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Abstract

We introduce a new model of repeated games in large populations with ran-
dom matching, overlapping generations, and limited records of past play. We
prove that steady-state equilibria exist under general conditions on records.
When the updating of a player’s record can depend on the actions of both play-
ers in a match, any strictly individually rational action can be supported in a
steady-state equilibrium. When record updates can depend only on a player’s
own actions, fewer actions can be supported. Here we focus on the prisoner’s
dilemma and restrict attention to strict equilibria that are coordination-proof,
meaning that matched partners never play a Pareto-dominated Nash equilibrium
in the one-shot game induced by their records and expected continuation payoffs.
Such equilibria can support full cooperation if the stage game is either “strictly
supermodular and mild” or “strongly supermodular,” and otherwise permit no
cooperation at all. The presence of “supercooperator” records, where a player
cooperates against any opponent, is crucial for supporting any cooperation when
the stage game is “severe.”
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1 Introduction

In many settings of economic interest, individuals interact with different partners over

time, and bad behavior against one partner causes a negative response by other mem-

bers of society. Moreover, people often have fairly limited information about their

partners’ past behavior, and little to no information about the behavior of people with

whom their partners previously interacted. Yet, groups often maintain outcomes that

are more efficient than those consistent with myopic incentives.1

To study these situations, we introduce a new class of repeated games with random

matching with three key features. First, there is a continuum population, where indi-

viduals have geometrically distributed lifespans (with deaths balanced by a constant

inflow of new players). Second, all that players know about each partner’s past behav-

ior or social standing is the partner’s current record. Third, the time horizon is doubly

infinite (so there is no commonly known start date or notion of calendar time), and

we analyze steady states where the population distribution of records is constant over

time. Compared to standard repeated game models with a fixed finite set of players,

a commonly known start date, and a common notion of calendar time and/or a public

randomizing device, our model seems more appropriate for studying cooperation in

large decentralized societies. In addition, the combination of the continuum popula-

tion and steady state assumptions keeps the model tractable even in the presence of

recording or implementation errors, because individual agents do not learn about the

state of the system from their own observations. On the other hand, a new challenge

in our setting is managing the interaction of incentive conditions (which depend on

the steady-state shares of players with different records) and steady-state conditions

(which depend on equilibrium strategies).

Two fundamental questions about such an environment are “What sort of records is

1Examples of such “community enforcement” or “indirect reciprocity” include Milgrom, North,
and Weingast (1990) and Greif (1993) on merchant coalitions; Klein and Leffler (1981), Resnick and
Zeckhauser (2002), and Dellarocas (2005) on seller reputation; Klein (1992) and Padilla and Pagano
(2000) on credit ratings; and Friedman and Resnick (2001) on online ratings.
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a society likely to generate?” and “What sorts of records suffice to support cooperative

behavior?” Like most previous studies of record-keeping in community enforcement,

this paper focuses exclusively on the second of these questions, briefly discussing the

first in the conclusion. Our main finding is that in many settings supporting coopera-

tion requires that records contain not only information about individuals’ past actions,

but also information about the context of these actions. However, such contextualiz-

ing information need not be extremely detailed—it is enough to record how players’

immediate partners behaved towards them.

The record-keeping systems we study can be viewed as idealizations of the types

of information that large societies need to support cooperation, but there are also

some real-world settings where they can be taken more literally. Some examples are

the online rating systems used by platforms like eBay, AirBnB, and Uber. There is

strong evidence that users’ ratings on these platforms determine their prospects for

finding future trading partners, even after controlling for unobserved heterogeneity

(Cabral and Hortasçu (2010), Luca (2016)). On some platforms (e.g., eBay, Amazon

Marketplace) users have no information about their current partner’s past partners’

behavior—these are examples of what we will call first-order systems. On other plat-

forms (e.g., AirBnB), users can look up feedback that their partners left about their own

past partners, a form of what we will call second-order information. While many con-

siderations influence a platform’s choice of rating system (Tadelis, 2016), our model

highlights the ability to distinguish justified and unjustified deviations from desired

equilibrium behavior as a factor that favors systems capable of recording second-order

information.

In our model, a record system updates the players’ records based on their current

records and the actions they choose. These systems may be stochastic, due to either

recording errors or errors in implementing a player’s intended action. We prove that

steady states exist for record systems that are finite partitional, which means that for

any record, there is a finite partition of the opponent’s record space such that the

update function does not vary with the opponent’s record within a given partition
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element. This condition is quite general; it is satisfied by all record systems we analyze

as well as those considered in prior work.

We then characterize the prospects for steady-state cooperation under different

types of record systems. To capture a simple form of robustness, we consider only strict

equilibria. For most of our results, we also require equilibria to be coordination-proof,

which means that a pair of matched players never play a Pareto-dominated equilib-

rium in the “augmented” game induced by their current records and their expected

continuation payoffs. Restricting attention to coordination-proof strategies rules out

equilibria built on within-match miscoordination.2 Finally, our positive results focus

on the double limit where players’ expected lifespans are long and there is little noise in

the record system.3 Taking this limit allows a clean analysis and gives society its best

shot at supporting cooperative outcomes; of course, if players are myopic or records

are extremely noisy, only static Nash equilibrium outcomes can arise.

We begin by analyzing second-order records, where record updates depend on a

player’s own record and action as well as their partner’s action, but not their partner’s

record. In other words, a player’s second-order record depends only on their own

past actions and their past partners’ actions towards them. We show that second-

order records are rich enough to support the play of any action that Pareto-dominates

the pure-strategy minmax payoff (in the long-lifespans, low-noise double limit).4 To

prove this, we consider strategies that assign players to good or bad standing based

on their records, and specify that good-standing players take the target action when

matched with each other, while players take a minmaxing action whenever at least

one player in the match has bad standing. With these strategies, second-order records

can identify the standing of a good-standing player’s partner from their action. This

allows the threat of switching a good-standing player to bad standing to incentivize

2Coordination-proofness is reminiscent of renegotiation-proofness in fixed-partner repeated games
as studied by Farrell and Maskin (1989) and others, but it is simpler since each pair of partners plays
a single one-shot game. This simplicity is another advantage of our model.

3These results also assume record systems are “canonical,” as defined in Section 2.5.
4The equilibria we construct to prove this “minmax-threat” folk theorem need not be coordination-

proof. We also provide a “Nash-threat” folk theorem in coordination-proof equilibria.
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the prescribed behavior among good-standing players; similarly, bad-standing players

can be incentivized by the promise of an eventual return to good standing.

We then turn to first-order records, where a player’s record is updated based only on

their own record and action (as in the eBay and Amazon Marketplace examples). First-

order record systems cannot support as many actions as second-order systems, because

first-order records lack the contextualizing information required to distinguish justified

deviations from the target equilibrium action from unjustified ones. For example, in

the prisoner’s dilemma (“PD”), if a player is penalized for defecting against opponents

who cooperate, they must be equally penalized for defecting against opponents who

defect. This impossibility of conditioning rewards and punishments on the opponent’s

action can preclude steady-state cooperation.

We first highlight a type of situation where the inability to distinguish justified from

unjustified deviations does not pose a major obstacle to supporting a target equilibrium

action a. This occurs when there exists an “unprofitable punishment” action b such

that a player is made worse-off when their partner switches from a to b, but unilaterally

deviating to b is not profitable when the opponent is expected to play a.5 For example,

in the PD, Defect is not an unprofitable punishment for Cooperate because it violates

the second condition: unilaterally deviating to Defect is profitable when the opponent

plays Cooperate. In settings where an unprofitable punishment for action a does exist,

strategies based on first-order records can support the play of a by penalizing a player

only if they take an action other than a or b. Intuitively, the inability to distinguish

justified and unjustified plays of b is not an obstacle to supporting a, since no one has

an incentive to unilaterally deviate to b.

Our positive results for second-order records and for first-order records with un-

profitable punishments raise the question of when an action without an unprofitable

punishment can be supported with first-order records. The remainder of our analy-

5There is also an additional, more subtle requirement: there must exist a best response c to b
such that b is a better response to c than a is. We explain the role of this additional requirement in
Section 4.
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sis answers this question for the leading example of cooperation in the PD. That is,

we characterize the set of payoff parameters in the PD for which there exist strict,

coordination-proof equilibria in which the share of cooperation converges to 1 in the

long-lifespans, low-noise double limit. The characterization is fairly subtle: we find that

full limit cooperation is possible if either (i) the degree of strategic complementarity in

the PD stage game is sufficiently high, or (ii) the degree of complementarity is positive

and in addition the instantaneous gain from defection is sufficiently low; and that oth-

erwise the only strict, coordination-proof equilibrium is Always Defect. Interestingly,

cooperation in case (i) requires that a non-zero share of players have records at which

the equilibrium strategy prescribes cooperation if and only if their opponent is going to

cooperate, and also that a non-zero share of players have records at which cooperation

is prescribed even if the opponent is going to defect. The latter supercooperator records

prevent too many players from transiting to “bad” records where they always defect.

There is a small prior literature on record-keeping in community enforcement.

Without noise, Okuno-Fujiwara and Postlewaite (1995) established a folk theorem with

interdependent records (which are more permissive than our second-order records).6

Takahashi (2010) constructed efficient equilibria in the PD when players observe their

partner’s entire history of actions—all first-order information—but no higher-order in-

formation. That paper did not consider steady states, so it did not contend with the

interaction of incentive and steady-state conditions, and its conditions for efficient equi-

libria to exist are more permissive than ours. Heller and Mohlin (2018) constructed an

efficient mixed-strategy equilibrium in a PD where players are completely patient and

observe a finite sample of their current partner’s past actions, and a small fraction of

6Sugden (1986) and Kandori (1992) proved related results. Antecedents include Rosenthal (1979)
and Rosenthal and Landau (1979), which focused on existence results and examples. Steady-state
equilibria in models with interdependent records also appear in the literature on fiat money (e.g.,
Kiyotaki and Wright (1993), Kocherlakota (1998)). A less closely related literature studies community
enforcement in finite populations without any information beyond the outcome of one’s own matches
(e.g., Kandori (1992), Ellison (1994), Dilmé (2016), Deb, Sugaya, and Wolitzky (2020)). With so little
information, cooperation cannot be supported in a continuum population, or in a finite population
that is large compared to the discount factor.
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players are commitment types who always Defect.7

2 Framework

We consider a discrete-time random matching model with a constant unit mass of play-

ers, each of whom has a geometrically-distributed lifetime with continuation probability

γ ∈ (0, 1) (with exits balanced by a steady inflow of new entrants of size 1 − γ). The

time horizon is doubly infinite. When two players match, they play a finite, symmetric

stage game with action space A and payoff function u : A× A→ R.

2.1 Record Systems

Every player carries a record, and when two players meet, each observes the other’s

record but no further information. Each player’s record is updated at the end of every

period in a “decentralized” way that depends only on their own action and record and

their current partner’s action and record.

Definition 1. A record system R is a pair (R, ρ) comprised of a countable set R

(the record set) and a function ρ : R2 × A2 → ∆(R) (the update rule), where the

four arguments of ρ are (in order) a player’s own record, current partner’s record, own

action, and current partner’s action.

Note that the update rule is allowed to be stochastic. This can capture errors in

recording, as well as imperfect implementation of players’ intended actions.8 We assume

all newborn players have the same record, which we denote by 0. (Our main results

extend to the case of a non-degenerate, exogenous distribution over initial records.)

7Heller and Mohlin (2018) also considered information structures that are similar to our second-
order records, but do not yield a folk theorem. Bhaskar and Thomas (2018) studied first-order
information in a sequential-move game.

8In the imperfect implementation interpretation, the stage game payoffs are the expected payoffs
that result when players intend to take the given stage game actions, and we hold these expected
payoffs fixed as the noise level varies.
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An update rule thus specifies a probability distribution over records as a function

of a player’s record and action and their current partner’s record and action. We

sometimes refer to the general case where ρ is unrestricted as an interdependent record

system. An interdependent record system is finite-partitional if for each r ∈ R there

exists a finite partition
⋃
m=1,...,M(r)Rm = R such that, whenever r′, r′′ ∈ Rm for some

m, ρ(r, r′, a, a′) = ρ(r, r′′, a, a′) for all a, a′ ∈ A. Kandori (1992)’s “local information

processing” and Okuno-Fujiwara and Postlewaite (1995)’s “status levels” are examples

of finite-partitional interdependent record systems.

Many simple and realistic record systems fall into a more restricted class, where a

player’s record update does not depend directly on their opponent’s record.

Definition 2. A record system is second-order if the update rule can depend only

on a player’s own action and record and their partner’s action, i.e. ρ(r, r′, a, a′) =

ρ(r, r′′, a, a′) for all r, r′, r′′ ∈ R, a, a′ ∈ A.

In the absence of noise, with a second-order record system, a player’s record can be

computed based only on their own history of stage-game outcomes.

Finally, in some situations a player’s record depends only on their own actions.

Definition 3. A record system is first-order if the update rule can depend only on

a player’s own action and record, i.e. ρ(r, r′, a, a′) = ρ(r, r′′, a, a′′) for all r, r′, r′′ ∈ R,

a, a′, a′′ ∈ A.

Nowak and Sigmund (1998), Panchanathan and Boyd (2003), Takahashi (2010),

Bhaskar and Thomas (2018), and Heller and Mohlin (2018) also considered first-order

records.9 We consider second-order records in Section 3 and first-order records in

Sections 4 and 5. Note that both of these types of record system are finite-partitional.

9To interpret noisy first-order records as resulting from implementation errors, the outcome of the
game must have a product structure in the sense of Fudenberg, Levine, and Maskin (1994), so that a
player’s record update does not depend on the opponent’s action.
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2.2 Strategies, States, and Steady States

In principle, each player can condition their play on the entire sequence of outcomes and

past opponent records that they have observed. However, this information is payoff-

irrelevant in a continuum-population steady state: the only payoff-relevant information

available to a player is their own record and their current partner’s record.

Thus, all strategies that condition only on payoff-relevant variables are pairwise-

public, meaning that they condition only on information that is public knowledge be-

tween the two partners, namely their records. We restrict attention to such strategies.

We write a pairwise-public pure strategy as a function s : R×R→ A, with the conven-

tion that the first coordinate is the player’s own record and the second coordinate is

the partner’s record, and similarly write a pairwise-public mixed strategy as a function

σ : R×R→ ∆(A). We also assume that all players use the same strategy.10

The state µ ∈ ∆(R) of the system is the share of players with each possible record.

To operationalize random matching in a continuum population, we specify that, when

the current state is µ, the distribution of matches is given by µ× µ. That is, for each

(r, r′) ∈ R2 with r 6= r′, the fraction of matches between players with record r and r′

is 2µrµr′ , while the fraction of matches between two players with record r is µ2
r.

