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Abstract

Two players announce bargaining postures to which they may become committed

and then bargain over the division of a surplus. The share of the surplus that a player

can guarantee herself under first-order knowledge of rationality is determined (as a

function of her probability of becoming committed), as is the bargaining posture that

she must announce in order to guarantee herself this much. This “maxmin”share of

the surplus is large relative to the probability of becoming committed (e.g., it equals

30% if the commitment probability is 1 in 10, and equals 13% if the commitment

probability is 1 in 1000), and the corresponding bargaining posture simply demands

this share plus compensation for any delay in reaching agreement.
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1 Introduction

Economists have long been interested in how individuals split gains from trade. Recently,

“reputational”models of bargaining have been developed that make sharp prediction about

the division of surplus independently of many details of the bargaining procedure (Myerson,

1991; Abreu and Gul, 2000; Kambe, 1999; Compte and Jehiel, 2002; Abreu and Pearce,

2007). In these models, players may be committed to a range of possible bargaining strate-

gies, or “postures,”before the start of bargaining, and bargaining consists of each player at-

tempting to convince her opponent that she is committed to a strong posture. These models

assume that the probabilities with which the players are committed to various bargaining

postures (either ex ante or after a stage where players strategically announce bargaining

postures) are common knowledge, and that play constitutes a (sequential) equilibrium. In

this paper, I study reputational bargaining while assuming only that the players know that

each other is rational (so that, in particular, players do not know each other’s beliefs or

strategies). I show that each player can guarantee herself a share of the surplus that is

large relative to her probability of being committed by announcing the posture that simply

demands this share plus compensation for any delay in reaching agreement. Furthermore,

announcing any other posture does not guarantee her as much.

More precisely, I assume that there is positive number ε such that, if a player announces

any bargaining posture (i.e., any infinite path of demands) at the beginning of the game,

she then becomes committed to that posture with probability at least ε (or, equivalently,

she convinces her opponent that she is committed to that posture with probability at least

ε). Player 1’s “maxmin”payoff is then the highest payoff u1 with the property that there

exists a corresponding posture (the “maxmin posture”) and bargaining strategy such that

player 1 receives at least u1 whenever she announces this posture and follows this strategy

and player 2 plays any best-response to any belief about player 1’s strategy that assigns

probability at least ε to player 1 following her announced posture.

The main result of this paper characterizes the maxmin payoff and posture when only

one player may become committed to her announced posture; as discussed below, a very

similar characterization applies when both players may become committed. The maxmin
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Figure 1: The Unique Maxmin Bargaining Posture for ε = 1/1000 and r = 1

payoff equals 1/ (1− log ε). This equals 1 when ε = 1 (i.e., when the player makes a take-

it-or-leave-it offer), and goes to 0 very slowly as ε goes to 0. For example, a bargainer can

guarantee herself approximately 30% of the surplus if her commitment probability is 1 in

ten; 13% if it is 1 in 1 thousand; and 7% if it is 1 in 1 million. In addition, the unique

bargaining posture that guarantees this share of the surplus simply demands this share in

addition to compensation for any delay; that is, the demand increases at rate equal to the

common discount rate, r.1 This compensation amounts to the entire surplus after a long

enough delay, so the unique maxmin posture demands

min
{
ert/ (1− log ε) , 1

}
at every time t. This posture is depicted in Figure 1, for commitment probability ε = 1/1000

and discount rate r = 1.

The intuition for why the maxmin payoff is large relative to ε is that, when player 1’s

demand is small, player 2 must accept unless he believes that he will be quickly rewarded for

1To my knowledge, this is the first bargaining model that predicts that such a posture will be adopted,

though it seems like a reasonable bargaining position to stake out. For example, in most U.S. states defen-

dants must pay “prejudgment interest”on damages in torts cases, which amounts to plaintiffs demanding

the initial damages in addition to compensation for any delay (e.g., Knoll, 1996); similarly, unions sometimes

include payment for strike days among their demands.
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rejecting. In the latter case, if player 1 does not reward player 2 for rejecting, then player

2 quickly updates his belief toward player 1’s being committed to her announced posture

(i.e., player 1 builds reputation at a high rate), and player 2 accepts when he becomes

convinced that she is committed.2 Hence, player 1 is able to compensate for having a small

commitment probability by reducing her demand and thereby increasing the rate at which

she builds reputation. This exponentially reduces the cost of the delay before her demand

is accepted and thus guarantees her a relatively large payoff.

