lower costs for solar 
($725/kW vs. $917/kW) and wind ($1,085/kW vs. $1,550/kW) based on NREL’s 2020 mid-cost 
projections for 2050. Together, these cost assumptions combine to make new nuclear builds 
less attractive. However, we also looked at the effect of applying low-cost assumptions for new 
nuclear capital costs from the 2018 MIT study.36 At $4,202/kW (the “low” cost for new nuclear 
from the 2018 study), and $2,818/kW (the “ultra-low” cost from the 2018 study), the model 
deploys 21 GW and 78 GW, respectively, of new nuclear in the Southeast under the 5 gCO2/kWh 
policy constraint. This new nuclear displaces mainly VRE capacity (15% and 49% in the low- and 
ultra-low nuclear cost scenarios, respectively) as well as some gas peaking capacity. 

Role of Regional and Inter-Regional Transmission 

The modeling results presented thus far assume the co-optimization of generation and 
transmission investments and operations. For transmission planning, this means that regional 
transmission systems have been sized to deliver the highest-value service at lowest total cost. 
In the Northeast and Southeast regions this means investments have been made to meet intra-
regional demand by relieving transfer congestion (for example, in capacity-constrained areas 
such as New York City), enabling the integration of lower-cost VRE resources in other zones in 
the region, increasing system flexibility, and reducing overall balancing costs. However, current 
planning processes do not consider the full, stacked benefits of transmission upgrades, instead 
relying only on traditional metrics to assure reliability and meet local needs (Pfeifenberger, 
2021). Permitting and siting challenges create further barriers to transmission expansion. In this 
sensitivity analysis, we assume no transmission expansion, meaning that regional transmission 
systems are limited to existing capacities, and assess the impact on VRE and storage 
deployment.37  
 
In the model, increased regional transmission capacity provides two main benefits: (1) it allows 
for increased VRE deployment in regions with higher-quality VRE resources (lower cost of 
energy), which in turn reduces overall system costs; and (2) it improves VRE integration, by 
balancing resource intermittency across connected regions and smoothing the effects of 
geographical differences. Thus, limiting the optimal deployment of transmission capacity to the 
levels that currently exist in these regions focuses VRE deployment into the same zone as the 
demand being served, rather than allowing deployment at sites with the highest-quality 
resources. For example, Table 6.13 shows that for the Northeast, in the 5 gCO2/kWh case with 
intra-regional transmission expansion allowed, the model optimizes by adding 55 GW of new 
transfer capacity within the region to connect better-quality VRE resources from other zones. 
Restricting intra-region transmission expansion, on the other hand, increases average SCOE by 
$3/MWh (or 5%) in the 5 gCO2/kWh case, because it forces greater reliance on lower-quality 
VRE capacity that is located closer to demand (e.g., distributed and utility PV over wind). Limited 
regional supply–demand balancing increases the role for energy storage, particularly under very 
tight carbon constraints. For example, a scenario with no transmission expansion increases 
energy storage requirements in the Northeast by 36%, in the 5 gCO2/kWh policy case. By 
contrast, enabling transmission expansion in the Southeast has little impact on VRE integration, 

 
 
36 Cost numbers are from Buongiorno, et al. (2018), plus a 2.49% inflation rate to bring them to 2018 dollars. 
37 For more expansive studies of the benefits of inter-regional transmission, see Brown and Botterud (2021) and 
Brinkman, et al. (2020) (Brinkman, Novacheck, Bloom, & McCalley, 2020). 
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because VRE resource quality is similar across all four modeled zones in that region. In the 
Southeast, restricting transmission expansion has the effect of increasing reliance on gas 
generation with CCS, which can be located closer to demand, in place of VRE and storage 
capacity (Table D-3).  

 
  0 gCO2/kWh   5 gCO2/kWh   No Limit Policy 

  
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff   
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff   
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff 

Firm Dispatchable Installed Capacity (GW)             

CCGT 0.0 0.0 -  7.1 9.2 29%  57.0 57.0 0% 

OCGT 0.0 0.0 -  9.9 5.1 
-

49%  5.0 5.0 0% 

CCGT_CCS 0.0 0.0 -  17.0 18.9 12%  0.0 0.0 - 

Total 0.0 0.0 -   34.0 33.2 -2%   62.0 62.0 0% 
            

VRE Installed Capacity (GW)                   

Wind 117.7 93.2 -21%  66.5 59.2 
-

11%  0.1 0.1 0% 

Utility PV 90.1 113.3 26%  56.0 62.0 11%  21.5 21.5 0% 

Distr PV 28.1 63.0 124%  17.7 24.9 41%  17.7 17.7 0% 

Total 235.9 269.4 14%   140.3 146.1 4%   39.3 39.3 0% 
            

Energy Storage (Li-ion only)                   

Power (GW) 50.2 69.3 38%  30.3 33.7 11%  16.0 16.0 0% 
Energy 

(GWh) 797 1,258 58%  116 158 36%  36 36 0% 
            

Transmission Expansion                     

Total (GW) 98.4 - -  55.4 - -  0.0 - - 
            

System Cost of Electricity                   
Average 

$/MWh 86.0 105.9 23%   51.5 54.1 5%   37.9 37.9 0% 
Table 6.13: System impacts of enabling intra-regional transmission expansion in the U.S. Northeast. Scenarios show 
the impacts of allowing transfer capacities to expand vs. restricting transfer capacities to existing levels, on installed 
power capacity, storage capacity, and SCOE, across a range of CO2 constraints. Cost assumptions for transmission 
expansion are defined in Appendix A. 

Brown and Botterud (2021) extend this analysis to the entire continental United States. While 
our analysis applies different cost assumptions and modeling approaches, the trends in the 
Brown and Botterud (2021) results are important to note because of the continental scope of 
their analysis and its implications for the impacts of expanding inter-regional transmission on 
zero-carbon power systems using today’s VRE and storage technologies. Incrementally 
increasing the level of regional coordination (even without adding new transmission capacity) 
yields system cost savings and reduces the need for generation and storage capacities: SCOE 
decreases by $22/MWh between Brown and Botterud’s “isolated states” and “existing regional” 
transmission scenarios, and by $16/MWh between their “new regional” and “existing inter-
regional” transmission scenarios (Figure 6.21). Brown and Botterud’s “new regional” 
transmission scenario corresponds to the assumptions made in the regional studies discussed 
above in the base case. Allowing new, inter-regional AC transmission within the three U.S. 
interconnects (Eastern, Western, and Texas) reduces SCOE by $10/MWh compared to the 
“existing inter-regional” transmission scenario; allowing new DC transmission between 
interconnects reduces SCOE by a further $8/MWh (Figure 6.21). 
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Since expanded transmission capacity partly substitutes for storage deployment, it follows that 
increased transmission and greater regional coordination (transmission expansion effectively 
increases the geographic extent of economic dispatch areas) leads to a decline in optimal 
storage deployment. The most connected scenario (“new inter-regional transmission across 
interconnects”) deploys 40% of the energy storage used in the “new regional” transmission 
scenario and 23% of the energy storage used in the “isolated states” scenario (Figure 6.21). 
 

 
Figure 6.21: System impacts of incrementally expanding regional coordination and transmission capacity in a 
U.S.-wide context. Scenarios show the impacts on SCOE and optimal storage deployment if the country is modeled 
as isolated states (blue bars), isolated zones without and with new regional transmission (green bars), and a fully 
interconnected system with different levels of inter-regional transmission (orange and red bars). Source: (Brown & 
Botterud, 2021). The transmission assumptions in the regional case study discussed above are most similar to the 
“new regional” transmission scenario shown here. 

Finding: In performing energy market arbitrage—that is, buying when prices (and net demand) 
are low and selling when prices (and net demand) are high—energy storage can substitute for 
other grid resources, both on the demand side and on the supply side. 
 

6.3.4 Future Marginal Values of Electrical Energy 

Wholesale Energy Price Variability 

The modeled system’s time-dependent marginal value of energy38 serves as a proxy for the spot 
price or locational marginal price in wholesale U.S. power markets organized by regional 
transmission organizations (RTOs) or independent system operators (ISOs). We study the impact 

 
 
38 The modeled marginal value of energy in each time period is computed as the dual variable of the hourly supply–
demand balance constraint in the capacity expansion model and represents the increase in (minimized) objective 
function value to serve the next unit of demand. Because the model includes the option of adding new generation, 
storage, or transmission capacity, the computed marginal value of energy represents the long-run marginal value of 
electricity rather than the short-run value in which capacity decisions are fixed. Finally, the marginal value of energy 
computed here does not reflect the impact of short- and long-term capacity requirements that are often included in 
organized markets to ensure resource adequacy (Levin and Botterud 2015). 
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of CO2 constraints and energy storage capacity on the frequency distribution of the marginal 
value of energy by examining the distribution of the marginal value using the bands shown in 
Figure 6.22. These bands include the following marginal values: (1) $0–$5/MWh, characterized 
mostly by periods of high VRE generation; (2) $5–$50/MWh when natural gas capacity is the 
marginal generator;39 (3) $50–$200/MWh when natural gas capacity needs to be started up and 
associated start-up costs must be recovered; and (4) >$200/MWh, which corresponds to scarcity 
events, including times when storage facilities operate (either charging to dispatch in higher-
price periods or discharging based on charging in lower-price periods) and load-shedding events, 
if any. Because the marginal cost of generation from storage is based on opportunity cost rather 
than being physically defined, it varies from period to period—consequently, storage charging 
and discharging can occur in all of the price bands. 
 
