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Abstract. In the reputation literature, players have commitment types which represent

the possibility that they do not have standard payoffs but instead are constrained to follow

a particular plan. In this paper, we show that arbitrary commitment types can emerge from

incomplete information about the stage payoffs. In particular, any finitely repeated game

with commitment types is strategically equivalent to a standard finitely repeated game with

incomplete information about the stage payoffs. Then, classic reputation results can be

achieved with uncertainty concerning only the stage payoffs.

JEL Numbers: C72, C73.

1. Introduction

The reputation literature relies on the existence of commitment types. These types are

not strategic but are certain to follow a particular plan. Since the seminal work of Kreps,

Milgrom, Roberts, and Wilson (1982) (henceforth, the Gang of Four), it has been well-

established that inclusion of commitment types may alter predicted outcomes dramatically,

as this may entice the original “rational”types to imitate the commitment types, in order

to form a reputation for playing according to the committed plan. Building on this insight,

a large literature has emerged, with applications in a wide range of areas.1

Of course, commitment types can be modeled by using a payoff function that rewards a

player who follows a specific plan. For example, the tit-for-tat types used by the Gang of Four

in the analysis of finitely repeated prisoners dilemma could be assigned payoff1 if they follow
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tit-for-tat and zero otherwise. However, such payoffs cannot arise in a standard repeated

game, i.e. as a discounted sum of stage-game payoffs. The only commitment types that arise

directly from modified stage-game payoffs, within a standard repeated-game structure, are

those who commit to playing the same action throughout the game. In some models, such

types have very significant effects,2 but unlike tit-for-tat types they have no effect on the

repeated prisoners dilemma game.

The form of commitment types is important for the interpretation of reputation results.

When commitment types must be restricted by fiat to follow a certain plan, or have payoffs

which are not a discounted sum of stage-game payoffs, the literature has sometimes referred

to them as “crazy”types. Amore generous characterization, more in keeping with the current

tone of the literature, would say that commitment types reflect psychological anomalies and

motivations that lie outside the game, such as maintaining reputation in the context of

a super-game. On the other hand, if commitment types arise solely from heterogeneity in

stage-game payoffs and beliefs about these payoffs, then reputation formation can occur with

full rationality and without resort to such super-game concerns.

In this paper, we show that for any given plan, a commitment type who is required to

follow this plan can be mimicked by a utility-maximizing type, which we call a “twin”. The

twin knows it is common knowledge that they play a repeated game (i.e. he comes from a

type space in which only the stage-game payoff functions can vary by type), but his unique

rationalizable action is to follow the given plan. Moreover, by embedding a collection of

such twins into a single type space, every game with commitment types can be converted to

a standard repeated game with incomplete information about the stage-game payoff func-

tion, such that the twins have prior probabilities almost identical to the commitment types.

Therefore, any model of reputation formation in finitely repeated games, where players form

a reputation for commitment, can be converted to a strategically equivalent model in which

they form a reputation for certain beliefs about the stage-game payoffs. This construction

requires that we allow suffi cient variations in stage-game payoffs and consider a rich set of

information structures.

2For example, the existence of such commitment types is suffi cient for the seminal analyses of the re-

peated entry-deterrence models by Kreps and Wilson (1982) and Milgrom and Roberts (1982) and for the

Fudenberg and Levine (1996) result that the informed player’s payoff is within his Stackelberg payoffs when

the uninformed player is short-lived (best-replying myopically).
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Of course, one may also wish to restrict the stage-game payoff functions. For example, in

a standard prisoners’dilemma game, one might want to assume that it is common knowl-

edge that cooperation is not dominant. Under such restrictions, twins may not exist for

some commitment types. Indeed, we also prove an opposing benchmark, showing that one

needs some amount of variations in the stage-game payoffs in order to have any reputational

effect. We show that if the stage game is dominance-solvable and the stage game payoffs

are restricted to a suffi ciently small neighborhood of the original stage-game payoff function,

then the unique sequential equilibrium of the repeated game with incomplete information

prescribes all players to repeat the stage-game solution throughout the game (as in the

subgame-perfect equilibrium of the complete information version), regardless of the length

of the game.

Therefore, one needs to allow some substantial amount of variation in stage-game payoffs in

order to provide an incomplete-information foundation for the commitment types. While the

amount of necessary variation may depend on the details of the game and the commitment

types at hand, our main result shows that one can always provide such a foundation as long

as there is enough variation in allowable stage-game payoff functions.

One limitation is worth emphasizing here. Our construction makes fundamental use of

players who do not know their own payoffs. Some of the literature has focused on models

with common knowledge that each player knows his own payoffs; Fudenberg, Kreps, and

Levine (1988) call this a model with “personal types.”We believe an important future step

is to determine the extent to which our results can be recovered in a model with personal

types.

2. Preview of Results

In this section, we preview our main result more carefully on the example analyzed by

the Gang of Four: the finitely-repeated prisoner’s dilemma game in which player 1 may be

committed to tit-for-tat, though this has small ex-ante probability.
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Consider the repeated game in which the following prisoner’s dilemma is repeated t̄ times:

(PD)

Cooperate Defect

Cooperate 5, 5 0, 6

Defect 6, 0 1, 1

All the previous moves are publicly observable (perfect monitoring), and the payoff of a

player in the repeated game is the sum of his payoffs in the stage game above. A simple

application of backward induction in this game yields the play of (Defect, Defect) at every

history. Indeed, it is well known that the only Nash equilibrium outcome is playing (Defect,

Defect) at every period.

The Gang of Four consider an incomplete information game G in which player 1 may

be committed to playing tit-for tat. Player 1 has two types, a “rational” type τ ∗1 , whose

payoffs and available moves are as in the repeated-prisoners’dilemma game above, and a

commitment type τT4T
1 which can only play tit-for-tat. That is, the latter type must play

cooperate in the first round and imitate the last move of player 2 in the subsequent periods.

The prior probability of τT4T
1 is some small ε > 0. Player 2 still has one type τ ∗2 , which is

“rational”as in the original game. The Gang of Four shows that in any sequential equilibrium

of the new game, each rational type τ ∗i must play Cooperate at all but few periods.

As we mentioned in the introduction, one can replicate the above equilibrium behavior

with payoff uncertainty by assigning the payoff function of τT4T
1 as 1 at histories at which

player 1 plays according to tit-for-tat and 0 at all other histories. Here, the solution concept

is sequential equilibrium with the restriction that player 2 assigns probability 1 on τ ∗1 off

the path. Such a payoff function is incompatible with the repeated game payoff structure,

and one cannot replicate the commitment to tit-for-tat by simply modifying the stage-game

payoff function for τT4T
1 . Indeed, such modifications can lead to only two commitment

types: the type that plays Cooperate throughout and the type that plays Defect throughout.

Commitment to cooperation can be justified by the stage-game payoff function

(CC)

Cooperate Defect

Cooperate 1 1

Defect 0 0

for example. The inclusion of such simple commitment types cannot affect the behavior of

rational types in this game.
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However, the austere information structure above is not the only structure we can consider.

Our main result (Proposition 1) uses richer type spaces to replicate arbitrary commitment

types by payoff types. For any ε′ > ε, applying our main result to the game G in the Gang

of Four generates a game G′ with the following properties.

Ex-ante Proximity: The prior probability of the rational type profile (τ ∗1 , τ
∗
2 ) is at

least 1− ε′, and each τ ∗i knows that his stage-game payoffs are as in (PD).
Repeated-Game Structure: All types can play all strategies and maximize the sum

of stage-game payoffs, which need not be as in (PD).

Strategic Equivalence: G and G′ are strategically equivalent in the following sense.

(1) G′ contains types τ ∗1 , τ
∗
2 , a twin τ̂

T4T
1 of the tit-for-tat type τT4T

1 in G, and a number

of other new types (of both players) that we use to encode the beliefs of type τ̂T4T
1 .

(2) Though τ̂T4T
1 is allowed to play any plan of action, tit-for-tat is his unique rational-

izable plan.

(3) The interim beliefs of rational types are equivalent in G and G′: rational type τ ∗1
is certain that he faces the rational type τ ∗2 , and the rational type τ

∗
2 in turn puts

probability 1− ε on τ ∗1 and probability ε on the twin τ̂T4T
1 of τT4T

1 .

By the strategic equivalence property, the strategic situation the rational types face is

the same as in G, except now τ ∗2 thinks that τ̂
T4T
1 plays tit-for-tat as a result of some

rational reasoning under incomplete information rather than as a result of commitment or

an unconventional payoff function. Therefore, under the broad set of solution concepts that

are invariant to such changes, the solution sets for rational types (τ ∗1 , τ
∗
2 ) are identical in G

and G′. The conditional probabilities specified above are achieved by a prior distribution in

G′ putting probability 1− ε′ on (τ ∗1 , τ
∗
2 ), ε (1− ε′) / (1− ε) on

(
τ̂T4T

1 , τ ∗2
)
and the remaining

small probability (ε′ − ε) / (1− ε) on the newly constructed types.

Two points about this construction are worth emphasizing. First, when ε′ − ε is small

compared to ε, the prior probabilities of (τ ∗1 , τ
∗
2 ) and

(
τ̂T4T

1 , τ ∗2
)
are approximately 1− ε and

ε, respectively, with much smaller probability on the new types. Hence, the type spaces

of G and G′ are nearly identical, and the twin τ̂T4T
1 assigns much larger probability to the

standard type τ ∗2 than to the new types. Despite this, τ̂T4T
1 has a unique rationalizable

plan because τ̂T4T
1 believes that his own plan has non-negligible impact on his payoff only

if he faces one of the newly constructed types. He finds these types unlikely, but they are
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likely enough to be his main concern. Second, the unique rationalizable plan emerges under

intricate beliefs that require a large number of new types for encoding, especially when the

game is long. Nonetheless, we are able to encode such beliefs by putting only a negligible

amount of prior probability on the new types.