Given a record system R and a pairwise-public strategy σ, denote the distribution

over next-period records of a player with record r who meets a player with record r′ by

φr,r′(σ) =
∑

a

∑
a′ σ(r, r′)[a]σ(r′, r)[a′]ρ(r, r′, a, a′) ∈ ∆(R). Because newborn players

have record 0, the state update map fσ : ∆(R)→ ∆(R) is given by

fσ(µ)[0] := 1− γ + γ
∑
r′

∑
r′′

µr′µr′′φr′,r′′(σ)[0],

fσ(µ)[r] := γ
∑
r′

∑
r′′

µr′µr′′φr′,r′′(σ)[r] for r 6= 0.

A steady state under strategy σ is a state µ such that fσ(µ) = µ.

10As will become clear, restricting players to use the same, pairwise-public strategy is without loss
for strict equilibria.
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Theorem 1.

(i) Under any finite-partitional record system (and hence any first-order or second-

order record system) and any pairwise-public strategy, a steady state exists.

(ii) For record systems that are not finite-partitional, a steady state may fail to exist.

The proof is in Appendix A.1. (All other omitted proofs can also be found in either

the Appendix (A) or the Online Appendix (OA).) Intuitively, the combination of the

finite domain of the record-update function (due to finiteness of the stage game and the

finite-partition property) and geometrically distributed lifetimes imply that almost all

players’ records lie in a finite subset of the record set. This lets us find a convex set M̄

that contains all feasible distributions over records and resembles a finite-dimensional

set—in particular, M̄ is compact in the sup norm. We then show that f maps M̄ to

itself and is continuous in the sup norm so, since M̄ is also convex, we can appeal to a

fixed point theorem.11 When instead the record-update function does not have a finite

domain, the update map can shift weight to the upper tail of the record distribution in

such a way that no steady state exists. The proof shows that this is the case if γ > 1/2

and, whenever players with records r and r′ meet, both of their records update to

max{r, r′}+ 1.

Note that Theorem 1 does not assert that the steady state for a given strategy

is unique, and it is easy to construct examples where it is not.12 Intuitively, this

multiplicity corresponds to different initial conditions at time t = −∞.
11Fudenberg and He (2018) used a similar proof technique. In that paper players do not observe

each other’s records, so the finite-partition property is automatically satisfied.
12For instance, suppose that R = {0, 1, 2}, the action set is singleton, and newborn players have

record 0. When matched with a player with record 0 or 1, the record of a player with record 0 or 1
increases by 1 with probability ε and remains constant with probability 1 − ε, but it increases by 1
with probability 1 when the player is matched with a player with record 2. When a player’s record
reaches 2, it remains 2 for the remainder of their lifetime. Depending on the parameters γ and ε,
there can be between one and three steady states in this example.
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2.3 Steady-State Equilibria

We focus on steady states that derive from equilibrium play. Given a record system

R, strategy σ, and state µ, define the flow payoff of a player with record r as

πr(σ, µ) =
∑
r′

µr′u(σ(r, r′), σ(r′, r)).

Denote the probability that a player with record r today has record r′ in t periods if

they are still alive by φtr(σ, µ)[r′].13 The continuation value of a player with record r is

Vr(σ, µ) = (1− γ)
∞∑
t=0

γt
∑
r′

(
φtr(σ, µ)[r′]

)
(πr′(σ, µ)) .

Note that we have normalized continuation payoffs by (1 − γ) to express them in

per-period terms.

Each player’s objective is to maximize their expected undiscounted lifetime payoff.

Thus, a pair (σ, µ) is an equilibrium if µ is a steady state under σ and, for each own

record r, opponent’s record r′, and action a such that σ(r, r′)[a] > 0, we have

a ∈ arg max
ã∈A

[
(1− γ)u(ã, σ(r′, r)) + γ

∑
r′′

∑
a′

σ(r′, r)[a′]ρ(r, r′, ã, a′)[r′′]Vr′′(σ, µ)

]
.

An equilibrium is strict if the argmax is unique for all pairs of records (r, r′), so each

player has a strict preference for following the equilibrium strategy. As noted earlier,

every strict equilibrium is pairwise-public, pure, and symmetric. To distinguish equi-

libria (σ, µ) from Nash equilibria of the stage game, we call the latter static equilibria.

Corollary 1. Under any finite-partitional record system, an equilibrium exists.

Proof. Fix a symmetric static equilibrium α∗, and let σ recommend α∗ at every record

pair (r, r′). Then (σ, µ) is an equilibrium for any steady state µ. �

13This is defined recursively by φ1r(σ, µ)[r′] =
∑

r′′ µr′′φr,r′′(σ)[r′] and for t > 1, φtr(σ, µ)[r′] =∑
r′′

(
φt−1r (σ, µ)[r′′]

) (
φ1r′′(σ, µ)[r′]

)
.
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Strict equilibria need not exist without additional assumptions; one sufficient con-

dition is that the stage game has a strict and symmetric Nash equilibrium.

Corollary 2. Under any finite-partitional record system, a strict equilibrium exists if

the stage game has a strict and symmetric Nash equilibrium.

The proof of Corollary 2 is identical to that of Corollary 1, except α∗ is taken to

be a strict and symmetric static equilibrium.

2.4 Coordination-Proofness

Coordination-proofness captures the idea that equilibria that rely on “miscoordination”

within a match will break down if matched partners manage to coordinate successfully.

For a fixed equilibrium (σ, µ), denote the expected continuation payoff of a player

with record r who plays action a against an opponent with record r′ who plays a′ by

V a,a′

r,r′ :=
∑

r′′ ρ(r, r′, a, a′)[r′′]Vr′′ . The augmented payoff function û : R×R×A×A→ R

is defined by ûr,r′(a, a
′) := (1−γ)u(a, a′)+γV a,a′

r,r′ . The augmented game between players

with records r and r′ is the static game with action set A×A and payoff functions ûr,r′

and ûr′,r.

Since (σ, µ) is an equilibrium, the prescribed stage-game strategy profile (σ(r, r′), σ(r′, r))

is a Nash equilibrium in the augmented game between players with records r and r′ for

any (r, r′) ∈ R2. We say that the equilibrium is coordination-proof if (σ(r, r′), σ(r′, r))

is never Pareto-dominated by another augmented-game Nash equilibrium.

Definition 4. An equilibrium (σ, µ) is coordination-proof if, for any records r, r′

and any Nash equilibrium (α, α′) in the augmented game between players with records

r and r′, if ûr,r′(α, α
′) > ûr,r′(σ(r, r′), σ(r′, r)) then ûr′,r(α

′, α) < ûr′,r(σ(r′, r), σ(r, r′)).

The logic is that, if (σ(r, r′), σ(r′, r)) were Pareto-dominated by some augmented-

game Nash equilibrium (α, α′), players with records r and r′ would benefit from reaching

a self-enforcing agreement to play (α, α′) when matched together, breaking the equi-

librium. The following corollary (proved in OA.1) gives a sufficient condition for the
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existence of a coordination-proof equilibrium that is satisfied in many games, including

the PD.

Corollary 3. Under any finite-partitional record system, a coordination-proof equilib-

rium exists if the stage game has a symmetric Nash equilibrium that is not Pareto-

dominated by another (possibly asymmetric) Nash equilibrium.

2.5 Canonical Records

For our positive results, we focus on canonical record systems. These track either the

sequence of actions (for first-order records) or stage-game outcomes (for second-order

records) in a player’s history, and allow for possible misrecording in any period.

Let n = |A|. With second-order records, a noise matrix ε is an n2×n2 matrix with

diagonal elements equal to 0 and non-negative off-diagonal elements, where ε(a,a′),(ã,ã′) is

the probability that outcome (a, a′) is mis-recorded as (ã, ã′) 6= (a, a′). The canonical

second-order record set is the set of finite sequences of pairs of actions,
⋃∞
t=0(A ×

A)t. Given a second-order canonical record r =
∏t

τ=1(aτ , a
′
τ ) and an outcome (a, a′),

(r, (a, a′)) is the canonical record formed by concatenating r and (a, a′).

Definition 5. A second-order record system is canonical if the record set R is canon-

ical and there exists a noise matrix ε such that, for every record r =
∏t

τ=1(aτ , a
′
τ ) and

action pair (a, a′), we have

ρ(r, a, a′) =

1−
∑

(ã,ã′) 6=(a,a′)

ε(a,a′),(ã,ã′)

 (r, (a, a′)) +
∑

(ã,ã′)6=(a,a′)

ε(a,a′),(ã,ã′)(r, (ã, ã
′)).

Similarly, in a canonical first-order record systems, records are sequences of actions

and each action a has probability εa,ã of being misrecorded as action ã 6= a.

In general, the set of equilibria depends on both the amount of noise in the system

and the players’ expected lifetimes. We focus on the case where there is little or no

noise, and players live a long time. We thus consider the double limit (γ, ε) → (1, 0),
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where ε is the noise matrix in a canonical record system, and ε→ 0 means that every

entry in the matrix ε converges to 0.

Definition 6. Let µ̄a(γ, ε) denote the supremum of the share of players taking action a

over all equilibria for parameters (γ, ε). Action a is limit-supported if lim(γ,ε)→(1,0) µ
a(γ, ε) =

1.

3 Second-Order Records: Folk Theorems

Our next result shows that a wide range of actions can be limit-supported with second-

order records. Because second-order records allow a player’s record update to depend

on both players’ actions, we can construct strategies that punish opportunistic actions

but avoid punishing players who punish others when they are supposed to. For example,

in the prisoner’s dilemma our strategies count Defect vs. Cooperate as a “bad” outcome,

but not Defect vs. Defect, a distinction that cannot be made using first-order records.

Denote the pure-strategy minmax payoff by u = mina′ maxa u(a, a′).

Theorem 2. Fix an action a. With canonical second-order records:

(i) If u(a, a) > u, then a can be limit-supported by strict equilibria.

(ii) If u(a, a) > u(b, b) for some strict and symmetric static equilibrium (b, b) that is

not Pareto-dominated by another static equilibrium, then a can be limit-supported

by strict, coordination-proof equilibria.

Theorem 2(i) is a minmax-threat folk theorem. The construction relies on “cyclic”

strategies of the following form: Let b ∈ arg mina′ maxa u(a, a′) be a minmax action.

Players begin in good standing. A player in good standing plays a when matched with

fellow good-standing players and plays b against bad-standing players, while a player

in bad standing always plays b. When a good-standing player’s outcome is recorded as

anything other than (a, a) or (b, b), the player enters bad standing. A player remains

in bad standing until they accumulate M (b, b) profiles for some fixed M ∈ N, at
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which point they return to good standing. We show that, when (γ, ε) ≈ (1, 0), M can

be chosen to be high enough so that the punishment of M periods of (b, b) is severe

enough to deter deviations from the prescribed strategy, but also low enough that the

steady-state share of players in good standing is high.

This equilibrium may not be coordination-proof. For example, suppose there is a

symmetric static equilibrium (c, c) such that u(c, c) is significantly greater than u(a, a).

Then a pair of bad-standing players may benefit from reaching a self-enforcing agree-

ment to play (c, c) rather than (b, b), even though this delays their return to good

standing by one period.

Theorem 2(ii) presents a condition under which an action a can be limit-supported

by strict, coordination-proof equilibria. It gives a Nash-threat folk theorem, where the

“threat point” equilibrium (b, b) is required to be strict, symmetric, and not Pareto-

dominated by another static equilibrium. For example, in the prisoner’s dilemma, tak-

ing a = C and b = D implies that Cooperate is limit-supported by strict, coordination-

proof equilibria.

The proof of part (ii) uses the following grim trigger strategy. A player whose

outcome has never been recorded as anything other than (a, a) or (b, b) is in good

standing, and all other players are in bad standing. Players in good standing play a

against fellow good-standing players and play b against bad-standing players, while bad-

standing players always play b. Such strategies can support cooperation in the iterated

limit where first noise becomes small (ε → 0) and then players become long-lived

(γ → 1). To handle the general limit, we modify this strategy with an adaptation of the

threading technique used in papers such as Ellison (1994) and Takahashi (2010).14 In

particular, for a given N ∈ N, a pair of matched players condition their play only on the

the recordings of each other’s outcomes in periods which preceded the current period

by a multiple of N . Thus, within each thread, the effective continuation probability

14We will use this threading technique in many of our results. In unpublished earlier work (Clark,
Fudenberg, and Wolitzky, 2019a,b) we consider simpler strategies that deliver similar but less clean
results without using threads.
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is γN rather than γ. By altering N , we are able to control the effective continuation

probability, and can essentially replicate the iterated limit where first noise becomes

small and then players become long-lived.

Okuno-Fujiwara and Postlewaite (1995)’s Theorem 1 showed that with a form of

interdependent records (termed “status”), any actions that Pareto-dominate the pure-

strategy minmax payoffs can be supported without noise. Their proof uses grim trigger

strategies, so it not robust to noise. Theorem 2 shows that their theorem’s conclusion

does not require interdependent records and also extends to settings with overlapping

generations and noise.

4 First-Order Records: Unprofitable Punishments

Now we turn to first-order record systems, where a player’s record depends only on

their own past play. Such records cannot support as many actions as second-order

records can, and the folk theorem fails for strict equilibrium. The key obstacle is

that first-order records cannot distinguish “justified” deviations from the target action

profile from “unjustified” ones. For example, in the PD, if players are penalized for

playing Defect against Cooperate (an off-path, opportunistic deviation), they must be

equally penalized for playing Defect against Defect (a justified punishment that must

sometimes occur on-path if defection is to be deterred). As we will see, this obstacle

precludes cooperation in some games.

This section shows that this obstacle does not arise when the target action profile

(a, a) has the property that there exists a punishing action b and a strict best response

c to b such that u(a, a) > u(c, b) (so that facing b is indeed a punishment), u(a, a) >

u(b, a) (so that deviating from a to b is unprofitable for a player whose opponent plays

a), and u(b, c) > u(a, c) (so a player prefers to carry out the punishment b rather than

play the target action when the opponent best-responds to b). We say that in this case

b is an unprofitable punishment for a. Intuitively, when an unprofitable punishment b

exists for action a, the threat of switching to b can motivate one’s opponents to play a,
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but a player is not tempted to unilaterally deviate to b against opponents who play a.

This enables first-order records to support the play of (a, a) by penalizing players only

for taking actions other than a or b. In contrast, when the only punishing action b is

a tempting deviation against a (as in the PD, where the punishing action D is always

tempting), players must be penalized for playing b, and the record system’s inability

to distinguish justified and unjustified plays of b becomes a real obstacle.