The intuition for why the unique maxmin posture demands compensation for delay in-

volves two key ideas. First, as I have argued, player 1’s demand is accepted sooner when

it is lower (when player 2’s beliefs are those that lead him to reject for as long as possible).

Second, the maxmin posture can never make demands that would give player 1 less than

her maxmin payoff if they were accepted, because otherwise player 2 could simply accept

some such demand and give player 1 a payoff below her maxmin payoff, which was supposed

to be guaranteed to player 1 (though it must be verified that such behavior by player 2 is

rational). Combining these ideas implies that player 1 must always demand at least her

maxmin level of utility (hence, compensation for delay), but no more.

I also characterize the maxmin payoffs and postures when both players may become

committed to their announced postures. Each player’s maxmin posture is exactly the same as

in the one-sided commitment model, and each player’s maxmin payoff is close to her maxmin

payoff in the one-sided commitment model as long as her opponent’s commitment probability

is small. Thus, the one-sided commitment analysis applies to each player separately.

The paper most closely related to mine is Kambe (1999), which endogenizes the “be-

havioral types”of Abreu and Gul (2000) by having players strategically announce postures

to which they may become committed (as in my model).3,4 There are two differences be-

2This is related to the argument in the existing reputational bargaining literature that player 1 builds

reputation more quickly in equilibrium when her demand is small, though my analysis is not based on

equilibrium.
3Other important antecedents include Kreps and Wilson (1982) and Milgrom and Roberts (1982), who

pioneered the incomplete information approach to reputation-formation, and Chatterjee and Samuelson

(1987, 1988), who study somewhat simpler reputational bargaining models.
4It is not essential for the main points of my paper that commitment comes from strategic announcements
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tween Kambe’s model and mine. First, Kambe requires that players announce postures

that demand a constant share of the surplus (as do Abreu and Gul), while I allow players

to announce non-constant postures (and players do benefit from announcing non-constant

postures in my model). Second, and more fundamentally, Kambe studies sequential equi-

libria (as does the rest of the existing reputational bargaining literature), while I study

maxmin payoffs and postures. My approach entails weaker assumptions on knowledge of

commitment probabilities (i.e., second-order knowledge that commitment probabilities are at

least ε, rather than common knowledge of exact commitment probabilities) and on behavior

(i.e., first-order knowledge of rationality, rather than sequential equilibrium), but does not

yield unique predictions about the division of surplus or about the details of how bargaining

will proceed. One motivation for this complementary approach is that behavioral types are

sometimes viewed as “perturbations”reflecting the fact that a player (or an outside observer)

cannot be sure that the model captures all of the other player’s strategic considerations, and

assuming that the distribution over perturbations is common knowledge goes against the

spirit of introducing perturbations.

This paper is related more broadly to the literature on commitment tactics in bargain-

ing dating back to Schelling (1956), who discusses observable factors that make announced

postures more credible, corresponding to a higher value of ε in my model.5 It is also related

to the literatures on bargaining with incomplete information either without common priors

(Yildiz 2003, 2004; Feinberg and Skrzypacz, 2005) or with rationalizability rather than equi-

librium (Cho, 1994; Watson, 1998), in that players may disagree about the distribution over

outcomes of bargaining. Finally, this paper weakens the solution concept from equilibrium

to knowledge of rationality in reputational bargaining models in the same way that Watson

(1993) and Battigalli and Watson (1996) weaken the solution concept from equilibrium to

knowledge of rationality in Fudenberg and Levine’s (1989) model of reputation in repeated

games. They find that Fudenberg and Levine’s equilibrium predictions also apply under

knowledge of rationality, whereas my predictions differ dramatically from the existing rep-

rather than exogenous behavioral types. What matters is the posterior probability with which a player’s

opponent thinks she is committed after she stakes out a posture.
5Subsequent contributions include Crawford (1982), Fershtman and Seidmann (1993), Muthoo (1996),