Our results build on our previous work on non-robustness in repeated games. In Weinstein

and Yildiz (2013) we showed that, in any infinitely repeated game, any individually rational

and feasible outcome is the unique rationalizable outcome of an appropriately chosen pertur-

bation which maintains common knowledge of the repeated-game structure and discounting

criterion. A key lemma leading to this result showed that for any plan whatsoever, there is a

type who follows this plan as a unique rationalizable action, although he believes in common

knowledge of the repeated-game structure. An extension of this lemma to finitely repeated

games plays an important role in our construction.

Aside from the obvious differences in motivation and applications, there are two major

technical distinctions from our work in Weinstein-Yildiz (2013). First, extending the above

lemma from infinitely repeated games to finitely repeated games requires a more diffi cult

construction, as we cannot use future incentives in the last period of a finitely-repeated game.

Second, the perturbations allowed here are more constrained. Here, as in the traditional

reputation literature, we create a perturbed model which assigns high ex-ante probability to

the original model. This is also similar to the perturbations in Kajii-Morris (1997) and other

papers on robustness. This ex ante notion of perturbation commonly gives very different

results from our interim framework in Weinstein-Yildiz (2013) and earlier papers, where we

allow arbitrary perturbations of interim beliefs in the universal type space.3 One reason

the results here can be achieved with ex-ante perturbations is that our construction centers

around perturbing the commitment types, who do not have set beliefs. The main diffi culty

turns out to be embedding types constructed in the lemma into a common-prior model

without affecting the types’rationalizable actions, while keeping the ex-ante probabilities of

the new types arbitrarily small.

3The key difference is that the ex-ante perturbations under a common prior impose additional common-

belief restrictions (Kajii and Morris, 1997), which are crucial in extending the equilibria of the original game

to the perturbed one (Monderer and Samet, 1989).
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We introduce the basic definitions and formulations in Section 3. In Section 4, we present

our construction of a new type space in which the commitment types are replaced by types

for which the committed action plan is uniquely rationalizable. In Section 5, we show that,

for the original rational types, the constructed game is strategically equivalent to the model

with commitment types, under a very broad set of solution concepts. In Section 6, we

generalize our result to n-player games in which all players may have commitment types.

After presenting our continuity result in Section 7, we offer further remarks on the literature

in Section 8 and conclude in Section 9. Some of the more complicated proofs are relegated

to the Appendix.

3. Basic Definitions

We begin with a standard two-player finitely repeated game with perfect monitoring and

normal-form stage games; see Section 6 for the n-player case. We write N = {1, 2} for the
set of players, T = {0, 1, . . . , t̄} for the set of dates t, and fix a finite set A = A1 × A2

of stage-game action profiles a = (a1, a2).4 Note that, since we have perfect monitoring,

the non-initial histories in the repeated game are of the form ht = (a0, . . . , at−1) where as

denotes the stage-game strategy profile played at date s ∈ T . We write h0 for the empty

initial history, and write H for the set of all non-terminal histories. An outcome path, or

terminal history, is a list
(
a0, . . . , at̄

)
; the set of all terminal histories is denoted by Z.

The payoff vector from an outcome path
(
a0, a1, . . . , at̄

)
in a repeated game is simply the

sum5 of the stage game payoffs:

(3.1) u
(
a0, a1, . . . , at̄|g

)
= g

(
a0
)

+ g
(
a1
)

+ · · ·+ g
(
at̄
)
,

where the function u = (u1, u2) denotes the payoffs from the repeated game and the function

g = (g1, g2) denotes the payoffs from the stage game. While the particular stage payoffs

are not necessarily known, this formula will be common knowledge throughout the games

we study here. That is, it is common knowledge that the stage payoff function g is fixed

throughout the game and that the players simply maximize the sum of these payoffs.

4Following the convention in game theory, we write −i for the player j 6= i and drop the subscript to

denote profiles, e.g., x = (x1, x2) ∈ X = X1 ×X2 and X−1 = X2.
5Discounting would not affect our results; setting the discount rate to 1 simplifies our derivations.
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We write G = [0, 1]A for the set of all possible stage-game payoff functions gi : A→ [0, 1].

Here, we put a uniform bound on the stage game payoffs so that small variations of the

probability distributions on stage payoffs lead to small variations in expected payoffs, as in

the reputation literature. This restriction strengthens our results.

We fix a complete-information repeated game in which it is common knowledge that the

stage-game payoffs are a fixed (g∗1, g
∗
2). The payoff function in the repeated game is u (·|g∗),

given by the formula in (3.1). This could, for example, be the repeated prisoner’s dilemma

game, with g∗ defined as in (PD).

In the complete-information game, a strategy of a player i is a mapping si : H → Ai,

which maps each non-terminal history to a strategy in the stage game. Because we analyze

incomplete information games, however, we will avoid the word strategy for this mapping

and call it instead an action plan, reserving the word strategy for mappings from types to

action plans. (We refer to the strategies in the stage game as moves.) The set of all action

plans is denoted by Si. The outcome path induced by a profile (s1, s2) is denoted by z (s1, s2).

We also allow (behavioral) mixed strategies and write Σi for the set of mixed action plans

σi : H → ∆ (Ai) for player i.

We consider two kinds of elaboration, corresponding to two distinct ways in which the

common-knowledge assumption in the complete information game may be relaxed. The first

notion of elaboration uses commitment types, as is standard in the reputation literature.

Definition 1. An ε-elaboration with (one-sided) commitment types (C, π) is a Bayesian

game such that

• the sets of types for players 1 and 2 are {τ ∗1 }∪C and {τ ∗2 }, respectively, where C ⊂ S1;

• Player 2’s belief π about player 1’s type satisfies π(τ ∗1 ) = 1− ε;
• the set of plans available to τ ∗i is as in the repeated game above, while the only
available plan for type c ∈ C is c,

• the payoffs are as in the complete information game.

Here, each action plan c ∈ C corresponds to a type of Player 1 who can only play c.

The incomplete information is only about whether Player 1 can play all action plans or has

committed to a particular action plan. The type τ ∗1 that can play all plans is called the
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rational type while the types c ∈ C, who can play only according to one plan of action,

are called commitment types. Observe that, since C ⊂ S1, we confine ourselves to pure

commitment types.6

The second notion of elaboration allows richer type spaces and two-sided incomplete in-

formation, but does not allow any payoff function outside of the additive structure in (3.1).

Towards stating this notion formally, we define a type space as a list (G, T , π) where G ⊂ G∗

is a finite set of payoff function profiles g, T = T 1×T2 is the set of type profiles τ = (τ1, τ2),

and π ∈ ∆ (G × T ) is the common prior.7 We define a Bayesian repeated game (without

commitment types) as a list (N,A, (G, T , π)). We should emphasize that this notation sup-

presses many important common-knowledge assumptions, such as the fact that the game

is repeated, all previous actions are publicly observable (i.e. perfect monitoring), and the

payoffs in the repeated game are given by the formula (3.1).

Definition 2. An ε-elaboration without commitment types of a complete-information game

g∗ is a Bayesian repeated game (N,A, (G, T , π)) with distinguished types τ ∗1 , τ
∗
2 where

(1) (g∗, τ ∗) ∈ G × T ,
(2) π (g∗, τ ∗) = 1− ε, and
(3) π (g∗i |τ ∗i ) = 1.

The first and second conditions state that the original complete information game is em-

bedded in the elaboration and has a high ex-ante probability of 1 − ε. The last condition
states that the rational types (τ ∗1 , τ

∗
2 ) know their payoffs, and their payoffs are as in the

original complete information game. The novelty in this definition is that the elaboration

is required to be a Bayesian repeated game, i.e., the structure given by the formula (3.1) is

common knowledge. In that sense, all the types in an elaboration without commitment types

are rational, although we reserve the term rational for types (τ ∗1 , τ
∗
2 ) as in the elaborations

with commitment types.

6This is without loss of generality because a belief in a commitment type that plays a mixed strategy in

the repeated game is equivalent to a belief in a mixture of pure commitment types (see Section 9 below).
7Here, ∆ (X) denotes the set of all probability measures on the finite set X.
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Both elaborations above fall under the category of ε-elaborations as defined by Kajii

and Morris (1997). An ε-elaboration without commitment types is a Kajii-Morris elabo-

ration with the additional restriction that the formula (3.1) is common knowledge. While

ε-elaborations with commitment types were presented above in terms of uncertainty about

the set of available strategies, they could also be represented as Kajii-Morris elaborations

with a specific simple type space in which the formula (3.1) fails.

Finally, we review a couple of standard concepts in game theory. First, a strategy of a

player i in a Bayesian repeated game (N,A, (G, T , π)) is a mapping σi : Ti → Σi. Second,

interim correlated rationalizability (henceforth ICR) is the outcome of iterated elimination of

action plans for types that are never a weak best response, as defined by Dekel, Fudenberg,

and Morris (2007). We write S∞i [τi|G] for the set of all interim correlated rationalizable

action plans for type τi ∈ Ti in game G = (N,A, (G, T , π)). We will give a more detailed

definition of ICR later in the construction. We just note here that ICR is the weakest known

rationalizability concept for Bayesian games, and all the action plans that are played by a

type with positive probability in any equilibrium are ICR for that type.