Consistent with prior research (Levin and Botterud 2015), we find that increasing VRE 
penetration leads to many hours of very low prices interspersed with a few periods when prices 
are very high (approaching the value of lost load, which is assumed to be $50,000/MWh in our 
modeling) owing to scarcity events (e.g., high load and low VRE output). Counter-intuitively, the 
volatility in the price distribution, as measured by the coefficient of variation (CoV), declines 
with increasing stringency of CO2 emissions constraints (Table 6.14), since the limited number 
of high-priced hours increase the unweighted average value. Thus, the level, range, and variation 
in wholesale spot prices is likely to be drastically different from that seen in RTO/ISO-managed 
wholesale markets today, as illustrated for Texas in Figure 6.22.40  
 
Our findings show a consistent increase in the number of hours at less than $5/MWh and a 
consistent decrease in the price band of $5–$50/MWh as the CO2 constraint tightens. These 
trends reflect an increase in the share of VRE generation and a decline in natural gas generation. 
Figure 6.22 shows that the $0–$5/MWh price band includes up to 62% of hours in the 5 
gCO2/kWh case. As discussed earlier, the 0 gCO2/kWh case modeled here reflects a strict 
definition of a net-zero carbon power system—one that relies solely on VRE and storage 
resources and leads to large increases in both ends of the distribution for the marginal value of 
generation. Thus, although decarbonization increases the number of hours with near-zero 
prices, it also increases the number of hours with high prices. This leads to a consistent increase 
in the mean price as the carbon constraint is tightened. 
 
Our model findings are based on what is effectively a representation of a pure, energy-only 
electricity market structure, in which all wholesale (and, implicitly, all retail) transactions occur 
at the spot market price of electricity. While not directly comparable, we pull the most recent 
available (2019) spot prices from ERCOT and summarize their distribution below. It is clear from 
Figure 6.22 that the wholesale energy price distribution would change rather dramatically as the 
Texas system decarbonizes. Our model results imply many more very low-price hours and many 

 
 
39 When carbon emissions from natural gas generation are penalized, the penalty (the shadow price of carbon 
emissions) is reflected in the marginal prices when natural gas generators are on the margin. Under stringent CO2 
emissions constraints, natural gas marginal costs, therefore, could be much higher than $50/MWh and might be 
responsible for high prices (i.e., $200/MWh or greater).  
40 The precise implementation of short- and long-term resource adequacy requirements will impact the volatility of 
wholesale electricity prices in each region, but the trend of increasing hours of near-zero marginal value of 
electricity interspersed with high prices, is a robust conclusion supported by other modeling in the literature as well. 
See for example, (Levin & Botterud, Electricity market design for generator revenue sufficiency with increased 
variable generation, 2015), (Levin, Kwon, & Botterud, The long-term impacts of carbon and variable renewable 
energy policies on electricity markets, 2019), and (Ela, et al., 2014). 
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more high-price hours compared to ERCOT in 2019. We note, however, that we are not trying 
to model ERCOT in any detail. ERCOT employs market intervention and capacity remuneration 
mechanisms that may affect price signals. Moreover, the ERCOT energy-only wholesale market 
model has not been adopted by other RTOs/ISOs in the United States or by grid operators in the 
European Union. Most U.S. systems also have capacity markets and relatively low price caps on 
energy markets, which will shift some spot price variation (and revenue variation, as we discuss 
presently) to capacity prices. Since any system must satisfy break-even constraints, however, 
total revenues and revenues earned by each technology should, in theory, be unaffected, 
though the addition of capacity markets may affect the break-even capacity mix.  

 
Figure 6.22: Marginal value of energy under base case assumptions (Li-ion battery storage only) for Texas. The 
price bands are based on the known marginal cost of various generation technologies; we zoom in on the top 4% to 
show the price distributions at that extreme. Results for the Northeast and Southeast are presented in Appendix D. 
ERCOT historical prices are from ERCOT (2021). 

To illustrate how the marginal value of energy relates to system operation and VRE resource 
availability, we compare two timeframes in Figure 6.23. The time interval on the left side has 
high VRE resource availability, which leads to frequent periods of VRE curtailment (shown as the 
area between VRE potential and served load)—consequently marginal values of energy are near 
$0/MWh. Prices of about $60/MWh are realized when natural gas generation with CCS needs to 
operate for specific intervals, and peaks of around $250/MWh are also observed when storage 
is discharging to meet load. In contrast, the right side of the figure shows a period of low VRE 
availability, in which gas generation is often needed to meet load requirements that exceed VRE 
output. When CCGT with CCS is on the margin, price levels are about $60/MWh. If CCGT without 
CCS is also needed, prices climb to $100–$130/MWh and when OCGT without CCS operates 
(days 29–30) prices are in the range of $150–$180/MWh. 
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Figure 6.23: System operation and marginal value of energy under Base Case assumptions (Li-ion battery storage 
only) for Texas at 10 gCO2/kWh. The figure shows two periods of time with high (left side) and low (right side) VRE 
resource availability.  

Figure 6.24 shows that the cost-optimal deployment of LDES (redox flow batteries plus metal-
air batteries, thermal storage, or hydrogen) primarily serves to reduce the frequency of periods 
when the marginal value of energy is high, i.e., above $200/MWh, and increases instances of 
marginal value near or below $50/MWh. The latter effect is consistent with the reduced VRE 
curtailment seen with LDES deployment (Figure 6.10). Table 6.14 shows that LDES tends to 
reduce the unweighted average value of energy while also reducing the volatility of the marginal 
value of energy, as measured by the CoV, relative to the base case (TM0 in Table 6.14). Across 
the different CO2 constraints modeled, volatility decreases by 33% on average compared to the 
base case when LDES resources are present in the system. While the dispatch of LDES can help 
to smooth out some fluctuations in the marginal value of energy, the presence of LDES alone 
does not alter the broader trend of increasing hours with near-zero marginal value of energy 
and increasing peak prices under tightening CO2 constraints.  

 
Figure 6.24: Marginal value of energy across different storage mixes for Texas. Scenarios shown are, from left to 
right: (0) base case (i.e., Li-ion battery storage only), (1) Li-ion + RFB + H2, (2) Li-ion + RFB + metal-air, and (3) Li-ion + 
RFB + thermal. The price bands reflect the costs of the marginal technology; we zoom in on the top 2% to show the 
price distributions at that extreme.  
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Emission 
policy 

(gCO2/kWh) 

Unweighted average value of energy Price volatility (CoV) 
Base 
case TM1 TM2 TM3 

Base 
case TM1 TM2 TM3 

5 42.1 39.6 38.0 37.3 9.8 7.4 6.9 7.7 
10 40.5 38.8 37.5 36.8 10.9 7.5 7.0 7.9 
50 34.1 34.9 33.4 33.0 17.6 8.8 10.2 11.6 
NL 31.0 31.4 31.4 31.3 18.3 12.5 12.3 12.7 

 
Table 6.14: Comparison of the average marginal value of energy (simple average of prices over time) and 
volatility, as measured by the coefficient of variation (standard deviation divided by mean) for modeled 2050 
prices in Texas. For comparison, actual figures for ERCOT in 2019 were $37.6/MWh for the average value of energy 
and 4.4 for price volatility (CoV). The technology mixes in the table correspond to (TM0) base case (i.e., Li-ion battery 
storage only); (TM 1) Li-ion + RFB + H2; (TM 2) Li-ion + RFB + Metal-air; and (TM 3) Li-ion + RFB + Thermal. 

Finding: The level, range, and variation in the marginal value of energy in future low-carbon 
electricity systems will be drastically different than values seen in ISO/RTO-managed 
wholesale markets today. 
 