Compte and Jehiel (2004), and Ellingsen and Miettinen (2008).
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utational bargaining literature. The reason for this difference is that in repeated games

with one long-run player and one short-run player, or in bargaining where one player is in-

finitely more patient than her opponent, the long-run or patient player receives close to her

Stackelberg payoff (which in bargaining equals the entire surplus) under either knowledge

of rationality or equilibrium. Thus, the predictions of Watson and Battigalli and Watson

coincide with those of Fudenberg and Levine, just as my predictions coincide with those of

Abreu and Gul (and others) in the special case where one player is infinitely more patient

than the other (Section 4.2). However, the main focus of this paper is on the case of equally

(or at least comparably) patient players, where predictions under equilibrium and knowledge

of rationality differ for both repeated games and bargaining.

The paper proceeds as follows: Section 2 presents the model and defines maxmin payoffs

and postures. Section 3 analyzes the baseline case with one-sided commitment and presents

the main characterization of maxmin payoffs and postures. Section 4 presents three brief

extensions. Section 5 considers two-sided commitment. Section 6 concludes. Omitted

proofs are in the appendix. A supplementary appendix shows that the main characterization

is robust to details of the bargaining procedure such as the order and relative frequency of

offers (so long as offers are frequent), as well as to strengthening the solution concept from

knowledge of normal-form rationality to iterated conditional dominance.6

2 Model and Definition of Maxmin Payoffand Posture

2.1 Model

Two players (“she,”“he”) bargain over one unit of surplus in two phases: a “commitment

phase”followed by a “bargaining phase.” I describe the bargaining phase first. It is intended

to capture a continuous bargaining process where players can change their demands and

accept their opponents’demands at any time, but in order to avoid well-known technical

issues that emerge when players can condition their play on “instantaneous” actions of

6Rubinstein (1982) implies that the main result is not robust to simultaneously specifying a discrete-time

bargaining procedure and strengthening the solution concept to iterated conditional dominance. See the

supplementary appendix for details.
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their opponents (Simon and Stinchcombe, 1989; Bergin and MacLeod, 1993) I assume that

players can revise their paths of demands only at integer times (while letting them accept

their opponents’demands at any time).7

Time runs continuously from t = 0 to ∞. At every integer time t ∈ N (where N is the

natural numbers), each player i ∈ {1, 2} chooses a path of demands for the next length-1

period of time, uti : [t, t+ 1)→ [0, 1], which is required to be the restriction to [t, t+ 1) of a

continuous function on [t, t+ 1]. Let U t be the set of all such functions, and let ∆ (U t) be

the space of probability measures on the Borel σ-algebra of U t endowed with the product

topology. The interpretation is that uti (τ) is the demand that player i makes at time τ

(this is simply denoted by ui (τ) when t is understood; note that ui : R+ → R+ can be

discontinuous at integer times but is everywhere right-continuous with left limits). Even

though player i’s path of demands for [t, t+ 1) is decided at t, player j only observes demands

as they are made. Intuitively, each player i may accept her opponent’s demand uj (t) at

any time t, which ends the game with payoffs (e−rt (1− uj (t)) , e−rtuj (t)), where r > 0

is the common discount rate (throughout, j = −i). Formally, every instant of time t is

divided into three dates, (t,−1), (t, 0), and (t, 1) (except for time 0, which is divided only

into dates (0, 0) and (0, 1)), with the following timing: First, at date (t,−1), each player

i announces accept or reject. If both players reject, the game continues; if only player i

accepts, the game ends with payoffs (e−rt (1− limτ↑t uj (τ)) , e−rt limτ↑t uj (τ)); and if both

players accept, the games ends with payoffs determined by the average of the two demands,

limτ↑t u1 (τ) and limτ↑t u2 (τ). Next, at date (t, 0), both players simultaneously announce

their time-t demands (u1 (t) , u2 (t)) (which were determined at the most recent integer time);

if t is an integer, this is also the date where each player i chooses a path of demands for

the next length-1 period, uti. Finally, at date (t, 1), each player i again announces accept or

reject. If both players reject, the game continues; if only player i accepts, the game ends

with payoffs (e−rt (1− uj (t)) , e−rtuj (t)); and if both players accept, the game ends and the