Third, we say that action plans si and s′i are equivalent if z (si, s−i) = z (s′i, s−i) for all

action plans s−i ∈ S−i, i.e., they lead to the same outcome no matter what strategy the

other player plays. Note that si and s′i are equivalent iff si (h
t) = s′i (h

t) for every history

ht in which i played according to si throughout; they may differ only in their prescriptions

for histories that they preclude. Hence, in reduced form, action plans can be represented as

mappings from the history of other players’play to own stage game actions. We write S̄i for

the set of reduced-form action plans s̄i; these map each
(
al−i
)

0≤l<t to some action ai ∈ Ai
in the stage game. Finally, we introduce the following notation for sets of equivalent action

plans: Given any two sets X, Y of action plans, we write X ' Y if for every x ∈ X there

exists y ∈ Y that is equivalent to x, and for every y ∈ Y there exists x ∈ X that is equivalent

to y. In particular, X ' {xi} means that X consists only of strategies that are equivalent

to xi.

4. Irrelevance of Commitment Types

In this section, we state and outline the proof of our main result: any ε-elaboration

with commitment types can be transformed, for any ε′ > ε, into an ε′-elaboration without
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commitment types, where each commitment type c is replaced with a payofftype τ c1 for which

c is uniquely rationalizable. These payoff types follow c not because they are committed or

have payoffs that are inconsistent with playing a repeated game but because their reasoning

under their information leads them to do so. Moreover, from the point of view of the

rational types these are the only types with positive probability, mirroring the elaboration

with commitment types. From the point of view of rational types who believe in the ICR

concept, the two elaborations are identical. Hence, under ICR (as well as a broader set

of solution concepts), the set of solutions for each rational type is identical in the two

elaborations.

Proposition 1. For any ε, ε′ ∈ (0, 1) with ε′ > ε and for any ε-elaboration G with commit-

ment types (C, π) there exists an ε′-elaboration G′ = (N,A, (G, T , π′)) without commitment
types in which the commitment types are replaced by types with unique rationalizable action

plans, meaning:

(1) π′ (g∗, τ ∗2 |τ ∗1 ) = 1 and π′ (g∗, τ ∗1 |τ ∗2 ) = π (g∗, τ ∗1 |τ ∗2 ) = 1− ε, and
(2) for every c ∈ C there exists τ c1 ∈ T1 such that

S∞i [τ c1 ] ' {c},

and π′ (τ c1 |τ ∗2 ) = π (c|τ ∗2 ) = π (c).

Here, the first condition states that the interim beliefs of rational types regarding their own

payoffs and “rationality”of their opponents are identical in the two elaborations. The second

condition states that each commitment type c is replaced by a type τ c1 for which following c

is uniquely rationalizable in reduced form (i.e. S∞i [τ c1 ] ' {c}), and that the rational type of
player 2 in G′ assigns the same probability to the type τ c1 as the rational type in G assigns

to the commitment type c (i.e. π′ (τ c1 |τ ∗2 ) ≡
∑

g1
π′ ((g1, g

∗
2) , τ c1 |τ ∗2 ) = π (c|τ ∗2 ) = π (c)).

The equivalence of G′ with G is established despite the following constraints:

(1) The repeated-game payoff structure is maintained throughout G′. That is, it is

common knowledge throughout that the payoff in the repeated game is the sum of

the payoffs in the stage game, and that the stage game is fixed throughout the game.

Type τ c1 knows all this and yet follows c as its unique rationalizable plan.
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(2) The ex-ante distribution π′ in G′ can be arbitrarily close to the distribution π in G,

in that ε′ can be arbitrarily close to ε.

Proof of Proposition 1. The first step in our construction is the following lemma, which

establishes that any given action plan si is the only rationalizable action for a type τ
si
i from

some common prior model. (The proof of Lemma 1 is the lengthiest step of the proposition

and is relegated to the appendix; we provide a detailed intuition for it later in this section.)

Lemma 1. For any si ∈ Si, there exists a Bayesian repeated game Gsi = (N,A, (Gsi , T si , πsi))
with a type τ sii ∈ T sii such that

(1) πsi (g, τ) > 0 for every (g, τ) ∈ Gsi × T si and
(2) S∞i [τ sii |Gsi ] ' {si}.

By relabeling if necessary, we take all of the types in the type spaces T si above to be
distinct from each other and from τ ∗, fixing also a unique type τ sii for each si. We construct

G′ = (N,A, (G ′, T ′, π′)) by setting

G ′ = {g∗, (0, g∗2)} ∪
⋃
c∈C
Gc

T ′i = {τ ∗i } ∪
⋃
c∈C
T ci (∀i ∈ N)

π
′
(g, τ) =


1− ε′ if (g, τ) = (g∗, τ ∗) ,
1−ε′
1−ε π (c) if (g, τ) = ((0, g∗2) , (τ c1 , τ

∗
2 )) ,

ε′−ε
(1−ε)|C|π

c (g, τ) if (g, τ) ∈ Gc × T c,
0 otherwise,

where

0 (a) = 0 (∀a ∈ A) .

We now observe that G′ satisfies the properties in the proposition. Indeed, rational type

τ ∗1 of Player 1 assigns probability 1 on (g∗, τ ∗2 ). Likewise, we have

π′ (G ′ × {τ ∗2 }) = 1− ε′ + 1− ε′
1− ε

∑
c∈C

π(c) = 1− ε′ + 1− ε′
1− ε ε = (1− ε′) / (1− ε)
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and therefore, in the interim, τ ∗2 assigns probability 1 − ε to (g∗, τ ∗1 ) and probability π (c)

to τ c1 for each c. On the other hand, since the beliefs of type τ
c
1 altered substantially when

(Gc, T c, πc) was incorporated in G′, it is not clear that τ c1 follows c as the unique ICR action.
The next lemma states that this is indeed the case.

Lemma 2. For any c ∈ C, i ∈ N , and any τi ∈ T ci , S∞i [τi|G′] = S∞i [τi|Gc]; in particular,

S∞1 [τ c1 |G′] = c.

This lemma completes the proof of the proposition; its proof is in the appendix. �

Our proof has two main steps. The first, found in Lemma 1, is to construct a type space

in which a given action plan is uniquely rationalizable for a type. We constructed such a

type space in Weinstein and Yildiz (2013) for infinite-horizon repeated games, but without

requiring that the constructed type space have a common prior, a property that is essential

for our proposition here. In this paper, using the ideas in that construction, we first construct

such a type space for finite-horizon games without common prior and then convert it to a

common-prior type space, using the ideas and the results developed by Lipman (2003) and

Weinstein and Yildiz (2007).

The main economic ideas involved in these constructions come from social learning and

reward/punishment mechanisms in repeated games. Our first construction involves types

who know their stage-game payoff is a function of their own action alone, but do not initially

know their optimal action. They will learn their optimal action from the actions of others.

Only some plans are consistent with such beliefs; for instance, no such player could play move

a0 in period 0 and the same move a1 6= a0 in all continuations. For infinite-horizon games,

we extended the result to all action plans (including plans that contradict the condition for

individual learning), using a reward and punishment mechanism, in Weinstein and Yildiz

(2013). It is harder to come up with effective reward and punishment mechanisms for finite-

horizon games. After all, one cannot provide any future incentive in the last period. Hence,

here, we use a more nuanced construction that combines social learning with a reward and

punishment mechanism to extend the result to all action plans in finitely repeated games.

In our construction, the player’s stage payoffs are additively separable in his action and

others’actions. In all periods before the last, his incentives are dominated by the desire to
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be rewarded by the other players, while in the last period he has learned his own optimal

action and acts accordingly.

The second main step is to incorporate the above type spaces in one common prior model,

replacing each commitment type with one of these type spaces. One must do this in such a

way that (i) the original complete-information game still has high prior probability (1− ε′),
(ii) the interim beliefs of the rational types are as in the original elaboration with commitment

types, and (iii) the types’rationalizable behavior in the constructed type space remain the

same after incorporating them into common prior model. The conditions (ii) and (iii) oppose

each other, making the construction more diffi cult. To see this, note that (i) and (ii) require

that the common prior π′ puts a high probability on τ c1 , requiring that probability to be
1−ε′
1−ε π (c) as in our proof. When ε and ε′ are close, this probability is approximately π (c).

When ε and ε′ are close, this also requires that π′ puts a very small probability on T c, the
original type profiles in the constructed type space in the first step. That probability can be

at most (ε′ − ε) / (1− ε), which is negligible with respect to 1−ε′
1−ε π (c) when ε and ε′ are close.

These constraints make the belief of type τ c1 in game G
′ substantially different from the belief

of the type τ c1 in game Gc. In our construction, type τ c1 in game G′ assigns probability

(4.1) pc =
|C| (1− ε′) π (c)

|C| (1− ε′) π (c) + (ε′ − ε) πc (τ)

on type τ ∗2 . Note that, for fixed π (c), when ε′ − ε approaches 0, pc approaches 1.8 In

contrast, τ c1 in game G
c assigns zero probability on τ ∗2 . Consequently, the belief hierarchies

of the types in G′ can be quite different from the belief hierarchies of the types in Gc with

the same label, which could lead to distinct set of ICR actions. We circumvent this problem

with the following trick. We set the beliefs such that, whenever player 2 has type τ ∗2 , the

payoff of type τ c1 is 0 for every move in the stage game, making him indifferent among all

outcomes. Since pc < 1, his best responses are identical to his best responses conditional on

the type of player 2 being other than τ ∗2 , thereby replicating the best responses of his twin

in Gc. Since this was the only difference between the two type spaces, the rationalizable

actions turn out to be identical in games Gc and G′, as shown formally by Lemma 2.