Theorem 3. Fix an action a. With canonical first-order records, if there exists an

unprofitable punishment b for a and there is a strict and symmetric static equilibrium

(d, d), then a can be limit-supported by strict equilibria.

The proof of Theorem 3, which is in OA.2, is similar to the proof of Theorem 2(ii),

except now a player transitions to bad standing whenever their action is recorded as

anything other than a or b (rather than transitioning whenever their action profile

is recorded as anything other than (a, a) or (b, b)), and bad-standing players play c

against good-standing players but play d against fellow bad-standing players.15

Setting b = c = d in Theorem 3 yields the following corollary.

Corollary 4. If there exists an action b such that (b, b) is a strict static equilibrium

and u(a, a) > max{u(b, a), u(b, b)}, then a can be limit-supported by strict equilibria.

Here the strategy used to prove Theorem 3 takes the form of grim trigger with

reversion to (b, b). For example, suppose the stage game is a PD with an exit option

E, which gives both players an “exit payoff” that is less than the cooperative payoff

u(C,C) whenever either of them plays E. Then (E,E) is a static equilibrium, and

E is not a profitable deviation against C, so cooperation can be limit-supported by

strategies that revert to (E,E).16

15Another difference is that the equilibria used to prove Theorem 3 may not be coordination-proof.
This is because there may be some static best response to a, e, such that (a, e) is a Nash equilibrium
in the augmented game between a good-standing and bad-standing player that Pareto-dominates the
prescribed action profile (b, c).

16Technically, to apply Theorem 3 we need to specify that u(E,E) > max{u(C,E), U(D,E)}.
If instead this inequality is replaced with an equality, the same proof applies, but the constructed
equilibria are no longer strict.
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This example relates to a debate regarding the role of punishment in the evolution

of human cooperation. The difficulty in distinguishing a warranted punishment from

an unwarranted deviation is one factor that led Boyd et al. (2003) and Bowles and

Gintis (2011) (among others) to argue that the enforcement of human cooperation

cannot be explained without appealing to social preferences. Others (e.g., Baumard

(2010), Guala (2012)) argued that human cooperation is better explained by simply

avoiding deviators, rather than actively punishing them. The fact that cooperation

in the PD is always limit-supported with second-order records, but (as we will see)

is limit-supported with first-order records only for certain parameters, supports the

argument that the inability to distinguish justified and unjustified plays of Defect is

a serious obstacle to cooperation in the PD. However, this obstacle evaporates when a

simple exit option is added to the game, consistent with Baumard and Guala’s position.

Another important example of unprofitable punishment arises when players can

observably reduce their own utility by any amount while taking a stage-game action.

In this case, whenever 0 < u(b, a) − u(a, a) < u(b, c) − u(a, c), the action “play b and

burn some amount of utility in between u(b, a) − u(a, a) and u(b, c) − u(a, c)” is an

unprofitable punishment. That is, whenever the gain from playing b rather than a is

greater when the opponent plays c as opposed to a, there exists an appropriate amount

of utility that can be sacrificed to make playing b unattractive.

5 First-Order Records: Cooperation in the PD

In general stage games, characterizing whether an action that lacks an unprofitable

punishment can be limit-supported with first-order records is challenging. In this

section, we resolve this question for the leading case of cooperation in the PD. That is,

we characterize the set of payoff parameters for which Cooperate can be limit-supported

by strict, coordination-proof strategies. We will use the standard normalization of the

PD payoffs, where the payoff to mutual cooperation is 1, the payoff to joint defection

is 0, and the gain g from defecting against an opponent who cooperates and the loss
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l from cooperating against an opponent who defects satisfy g, l > 0 and l > g − 1 (so

that mutual cooperation maximizes the sum of payoffs):

C D
C 1, 1 −l, 1 + g
D 1 + g,−l 0, 0

Figure 1: The Prisoner’s Dilemma

We first introduce some preliminary concepts in Sections 5.1 and 5.2. We then

present our main characterization result in Section 5.3.

5.1 Defectors, Supercooperators, Preciprocators

We begin with some terminology for different types of records.

Definition 7. Given a pure-strategy equilibrium (s, µ), record r is a

• defector if s(r, r′) = D for all r′.

• supercooperator if s(r, r′) = C for all r′.

• preciprocator if s(r, r′) = s(r′, r) for all r′, and moreover there exist r′, r′′ such

that s(r, r′) = C and s(r, r′′) = D.

Defectors play D against all partners, while supercooperators play C against all

partners, even those who will play D against them. In contrast, preciprocators exhibit

a form of anticipatory reciprocation: they play C with partners whom they expect to

play C, but play D with partners whom they expect to play D.

The PD is strictly supermodular if g < l, so the benefit of defecting is greater when

the opponent defects, and conversely it is strictly submodular when g > l. A leading

example of the PD is reciprocal gift-giving, where each player can pay a cost c > 0 to

give their partner a benefit b > c. In this case, a player receives the same static gain

from playing D instead of C regardless of their opponent’s play, so g = l, and the game

is neither strictly supermodular nor strictly submodular. Bertrand competition (with
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two price levels H > L) is supermodular whenever L > H/2 (the condition for the

game to be a prisoner’s dilemma), and Cournot competition (with two quantity levels)

is submodular whenever marginal revenue is decreasing in the opponent’s quantity.

Lemma 1. Fix any first-order record system. In any strict equilibrium:

1. If g ≥ l then every record is a defector or a supercooperator.

2. If g < l then every record is a defector, a supercooperator, or a preciprocator.

Proof. Fix a strict equilibrium. With first-order records, each player’s continuation

payoff depends only on their current record and action, so the optimal action in each

match depends only on their record and the action prescribed by their opponent’s

record.

1. Suppose that g ≥ l. When two players with the same record r meet, by symmetry

(an implication of strictness) they play either (C,C) or (D,D). In the former case, C

is the strict best response to C. Since the current-period gain from playing D instead

of C is weakly smaller when the opponent plays D, this means C is also the strict best

response to D, so record r is a supercooperator. In the latter case, D is the strict best

response to D, and hence is also the strict best response to C, so record r is a defector.

2. When g < l, if D is strictly optimal against C, then D is also strictly optimal

against D, so every record is either a defector, a supercooperator, or a preciprocator.

�

Theorem 4. Fix any first-order record system. If g ≥ l, the unique strict equilibrium

is Always Defect: s(r, r′) = D for all r, r′ ∈ R.17

Proof. By Lemma 1, if g ≥ l then the distribution of opposing actions faced by any

player is independent of their record. So D is always optimal. �

17The conclusion of Theorem 4 extends to all (possibly non-strict) pure-strategy equilibria whenever
g > l. Takahashi (2010) and Heller and Mohlin (2018) obtained the same conclusion (as well as
converse results) in related models.
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An intuition for Theorem 4 is that a player’s continuation payoff decreases by the

same amount whenever they play D, so they are willing to play D against opponents

who play D while playing C against opponents who play C iff g < l. The theorem

confirms that strictly individually rational actions are not always limit-supportable

by strict equilibria with first-order records, in contrast to the situation with second-

order records. Since this theorem resolves the submodular case, the rest of this section

assumes strict supermodularity: g < l.

5.2 Coordination-Proofness in the Supermodular PD

We note some simple consequences of coordination-proofness in the strictly supermod-

ular PD.

Lemma 2. Fix any first-order record system. In any strict, coordination-proof equi-

librium in the strictly supermodular PD, whenever two preciprocators meet, they play

(C,C).

Proof. By definition, preciprocators play C against opponents who play C and play D

against those who play D. Hence, the augmented game between any two preciprocators

is a coordination game, with Nash equilibria (C,C) and (D,D). Since playing D always

gives a short-run gain, the fact that preciprocators play C against C implies that

cooperating leads to higher continuation payoffs. Therefore, the (C,C) equilibrium

yields both higher stage-game payoffs and higher continuation payoffs than the (D,D)

equilibrium, and thus Pareto-dominates it. So coordination-proofness dictates that any

pair of matched preciprocators must play (C,C) rather than (D,D). �

Coordination-proofness thus implies that every preciprocator plays C when matched

with another preciprocator or a supercooperator, and plays D when matched with a

defector. In particular, all preciprocators play C against the same set of opposing

records. Hence, the strategy in a strict, coordination-proof equilibrium is completely

characterized by a description of which records are preciprocators, which are superco-

operators, and which are defectors. Denote the total population shares of these records
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by µP , µS, and µD respectively. We will use the term cooperator for all players who are

either preciprocators or supercooperators (i.e., anyone who is not a defector), and we

denote the population share of cooperators by µC = µP + µS = 1− µD.

5.3 Limit-Supporting Cooperation in Supermodular PD’s

We now present necessary and sufficient conditions for cooperation to be limit-supported

in strict, coordination-proof equilibria with first-order records. Our sufficient condi-

tions require canonical records with ε → 0, while our necessary conditions apply for

any “noisy” first-order record system.

Definition 8. A first-order record system is noisy if for each record r there exist

qC(r), qD(r) ∈ ∆(R) and εC(r) ∈ (0, 1/2], εD(r) ∈ [0, 1/2] such that

ρ(r, C) = (1− εC(r))qC(r) + εC(r)qD(r), and

ρ(r,D) = εD(r)qC(r) + (1− εD(r))qD(r).

Here qC(r) represents the distribution over records after “a recording of C is fed into

the record system,” qD(r) represents the distribution over records after “a recording

of D is fed into the record system,” and the ε’s represent noise. The key feature of

this definition is that perfect recording of actions is ruled out by the assumption that

εC(r) > 0.

We say that the prisoner’s dilemma is mild if g < 1 and severe otherwise, and that

the game is strongly supermodular if l > g + g2.

Theorem 5. In the strictly supermodular PD,

(i) With any noisy first-order record system, if g ≥ 1 and l ≤ g + g2 (i.e., the

prisoner’s dilemma is severe and not strongly supermodular), the only strict,

coordination-proof equilibrium is Always Defect.

(ii) With canonical first-order records, if either g < 1 or l > g + g2, cooperation can

be limit-supported by strict, coordination-proof equilibria.
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Figure 2: Limit efficiency obtains in the blue region. In the red region, the only strict,
coordination-proof equilibrium is Always Defect.

Figure 2 displays the conclusions of Theorem 5. Note that as g increases from just

below 1 to just above 1, the critical value of l above which cooperation is possible

jumps from 1 to 2.

We now discuss the intuition for the necessary and sufficient conditions in Theorem

5. The proofs are contained in A.3.

5.3.1 Necessary Conditions

Broadly speaking, a small value of g makes supporting cooperation easier by reducing

a preciprocator’s temptation to deviate to D against an opponent who is expected to

play C, while a large value of l makes supporting cooperation easier by reducing a

preciprocator’s temptation to deviate to C against an opponent who is expected to

play D. The specific necessary condition g < 1 or l > g + g2 comes from combining

two inequalities: µS < 1/(1 + g) and µP + µS(l − g) > g. Note that the latter

inequality requires that µS > 0 when g ≥ 1: in a severe prisoner’s dilemma, there must

be a positive share of supercooperators in any strict, coordination-proof equilibrium

with any cooperation at all. The next lemma shows that combining these inequalities

delivers the necessary condition g < 1 or l > g+ g2. After the lemma’s short proof, we
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explain why the inequalities hold.

Lemma 3. If g ≥ 1 and l ≤ g + g2, it is not possible to satisfy both µS < 1/(1 + g)

and µP + µS(l − g) > g.

Proof. Suppose that µS < 1/(1 + g). Then µP + µS(l − g) is bounded above by

either 1, which corresponds to µP = 1 and µS = 0, or l/(1 + g), which corresponds to

µP = g/(1+g) and µS = 1/(1+g). Hence, if µP +µS(l−g) > g ≥ 1, then l/(1+g) > g,

which requires l > g + g2. �

To derive the inequality µS < 1/(1 + g), note that a defector’s flow payoff equals

µS(1 + g), as defectors receive payoff 1 + g when matched with supercooperators, and

otherwise receive payoff 0. This flow payoff must be less than 1, since otherwise it would

be optimal for newborn players to play D for their entire lives instead of following the

equilibrium strategy.

The inequality µP + µS(l − g) > g is established by Lemma 9 in A.3.2.1. As this

inequality is a key point where incentive conditions and steady-state conditions come

together to determine the scope of cooperation, here we provide a derivation for the

special case where there is a “best” record r∗ = arg maxr Vr, r
∗ is a preciprocator record,

and the noise levels εC(r) = εC and εD(r) = εD are independent of r. Since every

preciprocator has an expected flow payoff of µC and the probability that a preciprocator

is recorded as playing C is (1− εC)µC + εDµ
D, we have

Vr∗ = (1− γ)µC + γ((1− εC)µC + εDµ
D)V C

r∗ + γ(εCµ
C + (1− εD)µD)V D

r∗ ,

where V C
r∗ and V D

r∗ denote the expected continuation payoffs of record r∗ players who

are recorded as playing C and D, respectively. The incentive constraint for a record r∗

player to play C against an opponent who plays C is (1−γ)(1)+γ(1−εC)V C
r∗+γεCV

D
r∗ >

(1− γ)(1 + g) + γεDV
C
r∗ + γ(1− εD)V D

r∗ , or γ(1− εC − εD)(V C
r∗ − V D

r∗ )/(1− γ) > g. By
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the accounting identity above, this simplifies to

1− εC − εD
εCµC + (1− εD)µD

(
µC − Vr∗ −

γ

1− γ
(Vr∗ − V C

r∗ )

)
> g.

Now note that in a steady state the expected lifetime payoff of a newborn player equals

the average flow payoff in the population in a given period: V0 = µPµC + µS(µC −

µDl) + µDµS(1 + g). Since Vr∗ ≥ V0 and Vr∗ ≥ V C
r∗ , the incentive constraint implies

(1− εC − εD)µD

εCµC + (1− εD)µD
(µP + µS(l − g)) > g,

which itself implies µP + µS(l − g) > g.

The necessary conditions for cooperation in Theorem 5(i) hold for any noisy first-

order record system. The reason for assuming noise is that the proof analyzes incentives

at cooperator records where there is a positive probability of being recorded as playing

D in a given period. Without noise, there can be fully cooperative equilibria even

when g ≥ 1 and l ≤ g + g2. For example, for some parameters grim trigger strategies,

together with the steady state where no one has ever defected, form an equilibrium.

5.3.2 Sufficient Conditions

We use different types of strategies to support cooperation when g < 1 and when

g ≥ 1 and l > g + g2. The strategies used in the g < 1 case are threaded grim trigger

strategies, similar to those used to prove Theorem 2(ii) and Theorem 3, as well as

Proposition 1 in Takahashi (2010).