Revenue Analysis 

In the CEM modeling used here, which involves least-cost linear optimization with perfect 
foresight and constant returns to scale, all resources just break even, meaning that annual 
revenues over the modeled period equal annualized investment and operational costs (Junge, 
Mallapragada, & Schmalensee, 2021). Analyzing system operation and revenue distribution by 
price bands, we find that different technologies operate at different price bands and earn 
revenue in different ways, based on the likelihood that a given technology is the marginal 
resource (Figure 6.25). With more stringent CO2 constraints, VRE technologies operate more at 
lower prices and begin to rely on fewer hours of higher prices to earn the revenue required to 
break even. For example, for wind generation in the 10 and 5 g CO2/kWh cases, 90% and 96% of 
revenues come from the 33% and 35% of energy delivered by wind during periods when prices 
are high (above $50/MWh), respectively. We find similar results for solar photovoltaics, Li-ion 
battery storage, and gas generation (OCGT, CCGT, CCGT_CCS), meaning that these resources 
would need to earn most of their revenue in a handful of hours under an energy-only wholesale 
power market design. Moreover, optimization ensures full cost recovery in the model because 
the model assumes perfect foresight of load and VRE availability. In reality, it could be difficult 
to finance investments in generation and storage assets that have to rely for most of their 
revenues on a handful of operating hours in any given year.  
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Figure 6.25: Technology operation by price band in Texas – base case. The upper panel shows the distribution of 
delivered energy by price band for different technologies and emission constraints. The lower panel shows the 
revenue distribution by price band. 

 
6.4 Conclusion and Key Takeaways 
This chapter, detailing the results of our modeling analysis, explores the drivers for adopting 
energy storage in the transition to low-carbon power systems by 2050. We consider the 
interplay between storage technology cost and performance attributes and other factors, 
including the costs of alternative generation technologies, demand growth, demand flexibility, 
and VRE resource quality, among others. We also examine how varying the stringency of the 
carbon constraint affects these interactions.  
 
We find that the near-complete decarbonization of power systems (i.e., average emissions 
intensity of 5 gCO2/kWh) can be achieved with VRE deployment, in conjunction with available 
(Li-ion) battery energy storage, along with infrequent use of dispatchable natural generation, 
with bulk power cost increases of 21% (Texas) to 36% (Northeast) compared to a scenario with 
no emission limits, without creating reliability issues for hourly grid operations. At the same 
time, we find that full decarbonization based on deploying VRE and Li-ion storage technologies 
while ruling out any use of natural gas generation (in other words, targeting “zero” CO2 
emissions rather than “net-zero” emissions) is significantly more expensive at the margin. Put 
another way, the incremental cost of increasing the share of carbon-free electricity generation41 
from around 90%–93% (as seen in the 5 gCO2/kWh emission case in Table 6.9) to 100%, via a 
combination of VRE and Li-ion storage, is quite high. This observation is consistent with findings 
from other studies modeling zero-carbon power systems based on VRE and Li-ion storage (Cole, 
et al., 2021; Brown & Botterud, 2021; Sepulveda, Jenkins, de Sisternes, & Lester, 2018). It 

 
 
41 As noted in the caption of Table 6.9, carbon-free electricity generation is defined to include VRE, nuclear, and 
hydro resources, but it excludes generation from CCGT with CCS. Such a definition decreases the perceived level of 
decarbonization achieved in each case since it does account for the substantially reduced carbon intensity of the 
remaining generation. See footnote 22 for further discussion. 
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provides a compelling reason to focus public and private RD&D resources on further improving 
the cost and performance attributes of a range of technologies, including emerging long-
duration energy storage (LDES) technologies, alternative low- or no-carbon generation 
technologies that are dispatchable, and negative emissions technologies that can remove CO2 
from the atmosphere.  
 
While these broad observations apply across all regions studied here, our modeling reveals 
significant regional variation in system costs, optimal storage capacity deployment, and optimal 
generation mix under different emission constraints. The differences primarily reflect 
differences in the quality of wind and solar resources and thus in the cost of zero-carbon 
generating technologies in the three regions we examine. Notably, among these regions, the 
Northeast has the lowest-quality VRE resources and the highest CO2 emissions under a No Limits 
policy scenario. Relative to other regions, the Northeast also generally sees the highest system 
average electricity cost to achieve a given CO2 emissions goal for the same technological 
assumptions. That is, without policies that significantly constrain CO2 emissions, the Northeast 
would not “naturally" reduce its emissions per unit of electricity generated.42 By contrast, Texas, 
due to its excellent wind and solar resources, sees a significant "natural" reduction in CO2 per 
kWh in our modeling without any additional policy interventions, though policy interventions 
are necessary to get to complete decarbonization of the electricity sector in that state also. The 
Southeast falls between the Northeast and Texas on these dimensions. In short, the challenges 
of "getting to zero" vary across regions based on their resource endowments.  
 
Our modeling highlights the multiple impacts of LDES availability on decarbonized power 
systems, which includes reducing the need for dispatchable generation, lowering the system 
average cost of electricity, reducing VRE curtailment, and reducing variability in wholesale 
electricity prices. The strength of these effects depends on LDES cost and performance attributes 
but also on system factors and on the attributes of other technologies (for example, VRE capital 
cost and availability). The most important LDES performance parameters (in terms of value to 
the system) are energy storage capacity cost followed by discharge efficiency—this finding is 
supported by our modeling as well as by a recent paper that uses the same analytical approach 
(Sepulveda, Jenkins, Edington, Mallapragada, & Lester, 2021). The latter paper also notes that 
charge and discharge power capacity costs and charge efficiency are of secondary importance. 
Similarly, our findings suggest that when LDES is deployed, the cost-optimal storage duration 
ranges over days rather than weeks or months. Among LDES technology options, we find that 
hydrogen (and other forms of derived chemical energy storage) offers a unique value 
proposition if it is produced with electricity and used as a fuel to decarbonize other end-uses, 
thereby creating a large flexible load that supports VRE integration in the power sector. 
 
The fact that the cost-optimal dispatch of storage, unlike the cost-optimal dispatch of generation 
resources, cannot be reduced to simplistic merit-order or time-invariant economic principles 
highlights the increased complexity of actual power system dispatch with significant storage 
deployment. Whereas our modeling results assume perfect foresight with respect to load and 
VRE availability in future periods, uncertainty in real-world power system operations (regarding 
both load and VRE availability) will make optimal storage dispatch more challenging. Thus, there 
is a need to improve the software tools used for power system dispatch to support cost-efficient 

 
 
42As noted earlier (in footnote 8), many northeastern states have passed legislation that mandates reductions in 
economy-wide greenhouse gas (GHG) emissions of at least 80% by 2050, with a few states committing to more 
ambitious targets. In this context, our “No Limits” policy scenario for the Northeast is mainly a consistent internal 
benchmark to systematically quantify the impact of other technology or demand drivers that encourage 
electrification outside the power sector. 
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utilization of resources like storage as well as demand flexibility and VRE in future low-carbon 
power systems. In this context, knowledge sharing forums between industry and academia, such 
as the annual technical conference on improved software organized by the Federal Energy 
Regulatory Commission (FERC) are noteworthy.43 From the U.S. perspective, recommendation 
1 can be implemented by (1) increasing funding for demonstration activities to be undertaken 
by the Energy Delivery Grid Operations Technology program proposed by DOE’s Office of 
Electricity in its FY22 budget request, and (2) expanding the grid resilience, reliability, and 
flexibility programs proposed by the Advanced Research Projects Agency–Energy (ARPA–E) to 
support research and commercialization of software for reliable grid operations. 
 
Our modeling of least-cost power systems and alternative storage technology deployments 
considered inter-annual and intra-annual variations in VRE availability as well as increased 
demand from expanded electrification in other sectors of the economy, assuming perfect 
foresight with respect to future costs and operational conditions. While this approach 
represents an improvement over previous studies that have explored power and energy system 
decarbonization pathways (Larson, et al. 2020; Phadke, et al. 2020; Cochran, et al. 2021), it still 
does not fully address all the factors that will impact the evolution of future low-carbon power 
systems and the role of energy storage.  
 
First, due to data limitations, we did not model the demand-side impacts of very extreme 
weather events. Such events, which can affect both electricity demand and supply, are likely to 
become more important in the future owing to climate change. Thus, further work to 
characterize weather-driven demand and supply uncertainty would be very useful. Second, for 
reasons of computational tractability, we had to resort to approximating annual grid operations 
using representative weeks for two of the study regions (Southeast and Northeast) using multi-
zonal grid representation. Collectively, these factors, coupled with our assumption of perfect 
foresight, mean that our results likely underestimate the value of storage and the magnitude of 
storage deployment that would be cost-effective in low-carbon power systems. Clear 
opportunities exist to advance understanding of these issues through further data collection, 
data analysis, and optimal system modeling. 
 