7In this paper, working in continuous time not only allows the players more flexibility than does discrete

time but also yields simpler results. In particular, the continuous-time maxmin posture demands exact

compensation for delay and thus changes over time in a simple way, while I conjecture that the discrete-time

maxmin posture demands approximate compensation for delay but that the details of the approximation are

complicated and depend on the exact timing of offers.
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demands u1 (t) and u2 (t) are averaged. This timing ensures that there is a first and last

date at which each player can accept each of her opponent’s demands. In particular, at

integer time t, player i may accept either her opponent’s “left”demand, limτ↑t uj (τ), or her

time-t demand, uj (t). I say that agreement is reached at time t if the game ends at time t

(i.e., at date (t,−1) or (t, 1)). Both players receive payoff 0 if agreement is never reached.

The public history up to time t excluding the time-t demands is denoted by ht− =

(u1 (τ) , u2 (τ))τ<t, and the public history up to time t including the time-t demands is de-

noted by ht+ = (u1 (τ) , u2 (τ))τ≤t (with the convention that this corresponds to all offers

having been rejected, as otherwise the game would have ended). A generic time-t history is

denoted by ht. Since limτ↑t ui (t) = ui (t) for non-integer t, I generally distinguish between

ht− and ht+ only for integer t. Formally, a bargaining phase (behavior) strategy for player i

is a pair σi = (Fi, Gi), where Fi is a map from histories ht into [0, 1] with the properties that

Fi (h
t) ≤ Fi

(
ht
′)
whenever ht

′
is a successor of ht and Fi (ht+) is a right-continuous function

of t; and Gi is a map from histories ht− with t ∈ N into ∆ (U t). Let Σi be the set of player i’s

bargaining phase strategies. The interpretation is that Fi (ht−) is the probability that player

i accepts player j’s demand at or before date (t,−1), Fi (ht+) is the probability that player i

accepts player j’s demand at or before date (t, 1), and Gi (h
t−) is the probability distribution

over paths of demands uti : [t, t+ 1)→ [0, 1] chosen by player i at date (t, 0). This formalism

implies that player i’s hazard rate of acceptance at history ht, fi (ht) / (1− Fi (ht)), is well-

defined at any time t at which the realized distribution function Fi admits a density fi; and

in addition player i’s probability of acceptance at history ht+ (resp., ht−), Fi (ht+)− Fi (ht−)

(resp., Fi (ht−) − limτ↑t Fi (h
τ )), is well-defined for all times t. However, so long as one

bears in mind these formal definitions, it suffi ces for the remainder of the paper to omit

the notation (Fi, Gi) and instead simply view a (bargaining phase) strategy σi ∈ Σi as a

function that maps every history ht to a hazard rate of acceptance, a discrete probability

of acceptance, and (if ht = ht− for t ∈ N) a probability distribution over paths of demands

uti. A pure bargaining phase strategy is a strategy σi such that Fi (h
t) ∈ {0, 1} for all ht and

Gi (h
t−) is a degenerate distribution for all ht−.

At the beginning of the bargaining phase, player i has an initial belief πi about the

behavior of her opponent. Formally, πi ∈ ∆ (Σj), the set of finite-dimensional distributions
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over Σj, so πi is a finite-dimensional distribution over behavior strategies σj; note that πi can

alternatively be viewed as an element of Σj by reducing lotteries over behavior strategies.

Let supp (πi) ⊆ Σj be the support of πi, let ui (σi, σj) be player i’s expected utility given

strategy profile (σi, σj), let ui (σi, πi) be player i’s expected utility given strategy σi and

belief πi, and let Σ∗i (πi) ≡ argmaxσi ui (σi, πi) be the set of player i’s (normal-form) best-

responses to belief πi (which may be empty; see footnote 8). An action (accepting, rejecting,

or choosing a demand path uti) is optimal at history h
t under belief πi if there exists a pure

strategy σi that prescribes that action at ht such that σi ∈ Σ∗i (πi).