When g ≥ 1, we have seen that cooperation requires supercooperator records:

in particular, grim trigger strategies cannot support cooperation. Consider instead

strategies that take the following form for some J , K: Within each thread, players

begin life as defectors, become preciprocators once they have been recorded as playing

D J times, transition to being supercooperators once they have been recorded as

playing D an additional K times; and finally permanently transition to being defectors
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once they have been recorded as playing D once more. Two features of the resulting

equilibria are particularly notable.

First, players’ incentives to cooperate are provided solely by the threat of entering

defector status once the number of times they have been recorded as playing D (their

“score”) reaches J+K+1, at which point preciprocator opponents switch from playing

C to D against them. (In contrast, when a player switches from preciprocator to

supercooperator status, their opponents’ behavior is unaffected.) Since the survival

probability γ is less than 1, this threat looms larger the closer a player’s score is

to J + K + 1. Hence, players with higher scores are willing to incur greater costs to

prevent their scores from increasing further. Our construction exploits this observation

by finding a critical score J +K such that players with score J +K are willing to play

C at a cost of l, while players with scores less than K are willing to play C at a cost

of g but not at a cost of l. That is, players with score J + K supercooperate, while

those with scores from J to J +K − 1 preciprocate.

Second, the feature that players with score J + K supercooperate rather than

preciprocate may at first seem to work against cooperation, because defectors obtain

higher payoffs against supercooperators than cooperators do. However, the presence of

supercooperators increases the steady-state share of preciprocators, via the following

mechanism: Since players with score J +K supercooperate, their scores increase more

slowly than if they preciprocated. Therefore, fewer players survive to enter defector

status, which reduces the steady-state share of defectors. Finally, when there are

fewer defectors, preciprocators defect less often, and hence their scores increase more

slowly, which increases the steady-state share of preciprocators. In sum, the presence of

supercooperators reduces the steady-state share of defectors and increases the steady-

state share of preciprocators, which enables steady-state cooperation.18

18Ostrom (1990) found that giving norm violators opportunities to resume cooperation before facing
harsher punishments helps sustain cooperation by preventing excessively fast breakdowns following
occasional violations. The mild punishment of transitioning to supercooperator status serves a broadly
similar role in our model.

25



6 Discussion

This paper introduces a new model of repeated social interactions, where players in-

teract with a sequence of anonymous and random opponents, and their information

about their opponents’ past play consists of noisy “records.” We study steady-state

equilibria in a large population with geometrically distributed lifetimes, focusing on

situations where there is little noise and lifetimes are long.

We find that any strictly individually rational outcome can be supported with

second-order records, while with first-order records an outcome can be supported if it

has a corresponding unprofitable punishment. In the prisoner’s dilemma, cooperation

can be supported if and only if stage-game payoffs are either strictly supermodular and

mild or strongly supermodular. The strength of the short-term coordination motive

and the temptation to cheat thus determine the prospects for long-term cooperation.

We conclude by discussing some possible extensions and alternative models.

First-order records beyond the PD. Characterizing limit-supportable actions with

first-order information in the absence of unprofitable punishments is a challenging

problem. We solved this problem for the special case of cooperation in the PD, under

equilibrium strictness and coordination-proofness. In an earlier version of this paper

(Clark, Fudenberg, and Wolitzky, 2019a) we solved this problem for general stage games

under a restriction to trigger strategies, where records are partitioned into two classes,

one of which is absorbing. We found that such strategies can limit-support the play of

an action a if and only if there exists a punishing action b that satisfies a generalized

version of the definition of being an unprofitable punishment, where the requirement

that u(b, a) > u(a, a) is relaxed to u(b, a) − u(a, a) < min{u(b, c) − u(a, c), u(a, a) −

u(c, b)}. Extending this analysis beyond trigger strategies is a possible direction for

future work, as is analyzing non-strict or non-coordination-proof strategies.

Simpler strategies. It is also interesting to consider simpler types of strategies.

In Clark, Fudenberg, and Wolitzky (2020), we analyzed the performance of “tolerant”
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grim trigger strategies without threading in the PD.19 We found that when g < l/(1+l)

such strategies can limit-support any cooperation share between g and l/(1 + l), and

that otherwise they cannot limit-support any positive cooperation share.

Also, in earlier work (Clark, Fudenberg, and Wolitzky (2019a,b)) we considered

strategies that condition only on the number of times a player was recorded as taking

each action, and not the time sequence of these actions (as in the threading strategies

used here). Such strategies yielded very similar but slightly more complicated results.

Sequential moves. In any strict equilibrium with first or second-order records, if

players can “jump the gun” by taking their action before the opponent has a chance

to respond, then only static equilibrium behavior can be supported.20 However, our

simultaneous-move specification applies not only when actions are literally simultane-

ous, but also whenever both players must choose their actions before fully observing

their opponent’s action. This seems like a natural reduced-form model for the typical

case where cooperation unfolds gradually within each match.21

Multiple populations. It is easy to adapt our model to settings with multiple popu-

lations of players. Here efficient outcomes can always be fully supported in situations

with one-sided incentive problems.22 For example, suppose a population of player 1’s

and a population of player 2’s repeatedly play a product choice game, where only

player 1 faces binding moral hazard at the efficient action profile (and player 2 wants

to match player 1’s action). The efficient outcome can always be supported with the

following trigger strategies (with K chosen appropriately as a function of γ and ε): in

each match, both partners play C if player 1’s score is less than K, and both play D

if player 1’s score is greater than K.

19Tolerant grim strategies (Fudenberg, Rand, and Dreber (2012)) wait to punish until the opponent
has defected several times.

20To see why, note that by jumping the gun a player can obtain a stage-game payoff
of maxr u(s(r, r′), s(r′, r)) when matched with an opponent with record r′, by taking action
s(arg maxr u(s(r, r′), s(r′, r)), r′). This implies that all players must receive the same payoff when
matched with any given opponent.

21Also, if records are interdependent rather than second order, the strategies used to prove Theorem
2 remain equilibria for any possible move order.

22Proposition 4 of Kandori (1992) is a similar result in a fixed-population model without noise.

27



Endogenous record systems. This paper has considered how features of an exoge-

nously given record system determine the range of equilibrium outcomes. A natural

next step is to endogenize the record system, for example by letting players strategically

report their observations, either to a central database or directly to other individual

players. Intuitively, first-order information is relatively easy to extract, since if a player

is asked to report only their partner’s behavior, they have no reason to lie as this infor-

mation does not affect their own future record. Whether and how society can obtain

higher-order information is an interesting question for future study.23
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Appendix

A.1 Proof of Theorem 1

We first prove Theorem 1(i).

Without loss, relabel records so that two players with different ages can never share

the same record. Let R(t) be the set of feasible records for an age-t player, and fix a
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pairwise-public strategy σ. The proof relies on the following lemma.

Lemma 4. If records are finite-partitional, there exists a family of finite subsets of R,

{L(t, η)}t∈N,η>0, such that

1. L(t, η) ⊂ R(t) for all t ∈ N, η > 0,

2. For any µ ∈ ∆(R),
∑

r∈L(0,η) fσ(µ)[r] ≥ (1− η)(1− γ) for all η > 0, and

3. For any µ ∈ ∆(R) and t > 0, if
∑

r∈L(t−1,η) µr ≥ (1− η)(1− γ)γt−1 for all η > 0,

then
∑

r∈L(t,η) fσ(µ)[r] ≥ (1− η)(1− γ)γt for all η > 0.

Proof. We construct the {L(t, η)} by iteratively defining subfamilies of subsets of R

that satisfy the necessary properties. First, take L(0, η) = {0} for all η > 0. Conditions

1 and 2 are satisfied since R(0) = {0} and fσ(µ)[0] = 1− γ for every µ ∈ ∆(R).

Fix some t and take the subfamily of subsets corresponding to t − 1, that is

{L(t − 1, η)}η>0. For every η > 0, consider the set of records L(t − 1, η/2). Let

λ ∈ (0, 1) be such that λ ≥ (1 − η)/(1 − η/2). For any record r ∈ L(t − 1, η/2),

opposing record class Rm, and action profile (a, a′) ∈ A2, we can identify a finite set

of “successor records” S(r,m, a, a′) such that a record r player who plays a against

an opponent in class Rm playing a′ moves to a record in S(r,m, a, a′) with proba-

bility greater than λ, i.e.
∑

r′′∈S(r,m,a,a′) ρ(r, r′, a, a′)[r′′] ≥ λ for all r′ ∈ Rm. Let

L(t, η) =
⋃
r∈L(t−1,η/2)

⋃
m∈{1,...,M(r)}

⋃
(a,a′)∈A2 S(r,m, a, a′). Note that L(t, η) is fi-

nite and does not depend on µ. By construction, the probability that a surviving

player with record in L(t − 1, η/2) has a next-period record in L(t, η) exceeds λ. For

any µ ∈ ∆(R), it then follows that
∑

r∈L(t−1,η/2) µr ≥ (1 − η/2)(1 − γ)γt−1 implies∑
r∈L(t,η) fσ(µ)[r] ≥ λ(1− η/2)(1− γ)γt−1 ≥ (1− η)(1− γ)γt. �

The next corollary is an immediate consequence of Properties 2 and 3 of Lemma 4.

Corollary 5. For every µ ∈ ∆(R) and η > 0, we have
∑

r∈L(t,η) f
t′
σ (µ)[r] ≥ (1−η)(1−

γ)γt for all t′ > t, where f t
′
σ denotes the t′th iterate of the update map fσ.

31



Fix a family {L(t, η)}t∈N,η>0, satisfying the three properties in Lemma 4 and define

M̄ , a subset of ∆(R), by

M̄ =

µ ∈ ∆(R) :
∑
r∈R(t)

µr = (1− γ)γt and
∑

r∈L(t,η)

µr ≥ (1− η)(1− γ)γt ∀t ∈ N, η > 0

 .

Note that M̄ is convex and, by Corollary 5, must contain every steady-state distri-

bution µ. The next lemma uses Corollary 5 to show that M̄ is non-empty.

Lemma 5. There exists µ ∈ ∆(R) satisfying
∑

r∈R(t) µr = (1−γ)γt and
∑

r∈L(t,η) µr ≥

(1− η)(1− γ)γt for every t ∈ N, η > 0.

Proof. Consider an arbitrary µ ∈ ∆(R). Set µ0 = µ, and, for every non-zero i ∈ N, set

µi = fs(µ
i−1). Since R is countable, a standard diagonalization argument implies that

there exists some µ̃ ∈ [0, 1]R and some subsequence {µij}j∈N such that limj→∞ µ
ij
r = µ̃r

for all r ∈ R.

For a given t ∈ N, Corollary 5 implies that
∑

r∈L(t,η) µ
ij
r ≥ (1 − η)(1 − γ)γt for all

η > 0 and all sufficiently high j ∈ N, so

∑
r∈L(t,η)

µ̃r ≥ (1− η)(1− γ)γt. (1)

Moreover, for each t ∈ N,
∑

r∈R(t) µ
ij
r = (1−γ)γt for all j ∈ N, so

∑
r∈R(t) µ̃r ≤ (1−γ)γt.

Since (1) holds for all η ∈ (0, 1), this implies that
∑

r∈R(t) µ̃r = (1−γ)γt, which together

with (1) implies that µ̃ ∈ M̄ . �

The following three claims imply that fσ has a fixed point in M̄ ,24 which completes

the proof of Theorem 1(i).

Claim 1. M̄ is compact in the sup norm topology.

Claim 2. fσ maps M̄ to itself.

24This follows from Corollary 17.56 (page 583) of Aliprantis and Border (2006), and noting that
every normed space is a locally convex Hausdorff space.
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Claim 3. fσ is continuous in the sup norm topology.

Proof of Claim 1. Since M̄ is a metric space under the sup norm topology, it suffices

to show that M̄ is sequentially compact. Consider a sequence {µi}i∈N of µi ∈ M̄ . A

similar argument to the proof of Lemma 5 shows that there exists some µ̃ ∈ M̄ and

some subsequence {µij}j∈N such that limj→∞ µ
ij
r = µ̃r for all r ∈ R.

Here we show that limj→∞ µ
ij = µ̃. For a given η > 0, there is a finite subset

of records L(η/2) ⊂ R such that
∑

r∈L(η/2) µr > 1 − η/2 for every µ ∈ M̄ . Thus,

|µijr − µ̃r| < η for all r /∈ L(η/2) for all j ∈ N. Now let J ∈ N be such that |µijr − µ̃r| < η

for all r ∈ L(η/2) whenever j > J . Then supr∈R |µ
ij
r − µ̃r| < η for all j > J . �

Proof of Claim 2. For any µ ∈ M̄ , Properties 2 and 3 of Lemma 4 imply that
∑

r∈L(t,η) fσ(µ)[r] ≥

(1 − η)(1 − γ)γt for all t ∈ N, η > 0. Furthermore, fσ(µ)[0] = 1 − γ, and for

all t > 0, γ
∑

r∈R(t−1) µr =
∑

r∈R(t) fσ(µ)[r], so
∑

r∈R(t−1) µr = (1 − γ)γt−1 gives∑
r∈R(t) fσ(µ)[r] = (1− γ)γt. �

Proof of Claim 3. Consider a sequence {µi}i∈N of µi ∈ M̄ with limi→∞ µ
i = µ̃ ∈ M̄ .

We will show that limi→∞ fσ(µi) = fσ(µ̃).

For any η > 0, there is a finite subset of records L(η/4) ⊂ R such that
∑

r∈L(η/4) µr >

1−η/4 for every µ ∈ M̄ . By Claim 2, fσ(µ) ∈ M̄ for every µ ∈ M̄ . The combination of

these facts means that it suffices to show that limi→∞ fσ(µi)[r] = fσ(µ̃)[r] for all r ∈ R

to establish limi→∞ fσ(µi) = fσ(µ̃). Additionally, since fσ(µ)[0] = 1 − γ is constant

across µ ∈ ∆(R), we need only consider the case where r 6= 0.

For this case,

fσ(µi)[r] = γ
∑

(r′,r′′)∈R2

µir′µ
i
r′′φ(r′, r′′)[r],

and

fσ(µ̃)[r] = γ
∑

(r′,r′′)∈R2

µ̃r′µ̃r′′φ(r′, r′′)[r].