8Note also that the technique we use in transforming the model without common-prior to the one with

common prior also renders πc (τ c1 ) small, bringing pc near 1 even when ε and ε′ are far apart.
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Roughly speaking, from the point of view of rational types, Proposition 1 replaces commit-

ment types by types who follow the same plans as their unique rationalizable plan. Hence,

under any rationalizable solution concept, the rational types face the same strategic uncer-

tainty in both games leading the same set of possible behavior. We will next establish such

strategic equivalence formally.

5. Strategic Equivalence

In this section, we show that the elaborations G with commitment types and G′ without

commitment types described in Proposition 1 are “strategically equivalent”for rational types.

By this we mean that, for a broad set of solution concepts, the set of solutions for each

rational type are identical in games G and G′. Therefore, the same set of behavior can be

supported by reputational models regardless of whether one allows commitment types. In

other words, the same set of behavior is supported whether one allows payoff functions that

are inconsistent with the repeated-game structure or imposes this structure throughout.

Our result here applies to any solution concept that is invariant to replacing commitment

types with types that have unique rationalizable action plans (in reduced form). In general

Bayesian games, this invariance condition is somewhat stronger than elimination of non-

rationalizable strategies, because the new game contains some new types, encoding the beliefs

of the types with unique rationalizable plans. We first establish our result for a general

class of such invariant solution concepts. We also establish the same strategic equivalence

for sequential equilibrium; this requires an additional off-path belief restriction commonly

imposed in the reputation literature.

5.1. Strategic Equivalence under Invariant Solutions. The following definitions are

standard: A solution concept Σ maps every Bayesian game G to a set Σ (G) of mixed

strategies in game G. For any type spaces T and T ′ with T ⊂ T ′ and any strategy profile
σ on T ′, σT denotes the restriction of σ to T . In the following definitions, we also use the
convention that two probability distributions that have common support and agree on this

support are identical, ignoring any difference in domains.
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Definition 3. A solution conceptΣ is said to be invariant to elimination of non-rationalizable

strategies if

Σ (G) = Σ (G′)

for any two games G and G′ with identical type spaces satisfying (i) if an action plan si is

available for a type τi in game G then si is available for τi in G′ and (ii) if si is not available

for τi in G then si 6∈ S∞i [τi|G′].

Definition 4. A solution concept Σ is said to be invariant to trivial enrichments of the type

spaces if

Σ (G) = {σT |σ ∈ Σ (G′)}

for any two games G and G′ with type spaces T and T ′ such that (i) T ⊂ T ′, (ii) every type
in T has identical set of available action plans in games G and G′, and (iii) any type in T
with multiple action plans has identical interim beliefs in games G and G′.

Note that the transformation in the first definition allows only elimination of non-rationalizable

actions and the transformation in the second definition allows only inclusion of new types

such that the types who put positive probability to the new types are trivial in that they can

play only according to one plan. Proposition 1 implies that under any solution concept that

is invariant to the above transformations, elaborations with or without commitment types

have the same strategic implications for rational types. Due to its importance, we state this

corollary as a proposition:

Proposition 2. Let Σ be a solution concept that is invariant to elimination of non-rationalizable

strategies and to trivial enrichment of the type spaces. Then, for any ε, ε′ ∈ (0, 1) with

ε′ > ε and for any ε-elaboration G with commitment types, there exists an ε′-elaboration

G′ = (N,A, (G, T , π′)) without commitment types such that

{σ (τ ∗) |σ ∈ Σ (G)} = {σ (τ ∗) |σ ∈ Σ (G′)} ,

i.e., the set of solutions for rational types are identical in games G and G′.

Proof. Note that, in Proposition 1, the elaboration G′ can be obtained from G by (1) intro-

ducing new types such that only committed types believe in the new types, and (2) allowing

commitment types to play any action plan in the repeated game. The first step is a trivial
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enrichment as in Definition 3 and the second undoes an elimination covered by Definition 4,

so the conclusion follows. �

5.2. Strategic Equivalence under Sequential Equilibrium. We will next establish

the same strategic equivalence under sequential equilibrium, which is defined as follows.

Given any Bayesian repeated game with a type space (G, T , π), a belief structure is a list

µ = (µi,τi,h)i∈N,τi∈Ti,h∈H of type-specific beliefs µi,τi,h ∈ ∆ (G × T−i) regarding the underlying
payoffs and the other player’s types, beliefs that vary with the history of play.9 An assess-

ment is a pair (σ̃, µ) of strategy profile σ̃ : T → Σ and a belief structure µ. An assessment

(σ̃, µ) is said to be sequentially rational if σ̃i (·|τi) is a sequential best response to µi,τi,h and
σ̃−i, i.e., the restriction of σ̃i (·|τi) to the continuation game after every history h is a best
response to σ̃−i and the beliefs µi,τi,h in the continuation game. An assessment (σ̃, µ) is said

to be consistent if there exists a sequence (σ̃n, µn) → (σ̃, µ) such that σ̃n assigns positive

probability to each available move at every history and µn is derived from Bayes’rule and

σ̃n. An assessment (σ̃, µ) is said to be a sequential equilibrium if it is sequentially rational

and consistent.

In an ε-elaboration without commitment types, sequential equilibria are defined as above.

In an ε-elaboration with commitment types, the definition of course depends on how one

formalizes the commitment types. In particular, the definition above implies that Player

2 puts probability 1 on the rational type of Player 1 if the history is not consistent with

any commitment type– even when the history is also inconsistent with the strategy of the

rational type. This is because the commitment types have only one action, so that only the

rational types may tremble. This is an additional assumption when the commitment types

are represented by payoff perturbations (violating the additive repeated game structure). In

general, the possible off-the-path beliefs can vary depending on the way the commitment

types are formulated, but the above assumption is usually maintained. We will keep this

additional assumption in our definition for sequential equilibrium without commitment types:

Assumption 1. For every history h = (a0, . . . , at−1),

µ2,τ∗2 ,h
(g∗, τ ∗1 ) = 1

9A more general definition of a belief structure would also specify the beliefs regarding past actions, but

those beliefs are trivial because of perfect monitoring.
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whenever h has zero probability under every type τ1 6= τ ∗1 .

In our analysis we will focus on the behavior of the rational types under sequential equi-

librium, which is formally defined as follows.

Definition 5. For any elaboration G (with or without commitment types), we write

SE∗ (G) = {σ (·|τ ∗) | (σ, µ) is a sequential equilibrium of G that satisfies Assumption 1}

for the set of sequential equilibrium action plans for the rational types in G.

We are now ready to state the strategic equivalence result for sequential equilibrium.

Proposition 3. For any ε, ε′ ∈ (0, 1) with ε′ > ε and for any ε-elaboration G with commit-

ment types (C, π) there exists an ε′-elaboration G′ = (N,A, (G, T , π′)) without commitment
types such that

SE∗ (G) = SE∗ (G′) ,

i.e., under Assumption 1, the set of sequential equilibrium action plans for the rational types

is same in games G and G′.

Proof. We take G′ as in Proposition 1.We will show that both conditions σ (·|τ ∗) ∈ SE∗ (G)

and σ (·|τ ∗) ∈ SE∗ (G′) are characterized by the following conditions, (SR1) and (SR2).

First, (σ, µ) is a sequential equilibrium of G if and only if the following three conditions are

satisfied. The consistency condition for τ ∗2 is

(C) µ2,τ∗2 ,h
(c) = µ

σ(·|τ∗1 )
h (c) ≡


π(c)

Pr(h|σ(·|τ∗1 ))(1−ε)+
∑

c′∈Ch
π(c′)

if c ∈ Ch

0 otherwise
(∀h, c)

where Ch is the set of commitment plans c ∈ C that is consistent with history h. Of

course, µ
σ(·|τ∗1 )
h (τ ∗1 ) = 1−

∑
c∈C µ

σ(·|τ∗1 )
h (c). The consistency condition for player 1 is trivial,

as player 2 has only one type. Note that µ
σ(·|τ∗1 )
h is a function of σ (·|τ ∗1 ), and hence the

following sequential rationality conditions are solely on σ (·|τ ∗). The sequential rationality
conditions are

(SR1): σ (·|τ ∗1 ) is a sequential best response to σ (·|τ ∗2 ) under g∗1, and
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(SR2): at each history h, σ (·|τ ∗2 ) is conditional best response to the mixed strategy

σ̃ ≡ µ
σ(·|τ∗1 )
h (τ ∗1 )σ (·|τ ∗1 ) +

∑
c∈C

µ
σ(·|τ∗1 )
h (c) c

under g∗2.

Since all the other types are committed to a single plan, there are no other conditions.

This shows that σ (·|τ ∗) ∈ SE∗ (G) if and only if (SR1) and (SR2) are satisfied.

To show that σ (·|τ ∗) ∈ SE∗ (G′) implies the conditions (SR1) and (SR2), consider any

sequential equilibrium (σ, µ′) of G′ that satisfies Assumption 1. Firstly, since type τ ∗1 puts

probability one on (g∗, τ ∗2 ), the sequential rationality condition for that type is (SR1). Sec-

ondly, since c is the unique rationalizable action plan of τ c1 in G
′ (by Lemma 2) on all histories

h consistent with c,

(5.1) σ (c (h) |h, τ c1) = 1
(
∀c ∈ Ch, ∀h

)
.