At the same time, other assumptions in our modeling may contribute to results that 
overestimate the value of storage. First, as is common practice in state-of-art power system 
planning studies, we ignore use-based degradation of electrochemical storage (instead we 
account for degradation as a fixed O&M cost related to battery cell replacement). If degradation 
were included, it might limit the value of these storage resources. Second, our modeling does 
not consider the availability of bioenergy-based power generation with or without carbon 
capture or other dispatchable renewable generation sources such as geothermal. If, when, and 
where such sources become available, their deployment could help minimize the cost impacts 
of going from near-complete decarbonization to full decarbonization and could significantly 
reduce the value of LDES. If bioenergy systems with CCS or direct air capture were feasible at 
reasonable cost, for example, the negative CO2 emissions that they could produce could make 
it possible to reach a “net-zero” carbon power system while still allowing for some use of 
natural-gas-based generation. A few recent studies have shown that access to negative 
emissions, generated either within or outside the power sector, reduces the value of energy 
storage technologies in the power sector (Daggash, Heuberger and Dowell 2019; Larson, et al. 
2020; Williams, et al. 2021). Finally, our analysis is based on least-cost investment planning for 
a future year (2050) with corresponding technology cost projections for that year. In reality, VRE 

 
 
43 FERC convenes this technical conference annually to discuss opportunities to enhance operational efficiency 
through improved software (FERC, 2021). 
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and other resource investments will be added incrementally over time, likely leading to higher 
investment costs than were assumed here. Higher system costs would almost certainly be 
incurred if the target date for power sector decarbonization is brought forward, say between 
2035 and 2050, owing to the cost associated with potentially stranding some existing thermal 
generation and the reduced opportunity for learning-induced cost reductions in emerging 
storage technologies. We have not attempted to quantify the cost and system implications of 
these factors in our analysis. 
 
The discussion in this chapter illustrates the complexity of long-term investment planning aimed 
at efficiently achieving deeply decarbonized and reliable power systems. It also highlights the 
importance of fundamental research to advance the state-of-art in models used for investment 
planning, as well as the need for system operators to continuously review and update their 
planning approaches to incorporate best-available methodologies. Existing practices for power 
system planning and reliability assessment in various jurisdictions increasingly recognize the 
importance of incorporating increased temporal resolution of grid operations as well as inter-
annual variability (CPUC 2019; FERC 2021; National Academies of Sciences, Engineering, and 
Medicine 2021), but these are only two of several factors to be addressed. As the grid outages 
that occurred in Texas in February 2021 highlighted, system planning needs to account more 
effectively for variability in demand and supply, especially under extreme weather events, and 
for correlations between the supplies from individual generators in the portfolio and between 
total generator output and demand. This variability is likely to increase with climate change, and 
recent studies have highlighted its impacts on grid operations and planning (Ralston Fonseca, et 
al. 2021; Steinberg, et al. 2020). Demand response and demand flexibility, as well as distributed 
energy resources, also can play an important role and deserve much more attention than we 
were able to give them in this analysis. Similar to other CEM studies (Mai, et al., 2018), our 
modeling assumes inelastic demand that is either very responsive to economic signals, such as 
when modeling demand flexibility from certain end-uses (e.g., electric vehicle charging), or 
completely inflexible. This representation overlooks the potential for differentiated consumer 
responses (flexibility as well as elasticity) to economic signals noted in empirical research; it also 
does not consider potential behavioral changes caused by the adoption of new technologies. 
While our modeling shows that increased demand flexibility generally tends to reduce storage 
needs and costs, understanding the impact of demand flexibility on storage needs and grid 
operations in practice requires further analysis and efforts to model the realistic responses of 
different customer classes. Another aspect of electricity demand that is not considered here 
concerns the relative merits of electrification vs. other approaches for decarbonizing end-use 
sectors that currently rely on fossil fuels (e.g., industry). As shown by our case study of industrial 
hydrogen demand in Texas, technological approaches to decarbonizing these end-uses can 
directly affect cost-effective decarbonization pathways for the electricity sector. This suggests 
that integrated energy systems analysis—not just electricity systems analysis—would be 
essential to understand the costs and benefits of technology choices in the electricity sector 
from the perspective of economy-wide decarbonization. 
 
Finally, our modeling points to increased variability in the marginal value of energy, used here 
as a proxy for wholesale energy prices in an energy-only wholesale market, in future low-carbon 
electricity systems. This creates challenges for financing investments since, although assets 
recover costs under assumptions of perfect foresight for purposes of the modeling analysis, in 
reality, the risk of negative returns is high when many assets generate the dominant portion of 
their overall revenues from just a handful of operating hours in the year. As discussed in Chapter 
8, this potential for increased price variability also points to the value of retail rate reform that 
can encourage electrification by enabling flexible consumers to increase demand in the many 
hours in which the social marginal cost of electricity is at or close to zero.  This issue impacts all 



 

Page 55 

resources, including energy storage, and points to the need for electricity market reforms, which 
are the focus of Chapter 8.  
  
Key takeaways based on the findings from our modeling analysis and from the discussion in 
this chapter are summarized below (recommendations for future work in this area appear in 
italics): 
 

• Near-complete decarbonization of electricity systems appears feasible, from an hourly 
energy supply and demand balance perspective, using renewables, natural gas, and 
lithium-ion battery storage alone, without creating significant reliability issues or very 
large increases in system average cost. 

 
• In the absence of any CO2 constraint on the power sector, the three U.S. regions studied 

here (Texas, the Northeast, and the Southeast) achieve very different CO2 emission 
intensities for the same 2050 technology cost assumptions. These differences primarily 
result from regional variations in renewable resource quality and load profiles. 

 
• With lower energy capacity costs and lower round-trip efficiency compared to lithium-

ion battery technology, long-duration energy storage has the greatest impacts on 
electricity system decarbonization when natural gas generation without carbon capture 
and sequestration (CCS) is not an option. Generally, LDES, when optimally deployed, 
substitutes for natural gas capacity, increases the value of variable renewable (VRE) 
generation, and produces moderate reductions in system average electricity cost. 

 
• When it is cost-optimal to deploy multiple storage technologies, the technologies with 

the lowest capital cost of energy storage capacity are generally best suited to provide 
long-term storage. However, while optimal generation dispatch is determined by 
roughly constant marginal costs, optimal storage operation is driven by the changing 
and unobservable shadow values of stored energy. As a result, all storage technologies 
deployed will operate with charge/discharge cycles of various durations. Simplified 
assessments of storage economics based on stylized charge/discharge profiles overlook 
such dynamics and may provide inaccurate assessments of storage value. 

 
• In performing energy market arbitrage—that is, buying when prices (and net demand) 

are low and selling when prices (and net demand) are high—energy storage can 
substitute for other grid resources, both on the demand side and on the supply side. 

 
• The level, range, and variation in the marginal value of energy in future low-carbon 

electricity systems will be drastically different than values seen in ISO/RTO-managed 
wholesale markets today. 

 
• Our results highlight the multi-dimensional value of long-duration energy storage to 

decarbonized power systems. However, the presence of significant storage capacity also 
greatly increases the complexity of cost-optimal power system dispatch, especially 
under real-world conditions of imperfect information about load and VRE availability in 
future time periods. 

 
• Improved modeling and software tools are needed to accurately represent the inter-

temporal complexity introduced by extensive deployment of storage as well as demand-
side resources in future high-VRE electricity systems. The U.S Department of Energy, in 
cooperation with ISO/RTOs, state regulators and other institutions, should support 
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fundamental research and demonstration projects to accelerate the development and 
deployment of advanced software tools for enabling cost-efficient grid operations. 

 
• Scalable methodologies are also needed to model the least-cost planning and dispatch 

of future low-carbon electricity systems while considering imperfect information about 
future costs, resource availability, wholesale market prices, and demand. The U.S 
Department of Energy, in cooperation with ISO/RTOs, state regulators and other 
institutions, should support research to develop such methodologies.  

 
• Our findings with respect to increased price variability in decarbonized electricity 

systems—specifically, the potential for many hours of very low or zero marginal energy 
value but a small number of hours with very high value—also point to increased 
challenges for financing future investments in grid assets, including storage. This issue 
impacts all resources and underscores the need for thoughtful electricity market 
reforms and retail rate design to encourage efficient economy-wide decarbonization. 
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Appendix 

Appendix A. Cost and Operational Assumptions 

Transmission. Existing inter-zonal transfer capacity is approximated from the EPA Integrated 
Planning Model (IPM) model  (EPA, 2018). The IPM model uses a selection of 64 regions based 
on North American Electric Reliability Corporation (NERC) regions, which represents fractions of 
states. We follow these zonal definitions to get the aggregate transfer capacities between zones 
within each region. Existing transmission capacity is assumed to be available at no cost in our 
modeling. When transmission expansion is enabled, new capacities can be added along the 
existing network paths. Transmission upgrades on 345 kV lines (U.S. Northeast and Texas) are 
assumed to be $1,670/MW-km; upgrades on 500 kV for the Southeast are assumed to be 
$960/MW-km (Brown, Cole, et al. 2020).44  
 
Brownfield Capacity. We assume a mainly greenfield modeling of the U.S. Northeast, Southeast, 
and Texas, apart from existing hydropower in all regions and nuclear capacity in the Southeast. 
For existing hydropower generators, we classify individual plants into run-of-river (ROR) or 
reservoir generators using the ORNL HydroSource database (Oak Ridge National Laboratory, 
2020). ROR generators are modeled as must-run or non-dispatchable resources that do not have 
the ability to spill water (i.e., they do not respond to economic dispatch). Hydro reservoir 
generators are modeled as storage devices that receive exogenous inflows to their storage 
reservoirs, but cannot charge from the grid. We get hydropower generators’ installed capacities 
from Form EIA-860 (EIA, 2020), and historical monthly generation from Form EIA-923 (EIA, 
2021), then aggregate them up to the zonal level. 
 