Because
∑

r∈L(η/4) µr > 1 − η/4 for every µ ∈ M̄ , γ ∈ (0, 1), and 0 ≤ φ(r′, r′′)[r] ≤ 1
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for all r′, r′′ ∈ R, it follows that

|fσ(µi)[r]− fσ(µ̃)[r]| ≤ γ

∣∣∣∣∣∣
∑

(r′,r′′)∈L(η/4)2
(µir′µ

i
r′′ − µ̃r′µ̃r′′)φ(r′, r′′)[r]

∣∣∣∣∣∣
+ γ

∣∣∣∣∣∣
∑

(r′,r′′)/∈L(η/4)2
(µir′µ

i
r′′ − µ̃r′µ̃r′′)φ(r′, r′′)[r]

∣∣∣∣∣∣
<

∑
(r′,r′′)∈L(η/4)2

∣∣µir′µir′′ − µ̃r′µ̃r′′∣∣+
1

2
η.

Since limi→∞ µ
i = µ̃, there exists some I ∈ N such that

∑
(r′,r′′)∈L(η/4)2 |µir′µir′′ − µ̃r′µ̃r′′ | <

η/2 for all i > I, which gives |fσ(µi)[r]− fσ(µ̃)[r]| < η for all i > I. We thus conclude

that limi→∞ fσ(µi)[r] = fσ(µ̃)[r]. �

We now prove Theorem 1(ii) by showing that no steady state exists when γ > 1/2

for the interdependent record system with R = N and ρ(r, r′, a, a′) = max{r, r′} + 1.

To see this, suppose toward a contradiction that µ is a steady state. Let r∗ be the

smallest record r such that
∑∞

r′=r µr′ < 2−1/γ, and let µ∗ =
∑∞

r=r∗ µr < 2−1/γ. Note

that µ∗ > 0, as a player’s record is no less than their age, so for any record threshold

there is a positive measure of players whose records exceed the threshold.

Note that every surviving player with record r ≥ r∗ retains a record higher than

r∗, and at least fraction µ∗ of the surviving players with record r < r∗ obtain a record

higher than r∗ (since this is the fraction of players with record r < r∗ that match with

a player with record r ≥ r∗). Hence,

∞∑
r=r∗

f (µ) [r] ≥ γµ∗ + γ (1− µ∗)µ∗ > µ∗,

where the second inequality comes from 0 < µ∗ < 2 − 1/γ. But in a steady state,∑∞
r=r∗ f (µ) [r] = µ∗, a contradiction.
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A.2 Proof of Theorem 2

A.2.1 Proof of Theorem 2(i)

Let M be a positive integer such that (u(a, a) − u(b, b))M > maxa′{max{u(a′, a) −

u(a, a), u(a′, b) − u(b, b)}}. Consider the following strategy, which we denote by σ∗.25

Players begin in good standing. A player in good standing plays a when matched with

fellow good-standing players and plays b against bad-standing players, while a player

in bad standing always plays b. When a good-standing player’s outcome is recorded as

anything other than (a, a) or (b, b), the player enters bad standing. A player remains

in bad standing until they accumulate M (b, b) profiles, at which point they return

to good standing. Claim 4 below shows that, under σ∗, the steady-state population

share of a converges to 1 as (γ, ε) → (1, 0), and Claim 5 shows that σ∗ induces strict

equilibria when γ and ε are sufficiently close to their limit values.

Let ε̃(a,a) =
∑

(ã,ã′) 6=(a,a),(b,b) ε(a,a),(ã,ã′) be the probability that the stage-game out-

come is recorded as something other than (a, a) or (b, b) when the actual outcome is

(a, a), ε̃(b,b) =
∑

(ã,ã′) 6=(a,a),(b,b) ε(b,b),(ã,ã′) be the probability that the outcome is recorded

as something other than (a, a) or (b, b) when the actual outcome is (b, b), and ε̂(b,b) =∑
(ã,ã′)6=(b,b) ε(b,b),(ã,ã′) be the probability that the outcome is recorded as something

other than (b, b) when the actual outcome is (b, b). In a steady state µ(γ, ε) for pa-

rameters (γ, ε), let µG(γ, ε) be the corresponding share of good-standing players, and,

for i ∈ {0, ...,M − 1}, let µBi(γ, ε) be the share of bad-standing players who have

accumulated i (b, b) profiles since last entering bad standing.

Claim 4. The unique limit point as (γ, ε) → (1, 0) of any sequence of steady-state

shares induced by σ∗ is (µ̃G, µ̃B0 , ..., µ̃BM−1) = (1, 0, ..., 0), so the share of good-standing

players and the population share of action a converge to 1 in the (γ, ε)→ (1, 0) limit.

Proof. Let (µ̃G, µ̃B0 , ..., µ̃BM−1) be a limit point of a sequence of steady-state shares as

(γ, ε)→ (1, 0). The inflow into B0, the first phase of bad-standing, is γ(ε̃a,aµ
G(γ, ε) +

25The strategy σ∗ does not depend on (γ, ε).
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ε̃b,b(1− µG(γ, ε)))µG(γ, ε), which is the share of good-standing players that move into

bad-standing in a given period. The outflow from B0 is the sum of (1 − γ)µB0(γ, ε),

the share of players in phase B0 who die in a given period, and γ(1 − ε̂(b,b))µB0(γ, ε),

the share of players in phase B0 who move into phase B1 in a given period. Thus,

in a steady state, γ(ε̃a,aµ
G(γ, ε) + ε̃b,b(1 − µG(γ, ε)))µG(γ, ε) = (1 − γε̂(b,b))µ

B0(γ, ε).

Taking the limit of this equation as (γ, ε) → (1, 0) gives µ̃B0 = 0. Likewise, equating

the inflow and outflows of phase Bi for 0 < i < M gives γ(1 − ε̂(b,b))µ
Bi−1(γ, ε) =

(1− γε̂(b,b))µBi(γ, ε), and taking the limit of this equation as (γ, ε)→ (1, 0) shows that

µ̃Bi = µ̃Bi−1 . Combining this with µ̃B0 = 0 gives µ̃Bi = 0 for all i ∈ {0, , ...,M − 1}.

Since the good-standing population share and bad-standing population shares always

sum to 1, it follows that µ̃G = 1. �

Claim 5. Given any sequence of steady states µ(γ, ε) induced by σ∗, (σ∗, µ(γ, ε)) is a

strict equilibrium when γ is sufficiently close to 1 and ε is sufficiently close to 0.

Proof. For 0 ≤ i < M − 1, the value functions in the bad-standing phase Bi and the

subsequent bad-standing phase Bi+1 satisfy

V Bi = (1− γ)u(b, b) + γε̂(b,b)V
Bi + γ(1− ε̂(b,b))V Bi+1 . (2)

Similarly the value functions in the final bad-standing phase BM−1 and the good-

standing phase G are linked by

V BM−1 = (1− γ)u(b, b) + γε̂(b,b)V
BM−1 + γ(1− ε̂(b,b))V G. (3)

The value function in the good-standing phase equals the average flow payoff in the

population in a given period (since newborn players are in good standing), so V G =

µG(γ, ε)2u(a, a) + (1−µG(γ, ε)2)u(b, b). Combining this with lim(γ,ε)→(1,0) µ
G(γ, ε) = 1,

we obtain lim(γ,ε)→(1,0) V
G = u(a, a). Taking the limits of Equations 2 and 3 as (γ, ε)→

(1, 0) thus gives lim(γ,ε)→(1,0) V
Bi = lim(γ,ε)→(1,0) V

G = u(a, a) for all i ∈ {0, ...,M − 1}.

A player in bad-standing phase i where 0 ≤ i < M − 1 strictly prefers to play b
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against b when (1− γ)u(b, b) + γε̂(b,b)V
Bi + γ(1− ε̂(b,b))V Bi+1 > (1− γ)u(a′, b) + γ(1−

ε(a′,b),(b,b))V
Bi + γε(a′,b),(b,b)V

Bi+1 holds for a′ 6= b. Manipulating this gives (1 − ε̂(b,b) −

ε(a′,b),(b,b))γ(V Bi+1 − V Bi)/(1− γ) > u(a′, b)− u(b, b). Equation 2 can be rewritten as

γ

1− γ
(V Bi+1 − V Bi) =

γ

1− γε̂(b,b)
(V Bi+1 − u(b, b)),

so we obtain lim(γ,ε)→(1,0)(1− ε̂(b,b)−ε(a′,b),(b,b))γ(V Bi+1−V Bi)/(1−γ) = u(a, a)−u(b, b).

Since maxa′ u(a′, b) < u(a, a), it follows that the incentives of players in bad-standing

phase i are satisfied for (γ, ε) sufficiently close to (1, 0).

An almost identical argument shows that the incentives of players in bad-standing

phase M − 1 are satisfied for (γ, ε) sufficiently close to (1, 0). Thus, all that remains

is to show that the incentives of players in good-standing are satisfied in the limit. A

good-standing player has strict incentives to play a against a when (1−γ)u(a, a)+γ(1−

ε̃(a,a))V
G+γε̃(a,a)V

B0 > (1−γ)u(a′, a)+γ(ε(a′,a),(a,a)+ε(a′,a),(b,b))V
G+γ(1−ε(a′,a),(a,a)−

ε(a′,a),(b,b))V
B0 holds for a′ 6= a. Manipulating this gives (1 − ε̃(a,a) − ε(a′,a),(a,a) −

ε(a′,a),(b,b))γ(V G − V B0)/(1 − γ) > u(a′, a) − u(a, a). Similarly, a good-standing player

has strict incentives to play b against b when (1−γ)u(b, b)+γ(1−ε̃(b,b))V G+γε̃(b,b)V
B0 >

(1− γ)u(a′, b) + γ(ε(a′,b),(a,a) + ε(a′,b),(b,b))V
G + γ(1− ε(a′,b),(a,a)− ε(a′,b),(b,b))V B0 holds for

a′ 6= b. Manipulating this gives (1− ε̃(b,b)−ε(a′,a),(a,a)−ε(a′,a),(b,b))γ(V G−V B0)/(1−γ) >

u(a′, b)− u(b, b). Combining Equations 2 and 3 gives

γ

1− γ
(V G − V B0) = γ

1−
(
γ(1−ε̂(b,b))
1−γε̂(b,b)

)M
1− γ

(V G − u(b, b)).

It follows that lim(γ,ε)→(1,0)(1 − ε̃(a,a) − ε(a′,a),(a,a) − ε(a′,a),(b,b))γ(V G − V B0)/(1 − γ) =

M(u(a, a)−u(b, b)). Since M(u(a, a)−u(b, b)) > maxa′{max{u(a′, a)−u(a, a), u(a′, b)−

u(b, b)}}, good-standing players’ incentives are satisfied for (γ, ε) sufficiently close to

(1, 0). �
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A.2.2 Proof of Theorem 2(ii)

We first show that a can be limit-supported and then show that the constructed equi-

libria are coordination-proof.

A.2.2.1 Proof that a is Limit-Supported by Strict Equilibria

Let 0 < γ < γ < 1 be such that

γ

1− γ
> max

(x1,x2)

u(x1, x2)− u(b, b)

u(a, a)− u(b, b)
(4)

for all γ ∈ [γ, γ]. Denote the grim trigger strategy described in Section 3 by σtr, and

let µG denote the share of good-standing players in a steady state. We will show that

for all δ > 0, there is an ε > 0 such that, whenever γ ∈ [γ, γ] and ε(x1,x2),(x′1,x′2) < ε for

all (x1, x2), (x
′
1, x2) ∈ A2, σtr induces strict equilibria satisfying µG > 1− δ. Thus, σtr

can be combined with the threading technique described in the text to limit-support

a as (γ, ε)→ (1, 0).

Claim 6 below shows that the steady-state share of good-standing players induced

by σtr converges to 1 uniformly over γ ∈ [γ, γ] as ε → 0. For the remainder of the

proof, we restrict attention to γ ∈ [γ, γ]. Claim 7 then shows that the incentives

of good-standing players are satisfied when ε is sufficiently small. These two claims

together complete the argument, as the incentives of bad-standing players are always

satisfied since (b, b) is a strict static equilibrium.

Claim 6. For all δ > 0, there is an ε > 0 such that, whenever ε(x1,x2),(x′1,x′2), < ε for all

(x1, x2), (x
′
1, x2) ∈ A2, the steady states induced by σtr satisfy µG > 1− δ.

Proof. Note that the inflow into good standing is simply 1 − γ, the share of newborn

players. The outflow from good standing is the sum of (1 − γ)µG, the share of good-

standing players who die in a given period, and γ(ε̃(a,a)µ
G+ ε̃(b,b)(1−µG))µG, the share

of good-standing players whose outcome is recorded as something other than (a, a) or

(b, b) in a given period. In a steady state, these inflows and outflows must be equal,
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and setting the corresponding expressions equal to each other gives

µG =
1− γ

1− γ + γ(ε̃(a,a)µG + ε̃(b,b)(1− µG))
≥ 1− γ

1− γ + γmax{ε̃(a,a), ε̃(b,b)}
.

The claim then follows since limε→0 infγ∈[γ,γ](1−γ)/(1−γ+γmax{ε̃(a,a), ε̃(b,b)}) = 1. �

Claim 7. For all δ > 0, there is an ε > 0 such that, whenever ε(x1,x2),(x′1,x′2), < ε for all

(x1, x2), (x
′
1, x2) ∈ A2, the incentives of good-standing players are satisfied.

Proof. The value function of good-standing players, V G, equals the average flow payoff

in the population in a given period (since newborn players are in good standing), so

V G = µG(µGu(a, a) + (1−µG)u(b, b)) + (1−µG)u(b, b). In contrast, the value function

of bad-standing players, V B, equals the expected flow payoff of bad-standing players,

so V B = u(b, b).

When facing an opponent playing a, the expected payoff of a good-standing player

from playing a is (1− γ)u(a, a) + γ(1− ε̃(a,a))V G + ε̃(a,a)V
B while their expected payoff

from playing x 6= a is (1 − γ)u(x, a) + γ(ε(x,a),(a,a) + ε(x,a),(b,b))V
G + (1 − ε(x,a),(a,a) −

ε(x,a),(b,b))V
B. Thus, a good-standing player strictly prefers to play a rather than any

x 6= a precisely when

γ

1− γ
> max

x 6=a

u(x, a)− u(a, a)

(1− ε̃(a,a) − ε(x,a),(a,a) − ε(x,a),(b,b))µG(u(a, a)− u(b, b))
.

Claim 6 implies that, as ε → 0, the right-hand side of this inequality converges uni-

formly to maxx 6=a(u(x, a) − u(a, a))/(u(a, a) − u(b, b)). By the inequality in (4), we

conclude that a good-standing player strictly prefers to match a with a instead of

playing some x 6= a for sufficiently small noise.