Hence, by Assumption 1 and consistency,

(5.2) µ′2,τ∗2 ,h (τ c1) = µ
σ(·|τ∗1 )
h (c) (∀h, c) ,

which of course also implies that µ′2,τ∗2 ,h (τ ∗1 ) = µ
σ(·|τ∗1 )
h (τ ∗1 ). By (5.1) and (5.2), under the

belief of type τ ∗2 , player 1 plays according to σ̃ above, and the sequential rationality condition

for type τ ∗2 is (SR2).

To show that (SR1) and (SR2) are suffi cient for σ (·|τ ∗) ∈ SE∗ (G′), take any σ (·|τ ∗)
that satisfies (SR1) and (SR2). We will construct a sequential equilibrium (σ, µ′) of G′ that

satisfies Assumption 1. Set µ′1,τ∗1 ,h (g∗, τ ∗2 ) = 1 and µ′2,τ∗2 ,h = µ
σ(·|τ∗1 )
h . For each c ∈ C, consider

a sequential equilibrium (σc, µc) of the game in which the action plan of type τ ∗2 is fixed as

σ (·|τ ∗2 )– as moves of nature, and the type space is T c with the interim beliefs in G′. Set

σ (·|τi) = σc (·|τi) and µ′i,τi,h ≡ µci,τi,h for every τi ∈ T
c
i and c ∈ C. We now show that (σ, µ′)

is a sequential equilibrium of G′ and satisfies Assumption 1. Since Lemma 2 applies to the

case g∗2 = 0, in which case σ (·|τ ∗2 ) is rationalizable for type τ ∗2 ,

(5.3) σc (c (h) |h, τ c1) = 1
(
∀c ∈ Ch,∀h

)
.

Hence, µ′2,τ∗2 ,h is consistent and satisfies Assumption 1. The sequential rationality conditions

for rational types are (SR1) and (SR2) by construction and (5.3). The sequential rationality
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and consistency for types in T c immediately follows from the construction and the fact that
(σc, µc) is a sequential equilibrium in the auxiliary game. �

The strategic equivalence under sequential equilibrium is somewhat subtle, requiring the

lengthy proof above. This is because of the issues relating to the off-the-path beliefs, which

play a central role in sequential equilibrium while not being relevant for ICR. If a type τ c1 ,

who plans to follow c, deviates from c, then his subsequent behavior may be different from

c as ICR cannot restrict the behavior at the contingencies that are precluded by one’s own

strategy. In that case, off the path beliefs of player 2 at the histories that are not consistent

with any type could be different. Moreover, consistency may result in unforeseen restrictions

on those beliefs as it is applied for types in T c and τ ∗2 simultaneously. Assumption 1 ensures
that Player 2 assigns zero probability to τ c1 whenever Player 1 deviates from c, resulting

in beliefs that are identical to those with commitment types, as we show in the proof. Of

course, at the histories that are consistent with commitment types, the rational types in the

games G and G′ face the same uncertainty regarding all relevant aspects, such as whether

the other player is rational and which c ∈ C he is playing if he is not rational. This leads to
the same set of solutions for rational types in both games.

Remark 1. The strategic equivalence above implies that the testable predictions with or

without commitment types are nearly indistinguishable. Imagine that an empirical or ex-

perimental researcher observes outcomes of games that essentially look like a fixed repeated

game, as in g∗, but she does not know the players’ beliefs about possible commitments

or payoff variations. Using the data, she can obtain an empirical distribution on outcome

paths– with some noise. The above strategic equivalence implies that the equilibrium distri-

butions for elaborations with or without commitment types can be arbitrarily close, making

it impossible to rule out one model without ruling out the other given the sampling noise

(see our online appendix for a formal result along these lines).

6. General Case

In this section, we will present the result for the n-player case, allowing commitment

types for all players. The definitions for the n-player case mirror the case of n = 2, and

we will not repeat them here. Since we will allow commitment types for all players, an
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ε-elaboration with commitment types is now defined as a Bayesian game, with common

prior π, such that the set of types for each player i is {τ ∗i } ∪ Ci where Ci ⊂ Si can be

empty, type τi can play any action plan while a type ci ∈ Ci can play only ci, and the

probability π (τ ∗) of the rational type profile is 1− ε. Note that when ε < 1, there some Ci
is non-empty. Note also that the distribution of commitment type is not restricted; they can

be correlated for example. Such a Bayesian game can be denoted by (C1, . . . , Cn, π) where

π ∈ ∆ (({τ1} ∪ C1)× · · · × ({τn} ∪ Cn)) is the prior on the type profiles. Finally, we write Σ∗

for the set of solution concepts that are (1) invariant to the elimination of non-rationalizable

plans, (2) invariant to trivial enrichments of the type spaces, and (3) include all solutions

generated by the sequential equilibria that satisfy Assumption 1. The result is generalized

to this case as follows.

Proposition 4. For any ε, ε′ ∈ (0, 1) with ε′ > ε and for any ε-elaboration G with commit-

ment types (C1, . . . , Cn, π) there exists a strategically-equivalent ε′-elaboration G′ = (N,A, (G, T , π′))
without commitment types in which the commitment types are replaced by types with unique

rationalizable action plans:

(1) for every i ∈ N , π′
(
g∗, τ ∗−i|τ ∗i

)
= π

(
τ ∗−i|τ ∗i

)
;

(2) for every i ∈ N and ci ∈ Ci, there exists τ cii ∈ Ti such that all ICR action plans of
τ cii are equivalent to ci, and π′

(
τ cii |τ ∗j

)
= π

(
ci|τ ∗j

)
for every j 6= i;

(3) for every Σ ∈ Σ∗,

{σ (τ ∗) |σ ∈ Σ (G)} = {σ (τ ∗) |σ ∈ Σ (G′)} .

The first two conditions all together state that each commitment type is replaced by a

type that follows the committed action profile as his uniquely rationalizable plan, and the

interim beliefs of the rational types remain intact under rationalizability. The last condition

states that the two games are strategically equivalent for rational types under any invariant

solution concept, including sequential equilibria that puts probability one on rational types

off the path. An outline of the proof for this result can be found in the appendix.

7. Necessity of Commitment under CK of Approximate Payoffs

In the previous sections, while we imposed the constraint that it is always common knowl-

edge that the payoffs are the sum of identical stage-game payoffs, we allowed those payoffs
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to lie anywhere in the interval [0, 1]. In this section, by contrast, we make the stricter

requirement that it is common knowledge that payoffs lie within ε of those in the complete-

information game. Under this stricter requirement, we show that commitment types are

not dispensable in reputation models. When the stage game is dominance solvable, there is

a unique sequential Nash equilibrium outcome, in which the unique rationalizable strategy

profile of the stage game is played throughout. Here, ε is uniform over all type spaces and

the number of repetitions. For example, in the repeated prisoners’dilemma, one cannot have

any cooperation without commitment types when it is common knowledge that the payoffs

are approximately those in the prisoner’s dilemma.

Define the distance between two stage-game payoff functions via the sup norm:

d(g′, g) = max
a
|g′(a)− g(a)|

Proposition 5. Fix a complete information stage game g∗ which has unique rationaliz-

able profile a∗. Then, there exists ε > 0 such that for any ε′ > 0 and any t̄, every ε′-

elaboration (N,A, (G, T , π)) without commitment types, satisfying the additional requirement

that d(g, g∗) < ε for all g ∈ G, has a unique sequential equilibrium in which a∗ is played by

all types at all histories.

Proof. The elimination process for the finite stage game g∗ is finite. Each time an action is

eliminated (again by finiteness) it must be that for some δ > 0 it is never within δ of being

a best reply. Choose ε > 0 so that 2ε is smaller than the minimum of these δ.

Now suppose there is a sequential equilibrium strategy profile s∗ which contradicts the

result. Consider one of the latest histories at which any violation of the profile a∗ occurs,

and of the violations at this history, consider an action a′i which is eliminated first in the

elimination process for g∗, say at stage k. When player i takes this action, he must believe

that (a) the profile a∗ is played at all future dates regardless of his action and (b) no action

eliminated at stage k − 1 or earlier is played at the current history. But then by (b), the

fact that a′i is eliminated at stage k, and the choice of ε, his action is suboptimal in the

stage game; and by (a) his action cannot affect future play. This contradicts the concept of

sequential equilibrium. �
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For example, in a repeated prisoners’ dilemma game, if it is common knowledge that

payoffs are close to the prisoners’dilemma, then in any sequential equilibrium the players

defect throughout the game regardless of the number of repetitions. At some level this

is a reflection of general continuity properties of Bayesian Nash equilibrium payoffs with

respect to the perturbations of payoffs. Indeed, it is well known that, for any given t̄, as

ε → 0, the Bayesian equilibrium payoffs in ε-elaborations of repeated prisoners’dilemma

with commitment types approach the payoffs from defection throughout the game. This

is in line with the continuity results for Nash equilibrium payoffs with respect to the prior

distributions. Hence, for a given t̄, our result here differs from the existing continuity results

only in terms of the perturbations it considers, making the stage payoffs approach to the

original game instead of making the probability of types with unrelated payoffs to go to

zero. Our result has a major strength however: ε is uniform with respect to the number

of repetitions. In contrast, for any ε probability of a tit-for-tat type, cooperation prevails

whenever the number of repetitions are suffi ciently large, as famously established by the

Gang of Four.