In the Southeast, we assume that a portion of the existing fleet of nuclear generators will remain 
operational in 2050. That is, based on each generator’s start date, we assume that plants that 
could run to 2055 or beyond with a second life extension license (80 years from start date) are 
available. These include Vogtle 3 and 4 (with a combined capacity of 2,500 MW), which are still 
under construction in Georgia (see Table A- 1).  
 
In the Northeast, we enforce a minimum build for distributed solar PV to reflect existing 
policies.45 The minimum build is based on a projection of new capacity installed through 2050 
(i.e., not including existing capacity, see Table A- 2). For states in ISO-NE, the projections are 
extrapolated to 2050 using the implied EIA Annual Energy Outlook 2030–2050 growth factor of 
110%. For zones in the New York ISO, the projections are directly taken and aggregated from 
the 2020 Gold Book (New York ISO, 2020). 
 
 
 
 
 

 
 
44 Distances between zones are measured as the shortest distance between the urban areas of the respective 
zones. 
45 As discussed in the main text, distributed PV is always more expensive than utility-scale PV; therefore, the model 
would not choose to optimally build distributed PV endogenously, unless there are transmission constraints that 
prevent other forms of intra-zonal generation. 



 

Page 63 

EIA Plant-Generator EIA Nameplate 
Capacity (MW) EIA Start Date 

Date Entering 
Extended 

Operations 

Browns Ferry_3 1,190 3/1/1977 7/2/2016 

Brunswick Nuclear_1 1,002 3/1/1977 9/8/2016 

Catawba_1 1,205 6/1/1985 12/5/2023 

Catawba_2 1,205 8/1/1986 12/5/2023 

Edwin I Hatch_2 865 9/1/1979 6/13/2018 

Grand Gulf_1 1,440 7/1/1985 11/2/2024 

Harris_1 951 5/1/1987 10/24/2026 

Joseph M Farley_1 888 12/1/1977 6/25/2017 

Joseph M Farley_2 888 7/1/1981 3/31/2021 

McGuire_1 1,220 9/1/1981 6/12/2021 

McGuire_2 1,220 3/1/1984 3/3/2023 

Sequoyah_1 1,221 7/1/1981 9/17/2020 

Sequoyah_2 1,221 6/1/1982 9/15/2021 

St Lucie_1 1,080 5/1/1976 3/1/2016 

St Lucie_2 1,080 6/1/1983 4/6/2023 

V C Summer_1 1,030 1/1/1984 8/6/2022 

Vogtle_1 1,160 5/1/1987 1/16/2027 

Vogtle_2 1,160 5/1/1989 2/9/2029 

Vogtle_3 1,250 1/1/2021 - 

Vogtle_4 1,250 1/1/2022 - 

Watts Bar Nuclear Plant_1 1,270 5/1/1996 - 

Watts Bar Nuclear Plant_2 1,270 6/1/2016 - 

 
Table A- 1: Brownfield nuclear capacity in the Southeast. List of nuclear generators that could run to 2055 or 
beyond with a Second Life Extension License (80 years from start date). Plant-level detail from Form EIA-860. 
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    Existing Capacity 
(MWdc) 

Cumulative 
Installations 

through 2050 
(MWdc) 

Existing Capacity 
(MWac) 

Cumulative 
Installations 

through 2030 
(MWac) 

Cumulative 
Installations 

through 2050 
(MWac) 

New 
Installations 

through 2050 
(MWac) 

        
ISO-NE Projections           

[1] CT - - 682.3 1,242.8 2,607.1 1,924.8 

[2] MA - - 2,502.3 2,738.2 5,744.1 3,241.8 

[3] ME - - 68.8 320.6 672.5 603.7 

[4] NH - - 125.3 259.5 544.4 419.1 

[5] RI - - 223.8 196.7 412.6 188.8 

[6] VT - - 393.5 607.2 1,273.8 880.3 
        

NYISO Projections           

[7] A 125.0 1,276.0 108.7 - 1,109.6 1,000.9 

[8] B 63.0 371.0 54.8 - 322.6 267.8 

[9] C 169.0 977.0 147.0 - 849.6 702.6 

[10] D 5.0 101.0 4.3 - 87.8 83.5 

[11] E 123.0 974.0 107.0 - 847.0 740.0 

[12] F 299.0 1,168.0 260.0 - 1,015.7 755.7 

[13] G 251.0 705.0 218.3 - 613.0 394.8 

[14] H 34.0 70.0 29.6 - 60.9 31.3 

[15] I 46.0 109.0 40.0 - 94.8 54.8 

[16] J 210.0 791.0 182.6 - 687.8 505.2 

[17] K 537.0 880.0 467.0 - 765.2 298.3 
Table A- 2: Rooftop PV minimum build. Assumes a DC-AC ratio of 1.15. Capacities from the ISO-NE Final 2021 PV 
Forecast (Black, 2021), pp. 23–28, extrapolated to 2050 forecasts using the EIA AEO implied 2030–2050 growth rate 
of 110%. Source: NYISO 2020 Gold Book (New York ISO, 2020), Table I-9a. 

Load. Electricity demand is from the NREL Electrification Futures Study (Mai, et al., 2018). These 
demand data include assumptions around electrification and its impacts on the load profile; they 
are available on an hourly basis (8,760 hours per year) as well as on a state-by-state basis. The 
“2050 High-Moderate” profiles are used for the bulk of the study, except for the Reference 
Electrification scenario, which is based on the “2050 Reference_Moderate” profiles. These 
profiles reflect different levels of electrification (“High” vs. “Reference” and a “moderate” pace 
of energy-efficiency improvements). To align these state-based demand data to our IPM-based 
zonal definitions, we use 2018 utility state-level sales data (Form EIA-861) to allocate fractions 
of state demand to our defined zones. 
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GWh TVA Carolinas SOCO Florida 
     

Tennessee 100.81 0.01 0.00 102.91 

Alabama 23.66 0.00 66.62 90.28 

North Carolina 0.79 131.74 0.00 138.29 

South Carolina 0.00 81.64 0.00 81.64 

Georgia 3.40 0.00 136.12 139.87 

Florida 0.00 0.00 13.25 238.57 

Mississippi 16.29 0.00 11.73 50.39 
     

% Total TVA Carolinas SOCO Florida 
     

Tennessee 98.0% 0.0% 0.0% 0.0% 

Alabama 26.2% 0.0% 73.8% 0.0% 

North Carolina 0.6% 95.3% 0.0% 0.0% 

South Carolina 0.0% 100.0% 0.0% 0.0% 

Georgia 2.4% 0.0% 97.3% 0.2% 

Florida 0.0% 0.0% 5.6% 94.4% 

Mississippi 32.3% 0.0% 23.3% 0.0% 
Table A- 3: Load allocation from states to IPM zones. Utility bundled retail sales by state from Form EIA-861 (EIA 
2020). Utility to IPM zonal mapping from EPA IPM model documentation (EIA 2018). SOCO refers to the territory 
serviced by the Southern Company. TVA refers to the territory serviced by the Tennessee Valley Authority. 

VRE Supply Curves. We developed zonal VRE supply curves based on the methodology described 
in Brown and Botterud (2021). Hourly PV capacity factors are simulated using 2007–2013 
weather data from the NREL National Solar Radiation Database (NREL 2021) through the PVLIB 
model framework (Holmgren, Hansen, & Mikofski, 2018), at a 4 km by 4 km spatial resolution. 
Hourly wind capacity factors are simulated using the same temporal and spatial resolution using 
the NREL Wind Integration National Dataset Toolkit (Draxl, Clifton, Hodge, & McCaa, 2015) and 
power curve data for the commercially available Gamesa:G126/2500 wind turbine (Gamesa, 
2017) at 100-meter height. To reduce the spatial resolution of the VRE capacity factor data, we 
aggregate sites within a zone on the basis of average LCOE (including the cost of interconnecting 
to the nearest substation). Thus, for each resource and zone, we get a supply curve, with each 
bin representing increasing resource quality with an associated maximum availability (based on 
land area), interconnection cost and hourly capacity factor profile. 