When facing an opponent playing b, the expected payoff of a good-standing player

from playing b is (1−γ)u(b, b)+γ(1−ε̃(b,b))V G+ε̃(b,b)V
B while their expected payoff from

playing x 6= b is (1−γ)u(x, b)+γ(ε(x,b),(a,a)+ε(x,b),(b,b))V
G+(1−ε(x,b),(a,a)−ε(x,b),(b,b))V B.

Thus a good-standing player strictly prefers to play a rather than any x 6= b precisely
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when

γ

1− γ
> max

x 6=b

u(x, b)− u(b, b)

(1− ε̃(b,b) − ε(x,b),(a,a) − ε(x,b),(b,b))µG(u(a, a)− u(b, b))
.

Claim OA 1 implies that, as ε → 0, the right-hand side of this inequality converges

uniformly to maxx 6=b(u(x, b) − u(b, b))/(u(a, a) − u(b, b)). By the inequality in (4),

we conclude that a good-standing player strictly prefers to match b with b instead of

playing some x 6= b for sufficiently small noise. �

A.2.2.2 Proof of Coordination-Proofness

We first argue that in every match between bad-standing players, there is no Nash

equilibrium in the augmented game that Pareto-dominates (b, b). Note that the out-

come of the current match does not affect a bad-standing player’s continuation value.

Thus, any Nash equilibrium in the augmented game between two bad-standing players

must also be a static equilibrium in the stage game. Since there is no static equilibrium

that Pareto-dominates (b, b), it follows that two bad-standing players playing (b, b) is

coordination-proof.

Now we show that in any match involving a good-standing player, there is no Nash

equilibrium in the augmented game that Pareto-dominates the action profile the players

are supposed to play. By an argument similar to the one showing that a good-standing

player strictly prefers to play a against a, no good-standing player would ever prefer an

action profile other than (a, a) or (b, b) be played in one of their matches when γ ∈ [γ, γ]

and noise is sufficiently small. Thus, in any match involving a good-standing player,

we need only consider whether (a, a) or (b, b) are Nash equilibria in the augmented

game and whether one of these profiles Pareto-dominates the other. When two good-

standing players match, both (a, a) and (b, b) are Nash equilibria in the augmented

game, but (b, b) does not Pareto-dominate (a, a). Indeed, if (b, b) did Pareto-dominate

(a, a), this would imply that the value functions for these good-standing players would

be no higher than u(b, b), which is not possible given that u(a, a) > u(b, b). Thus, the
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prescribed play between two good-standing players is coordination-proof. Moreover, in

any match involving a bad-standing player, all Nash equilibria in the augmented game

require the bad-standing player to play a static best-response to the action of their

opponent. Because u(a, a) > u(b, b) and (b, b) is not Pareto-dominated by any static

equilibrium, (a, a) is not a static equilibrium, so (b, b) is coordination-proof when a

good-standing player matches a bad-standing player.

A.3 Proof of Theorem 5

Section A.3.1 derives the incentive constraints that must be satisfied in any strict

equilibrium with noisy first-order records, and Section A.3.2 proves Theorem 5(i) (nec-

essary conditions for cooperation). The main step is proving Lemma 9, which shows

that µP + µS(l − g) > g in any strict, coordination-proof equilibrium with µC > 0.

Section A.3.3 proves Theorem 5(ii) (sufficient conditions for cooperation). This part

of the proof is split into three parts: Section A.3.3.1 shows that threaded grim trig-

ger strategies can limit-support cooperation when g < 1; Section A.3.3.2 shows that

threaded “defector→preciprocator→supercooperator→defector” strategies can limit-

support cooperation when l > g + g2; and Section A.3.3.3 shows that each of these

classes of equilibria is coordination-proof.

A.3.1 Incentive Constraints with Noisy Records

Throughout, (C|C)r denotes the condition that C is the best response to C for a

player with record r, (C|D)r denotes the condition that C is the best response to D,

and (D|D)r denotes the condition that D is the best response to D.

Let V C
r denote the expected continuation payoff when a recording of C is fed into

the record system for a record r player. That is, V C
r = Er′∼qC(r)[Vr′ ], where Er′∼qC(r)

indicates the expectation when r′ is distributed according to qC(r). Similarly, let

V D
r = Er′∼qD(r)[Vr′ ] denote the expected continuation payoff when a recording of D is
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fed into the record system. Let πr denote the expected flow payoff to a record r player

under the equilibrium strategy, and let pDr denote the probability that a recording of

D will be fed into the record system for a record r player. Note that pDr > 0 for all r

since εC(r) > 0 and εD(r) < 1.

Given a noisy record system and an equilibrium, define the normalized reward for

playing C rather than D for a record r player by

Wr :=
1− εC(r)− εD(r)

pDr

(
πr − Vr +

γ

1− γ
(V C

r − Vr)
)
.

Lemma 6. For any noisy record system,

• The (C|C)r constraint is Wr > g.

• The (D|C)r constraint is Wr < g.

• The (C|D)r constraint is Wr > l.

• The (D|D)r constraint is Wr < l.

Proof. Consider a player with record r. We derive the (C|C)r constraint; the other

constraints can be similarly derived. When a record r player plays C, their expected

continuation payoff is (1− εC(r))V C
r + εC(r)V D

r , since a recording of C is fed into the

record system with probability 1 − εC(r) and a recording of D is fed into the record

system with probability εC(r). Similarly, when the player plays D, their expected

continuation payoff is εD(r)V C
r + (1 − εD(r))V D

r . Thus, the (C|C)r constraint is 1 −

γ + γ(1− εC(r))V C
r + γεC(r)V D

r > (1− γ)(1 + g) + γεD(r)V C
r + (1− εD(r))V D

r , which

is equivalent to

(1− εC(r)− εD(r))
γ

1− γ
(V C

r − V D
r ) > g.

Note that Vr = (1−γ)πr+γ(1−pDr )V C
r +γpDr V

D
r . Manipulating this gives V C

r −V D
r =

((1 − γ)πr − Vr + γV C
r )/(γpDr ). Substituting this into the above inequality gives the

desired form of the (C|C)r constraint. �
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The strategies we use to prove part (ii) of the theorem depend on a player’s record

only through their age and their “score,” which is the number of times they have been

recorded as playing D. For such scoring strategies, we slightly abuse notation in writing

Vk for the continuation payoff of a player with score k.26 The incentive constraints

for such strategies take a relatively simple form with the canonical first-order record

system: For all k we have εC(k) = εC , εD(k) = εD, V C
k = Vk, and V D

k = Vk+1, so the

normalized reward simplifies to

Wk =
1− εC − εD

pDk
(πk − Vk).

Lemma 7. For scoring strategies and the canonical first-order record system, Lemma

6 holds with Wk = (1− εC − εD)(πk − Vk)/pDk .

A.3.2 Proof of Theorem 5(i)

Theorem 5(i) follows from the following two lemmas.

Lemma 8. For any first-order record system, in any strict equilibrium, µS < 1/(1+g).

Lemma 9. For any noisy first-order record system, in any strict, coordination-proof

equilibrium with µC > 0, µP + µS (l − g) > g.

Lemma 8 says that there cannot be too many supercooperators. It holds because

new players with record 0 have the option of always playing D, so in any strict equi-

librium with µC > 0, it must be that µS(1 + g) < V0 ≤ 1, which gives µS < 1/(1 + g)

Conversely, Lemma 9 implies that cooperation requires a positive share of superco-

operators when g ≥ 1, and moreover that the required share grows when g and l are

increased by the same amount. It is proved in the next subsection.

Theorem 5(i) follows from Lemmas 8 and 9 since, by Lemma 3, it is impossible to

satisfy both µS < 1/(1 + g) and µP + µS(l − g) > g when g ≥ 1 and l ≤ g + g2.

26Recall that Vr is defined as the continuation value of a player with record r. Under scoring
strategies, two players with different records that share the same score have the same continuation
value, so we can index V by k rather than r.
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A.3.2.1 Necessary Conditions for Cooperation and Proof of Lemma 9

Let V = supr Vr and let {rn}n∈N be a sequence of records such that limn→∞ Vrn = V .

Note that V < ∞ and, since V0 (the expected lifetime payoff of a newborn player)

equals µPµC +µS(µC−µDl) +µDµS(1 +g) (the average flow payoff in the population),

we have V ≥ V0 = µPµC + µS(µC − µDl) + µDµS(1 + g).

Lemma 10. If µC > 0, there is no sequence of defector records {rn}n∈N such that

limn→∞ Vrn = V .

Proof. Suppose otherwise. Since Vr = (1 − γ)πr + γ(1 − pDr )V C
r + γpDr V

D
r and πrn =

µS(1 + g) for all rn, we have Vrn = (1− γ)µS(1 + g) + γ(1− pDrn)V C
rn + γpDrnV

D
rn for all

rn. This implies

Vrn ≤ µS(1 + g) +
γ

1− γ
(1− pDrn) max{V C

rn − Vrn , 0}+
γ

1− γ
pDrn max{V D

rn − Vrn , 0}.

Since limn→∞ Vrn = V , limn→∞max{V C
rn − Vrn , 0} = limn→∞max{V D

rn − Vrn , 0} = 0.

It further follows that V = limn→∞ Vrn ≤ µS(1 + g), so Vr ≤ µS(1 + g) for all r.

However, note that every player can secure an expected flow payoff of µS(1 + g) every

period by always defecting, so it must be that Vr ≥ µS(1 + g) for all r. It follows that

Vr = µS(1 + g) for all r, and since the value function is constant across records, every

record must be a defector record, so µC = 0. �

Lemma 11. If µC > 0, there is some record r′ that is a preciprocator or a supercoop-

erator and satisfies

Vr′ −
γ

1− γ
(V C

r′ − Vr′) ≥ µPµC + µS(µC − µDl) + µDµS(1 + g).

Proof. First, consider the case where V = µPµC + µS(µC − µDl) + µDµS(1 + g). Then

there must be some record r′ such that Vr′ = µPµC +µS(µC −µDl) +µDµS(1 + g). By

Lemma 10, such an r′ cannot be a defector record and so must be either a preciprocator
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or a supercooperator. Additionally, V C
r′ ≤ V , so Vr′ − (γ/(1− γ))(V C

r′ −Vr′) ≥ µPµC +

µS(µC − µDl) + µDµS(1 + g).

Now consider the case where V > µPµC + µS(µC − µDl) + µDµS(1 + g). For any

sequence of records {rn}n∈N such that limn→∞ Vrn = V , limn→∞max{V C
r − Vr, 0} = 0,

so there is some sufficiently high n such that Vrn − (γ/(1 − γ))(V C
rn − Vrn) ≥ µPµC +

µS(µC − µDl) + µDµS(1 + g). Additionally, by Lemma 10, for sufficiently high n, the

record rn must be either a preciprocator or a supercooperator. �

Proof of Lemma 9. First, take the case where the record r′ identified in Lemma 11 is

a preciprocator. Then by Lemma 6, we must have

1− εC(r′)− εD(r′)

pDr′

(
πr′ − Vr′ +

γ

1− γ
(V C

r′ − Vr′)
)
> g.

When πr′ = µC and Vr′ − γ(V C
r′ − Vr′)/(1− γ) ≥ µPµC + µS(µC − µDl) + µDµS(1 + g),

this implies
(1− εC(r′)− εD(r′))µD

pDr′
(µP + µS(l − g)) > g.

Note that pDr′ ≥ (1−εD(r′))µD since a preciprocator plays D whenever they are matched

with a defector and this leads to a recording of D being fed into the record system with

probability 1−εD(r′). This gives (1−εC(r′)−εD(r′))µD/pDr′ < 1, so µP +µS(l−g) > g

must hold.

Now take the case where r′ is a supercooperator. By Lemma 6, πr′ − Vr′ + (γ/(1−

γ))(V C
r′ − Vr′) > 0. When πr′ = µC − µDl and Vr′ − (γ/(1− γ))(V C

r′ − Vr′) ≥ µPµC +

µS(µC − µDl) + µDµS(1 + g), this implies that

µC − µDl − (µPµC + µS(µC − µDl) + µDµS(1 + g)) = µD(µP + µS(l − g)− l) > 0.

This requires µP + µS(l − g) > l, which implies µP + µS(l − g) > g, since l > g. �
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A.3.3 Proof of Theorem 5(ii)

A.3.3.1 Limit-Supporting C when g < 1

Let 0 < γ < γ < 1/2 be such that

g <
γ

1− γ
< l (5)

for all γ ∈ [γ, γ]. Consider the grim trigger strategy, and let µC(γ, ε) denote the steady

state share of cooperators, i.e. those players who have not been recorded as playing

D, for parameters (γ, ε). (As we will see, there is a unique steady state when noise

is sufficiently small.) We will show that for all δ > 0, there is an ε > 0 such that,

whenever γ ∈ [γ, γ] and εC , εD < ε, grim trigger induces strict equilibria satisfying

µC(γ, ε) > 1− δ. Thus, grim trigger can be combined with threading to limit-support

C as (γ, ε)→ (1, 0).

First, we establish that for all δ > 0, there is an ε > 0 such that whenever γ ∈ [γ, γ]

and εC , εD < ε, there is a unique steady state induced by grim trigger and it satisfies

µC > 1− δ. Note that the inflow into cooperator status is 1− γ, the share of newborn

players. The outflow from cooperator status is the sum of (1 − γ)µC , the share of

cooperators who die in a given period, and γ(εCµ
C + (1− εD)(1−µC))µC , the share of

cooperators who are recorded as playing D in a given period. In a steady state, these

inflows and outflows must be equal, so

1− γ = (1− γ + γ(εCµ
C + (1− εD)(1− µC)))µC .

This expression has a unique solution µC ∈ [0, 1] when εC and εD are sufficiently small,

given by

µC(γ, ε) =
1− γεD −

√
(1− γεD)2 − 4γ(1− εC − εD)(1− γ)

2γ(1− εC − εD)
.

Note that µC(γ, ε) is continuous for γ ∈ [γ, γ] and sufficiently small εC , εD, and
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µC(γ, 0) = 1 for all γ ≤ 1/2. It follows that there is an ε > 0 such that µC(γ, ε) > 1−δ

for all γ ∈ [γ, γ] and εC , εD < ε.

Now we establish that for all δ > 0, there is an ε > 0 such that whenever γ ∈

[γ, γ] and εC , εD < ε, the incentives of preciprocators are satisfied. (The incentives

of defectors are clearly satisfied.) We will use the facts that the value function of

preciprocators, V C , equals the average flow payoff in the population in a given period,

(µC(γ, ε))2, and that the value function of defectors is V D = 0.