8. Remarks

Continuity and Robustness of Equivalence. Since interim correlated rationalizability

is upperhemicontinuous (Dekel, Fudenberg, and Morris, 2007), each type τ cii with unique

rationalizable action ci has the same unique rationalizable action on a open neighborhood

of parameters and beliefs. Hence, in the elaboration constructed in Proposition 1, we can

perturb parameters such as the stage-game payoff functions and beliefs for the newly con-

structed types as long as the beliefs of rational types are fixed. So, relative to the set of

elaborations with the same set of types, where rational players have fixed beliefs, we obtain

an open set of ε′-elaborations G′ without commitment types that are strategically equivalent

to G. In particular, type τ cii need not be exactly indifferent between his actions conditional

on meeting a rational type; this was only a simplifying aspect in our construction.

On the other hand, our result is silent about continuity with respect to variation of the

beliefs of the rational types. Such continuity is directly tied to the continuity properties of

the solution concept in the original game G, by our strategic equivalence result. Of course,

since ε′ must be larger than ε (albeit being arbitrarily close), our result and the reputation
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result that it is applied to are relevant only when the solution concept on the original model

G is continuous with respect to small variations in ε when the commitment types and their

relative probabilities with respect to each other are fixed. This is indeed the case for most

existing models.10

Sensitivity to the Set of Commitment Types. Despite the continuity in the previous

paragraph, the equilibrium predictions of reputational models are highly sensitive to the

set of commitment types one considers: by varying the set of commitment types one can

obtain a rich set of behavior as equilibrium outcomes in long but finitely-repeated games.

Indeed, Fudenberg and Maskin (1986) obtain a Folk Theorem in this way. Once again,

such sensitivity to the set of commitment types will be inherited by our newly constructed

reputation models without commitment types, due to strategic equivalence.

Short-Lived Players. The above sensitivity is muted when the uninformed player is short-

lived (i.e. she myopically best-responds to her belief about the other player’s move at every

history). In that case, in any Bayesian Nash equilibrium, the payoffof the rational player with

commitment types is near his Stackelberg payoff, provided that he is suffi ciently patient and

has a type that always plays his Stackelberg move (Fudenberg and Levine (1989)). Since our

players are all long-lived, such an independence result does not hold in the reputation models

we consider here. For example, in the repeated prisoners’dilemma game, the Stackelberg

type always plays Defect, and the presence of such a type would not have any qualitative

impact on the equilibrium behavior. When there is a tit-for-tat type, we would still have

cooperation in all but a few rounds. Here, the payoff of rational type exceeds his Stackelberg

payoffs, but his payoff could be lower than his Stackelberg payoffs in other games.11

We must emphasize that our main result for two-player games would still be true if we

assumed that Player 2 is short-lived instead. In that case, for Player 2, we could still generate

any action plan that is consistent with her stage payoff being a function of her own action

10For example, sequential equilibrium is upperhemicontinuous with respect to such scaling of the proba-

bilities of commitment types. Bayesian Nash equilibrium behavior of the rational types is also upperhemi-

continuous with respect to all variations of priors (with possibly varying commitment types and relative

probabilities) because such variations can be represented as an ex-ante payoff perturbation.
11This fact has been demonstrated in infinitely repeated games, but we suspect that it can also be shown

in long but finitely-repeated games.
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only (as in Lemma 3 in the Appendix). Since this is all we need for our Lemma 4 in the

Appendix, all of our results would go through as is.

Infinitely Repeated Games. Here, we focus on finitely repeated games. It is actually

easier to construct types that are committed to a particular plan of action up to an arbitrary

finite horizon as the unique rationalizable plan in infinite-horizon games if one does not

insist on the common-prior assumption. Indeed we provided such a result in Weinstein and

Yildiz (2013) in another context as we discussed before. It also seems feasible to extend

our construction within common-prior assumption to infinitely-repeated games, using finite-

horizon truncations. Hence, it seems feasible to obtain a similar result for infinite-horizon

games allowing only arbitrarily long but finite-horizon commitments. We do not pursue such

results here mainly because the most major results in infinite-horizon reputation literature,

such as the above result of Fudenberg and Levine (1989), are based on types that commit

to playing a fixed move, and such types can easily be justified within the repeated-game

framework.12

Commitment to Mixed Strategies. In some reputation models, the commitment types

are allowed to play a mixed action plan. For the natural case that only the realized moves

are observable, such mixed commitment types are incorporated in our paper as follows. A

mixed commitment type σi induces a probability distribution µσi on pure action plans of the

player in reduced form. From the point of view of the rational type τ ∗j of the other player,

the commitment type σi can be replaced by pure commitment types in the support of µσi ,

by putting probability π (σi)µ
σi (si) on each si in the support of µσi, where π (σi) is the

probability of σi in the original elaboration G and µσi (si) is the probability of si under µσi .

Application of Proposition 4 to the resulting elaboration with pure commitment types yields

an elaboration G′ without commitment types that is strategically equivalent for the rational

types.

Other games. The applications in reputation formation are not confined to the repeated-

games framework. Indeed, an important strand of literature explores the role of reputation

in bargaining considering types that commit to dynamic plans (see for example Abreu and

Gul (2000), Abreu and Pearce (2007), and Wolitzky (2012)). Of course, understanding the

12When the commitment type plays a mixed move, the resulting pure action plans involve commitment

to dynamically varying action plans. An extension of our results could be useful in that case.



26 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

scope of reputation within the structural assumptions of those models is also very important.

Here, as a first step, we established a strategic equivalence result for finitely repeated games.

Howmuch variation in stage-game payoffs and type spaces do we need to support

a commitment? Our main result establishes that arbitrary commitment types can result

from ICR without any restriction on the stage-game payoffs and the type spaces. Moreover,

our construction uses only a couple of simple stage-game payoff functions.13 Feasibility of

such stage-game payoff functions is suffi cient for supporting arbitrary commitment types by

introducing uncertainty on stage game payoffs. On the other hand, Proposition 5 shows that

in the limit as the maximal variation in stage-game payoffs is taken to 0, commitment types

cannot be generated.

Personal Types. Our construction (in the first part of the proof of Lemma 1) makes fun-

damental use of players who do not know their own payoffs. Some of the literature has

focused on models with common knowledge that each player knows his own payoffs; Fuden-

berg, Kreps, and Levine (1988) call this a model with “personal types.”We do not know

precisely to what extent our results can be recovered in a model with personal types. There

are multiple diffi culties. The first is the construction of a type with unique rationalizable

plan, as in Lemma 1. This is considerably more diffi cult when using personal types, and

while it is possible to generate commitment types for some non-trivial plans, we do not know

if it is possible for all plans. The second diffi culty arises when putting the types into a

common-prior type space. The technique we used for Lemma 2 relied on the commitment

types of Player 1 believing that their payoff is always identically zero when Player 2 is a

normal type. With commitment types, this technique cannot be used, as payoffs cannot be

correlated with the opponent’s type. It is an open question whether some other technique

would be successful. Note that this second diffi culty only arises if we assume personal types

and a common prior.

9. Conclusion

The reputation literature, one of the main accomplishments of game theory, relies on the

existence of commitment types. It is important for the interpretation of the results in this

13More precisely, it uses the family g
a∗i ,a

∗
−i,λ

i = λ1a∗i + (1− λ) 1a∗−i , a
∗
i ∈ Ai, a∗−i ∈ A∗−i, λ ∈ [0, 1], where

1a∗j is the characteristic function of a
∗
j , taking the value of 1 when a

∗
j is played and 0 otherwise.
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literature whether one can obtain the same results within a rationalistic framework in which

all types can follow the plans that are available to rational types and all types’payoffs satisfy

the structural payoffassumptions of the underlying model. If one can obtain the same results

within such a framework, we can interpret the results as coming from incomplete information

about payoffs. Otherwise, the result must be interpreted as stemming from the factors that

are outside of the model, such as irrationality, psychological anomalies, and super-game

concerns. In this paper, within the context of finitely repeated games, we have established

that one can obtain all results within a rationalistic framework, allowing an interpretation

based on incomplete information. This is the case when all stage-game payoffs are allowed.

On the other hand, for games with dominance-solvable stage games, we show that reputation

cannot have an impact when the stage game payoffs are suffi ciently restricted. Hence, the

scope of reputation within a rationalistic framework depends on the severity of the additional

structural assumptions imposed when there are such assumptions.

Appendix A. Omitted Proofs

A.1. Preliminary Definitions. In the appendix, we will also consider type spaces without a

common prior. Such a type space is a list (G, T , π (·|·)) where π (·|τi) ∈ ∆ (G × T−i) is the probability
distribution of τi. Here, there need not be a single π ∈ ∆ (G × T ) that leads to these interim

beliefs by Bayes’ rule. Fix any G = (N,A, (G, T , π (·|·))). For each i ∈ N and for each belief

β ∈ ∆ (G × S−i), we write BRi (β) for the set of actions si ∈ Si that maximize the expected value
of ui (z (si, s−i) |g) under the probability distribution β.

Interim correlated rationalizability (ICR) is computed by the following elimination procedure:

For each i and τi, set S0
i [τi|G] = Si, and define sets Ski [τi|G] for k > 0 iteratively, by setting

si ∈ Ski [τi|G] if si ∈ BRi
(
margG×S−iβ

)
for some β ∈ ∆ (G × T−i × S−i) such that margG×T−iβ =

π (·|τi) and β
(
s−i ∈ Sk−1

−i [τ−i|G]
)

= 1. That is, si is a best response to a belief of τi that puts

positive probability only to the actions that survive the elimination in round k − 1. We write

Sk [τ |G] = Sk1 [τ1|G]× Sk2 [τ2|G]. Then,

S∞i [τi|G] =
∞⋂
k=0

Ski [τi|G] .