Generator and Storage Costs. Fossil-powered generation and VRE capital and operational costs 
are shown in Table 6.5. The gas, nuclear, VRE, and Li-ion costs are taken from the 2020 NREL 
Annual Technology Baseline 2045 “Mid” cost projections (NREL 2020). “Low” VRE and Li-ion 
costs are also taken from the NREL ATB for the sensitivity analysis.46 Additionally, we apply a 
small, non-zero VOM for wind, hydropower, and storage to distinguish their dispatch as part of 
the economic dispatch modeled within GenX – this addition does not meaningfully affect 
resulting system costs.  
 
For storage, system costs are separated as energy-only components (e.g., battery packs for Li-
ion, tanks for LDES), or power-only components (e.g., inverter, interconnection and permitting 

 
 
46 The mid-cost and low-cost Li-ion cost assumptions for 2050 from NREL are broadly consistent with estimates 
reported in Chapter 2. We chose to use the NREL estimates since they are widely used by other power system 
modeling studies. See further discussion on Li-ion cost in Chapter 2. 
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fees, land acquisition costs). Power-only components can further be parsed into charging or discharging power costs, depending on the type of storage 
technology (see Table 6.2). This separation of function-based costs enables the model to independently vary the energy, discharging power, and charging 
power capacities of energy storage systems for optimal sizing. Low-, mid-, and high-cost Li-ion estimates are taken from the NREL ATB 2050 cost projections 
(NREL 2020); cost projections for other storage technologies are from the analysis described in the technology-focused chapters of this report (see Table 6.3). 
 
Operations and Fuel Assumptions. Operational assumptions for gas- and nuclear-powered generators are from best-in-class technology in the industry (see 
Table A- 4). Fuel price assumptions are taken from the EIA AEO 2020 Reference (EIA 2021) 2050 case (see Table A-5). 
 

  Tech Capacity Size 
(MW) Start Cost ($) Start Cost 

($/MW/start) 

 
Start Fuel 

(MMBTU/ start) 

Start Fuel 
(MMBTU/ 
MW/start) 

Heat Rate 
(MMBTU/ MWh) 

[1] OCGT 237 33,147 140  45 0.19 9.51 

[2] CCGT 573 34,982 61  115 0.20 6.40 

[3] CCGT + CCS 377 36,419 97  75 0.20 7.12 

[4] Existing Nuclear 1,000 1,000,000 1,000  0 0.00 10.46 

[5] New Nuclear 1,000 1,000,000 1,000  0 0.00 10.46 
         

  Tech Min Stable 
Output (%) Ramp Up (%) Ramp Down (%) 

 
Up Time (Hours) Down Time 

(Hours) 
 

[1] OCGT 25 100 100  0 0  
[2] CCGT 30 100 100  4 4  
[3] CCGT + CCS 50 100 100  4 4  
[4] Existing Nuclear 50 25 25  36 36  
[5] New Nuclear 20 100 100  36 36  

 
Table A- 4: Thermal generator operational characteristics. Compiled from multiple sources: Buongiorno, et al. 2018; Sepulveda, Jenkins and de Sisternes 2018; NREL 2020; GE 2017; Jenkins, et 
al. 2018.
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Fuel $/MMBtu 

Uranium 0.75 

Coal 2.00 

Natural Gas 4.16 

Coal CCS 2.00 

NG + CCS 4.16 
 

Table A-5: Technology-specific fuel prices. Fuel prices from EIA AEO 2020 Reference (EIA 2021) 2050 case. CCS 

option assumes a $20-per-metric-ton CO2 transport and sequestration cost.  

Demand Flexibility. As described in the main text, modeling assumptions for simulated demand 
flexibility are based on the NREL EFS enhanced flexibility scenario, which proposes hours of delay 
and advance for specific demand subsectors, along with the share of the load that can be shifted 
(Mai, et al., 2018). Table 6.11 in the main report shows assumptions for how many hours 
demand in each demand subsector can be advanced or delayed, as well as the maximum hourly 
demand that can be flexible in Texas. Table A 6 shows the maximum hourly demand flexibility 
for all three regions. Coincident maximum potential demand flexibility is 37 GW (39% of hourly 
demand) for the Northeast and 113 GW (37% of hourly demand) for the Southeast; both figures 
are proportionately higher than the maximum demand flexibility potential (47 GW or 31% of 
hourly demand) in Texas.  
 

Demand Subsector Northeast Southeast Texas 
Commercial HVAC 1.5 3.0 8.6 
Residential HVAC 2.0 6.2 7.0 
Commercial Water 
Heating 

0.0 0.1 0.2 

Residential Water Heating 0.2 0.7 1.0 
Light duty vehicles 27.6 79.4 33 
Medium duty trucks 1.6 4.6 3.0 
Heavy-duty trucks 1.2 6.0 5.0 

Table A 6: Non-coincident maximum hourly demand flexibility in GW across the three modeled regions under 
2050 load conditions. HVAC = heating, ventilation and air conditioning. Data sourced from NREL Electrification 

Futures Study (Mai, et al., 2018).  

Appendix B. Time Domain Reduction Approach 

Capacity expansion models (CEMs) rely on a compact temporal, spatial, and network 
representation of the system to maintain computational tractability. Traditional CEMs have 
relied on a time slice approach (e.g., 12 representative days across the year) that is usually based 
on disaggregating the load duration curve based on seasonal and time-of-day blocks. The 
intuition of the “time-slice” approach is to represent conditions of system peak, based on the 
idea that if there is sufficient generating capacity to cover the peak, then reliability can be 
ensured at all other times too. However, recent studies show that systems with high 
penetrations of VRE will require increased temporal resolution and operational detail to 
adequately capture the temporal and spatial dynamics of a highly decarbonized electricity grid.  
Specifically, with increasing VRE penetration, the system peak “net load” (i.e., the residual load 
after accounting for VRE generation) is likely to be more important than the system peak load 
for resource planning purposes. 
 
In this study, we use model hourly grid operations that look to capture intra and inter-annual 
variability in load and VRE generation. For the Northeast and Southeast case studies, involving 
multi-zonal representations of the regions, we approximate annual grid operations outcomes 
based on modeling hourly operations over a set of representative periods that are selected 
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through a hybrid clustering scheme described below. The use of representative periods via 
clustering represents an improvement over time-slice approaches since it is based on prevailing 
variability in all time series, not just load, and since it also allows for preserving chronology in 
operations as well as inter-period energy transfer in the case of energy storage.  
 
The hybrid clustering employed here to select representative periods is adapted to provide both 
sufficient temporal resolution and extreme weather coverage. While the clustering procedure 
seeks to closely approximate the underlying temporal distributions of historical load and VRE 
capacity factor profiles, the extreme periods selection procedure seeks to incorporate sufficient 
“reliability” events corresponding to extended periods of low VRE output and high demand (e.g., 
heat waves, cold snaps). We outline our iterative approach to selecting the periods used in the 
CEM below (Figure B-1). 

 
Figure B-1: Hybrid clustering approach used to select representative periods for CEM in the case of the Northeast 
and Southeast regions. Steps are further described in the text.  

Step 1. We slice the zonal load and VRE capacity factor data into 10-day periods. For each period, 
we calculate average load, solar capacity factor (CF), and wind CF; and identify some “a priori 
extreme periods,” defined as those periods that have the highest system peak, highest average 
load, and lowest PV and onshore wind output, at a zonal level. We then stitch together the time 
series of all resources (solar, onshore wind, hydro) for each period, to create a single 
concatenated time series for each 10-day period; thus, each vector is of length: 24 hours/day x 
10 day/period x 4 time series (load, solar, onshore wind, hydro) x number of modeled zones. 
Due to overlap between the extreme periods that meet the above criteria, we identify six 
extreme periods for the Northeast through this process and eight for the Southeast. 
 
Step 2. We employ the k-means clustering technique to group the remaining (non-extreme 
periods, 255.5 equality the number of extreme periods) into 25 clusters. For each cluster, we 
select the historical period closest to the centroid of the cluster as the most representative 
period. This is because the centroid of the cluster may not reflect actual conditions that may 
exist in the system; thus, the most representative periods are indeed based on actual data. We 
then weigh each representative period based on cluster size, to achieve a total weight of 8,760 
hours to approximate annual grid operations. To preserve the system peak, we did not scale the 

A priori 
selection of 

extreme periods 

Period with the system peak 
(1), + periods the highest 

average load, lowest average 
CF (6) 

Run Capacity 
Expansion 

Optimization based 
on downsampled 
periods (first 25, 

then 30, 35) 

Assess reliability 
outcomes using 

Dispatch 
Simulations 

1 2 

Fix the installed capacities and let 
model optimize amount of storage 

energy capacities to avoid NSEs 

Final modeled 
energy and 

power 
capacities 

5 

6 

Identify problematic periods (5) 
 and feed them back into the 

Capacity Expansion Optimization 
model 

3 

4 

Repeat until we 
reach acceptable 
levels of NSE 



 

Page 69 

weighted time series to match the annual load in the original data; this results in a 2%–3% 
increase in annual load relative to the NREL EFS data.  
 