When facing an opponent playing C, the expected payoff for a preciprocator from

playing C is 1− γ+ γ(1− εC)(µC(γ, ε))2 while their expected payoff from playing D is

(1−γ)(1+g)+γεD(µC(γ, ε))2. Thus, a preciprocator strictly prefers to play C against

an opponent playing C if and only if 1− γ + γ(1− εC)(µC(γ, ε))2 > (1− γ)(1 + g) +

γεD(µC(γ, ε))2, which simplifies to

γ

1− γ
>

g

(1− εC − εD)(µC(γ, ε))2
.

When facing an opponent playing D, the expected payoff to C for a preciprocator

is −(1 − γ)l + γ(1 − εC)(µC(γ, ε))2 while their expected payoff from playing D is

γεD(µC(γ, ε))2. Thus, a preciprocator strictly prefers to play D against an opponent

playing D if and only if −(1 − γ)l + γ(1 − εC)(µC(γ, ε))2 < γεD(µC(γ, ε))2, which

simplifies to
γ

1− γ
<

l

(1− εC − εD)(µC(γ, ε))2
.

Combining these incentive conditions shows that all the incentives of a preciprocator

are satisfied if and only if

g

(1− εC − εD)(µC(γ, ε))2
<

γ

1− γ
<

l

(1− εC − εD)(µC(γ, ε))2
.

As ε→ 0, the left-most expression and right-most expression in this inequality converge

uniformly to g and l, respectively. From (5), we conclude that the incentives of a

preciprocator are satisfied for sufficiently small noise when γ ∈ [γ, γ].
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A.3.3.2 Limit-Supporting C when l > g + g2

We use the class of strategies of the form “DJPKS1D∞,” where J,K ∈ N. These

strategies specify that a player is a defector until they have been recorded as playing

D J times. Subsequently, the player is a preciprocator until they have been recorded

as playing D K more times, and then a supercooperator until they are recorded as

playing D once more, after which they permanently become a defector. Throughout,

we let µD1 be the share of players who have been recorded as playing D fewer than

J times (and are thus defectors), µP be the share of preciprocators (those with score

J ≤ k < J + K), µS be the share of supercooperators (those with score k = J + K),

and µD2 be the share of defectors with a score k > J + K. We also let µC = µP + µS

be the total share of cooperators and µD = µD1 + µD2 = 1 − µC be the total share

of defectors. We will show that for all δ > 0, there are 0 < γ < γ < 1 and ε > 0

such that when γ ∈ [γ, γ] and εC , εD < ε, this strategy class gives equilibria satisfying

µC > 1− δ. Thus, these strategies can be combined with threading to limit-support C

as (γ, ε)→ (1, 0).

The following lemma characterizes precisely which population shares and parame-

ters are consistent with an equilibrium using a DJPKS1D∞ strategy. The statement

of the lemma involves the functions α : (0, 1)× (0, 1)→ (0, 1) and β : (0, 1)× (0, 1)×

[0, 1]→ (0, 1), defined by

α(γ, ψ) =
γψ

1− γ + γψ
,

β(γ, ε, µD) =
γ(εC + (1− εC − εD)µD)

1− γ + γ(εC + (1− εC − εD)µD)
.

Lemma 12. There is a DJPKS1D∞ equilibrium with shares µD1, µP , µS, and µD2 if

and only if the following conditions hold:

1. Feasibility:
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µD1 = 1− α(γ, 1− εD)J ,

µP = α(γ, 1− εD)J(1− β(γ, ε, µD)K),

µS = α(γ, 1− εD)Jβ(γ, ε, µD)K(1− α(γ, εC)),

µD2 = α(γ, 1− εD)Jβ(γ, ε, µD)Kα(γ, εC).

2. Incentives:
(C|C)J :

(1− εC − εD)µD

εC + (1− εC − εD)µD

(
µS

1− µD1
l +

µD2

µD1(1− µD1)
(µP − µSg)

)
> g,

(D|D)J+K−1 :
γ(1− εC − εD)((1− α(γ, εC))µDl + α(γ, εC)(µP − µSg))

1− γ + γ(εC + (1− εC − εD)µD)
< l,

(C|D)J+K (if µS > 0) :
γ(1− εC − εD)

1− γ + γεC

(
µP − µSg − µDl

)
> l.

The proof of Lemma 12 is in OA.3.1. The feasibility constraints come from cal-

culating the relevant steady-state shares for the strategy DJPKS1D∞. The (C|C)J

incentive constraint comes from solving VJ and using Lemma 7. The (D|D)J+K−1 and

(C|D)J+K constraints are derived by relating the value functions of adjacent records.

Since l > g + g2, it can be shown that, for all sufficiently small δ > 0, there are

µP , µS > 0 satisfying µP + µS = 1− δ, µS > (g/l)(1− δ), and µP − µSg − δl > 0. Fix

such a δ and the corresponding µP , µS. There is some sufficiently small η ∈ (0, δ/2)

such that the above inequalities hold when µP , µS, and δ are respectively replaced with

any µP , µS, and δ̃ satisfying |µP − µP |, |µS − µS| ≤ η and |δ̃ − δ| ≤ 2η.

The following lemma, whose proof is in OA.3.2, shows that there is an interval of

γ such that J and K can be tailored to obtain shares µD1 , µP , and µS within η of δ,

µP , and µS, respectively, when noise is sufficiently small. (Consequently, the share µD

must be within 2η of δ.) Moreover, the γ interval can be taken so that the incentives

of supercooperators are satisfied.

Lemma 13. There are 0 < γ < γ < 1 and ε > 0 such that, for all γ ∈ [γ, γ]

and εC , εD < ε, there is a DJPKS1D∞ strategy with a steady state whose shares satisfy

|µD1 −δ|, |µP −µP |, |µS−µS| ≤ η, and are such that the (C|D)J+K constraint in Lemma

49



12 is satisfied.

The left-hand side of the (C|C)J constraint in Lemma 12 converges uniformly to

µS/(1− µD1)l as ε→ 0 for all γ ∈ [γ, γ], |µD1 − δ|, |µP − µP |, |µS − µS| ≤ η. Because

(µS − η)/(1− δ+ η)l > g, this means that ε can be chosen to be sufficiently small such

that all these steady-state shares satisfy the (C|C)J constraint in Lemma 12 for all γ ∈

[γ, γ] and εC , εD < ε. This is similarly true for the (D|D)J+K−1 constraint in Lemma

12, because the left-hand side of the corresponding inequality converges uniformly to

γµD/(1− γ + γµD)l < l as ε→ 0 for all γ ∈ [γ, γ], |µD1 − δ|, |µP − µP |, |µS − µS| ≤ η.

Thus there are 0 < γ < γ < 1 and ε > 0 such that equilibria with shares µP , µS

satisfying |µP − µS|, |µS − µS| ≤ η (and thus µC ≥ 1 − 2δ) exist whenever γ ∈ [γ, γ]

and εC , εD < ε.

A.3.3.3 Proof of Coordination-Proofness

We show that the grim trigger equilibria analyzed in A.3.3.1 and the DJPKS1D∞

equilibria analyzed in A.3.3.2 are coordination-proof. In any such equilibrium, (C,C)

is played in every match where neither player has a defector record. By a similar

argument to the proof of Lemma 2, the play in these matches is coordination-proof.

Thus, we need only consider play in matches with a defector. Note that in equilibria

generated by either grim trigger or DJPKS1D∞ strategies, the expected continuation

value of a defector is weakly higher from playing D than from playing C. Since D

is strictly dominant in the stage game, it follows that D is strictly dominant in the

augmented game for any defector. Thus, the prescribed action profile (D,D) in a match

involving a preciprocator and a defector is the only equilibrium in the corresponding

augmented game. Likewise, the prescribed action profile (C,D) in a match involving a

supercooperator and a defector is the only equilibrium in the corresponding augmented

game. We conclude that play in all matches is coordination-proof.
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OA.1 Proof of Corollary 3

Corollary 3. Under any finite-partitional record system, a coordination-proof equilib-

rium exists if the stage game has a symmetric Nash equilibrium that is not Pareto-

dominated by another (possibly asymmetric) Nash equilibrium.

Fix such a symmetric static equilibrium α∗, and let σ recommend α∗ at every record

pair (r, r′). Then (σ, µ) is an equilibrium for any steady state µ. Moreover, note that

ûr,r′(a, a
′) = (1− γ)u(a, a′) + γu(α∗, α∗), for any r, r′, a, a′. Thus, (α, α′) is a (possibly

mixed) augmented-game Nash equilibrium if and only if it is a Nash equilibrium of

the stage game. Since (α∗, α∗) is not Pareto-dominated by another static equilibrium,

there is no augmented-game Nash equilibrium (α, α′) satisfying (u(α, α′), u(α′, α)) >

∗This paper was previously distributed with the title “Steady-State Equilibria in Anonymous
Repeated Games.” It replaces our earlier papers “Steady-State Equilibria in Anonymous Repeated
Games, I: Trigger Strategies in General Stage Games,” “Steady-State Equilibria in Anonymous Re-
peated Games, II: Coordination-Proof Strategies in the Prisoner’s Dilemma,” and “Robust Coop-
eration with First-Order Information.” We thank Nageeb Ali, V Bhaskar, Glenn Ellison, Sander
Heinsalu, Yuval Heller, Takuo Sugaya, Satoru Takahashi, and Caroline Thomas for helpful comments
and conversations, and NSF grants SES 1643517 and 1555071 and Sloan Foundation grant 2017-9633
for finanical support.
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(u(α∗, α∗), u(α∗, α∗)), and hence there is no augmented-game Nash equilibrium (α, α′)

satisfying (ûr,r′(α, α
′), ûr′,r(α

′, α)) > (ûr,r′(α
∗, α∗), ûr′,r(α

∗, α∗)) for any r, r′. That is,

(σ, µ) is coordination-proof.

OA.2 Proof of Theorem 3

Theorem 3. Fix an action a. With canonical first-order records:

(i) If there exists an unprofitable punishment b for a and there is a strict and sym-

metric static equilibrium (d, d), then a can be limit-supported by strict equilibria.

(ii) If there exists an action b such that (b, b) is a strict static equilibrium and u(a, a) >

max{u(b, a), u(b, b)}, then a can be limit-supported by strict equilibria.

Let 0 < γ < γ < 1 be such that

γ

1− γ
> max

{
max
x

u(x, a)− u(a, a)

u(a, a)− u(c, b)
,max

x

u(x, c)− u(b, c)

u(a, a)− u(c, b)

}
(OA 1)

for all γ ∈ [γ, γ]. Consider the strategy σ̂: A player whose action has never been

recorded as anything other than a or b is in good standing, and all other players are

in bad standing. Players in good standing play a against fellow good-standing players

and play b against bad-standing players, while bad-standing players always play b.

described in Section 4, and let µG denote the share of good-standing players in a

steady state. We will show that for all δ > 0, there is an ε > 0 such that, whenever

γ ∈ [γ, γ] and εx,x′ < ε for all x, x′ ∈ A, σ̂ induces strict equilibria satisfying µG > 1−δ.

Thus, σ̂ can be combined with threading to limit-support a as (γ, ε)→ (1, 0).

Throughout the proof, let ε̃a =
∑

ã6=a,b εa,ã be the probability that a player’s action

is recorded as something other than a or b when the player’s action action is a, and let

ε̃b =
∑

ã6=a,b εb,ã be the probability that the action is recorded as something other than

a or b when the actual action is b.
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Claim OA 1 below shows that the steady-state share of good-standing players in-

duced by σ̂ converges to 1 uniformly over γ ∈ [γ, γ] as ε→ 0. For the remainder of the

proof, we restrict attention to γ ∈ [γ, γ]. Claim OA 2 then shows that the incentives

of good-standing players are satisfied when ε is sufficiently small. These two claims

together complete the argument, as the incentives of bad-standing players are always

satisfied since c is a strict best-response to b and (d, d) is a strict static equilibrium.

Claim OA 1. For all δ > 0, there is an ε > 0 such that, whenever εx,x′ < ε for all

x, x′ ∈ A, the steady states induced by σ̂ satisfies µG > 1− δ.

Proof. Note that the inflow into good standing is 1− γ, the share of newborn players.

The outflow from good standing is the sum of (1 − γ)µG, the share of good-standing

players who die in a given period, and γ(ε̃aµ
G + ε̃b(1 − µG))µG, the share of good-

standing players who are recorded as playing an action other than a or b in a given

period. In a steady state, these inflows and outflows must be equal, and setting the

corresponding expressions equal to each other gives

µG =
1− γ

1− γ + γ(ε̃aµG + ε̃b(1− µG))
≥ 1− γ

1− γ + γmax{ε̃a, ε̃b}
.

The claim then follows since limε→0 infγ∈[γ,γ](1− γ)/(1− γ + γmax{ε̃a, ε̃b}) = 1. �

Claim OA 2. For all δ > 0, there is an ε > 0 such that, whenever εx,x′ < ε for all

x, x′ ∈ A, the incentives of good-standing players states are satisfied.

Proof. We will use the facts that the value function of good-standing players, V G,

equals the average flow payoff in the population in a given period, so µG(µGu(a, a) +

(1− µG)u(b, c)) + (1− µG)(µGu(c, b) + (1− µG)u(d, d)), and that the value function of

bad-standing players is V B = µGu(c, b) + (1− µG)u(d, d).

When facing an opponent playing a, the expected payoff of a good-standing player

from playing a is (1− γ)u(a, a) + γ(1− ε̃a)V G + ε̃aV
B while their expected payoff from

playing b is (1− γ)u(b, a) + γ(1− ε̃b)V G + ε̃bV
B. Thus, a good-standing player strictly
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prefers to play a rather than b precisely when

(1− γ)(u(a, a)− u(b, b)) > γ(ε̃a − ε̃b)(V G − V B). (OA 2)

Moreover, the expected payoff of a good-standing player from playing action x 6∈ {a, b}

is (1−γ)u(x, a) +γ(εx,a + εx,b)V
G +γ(1− εx,a− εx,b)V B. Thus, a good-standing player

strictly prefers to play a rather than any x 6∈ {a, b} precisely when

γ

1− γ
> max

x 6∈{a,b}

u(x, a)− u(a, a)

(1− ε̃a − εx,a − εx,b)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d))
.

(OA 3)

Claim OA 1 implies that, as ε→ 0, the right-hand side of (OA 2) and the right-hand

side of (OA 3) converge uniformly to 0 and maxx 6∈{a,b}(u(x, a) − u(a, a))/(u(a, a) −

u(c, b)), respectively. From u(a, a) > u(b, b) and (OA 1), we conclude that a good-

standing player strictly prefers to match a with a for sufficiently small noise.