At the beginning of the game (prior to time 0), player 1 (but not player 2) publicly

announces a bargaining posture γ : [0,∞)→ [0, 1], which must be continuous at non-integer

times t and be everywhere right-continuous with left limits. Slightly abusing notation, a

posture γ is identified with the strategy of player 1’s that demands γ (t) for all t ∈ R+ and

always rejects player 2’s demand; with this notation, γ ∈ Σ1. In other words, a posture is

a pure bargaining phase strategy that does not condition on player 2’s play or accept player

2’s demand. After announcing posture γ, player 1 becomes committed to γ with some

probability ε > 0, meaning that she must play strategy γ in the bargaining phase. With

probability 1− ε, she is free to play any strategy in the bargaining phase. Whether or not

player 1 becomes committed to γ is observed only by player 1.

2.2 Definition of Maxmin Payoff and Posture

This subsection defines player 1’s maxmin payoffand posture. Intuitively, player 1’s maxmin

payoff is the highest payoff she can guarantee herself when all she knows about player 2 is

that he is rational (i.e., maximizes his expected payoff given his belief about her behavior)

and that he believes that she follows her announced posture γ with probability at least ε.

Formally, that player 2 is rational and assigns probability at least ε to player 1 following

her announced posture γ means that his strategy satisfies the following condition:

Definition 1 A strategy σ2 of player 2’s is rational given posture γ if there exists a belief

π2 of player 2’s such that π2 (γ) ≥ ε and σ2 ∈ Σ∗2 (π2).

I assume that player 1’s belief π1 is consistent with knowledge of rationality given pos-
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ture γ, in that every strategy σ2 ∈ supp (π1) is rational given posture γ.8 Let Πγ
1 ≡

∆ {σ2 : σ2 is rational given posture γ} be set of beliefs π1 that are consistent with knowl-

edge of rationality given posture γ. Then the highest payoff that player 1 can guarantee

herself after announcing posture γ is the following:

Definition 2 Player 1’s maxmin payoff given posture γ is

u∗1 (γ) ≡ sup
σ1

inf
π1∈Πγ1

u1 (σ1, π1) .

A strategy σ∗1 (γ) of player 1’s is a maxmin strategy given posture γ if

σ∗1 (γ) ∈ argmax
σ1

inf
π1∈Πγ1

u1 (σ1, π1) .

Equivalently, u∗1 (γ) is the highest payoff player 1 can receive when she chooses a strategy

σ1 and then player 2 chooses a rational strategy σ2 that minimizes u1 (σ1, σ2); that is,

u∗1 (γ) = sup
σ1

inf
σ2:σ2 is rational given posture γ

u1 (σ1, σ2) .

In particular, to guarantee herself a high payoff, player 1 must play a strategy that does well

against any rational strategy of player 2’s.9

Finally, I define player 1’s maxmin payoff, the highest payoff that player 1 can guarantee

herself before announcing a posture, as well as the corresponding maxmin posture.

Definition 3 Player 1’s maxmin payoff is

u∗1 ≡ sup
γ
u∗1 (γ) .

8A subtlety here is that the set Σ∗2 (π2) may be empty for some beliefs π2. It is inevitable in bargaining

models that players do not have best responses to all beliefs; for example, a player has no best response to

the belief that her opponent will accept any strictly positive offer but will refuse an offer of 0. Thus, the

assumption that player 2 plays a strategy σ2 ∈ Σ∗2 (π2) for some belief π2 is in fact a joint assumption on

his belief and strategy. While the implied assumption on beliefs is certainly not without loss of generality,

it is extremely natural and indeed fundamental, as it says precisely that player 2’s choice set is non-empty.

It is also weaker than any equilibrium assumption, as players play best responses in equilibrium.
9A potential criticism of the concept of the maxmin payoff given posture γ is that it appears to neglect

the fact that, in the event that player 1 does become committed to posture γ, she is guaranteed only

infπ1∈Πγ1
u1 (γ, π1) in the bargaining phase, rather than supσ1 infπ1∈Πγ1

u1 (σ1, π1). However, I show in

Section 3.3 that these two numbers are actually identical in my model.
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A posture γ∗ is a maxmin posture if there exists a sequence of postures {γn} such that

γn (t)→ γ∗ (t) for all t ∈ R+ and u∗1 (γn)→ u∗1.