Step 3. The iterative process starts by inputting the CEM outputs into a simplified production 
cost model to simulate overall reliability under the proposed portfolios. This process is more 
effective at identifying periods of great reliability importance, which were not already flagged 
to be “a priori extreme” or “representative” periods. We call the periods causing the most 
reliability issues (i.e., frequent and long-lasting non-served energy events), “reliability periods.” 
We repeat this last step one or two times to ensure that we’re optimizing for system reliability 
at each hour (i.e., no significant load shedding due to capacity shortages). The threshold we are 
using is the often-used reliability standard of 1-in-10 years, which we interpret as one day in ten 
years of involuntary load shedding. 
 
Steps 4–6. After we reach an acceptable level of reliability, we can finalize the selection of 
representative and extreme periods and interpret the model results (shown in the main report). 
Step 5 is optional; it can allow the CEM to re-optimize for storage power and energy capacities 
over the full seven years of weather data once the capacities for the other technologies and 
transmission have been fixed. We did not end up needing this step. 
 
To test this approach, we assessed reliability outcomes, which we define as the frequency, 
duration, and magnitude of resulting non-served energy (NSE) events, across multiple model 
configurations. We start with a simple chronology-based approach that selects 25 periods across 
one single year of weather data (2012) to resolve the optimal capacity mix (S25-CEM). Then, we 
consider a suite of chronological C-CEMs resolved over seven years of weather data, while 
incrementally increasing the number of selected periods (therefore, number of hours the model 
“sees” to make its investments and dispatch decisions). This corresponds to the 25, 30, and 35 
representative periods as annotated in Figure B-1. 
 
Figure B-2 and Figure B-3 show the breakdown of all NSE events. As expected, a CEM based on 
one year of weather data (S25-CEM) yields a lower level of reliability than one based on multiple 
years of weather data (C25-CEM), particularly around extended periods of low VRE output 
(especially with respect to wind, since solar follows a fairly consistent diurnal pattern). We can 
also see how the individual events break down in terms of their duration (e.g., consecutive hours 
of NSE) and magnitude (e.g., as a proportion of total system load during each hour). We see that 
for the Southeast (Figure B-2), moving from the S25-CEM to the C25-CEM configuration 
decreases total NSE by 12% (or 1,535 GWh) and the total duration of such events by 33% (or 234 
hours), across the seven weather years considered. The decrease in frequency of NSE events 
that last for more than four hours (shown in different shades of green), as well as the frequency 
of NSE hours with more than 10% of total system load is particularly noteworthy.  
 
The reliability outcomes for the Northeast (Figure B-3) are a bit different in that the frequency 
of outage events actually seems to increase between S25-CEM and C25-CEM, and between C30-
CEM and C35-CEM. Upon closer inspection, however, we can see that the number of severe 
events (i.e., with duration longer than 12 hours, or shedding more than 25% of hourly load) 
actually decreases, which is what we would expect. In general, because the Northeast does not 
have other forms of firm capacity (e.g., existing nuclear) and has poorer VRE resource quality, 
we'd expect to see more instances of NSE events, relative to the Southeast. 
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Figure B-2: Reliability outcomes in the Southeast across different model configurations. From left to right: (1) Total 

magnitude of NSE events across the seven test years, standardized to the system mean load (157.6 GW). (2) Number 

of NSE events by duration buckets. (3) Number of NSE hours by magnitude (as a percentage of hourly load) buckets.  

 
Figure B-3: Reliability outcomes in the Northeast across different model configurations. From left to right: (1) Total 

magnitude of NSE events across the seven test years, standardized to the system mean load (49.9 GW). (2) Number 

of NSE events by duration buckets. (3) Number of NSE hours by magnitude (as a percentage of hourly load) buckets.  

Most striking in both regions is the large improvement in reliability that comes with the 
exogenous addition of extreme periods into the initial capacity expansion optimization problem, 
which allows the model to “see” these extended periods of low VRE output that are particularly 
prone to reliability issues. Moving from S25-CEM to C35-CEM decreases total NSE by almost 
100% in the Southeast and by 93% in the Northeast. It also decreases the total duration of such 
events by 99% in the Southeast and by 78% in the Northeast. Thus, we have shown that using 
the proposed methodology, we are able to dramatically reduce the frequency, duration, and 
magnitude of expected NSE events.  
 

Appendix C. Modeling Hydrogen Demand in Industry and Its Impact on Power 
Sector Evolution 

The configuration of Figure C-1 is included in the GenX model, where along with specifying cost 
and performance assumptions for the elements as used previously (e.g., electrolyzer, storage 
tank and gas turbines for hydrogen storage), we add a constraint that requires the specified 
hydrogen (H2) demand from industry to be met by either the electrolyzer or by discharging H2 
storage. This single constraint then enables the utilization of a traditional power-to-H2-to-power 
storage system to be also optimized, in terms of component sizes and utilization, to meet H2 
demand in the industrial sector.  
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Figure C-1: Representation of the power to H2 to power system within GenX and hydrogen’s use for meeting 

industrial hydrogen demand. 

Since we are primarily interested in understanding impacts on the power system from external 
H2 demand, we make the following approximations to simplify the representation of the H2 
supply chain: (1) We ignore potential sources of H2 supply, such as that produced from natural 
gas with and without carbon capture to meet this demand. Instead, we vary the H2 demand from 
industry that is to be met by electrolyzer-driven H2 supply and thereby account for the possibility 
of other sources of H2 supply. (2) We are not considering any spatial distribution in H2 production 
and industrial demand and are thus ignoring H2 transportation. (3) We are not including source-
dependent delivery costs for H2 supply that could be associated with adjusting the state of 
delivered H2 from different sources to meet industrial customer requirements. Other studies 
have included these factors in the hydrogen supply chain while also contemplating their impacts 
on the evolution of the power system (He, Mallapragada, Bose, Heuberger, & Gençer, 2021; 
Sunny, Mac Dowell, & Shah, 2020). 
  
Hydrogen demand is modeled as exogenous and uniform throughout the year. Hydrogen 
demand was estimated using NREL’s 2018 Industrial Data Book as a reference (McMillan, 2019). 
This publication contains a dataset detailing the annual energy consumed by large energy-using 
facilities47 in 2016. Here, we focus on hydrogen demand from substituting for the use of natural 
gas for heating purposes. 
 
Total natural gas consumption by large energy users in Texas accounted for 0.93 quadrillion BTU 
(QBTU) in 2016, which represents about 44% of the 2.1 QBTU of natural gas consumed by the 
industry in Texas, as reported by EIA (Figure C- 2). From that 0.93 QBTU, we considered for the 
analysis process heaters, furnaces, boilers and other combustion sources as potential units that 
use natural gas for heating purposes. Moreover, we excluded units whose unit name suggests 
natural gas is being used as feedstock. This results in 0.59 QBTU of natural gas used for heating. 
By assuming flat demand, the total of 0.59 QBTU/year of natural gas heat is equivalent to 19.7 
GWt of hydrogen. 
 

 
 
47 Defined as those facilities that are required to report greenhouse gas emissions under EPA’s 
Greenhouse Gas Reporting Program. 
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Figure C- 2: Natural gas consumption by Large Energy Users in Texas. 

 
 
 
 
 
 
 
 
 

    Hydrogen demand as % of baseline Hydrogen demand (19.7 GWt) 
   0 25% 50% 75% 100% 125% 
Emission policy 

(gCO2/kWh) 1 2.68 2.50 2.60 2.70 2.80 2.90 

5 2.27 2.39 2.49 2.60 2.72 2.83 

10 2.20 2.38 2.47 2.58 2.69 2.80 

50 2.01 2.03 2.13 2.24 2.35 2.45 

NL 1.76 1.90 1.99 2.11 2.20 2.32 
Table C-1: Installed Power Capacity (relative to peak load). Increasing hydrogen demand and imposing a more 

stringent CO2 constraint increases the total installed power capacity. 

 
    Hydrogen demand 
   0 25% 50% 75% 100% 125% 
Emission 

policy 
(gCO2/kW

h) 

1 29.7 12.0 11.7 11.4 10.8 10.2 

5 16.9 10.0 9.5 9.5 9.4 9.3 

10 15.3 10.1 9.7 9.0 8.6 8.3 

50 9.7 2.9 2.7 2.5 2.4 2.3 

NL 3.2 1.4 1.0 1.0 0.7 0.8 
Table C-2: VRE Curtailment level (%). Increasing the stringency of the CO2 constraint increases VRE curtailment 

levels but increasing industrial hydrogen demand decreases it. 
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Table 3. Average system cost ($/MWh) 

    Hydrogen demand 
   0 25% 50% 75% 100% 125% 
Emission 

policy 
(gCO2/kW

h) 

1 49.8 40.6 39.2 38.1 37.2 36.4 

5 43.9 39.0 37.7 36.6 35.7 35.0 

10 42.2 37.9 36.6 35.6 34.7 34.1 

50 37.0 34.8 33.8 33.0 32.4 31.9 

NL 36.2 34.6 33.6 32.8 32.2 31.7 
Table C-3: Average system cost of energy, SCOE ($/MWh). Increasing the stringency of the CO2 constraint increases 

SCOE, but increasing industrial hydrogen demand decreases it. 