The following class of action plans will play an important role in our construction:
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Definition 6. A plan si is said to be sure-thing compliant if there is no partial history h and move

ai ∈ Ai such that si(h, (si(h), a−i)) = ai for every a−i but si(h) 6= ai.

In other words, a plan is sure-thing compliant if whenever the player plays ai in all possible

continuations next period, he also plays ai this period. In the context of a single player with stable

preferences who acquires information each period, this would be a consequence of the sure-thing

principle of Savage.

A.2. Proof of Lemma 1. Our proof has three main steps. First, we will prove it for sure-thing

compliant action plans, without requiring the type space to have common prior or the full-support

property (property 1 in the statement of the lemma). We then extend this result to all action

plans, without requiring the properties on type space once again. Finally, we convert the latter

type space to a type space with common prior and full support assumptions without altering the

rationalizable actions, proving the lemma. The first step is the following lemma; Weinstein and

Yildiz (2013) proved this lemma for infinite-horizon games, and the proof carries over to finitely

repeated games with minor modifications. (The proof can be found in the online appendix.)

Lemma 3 (Weinstein-Yildiz 2013). For any sure-thing compliant action plan si, there exists a

game G̃ =
(
N,A,

(
G̃, T̃ , π̃ (·|·)

))
with a type τ sii such that S∞i

[
τ sii |G̃

]
' {si}. (The type space

does not necessarily have a common prior.)

The next lemma builds on this result to generalize to all action plans.

Lemma 4. For any action plan si, there exists a game G̃ =
(
N,A,

(
G̃, T̃ , π̃ (·|·)

))
with a type τ sii

such that S∞i
[
τ sii |G̃

]
' {si}. (The type space does not necessarily have a common prior.)

Proof. Fix some a∗−i ∈ A−i, and define a function v−i : A−i → [0, 1] by

v−i (a−i) =

{
1 if a−i = a∗−i,

0 otherwise.

For every âi ∈ Ai, define a function vâii : Ai → [0, 1] by

vâii (ai) =

{
1 if ai = âi,

0 otherwise.

Finally, consider the class of stage-game payoff functions gâii : A→ [0, 1] for player i where

(A.1) gâii (ai, a−i) = λvâii (ai) + (1− λ) v−i (a−i)
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for some λ ∈ (0, 1/ (2t̄+ 1)). Here, a∗−i is a known action profile the other players can take to

reward player i, while âi is an action that player i can take to increase his payoff. In the type space

we construct, type τ sii knows his payoffs are of the form defined in (A.1) but does not know the

specific âi. As specified by (A.1), Player i’s stage payoffs are additively separable in his action and

others’actions. Our choice of λ is small enough so that in all periods before the last, player i’s

driving incentive is the desire to be rewarded by the other players, while in the last period he has

learned his own optimal action âi and acts accordingly.

Next, for each ρ : H ×A−i → Ai, let S
ρ
−i be the set of action profiles s

ρ
−i satisfying

sρ−i
(
ht, (ai, a−i)

)
= a∗−i ⇐⇒ ai = ρ

(
ht, a−i

)
for any t < t̄, any history ht and any (ai, a−i) ∈ Ai. Also, let R be the set of functions ρ satisfying

ρ
(
ht̄−1, a−i

)
= si

(
ht̄−1

)
for all a−i and all those ht̄−1 such that player i has played according to si throughout. Finally, let

Ŝ−i =
⋃
ρ∈R S

ρ
−i.

To sum up, when following a plan in Sρ−i, at any history (h, (ai, a−i)), player −i rewards i by
playing a∗−i if ai = ρ (h, a−i). The only restriction on ρ occurs at date t̄− 1 and in the contingency

that i has followed si up to t̄ − 1: he will be rewarded at t̄ if he continues to follow si at t̄ − 1.

The set R is symmetric in all other ways. In particular, if player i assigns uniform probability

on Ŝ−i, he considers it equally likely that each of his moves are rewarded, except possibly at the

final stage. Note that the actions in Ŝ−i are all sure-thing compliant, because player j 6= i reacts

differently to the rewarded move of player i from all other moves. Thus, by Lemma 3, for each

s−i ∈ Ŝ−i, there exists a game Gs−i = (N,A, (Gs−i , T s−i , πs−i (·|·))) with a type τ s−i−i such that

S∞−i
[
τ
s−i
−i |Gs−i

]
' {s−i}.

Let ḡ−i be an arbitrary payoff function for the players other than i. Define the game G̃ =(
N,A,

(
G̃, T̃ , π̃ (·|·)

))
by

G̃=
{

(gâii , ḡ−i)|âi ∈ Ai
}
∪

⋃
s−i∈Ŝ−i

Gs−i ;

T̃i = {τ sii } ∪
⋃

s−i∈Ŝ−i

T s−ii ; T̃−i =
⋃

s−i∈Ŝ−i

T s−i−i ;

π̃ (·|τj) = πs−i (·|τj)
(
∀τj ∈ T s−ij , j ∈ N, s−i ∈ Ŝ−i

)
;

π̃
((
gâi((τ

s−i
−i ), ḡ−i

)
, τ
s−i
−i |τ

si
i

)
= 1/

∣∣∣Ŝ−i∣∣∣ (
∀s−i ∈ Ŝ−i

)
,(A.2)
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where we let

âi(τ
s−i
−i ) = si (z (si, s−i))

t̄

be the prescribed action at the history reached at the beginning of the last period under the strategy

profile (si, s−i). The critical feature of the definition is the belief of the newly introduced type τ
si
i

in (A.2). He assigns equal probabilities on types τ s−i−i and believes that there is a perfect correlation

between the types τ s−i−i and the way his own action affects his payoff. If he follows si throughout h
t̄

and observes the moves of the other player, he learns what action âi(τ
s−i
−i ) is best for him, which

happens to be the action si (z (si, s−i))
t̄ that he would have played at that history according to

si. Note that each of the types other than τ
si
i has a unique rationalizable action in reduced form.

Hence, the updated belief of τ sii regarding the payoff functions and outcomes is uniquely determined

at any history, given that he believes the other players follow rationalizable strategies.

In the rest of the proof, we will show that si is uniquely rationalizable for τ
si
i in reduced form, i.e.,

S∞i

[
τ sii |G̃

]
' {si}. Some additional notation: For any history ht, write P ∗t

(
ht
)
for the probability

that a∗−i is played at date t conditional on h according to the rationalizable belief of τ
si
i . As noted

above, by symmetry,

(A.3) P ∗t
(
ht
)

=


1 if t = t̄ and i follows si throughout ht;

0 if t = t̄ and i follows si up to t̄− 1 but deviates at t̄− 1 in ht;

1/ |A−i| otherwise.

Write Ui (s′i|h) for the expected payoff of i from playing s′i under the rationalizable belief of type

τ sii conditional on history h. Write also Ui
(
ht
)
for the realized expected payoff of τ sii up to date t

at history ht.

We now show that Ui
(
si|ht

)
> Ui

(
s′i|ht

)
for every history ht and action plan s′i such that i

follows si throughout ht and s′i
(
ht
)
6= si

(
ht
)
. So long as he follows si, every such history ht is

reached with positive probability under the rationalizable belief of τ sii . This therefore will show

that the expected payoff from si is strictly higher than any s′i that is not equivalent to si. Therefore,

S∞i

[
τ sii |G̃

]
' {si}.

First consider the case t = t̄. Conditional on ht, τ sii assigns probability 1 on gsi(h
t). If he follows

si, playing si
(
ht
)
at ht, then his own action contributes λ to his payoff; otherwise, his own action

contributes zero to his payoff. Moreover, since he has followed si throughout ht, he will be rewarded

for sure by the other player at t̄, contributing 1− λ to his payoff regardless of his own move at ht.
Hence,

Ui
(
si|ht

)
= Ui

(
ht
)

+ 1,
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and

Ui
(
s′i|ht

)
= Ui

(
ht
)

+ 1− λ,

yielding

Ui
(
si|ht

)
− Ui

(
s′i|ht

)
= λ > 0.

Now consider the case t < t̄. His payoff from following si is

Ui
(
si|ht

)
= Ui

(
ht
)

+ λ
t̄∑

t′=t

E
[
v
âi(t−i)
i

(
si

(
ht
′
))
|ht, si

]
+ (1− λ)

t̄∑
t′=t

E
[
P ∗t′
(
ht
′
)
|ht, si

]
≥ Ui

(
ht
)

+ (1− λ)
t̄− t
|A−i|

+ 1.

To see the lower bound, note that, so long as he follows si, he gets 1 at date t̄ (as in the previous

case) and at least (1− λ) / |A−i| at each t′ < t̄. (At any t′ < t̄, vâi(t−i)i ≥ 0 and P ∗t′ ≥ 1/ |A−i| when
he follows si.) On the other hand, his payoff from following s′i is

Ui
(
s′i|ht

)
= Ui

(
ht
)

+ λ
t̄∑

t′=t

E
[
v
âi(t−i)
i

(
s′i

(
ht
′
))
|ht, s′i

]
+ (1− λ)

t̄∑
t′=t

E
[
P ∗t′
(
ht
′
)
|ht, s′i

]
≤ Ui

(
ht
)

+ λ (t̄− t+ 1) + (1− λ)
t̄− t+ 1

|A−i|
.