I sometimes emphasize the dependence of u∗1 and γ
∗ on ε by writing u∗1 (ε) and γ∗ε.

10

Both the set of maxmin strategies given any posture γ and the set of maxmin postures are

non-empty, though at this point this is not obvious.

Note that Definitions 2 and 3 are “non-Bayesian” in that they characterize the largest

payoff that player 1 can guarantee herself, rather than the maximum payoff that she can

obtain given some belief. However, repeating the analysis with the “Bayesian”version of

these definitions (with the order of the sup and inf reversed) would yield the same results

(see footnote 22).

Another reason for studying player 1’s maxmin payoff is that it determines the entire

range of payoffs that are consistent with knowledge of rationality, as shown by the following

proposition.

Proposition 1 For any posture γ and any payoff u1 ∈ [u∗1 (γ) , 1), there exists a belief π1 ∈

Πγ
1 such that maxσ1 u1 (σ1, π1) = u1.

3 Characterization of Maxmin Payoff and Posture

This section states and proves Theorem 1, the main result of the paper, which solves for

player 1’s maxmin payoff and posture. Section 3.1 states Theorem 1 and provides intuition,

and Sections 3.2 through 3.4 provide the proof.

3.1 Main Result

The main result is the following:

Theorem 1 Player 1’s maxmin payoff is

u∗1 (ε) = 1/ (1− log ε) ,

10The notation γ∗ (·) is already taken by the time-t demand of posture γ∗. I apologize for abusing notation

in writing u∗1 (γ) and u∗1 (ε) for different objects and hope that this will not cause confusion.
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and the unique maxmin posture γ∗ε is given by

γ∗ε (t) = min
{
ert/ (1− log ε) , 1

}
for all t ∈ R+.

Theorem 1 shows that player 1’s maxmin payoff large relative to her commitment prob-

ability ε, and that her unique maxmin posture is simply demanding the maxmin payoff

plus compensation for any delay in reaching agreement.11 I first give intuition for why the

maxmin posture demands the maxmin payoff plus compensation for delay, and then give

intuition for why the maxmin payoff equals 1/ (1− log ε).

The first step (Sections 3.2 and 3.3) is solving the “min”in maxmin: that is, determining

the worst belief that player 2 can have after player 1 announces an arbitrary posture γ.

This belief is called the γ-offsetting belief and plays an important role in the analysis. A

preliminary observation is that player 1 should mimic her announced posture γ forever

in order to guarantee herself as much as possible (however ill-chosen γ may be). This is

because player 1 is not guaranteed a positive payoffat histories following a deviation from her

announced posture, because at such histories player 2’s beliefs and strategy are unrestricted.

It follows from this observation that the γ-offsetting belief is whatever belief leads player 2

to rejects player 1’s demand for as long as possible when player 1 mimics γ.12

What belief leads player 2 to reject for as long as possible? It is the belief that player 1

is committed to γ with the smallest possible probability (i.e., ε), and that player 1 concedes

the entire surplus to him at the rate that makes him (player 2) indifferent between accepting

and rejecting. For if player 1 conceded more slowly, player 2 would accept, and if player 1

conceded more quickly, player 1 would build reputation more quickly when mimicking γ and

11The importance of non-constant postures is a difference between this paper and existing reputational

bargaining models, where it is usually assumed that players may only be committed to strategies that

demand a constant share of the surplus. A notable exception is Abreu and Pearce (2007), where players

may be committed to non-constant postures that can also condition their play on their opponents’behavior.

However, Abreu and Pearce’s main result is that a particular posture that demands a constant share of the

surplus is approximately optimal in their model, when commitment probabilities are small.
12This is not true if γ ever increases so quickly that delay benefits player 1. For this intuitive discussion,

consider instead the “typical”case where delay hurts player 1.
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would thus eventually have her demand accepted sooner.13 Furthermore, this concession

rate (call it λ (t)) is higher when player 1’s demand is smaller, because when player 1’s

demand is smaller player 2 is more tempted to accept. Thus, the γ-offsetting belief is that

player 1 is committed to γ with probability ε and concedes the entire surplus at rate λ (t)

(which depends on γ).