 
 
 
 
 
 
 
 
 
 

Appendix D. Additional Modeling Results 

 
  5g 10g 50g NL 

Northeast 2% 7% 31% 66% 

Southeast 5% 9% 29% 54% 

Texas 3% 7% 24% 36% 
Table D-1: Capacity factors of CCGTs without CCS in the base case for various emission policy constraints 

(gCO2/kWh). 
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Figure D-1: Impacts of assuming the NREL EFS Reference vs. High Electrification load scenarios in the Southeast on 
installed power capacity, storage capacity, and VRE curtailment, across a range of CO2 emission policies. Under 

the High Electrification scenario, both system peak and annual demand are higher, see Table 6 for details. See 

discussion of the impacts of electrification around Figure 6.5 in the main text. 

 

 
Figure D-2: Scenarios showing the impacts of cost sensitivities around Li-ion and RFB technology in the Southeast 
on installed power capacity, storage capacity, and VRE curtailment, across a range of CO2 policies. They are, in 

ascending order: (1) base case (i.e., mid-cost Li-ion only, BC); (2) mid-cost Li-ion + low-cost RFB (L+RL); (3) mid-cost Li-

ion + mid-cost RFB (L+R); (3) mid-cost Li-ion + high-cost RFB (L+RH); (4) low-cost Li-ion + low-cost RFB (LL+RL); and (5) 

high-cost Li-ion + high-cost RFB (LH+RH). Low-, mid-, and high-cost assumptions for each storage technology are 

defined in Table 6.3. See discussion of the impacts of Li-ion and RFB costs around Figure 6.8 in the main text. 
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Figure D-3: System impacts of LDES availability at different assumed cost levels in Texas. Scenarios show the 

impacts of low-, mid-, and high-cost hydrogen and metal-air batteries on installed power capacity, storage capacity, 

and SCOE, across a range of CO2 policies. They are, in ascending order: (1) base case (i.e., mid-cost Li-ion only, BC); 

(2–4) mid-cost Li-ion and RFB + incrementally adding high-cost hydrogen or metal-air batteries (L+R+H2/MAH), mid-

cost hydrogen) or metal-air (L+R+H2/MA), and low-cost hydrogen or metal-air (L+R+H2/MAL); and (5) low-cost Li-ion 

and RFB + high-cost hydrogen or metal-air (LL+RL+H2/MAH). Low-, mid-, and high-cost assumptions for each storage 

technology are defined in Table 6.3. See discussion of the impacts of LDES costs around Figure 6.11 and Figure 6.12 

in the main text. 

 



 

Page 76 

 
Figure D-4: System impacts of LDES availability at different assumed cost levels in the Southeast. Scenarios show 

the impacts of low-, mid-, and high-cost hydrogen and metal-air batteries on installed power capacity, storage 

capacity, and SCOE, across a range of CO2 policies. They are, in ascending order: (1) base case (i.e., mid-cost Li-ion 

only, BC); (2-4) mid-cost Li-ion and RFB + incrementally adding high-cost hydrogen or metal-air (L+R+H2/MAH), mid-

cost hydrogen) or metal-air (L+R+H2/MA), and low-cost hydrogen or metal-air (L+R+H2/MAL); and (5) low-cost Li-ion 

and RFB + high-cost hydrogen or metal-air (LL+RL+H2/MAH). Low-, mid-, and high-cost assumptions for each storage 

technology are defined in Table 6.3. See discussion of the impacts of LDES costs around Figure 6.11 and Figure 6.12 

in the main text. 
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Figure D-5: System impacts of VRE at varying cost levels in the Southeast. Scenarios show the impacts of low-, mid-

, and high-cost VRE on installed power capacity, storage capacity, and SCOE, across a range of CO2 policies. They are, 

in ascending order: (1) high-cost VRE (H), (2) mid-cost VRE (M), and (3) low-cost VRE (L). Low-, mid-, and high-cost 

assumptions for VRE are defined in Appendix A. See discussion of the impacts of VRE costs around Figure 6.14 in the 

main text. 

 

 
Figure D-6: System impacts of demand flexibility availability in the Southeast. Scenarios show impacts with and 

without demand flexibility in terms of installed power capacity, storage capacity, and SCOE, across a range of CO2 

policies. Demand flexibility assumptions are reported in Table 6.11. See discussion of the impacts of demand flexibility 

around Figure 6.15 in the main text. 
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  Low-Cost Metal-air   Mid-Cost Metal-air   High-Cost Metal-air 

  
Without 

Allam Cycle 

With 
Allam 
Cycle 

% 
Diff   

Without 
Allam Cycle 

With 
Allam 
Cycle % Diff   

Without 
Allam Cycle 

With 
Allam 
Cycle 

% 
Diff 

Firm Dispatchable Installed Capacity (GW)             

CCGT 19.5 20.2 4%  22.6 23.0 2%  19.0 20.1 6% 

OCGT 0.0 0.0 -  0.1 2.1 2294%  6.2 9.2 47% 

CCGT_CCS 7.7 0.0 
-

100%  11.2 0.0 -100%  15.4 0.0 - 

Allam 0.0 9.8 -  0.0 13.9 -  0.0 18.7 - 

Total 27.2 30.0 10%   33.9 25.1 15%   40.6 29.3 18% 
            

VRE Installed Capacity (GW)                   

Wind 113.2 108.6 -4%  107.6 102.3 -5%  104.4 97.3 -7% 

Utility PV 147.5 142.8 -3%  148.0 140.6 -5%  145.4 137.0 -6% 

Total 260.7 251.4 -4%   255.6 243.0 -5%   249.8 234.3 -6% 
            

Energy Storage (Li-ion + RFB + LDES)                 
Power 

(GW) 70.7 68.6 -3%  64.6 60.4 -6%  58.7 52.3 
-

11% 
Energy 

(GWh) 3,168 3,121 -2%  1,399 1,114 -20%  840 626 
-

25% 
            

System Cost of Electricity                   
Average 

$/MWh 40.1 39.9 -1%   41.0 40.7 -1%   42.0 41.6 -1% 
Table D-2: System impacts of a dispatchable low-carbon generating technology in Texas. Scenarios show the impact of low-, mid-, and high-cost metal-air batteries with and without the 
Allam cycle in terms of installed power capacity, storage capacity, and SCOE, for a 5 gCO2/kWh scenario. Low-, mid-, and high-cost assumptions for each storage technology are defined in 
Table 6.3. Cost assumptions for the Allam cycle are presented in Appendix A. 
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  0 gCO2/kWh   5 gCO2/kWh   No Limit Policy 

  
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff   
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff   
With 

Trans Exp 
Without 

Trans Exp 
% 

Diff 

Firm Dispatchable Installed Capacity (GW)             

CCGT 0.0 0.0 -  26.4 21.7 -18%  139.9 144.9 4% 

OCGT 0.0 0.0 -  8.1 18.1 124%  14.9 15.7 5% 

CCGT_CCS 0.0 0.0 -  36.7 43.9 20%  0.0 0.0 - 

Nuclear 32.9 32.9 -  32.9 32.9 0%  32.9 32.9 - 

Total 32.9 32.9 -   104.1 116.6 12%   187.7 193.4 3% 
            

VRE Installed Capacity (GW)                   

Wind 325.6 297.2 -9%  152.7 145.4 -5%  15.3 14.0 -8% 

Utility PV 447.7 470.8 5%  331.3 326.2 -2%  187.6 181.3 -3% 

Total 773.3 768.0 -1%   484.1 471.6 -3%   202.9 195.3 -4% 
            

Energy Storage (Li-ion only)                   

Power (GW) 179.4 195.1 9%  132.0 130.1 -1%  71.3 66.3 -7% 
Energy 

(GWh) 1,307 1,873 43%  639 612 -4%  212 189 
-

11% 
            

Transmission Expansion                     

Total (GW) 145.3 - -  45.5 - -  2.0 - - 
            

System Cost of Electricity                   
Average 

$/MWh 58.8 64.9 10%   44.6 44.9 1%   36.3 36.3 0% 
Table D-3: System impacts of expanding inter-zonal transfer capacity in the Southeast. Scenarios show the impacts of allowing transfer capacities to expand vs. restricting transfer capacities 
to existing levels in terms of installed power capacity, storage capacity, and SCOE, across a range of CO2 policies. Cost assumptions for transmission expansion are presented in Appendix A. 
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