We now handle the incentives of a good-standing player to play b against an op-

ponent who plays c. When facing an opponent playing c, the expected payoff of a

good-standing player from playing a is (1 − γ)u(a, c) + γ(1 − ε̃a)V
G + ε̃aV

B while

their expected payoff from playing b is (1 − γ)u(b, c) + γ(1 − ε̃b)V G + ε̃bV
B. Thus, a

good-standing player strictly prefers to play b rather than a precisely when

(1− γ)(u(b, c)− u(a, c)) > γ(ε̃b − ε̃a)(V G − V B). (OA 4)

Moreover, the expected payoff of a good-standing player from playing action x 6∈ {a, b}

is (1− γ)u(x, c) + γ(εx,a + εx,b)V
G + γ(1− εx,a− εx,b)V B. Thus, a good-standing player

strictly prefers to play b rather than any x 6∈ {a, b} precisely when

γ

1− γ
> max

x 6∈{a,b}

u(x, c)− u(b, c)

(1− ε̃b − εx,a − εx,b)(µG(u(a, a)− u(c, b)) + (1− µG)(u(b, c)− u(d, d))
.

(OA 5)

Claim OA 1 implies that as ε→ 0, the right-hand side of (OA 4) and the right-hand side

of (OA 5) converge uniformly to 0 and maxx6∈{a,b}(u(x, c)− u(b, c))/(u(a, a)− u(c, b)),

4



respectively. From u(b, c) > u(a, c) and (OA 1), we conclude that a good-standing

player strictly prefers to play b rather than any other action against an opponent

playing c for sufficiently small noise. �

OA.3 Proofs of Lemmas for Theorem 5(ii)

OA.3.1 Proof of Lemma 12

Lemma 12. There is a DJPKS1D∞ equilibrium with shares µD1, µP , µS, and µD2 if

and only if the following conditions hold:

1. Feasibility: µD1 = 1− α(γ, 1− εD)J ,

µP = α(γ, 1− εD)J(1− β(γ, ε, µD)K),

µS = α(γ, 1− εD)Jβ(γ, ε, µD)K(1− α(γ, εC)),

µD2 = α(γ, 1− εD)Jβ(γ, ε, µD)Kα(γ, εC).

2. Incentives:
(C|C)J :

(1− εC − εD)µD

εC + (1− εC − εD)µD

(
µS

1− µD1
l +

µD2

µD1(1− µD1)
(µP − µSg)

)
> g,

(D|D)J+K−1 :
γ(1− εC − εD)((1− α(γ, εC))µDl + α(γ, εC)(µP − µSg))

1− γ + γ(εC + (1− εC − εD)µD)
< l,

(C|D)J+K (if µS > 0) :
γ(1− εC − εD)

1− γ + γεC

(
µP − µSg − µDl

)
> l.

We will derive the feasibility conditions and then derive the incentive conditions.

The feasibility conditions of Lemma 12 are a consequence of the following lemma.

Lemma OA 1. In a DJPKS1D∞ steady state with total share of defectors µD,

µk =


α(γ, 1− εD)k(1− α(γ, 1− εD)) if 0 ≤ k ≤ J − 1

α(γ, 1− εD)Jβ(γ, ε, µD)k(1− β(γ, ε, µD)) if J ≤ k ≤ J +K − 1

α(γ, 1− εD)Jβ(γ, ε, µD)K(1− α(γ, εC)) if k = J +K

.
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To see why Lemma OA 1 implies the feasibility conditions of Lemma 12, note that

µD1 =
J−1∑
k=0

α(γ, 1− εD)k(1− α(γ, 1− εD)) = 1− α(γ, 1− εD)J ,

µP =
J+K−1∑
k=J

α(γ, 1− εD)Jβ(γ, ε, µD)k(1− β(γ, ε, µD)) = α(γ, 1− εD)J(1− β(γ, ε, µD)K),

µS = µJ+K = α(γ, 1− εD)Jβ(γ, ε, µD)K(1− α(γ, εC)),

which also gives µD2 = 1− µD1 − µP − µS = α(γ, 1− εD)Jβ(γ, ε, µD)Kα(γ, εC).

Proof of Lemma OA 1. The inflow into score 0 is 1 − γ, while the outflow from score

0 is (1− γ + γ(1− εD))µ0. Setting these equal gives

µ0 =
1− γ

1− γ + γ(1− εD)
= 1− α(γ, 1− εD).

Additionally, for every 0 < k < J , both score k and score k−1 are defectors. Thus, the

inflow into score k is γ(1−εD)µk−1, while the outflow from score k is (1−γ+γ(1−εD))µk.

Setting these equal gives

µk =
γ(1− εD)

1− γ + γ(1− εD)
µk−1 = α(γ, 1− εD)µk−1.

Combining these facts gives µk = α(γ, 1− εD)k(1− α(γ, 1− εD)) for 0 ≤ k ≤ J − 1.

Since record J−1 is a defector and record J is a preciprocator, the inflow into record

J is γ(1−εD)µJ−1, while the outflow from record J is (1−γ+γ(εC+(1−εC−εD)µD))µJ .

Setting these equal and using the fact that µJ−1 = α(γ, 1 − εD)J−1(1 − α(γ, 1 − εD))

gives

µJ = α(γ, 1− εD)J−1(1− α(γ, 1− εD))
γ(1− εD)

1− γ + γ(εC + (1− εC − εD)µD

= α(γ, 1− εD)J
1− γ

1− γ + γ(εC + (1− εC − εD)µD

= α(γ, 1− εD)J(1− β(γ, ε, µD)).
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Additionally, for every J < k < J+K, both record k and record k−1 are preciprocators.

Thus, the inflow into record k is γ(εC + (1− εC − εD)µD)µk−1, while the outflow from

record k is (1− γ + γ(εC + (1− εC − εD)µD))µk. Setting these equal gives

µk =
γ(εC + (1− εC − εD)µD)

1− γ + γ(εC + (1− εC − εD)µD)
µk−1 = β(γ, ε, µD)µk−1.

Combining these facts gives µk = α(γ, 1 − εD)Jβ(γ, ε, µD)k(1 − β(γ, ε, µD)) for J ≤

k ≤ J +K − 1.

Since record J + K − 1 is a preciprocator and record J + K is a supercooperator,

the inflow into record J + K is γ(εC + (1 − εC − εD)µD)µJ+K−1, while the outflow

is (1 − γ + γεC))µK . Setting these equal and using the fact that µJ+K−1 = α(γ, 1 −

εD)Jβ(γ, ε, µD)K−1(1− β(γ, ε, µD)), we have

µJ+K = α(γ, 1− εD)J
γ(εC + (1− εC − εD)µD)

1− γ + γεC
β(γ, ε, µD)K−1(1− β(γ, ε, µD))

= α(γ, 1− εD)Jβ(γ, ε, µD)K
1− γ

1− γ + γεC

= α(γ, 1− εD)Jβ(γ, ε, µD)K(1− α(γ, εC)).

�

Now we establish the incentive conditions in Lemma 12. We first handle the incen-

tives of the score J preciprocator to play C against an opponent playing C. (When

this incentive condition is satisfied, all other preciprocators play C against an opponent

playing C.) Since VJ equals the average payoff in the population of players with score

greater than J , we have

VJ =
µP

1− µD1
µC +

µS

1− µD1
(µC − µDl) +

µD2

1− µD1
µS(1 + g).

Since the flow payoff to a preciprocator is µC , Lemma 7 along with the fact that

pDk = εC + (1− εC − εD)µD for any preciprocator implies that a score J preciprocator
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plays C against C iff

1− εC − εD
εC + (1− εC − εD)µD

(
µC − µP

1− µD1
µC − µS

1− µD1
(µC − µDl)− µD2

1− µD1
µS(1 + g)

)
> g.

Since

µC − µP

1− µD1
µC − µS

1− µD1
(µC − µDl)− µD2

1− µD1
µS(1 + g)

=µD
(

µS

1− µD1
l +

µD2

µD1(1− µD1)
(µP − µSg)

)
,

it follows that the (C|C)J constraint is equivalent to

(1− εC − εD)µD

εC + (1− εC − εD)µD

(
µS

1− µD1
l +

µD2

µD1(1− µD1)
(µP − µSg)

)
> g.

To handle the incentives of a score J +K supercooperator, note that

VJ+K = (1− γ)(µC − µDl) + γ(1− εC)VK + γεCVJ+K+1.

Combining this with the fact that Vk = µS(1 + g) for all k > K + J gives

VJ+K = (1− α(γ, εC))(µC − µDl) + α(γ, εC)µS(1 + g). (OA 6)

Thus, we have

γ(1− εC − εD)

1− γ
(VJ+K − VJ+K+1) =

γ(1− εC − εD)

1− γ + γεC
(µP − µSg − µDl),

from which the (C|D)J+K constraint in Lemma 12 immediately follows.

Finally, we show that a record J + K − 1 preciprocator prefers to play D against

an opponent playing D. (This implies that all other preciprocators play D against an
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opponent playing D.) Note that

VJ+K−1 = (1−γ)µC +γ(1−εC− (1−εC−εD)µD)VK−1 +γ(εC +(1−εC−εD)µD)VJ+K ,

so

γ(1− εC − εD)

1− γ
(VJ+K−1 − VJ+K) =

γ(1− εC − εD)

1− γ + γ(εC + (1− εC − εD)µD)
(µC − VJ+K).

Combining this with the expression for VJ+K in Equation OA 6 gives

γ(1− εC − εD)

1− γ
(VJ+K−1−VJ+K) =

γ(1− εC − εD)((1− α(γ, εC))µDl + α(γ, εC)(µP − µSg))

1− γ + γ(εC + (1− εC − εD)µD)
,

which implies the form of the (D|D)J+K−1 constraint in Lemma 12.

OA.3.2 Proof of Lemma 13

Lemma 13. There are 0 < γ < γ < 1 and ε > 0 such that, for all γ ∈ [γ, γ]

and εC , εD < ε, there is a DJPKS1D∞ strategy with a steady state whose shares satisfy

|µD1 −δ|, |µP −µP |, |µS−µS| ≤ η, and are such that the (C|D)J+K constraint in Lemma

12 is satisfied.

Let J(γ, δ) = dln(1− δ)/ ln(γ)e be the smallest integer greater than ln(1−δ)/ ln(γ).

Let K(γ, δ) =
⌈
(ln(γJ(γ,δ) − µP )− ln(γJ(γ,δ)))/ ln(β(γ, 0, δ))

⌉
. Let γ ∈ ((1 + δ)/2, 1) be

such that

|γJ(γ,δ) − (1− δ)| ≤ η

6
,∣∣γJ(γ,δ)(1− β(γ, 0, δ)K(γ,δ))− µP

∣∣ ≤ η

6
,∣∣∣γJ(γ,δ) (1− β (γ, 0, δ + 2(1− γ))K(γ,δ)

)
− µP

∣∣∣ ≤ η

6
,

γ

1− γ
(µP − η − (µS + η)g − (δ + 2η)l) > l.

(OA 7)

To see that such a γ exists, note that limγ→1 γ
J(γ,δ) = 1−δ and limγ→1 β(γ, 0, δ)K(γ,δ) =
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1 − µP/(1 − δ), so limγ→1 γ
J(γ,δ)(1 − β(γ, 0, δ)K(γ,δ)) = µP . Additionally, since µP −

η − (µS + η)g − (δ + 2η)l > 0, the left-hand side of the fourth inequality approaches

infinity as γ → 1. The argument for the third inequality is a little more involved. Let

K ′(γ, δ) =
⌈
(ln(γJ(γ,δ) − µP )− ln(γJ(γ,δ)))/ ln(β(γ, 0, δ + 2(1− γ))

⌉
. It can be shown

that limγ→1K(γ, δ)/K ′(γ, δ) = 1. Moreover, limγ→1 β(γ, 0, δ + 2(1 − γ))K
′(γ,δ) = 1 −

µP/(1−δ), so it follows that limγ→1 β(γ, 0, δ+2(1−γ))K(γ,δ) = limγ→1(β(γ, 0, δ+2(1−

γ))K
′(γ,δ))K(γ,δ)/K′(γ,δ) = 1 − µP/(1 − δ). Combining this with limγ→1 γ

J(γ,δ) = 1 − δ

gives limγ→1 γ
J(γ,δ)

(
1− β (γ, 0, δ + 2(1− γ))K(γ,δ)

)
= µP .

Let J = J(γ, δ) and K = K(γ, δ). There exists some γ ∈ ((1 + δ)/2, γ) such that

J −1 ≤ ln(1− δ)/ ln(γ) ≤ J for all γ ∈ [γ, γ]. Moreover, continuity, combined with the

inequalities in (OA 7), implies that this γ can be chosen along with some ε > 0 such

that

|α(γ, 1− εD)J − (1− δ)| ≤ η

3
,∣∣∣α(γ, 1− εD)J(1− β(γ, ε, δ)K)− µP

∣∣∣ ≤ η

3
,∣∣∣α(γ, 1− εD)J

(
1− β (γ, ε, δ + 2(1− γ))K

)
− µP

∣∣∣ ≤ η

3
,

γ(1− εC − εD)

1− γ + γεC
(µP − η − (µS + η)g − (δ + 2η)l) > l,

(OA 8)

for all γ ∈ [γ, γ] and εC , εD < ε.

Since µD2 ≤ α(γ, εC) and α(γ, εC) → 0 as εC → 0 uniformly over γ ∈ [γ, γ], we

can take ε to be such that µD2 ≤ min{η/3, (1− γ)/2} for all γ ∈ [γ, γ] and εC , εD < ε.

Moreover, as J − 1 ≤ ln(1− δ)/ ln(γ) ≤ J , it follows that γJ ∈ [γ(1− δ), 1− δ] for all

γ ∈ [γ, γ]. Because α(γ, 1 − εD) ≤ γ and α(γ, 1 − εD) → γ as εD → 0 uniformly over

γ ∈ [γ, γ], we can take ε to be such that µD1 = 1− α(γ, 1− εD)J ∈ [δ, δ + 3(1− γ)/2]

for all γ ∈ [γ, γ] and εC , εD < ε. Thus, µD ∈ [δ, δ + 2(1 − γ)] for all γ ∈ [γ, γ] and

εC , εD < ε. As β(γ, ε, µD) is increasing in µD, the first three inequalities in (OA 8)

imply that, for all γ ∈ [γ, γ] and εC , εD < ε, there are feasible steady states with

|µD1 − δ|, |µP − µP |, µD2 ≤ η/3. Additionally, since µS = 1 − δ − µP and µS =
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1 − µD1 − µP − µD2 , it follows that all such steady states must have |µS − µS| ≤ η.

Finally, note that these facts, along with the fourth inequality in (OA 8), imply that

the (C|D)J+K constraint in Lemma 12 is satisfied.
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