The upper bound comes from the fact that vâii ≤ 1 throughout and P ∗t′ ≤ 1/ |A−i| after a deviation
from si (by A.3). Combining the two inequalities, we obtain

Ui
(
si|ht

)
− Ui

(
s′i|ht

)
≥ (1− λ)

(
1− 1

|A−i|

)
− λ (t̄− t) > 0,

where the strict inequality follows from λ < 1/ (2t̄+ 1) and |A−i| ≥ 2. �

Proof of Lemma 1. By Lemma 4, there exists a game G̃ =
(
N,A,

(
G̃, T̃ , π̃ (·|·)

))
with a type τ̃i

such that S∞i
[
τ̃i|G̃

]
' {si}. This falls short of the conditions of Lemma 1 in that

(
G̃, T̃ , π̃ (·|·)

)
does not necessarily admit a common prior and the prior could not have a full support (Condition

1) even if it existed. Here, we remedy this problem by converting G̃ to a common prior game

Gs = (N,A, (Gsi , T si , πsi)) with the desired properties. First, for every λ ∈ (0, 1), define Gλ =(
N,A,

(
G̃, T̃ , πλ (·|·)

))
by setting

πλ (g, τ−j |τj) =
λ∣∣∣G̃ × T̃−j∣∣∣ + (1− λ) π̃ (g, τ−j |τj)

at each (g, τj , τ−j) ∈ G̃ × T̃ . Now, as λ → 0, πλ (g, τ−j |τj) → π̃ (g, τ−j |τj) everywhere. Together
with a continuity result for belief hierarchies by Mertens and Zamir (1985), this implies that the



32 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

belief hierarchy of type τ̃i in game Gλ converges to the belief hierarchy of τ̃i in game G̃. Thus, by

upperhemicontinuity of ICR (Dekel, Fudenberg, and Morris, 2006), there exists λ̄ > 0 such that

S∞i

[
τ̃i|Gλ̄

]
⊆ S∞i

[
τ̃i|G̃

]
' {si} .

Since S∞i
[
τ̃i|Gλ̄

]
is non-empty, this implies that

(A.4) S∞i

[
τ̃i|Gλ̄

]
' {si} .

Moreover, since G̃ × T̃ ×S is finite, there exists some finite k such that

(A.5) S∞i

[
τ̃i|Gλ̄

]
= Ski

[
τ̃i|Gλ̄

]
.

Now, since πλ̄ (g, τ−j |τj) > 0 everywhere, by the main result of Lipman (2003), there exists a

common-prior game Gsi = (N,A, (Gsi , T si , πsi)) such that the common prior πsi is positive every-
where and there exists a type τ sii ∈ T

si
i whose first k orders of beliefs are identical to that of type

τ̃i in game Gλ̄. Dekel, Fudenberg, and Morris (2007) show that Sk is a function of the first k orders

of beliefs, yielding

(A.6) Ski [τ si |Gs] = Ski

[
τ̃i|Gλ̄

]
.

Combining (A.4), (A.5) and (A.6), we obtain

S∞i [τ si |Gs] ⊆ Ski [τ si |Gs] = Ski

[
τ̃i|Gλ̄

]
' {si} .

Since S∞i [τ si |Gs] 6= ∅, this further implies that

S∞i [τ si |Gs] ' {si} ,

as desired. �

A.3. Proof of Lemma 2. Using induction on k, we will show that Ski [τi|G′] = Ski [τi|Gc] for every
k, τi ∈ T ci , and i ∈ N . This is true for k = 0 by definition. Towards an induction, assume that

(A.7) Sk−1
−i

[
τ−i|G′

]
= Sk−1

−i [τ−i|Gc]
(
∀τ−i ∈ T c−i

)
.

Take any τi ∈ T ci and write B (τi|G) for the set of all beliefs β of type τi after round k−1 in game G

for any G ∈ {G′, Gc}, where margG×T−iβ = π (·|τi) and β
(
s−i ∈ Sk−1

−i [τ−i|G]
)

= 1. First consider

the case τi 6= τ c1 . In that case, by definition, π
′ (·|τi) = πc (·|τi). Together with the inductive

hypothesis (A.7), this implies that B (τi|G′) = B (τi|Gc). Therefore, si ∈ Ski [τi|G′] if and only if
si ∈ BRi

(
margG′×S−iβ

)
for some β ∈ B (τi|G′) = B (τi|Gc), and this is the case if and only if

si ∈ Ski [τi|Gc], showing that Ski [τi|G′] = Ski [τi|Gc].
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Now consider the case τi = τ c1 . Then,

(A.8) π′ (·|τi) = pcδ((0,g∗2),τ∗2 ) + (1− pc)πc (·|τi)

where the probability pc ∈ (0, 1) is defined in (4.1), and δx is the Dirac measure on x, putting

probability 1 on {x}. Hence, by the inductive hypothesis (A.7), β ∈ B (τi|G′) if and only if

(A.9) β = pcβ (·|τ∗2 ) + (1− pc)β (·|T c2 )

for some conditional beliefs β (·|τ∗2 ) ∈ ∆
(
{((0, g∗2) , τ∗2 )} × Sk−1

2 [τ∗2 |G′]
)
and

β (·|T c2 ) ∈ B (τi|Gc) .

Now, take any si ∈ Ski [τi|G′]. Then, si ∈ BRi
(
margG′×S−iβ

)
for some β ∈ B (τi|G′). By (A.9),

for any s′i,

pc · 0 + (1− pc)Eβ(·|T c2 ) [ui (si, s−i|g)] = Eβ [ui (si, s−i|g)]

≥ Eβ
[
ui
(
s′i, s−i|g

)]
= pc · 0 + (1− pc)Eβ(·|T c2 )

[
ui
(
s′i, s−i|g

)]
where β (·|T c2 ) ∈ B (τi|Gc). (Here, the inequality follows from si being a best response, and the

equalities follow from (A.9).) Since pc < 1, this further implies that

Eβ(·|T c2 ) [ui (si, s−i|g)] ≥ Eβ(·|T c2 )
[
ui
(
s′i, s−i|g

)]
,

showing that si ∈ BRi
(
margG′×S−iβ (·|T c2 )

)
. Therefore, si ∈ Ski [τi|Gc].

Conversely, take any si ∈ Ski [τi|Gc]. By definition, si ∈ BRi

(
margG′×S−iβ (·|T c2 )

)
for some

β (·|T c2 ) ∈ B (τi|Gc). Pick any β (·|τ∗2 ) ∈ ∆
(
{((0, g∗2) , τ∗2 )} × Sk−1

2 [τ∗2 |G′]
)
, and define β ∈ B (τi|Gc)

by (A.9). Now, for any s′i,

Eβ [ui (si, s−i|g)] = pc · 0 + (1− pc)Eβ(·|T c2 ) [ui (si, s−i|g)]

≥ pc · 0 + (1− pc)Eβ(·|T c2 )
[
ui
(
s′i, s−i|g

)]
= Eβ

[
ui
(
s′i, s−i|g

)]
,

where the inequality follows from si being a best response, and the equalities follow from (A.9).

That is, si ∈ BRi
(
margG′×S−iβ

)
. Therefore, si ∈ Ski [τi|G′].
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A.4. Proof of Proposition 4. Here we outline the proof of the general proposition. Note first

that Lemma 1 applies to general case as well: for each i ∈ N and ci ∈ Ci there exists a exists a
Bayesian repeated game Gci = (N,A, (Gci , T ci , πci)) with πci positive everywhere and with a type
τ cii ∈ T

ci
i for which all ICR actions are equivalent to ci. Again all those types can be taken unique

and distinct from each other. Write Ti = {τ∗i } ∪ Ci, and define mapping τ̃i on Ti by

τ̃i (τi) =

{
τ∗i if τi = τ∗i
τ cii otherwise,

and mapping γi from T̃i = τ̃i (Ti) to stage-game payoff functions by

γi (τi) =

{
g∗i if τi = τ∗i
0 otherwise.

Write also γ (τ) = (γ1 (τ1) , . . . , γn (τn)) for τ ∈ T̃ = T̃1×· · ·×T̃n. We constructG′ = (N,A, (G′, T ′, π′))
by setting

G′ =
∏
i∈N
{g∗i ,0} ∪

⋃
i∈N,ci∈Ci

Gci

T ′j =
{
τ∗j
}
∪

⋃
i∈N,ci∈Ci

T cij (∀j ∈ N)

π
′
(g, τ) =


1− ε′ if (g, τ) = (g∗, τ∗) ,
1−ε′
1−ε π (τ ′) if τ = τ̃ (τ ′) and g = γ (τ) for some τ ′ ∈ T \ {τ∗} ,

ε′−ε
(1−ε)(|C1|+···+|Cn|)π

ci (g, τ) if (g, τ) ∈ Gci × T ci for some ci ∈ Ci
0 otherwise.

Observe that G′ satisfies the properties in the proposition. For any rational type τ∗j ,

π′
(
τ∗j
)

=
1− ε′
1− ε π

(
τ∗j
)
,

and hence π′
(
τ̃−j (τ−i) |τ∗j

)
= π

(
τ−i|τ∗j

)
for every τ−j ∈ T−j . On the other hand, for type τ cii , his

payoffs vary only when the other types are in T ci−i. Hence, as in Lemma 2, S∞i [τ cii |G′] = ci.
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