The second step (Section 3.4) is solving the “max”in maxmin: that is, determining the

posture γ that maximizes player 1’s payoffwhen player 2 has γ-offsetting beliefs. Since player

1 builds reputation more quickly when her demand is smaller, she benefits from demanding

as little as possible, subject to the constraint that she always demands at least her maxmin

payoff plus compensation for delay (as otherwise player 2 might rationally accept at a time

where she demands less than this, leaving her with less than her maxmin payoff). This

implies that the maxmin posture demands exactly the maxmin payoff plus compensation

for delay, until player 1’s reputation reaches 1 (i.e., until player 2 becomes certain that she

is committed to γ).14 It can also be shown that under the maxmin posture player 1’s

reputation reaches 1 at the same time at which her demand reaches 1, and that her demand

can never subsequently drop below 1. So the maxmin posture demands compensation for

delay until player 1’s demand reaches 1, and subsequently demands 1 forever.

It remains to describe why the maxmin payoff equals 1/ (1− log ε). Consider a posture

γ given by γ (t) = min {ertu1, 1} for all t ∈ R+, for arbitrary u1 ∈ R+; that is, γ demands

u1 plus compensation for delay. Observe that if player 1’s reputation reaches 1 before her

demand reaches 1, then player 2 must accept by the time her reputation reaches 1, as at that

time he is certain that player 1’s demand will only increase if he rejects further. Since γ

demands compensation for delay until player 1’s demand reaches 1, it follows that if player

1’s reputation reaches 1 before her demand reaches 1 then player 1 is guaranteed a payoff

13This point is clearest in the extreme case where player 2 thinks that player 1 will surely concede in one

second. Then player 1 needs only mimic γ for two seconds to convince player 2 that she is committed.
14A subtlety is that some postures γ that always demand more than the maxmin posture γ∗ may have

γ′ (t) > γ∗′ (t) for some t and thus λ (t) > λ∗ (t) for some t (see the equation for λ (t) below). However, it

can be shown that this advantage in the derivative term γ′ is always more than offset by the disadvantage

in the level term γ when integrating λ over an interval, so that player 1’s reputation is always greater with

posture γ∗ than with γ.
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equal to her initial demand u1. I now argue that player 1’s reputation reaches 1 before her

demand does whenever u1 < 1/ (1− log ε), which proves that player 1 can guarantee herself

up to 1/ (1− log ε).

I first compute the concession rate λ (t) that makes player 2 indifferent between accepting

and rejecting player 1’s demand γ (t). For player 2, accepting yields flow payoff r (1− γ (t)),

while rejecting yields flow payoff λ (t) γ (t)− γ′ (t), and equalizing these flow payoffs gives

λ (t) =
r (1− γ (t)) + γ′ (t)

γ (t)
.15

Since γ (t) = ertu1 until γ (t) reaches 1, it follows that λ (t) = r/ (ertu1) until γ (t) reaches

1. Now player 1’s reputation reaches 1 at the time T such that the probability that player

1 has not conceded by T equals ε, since if player 1 does not concede by this time then she

must be committed to γ (as γ never concedes). This time T is given by

exp

(
−
∫ T

0

λ (t) dt

)
= ε.16

Substituting r/ (ertu1) for λ (t), this becomes

T = − log (1 + u1 log ε) /r.

On the other hand, player 1’s demand reaches 1 at the time T 1 given by erT
1
u1 = 1, or

T 1 = − log (u1) /r.

Hence, player 1’s reputation reaches 1 before her demand does if and only if T < T 1, that

is, if and only if u1 < 1/ (1− log ε). So player 1 can guarantee herself up to 1/ (1− log ε).

Finally, player 1 cannot guarantee herself more than 1/ (1− log ε), because it can be

shown that any posture that guarantees close to 1/ (1− log ε) must be close to the maxmin

posture γ∗.

15Two remarks: First, the formal definition of λ (t) is provided in Section 3.2 (the current definition

assumes that γ is differentiable and that r (1− γ (t)) + γ′ (t) ≥ 0, for example). Second, a slightly more

rigorous derivation of λ (t) comes from considering the equation for player 2 to be indifferent between

accepting at t and t + dt, 1 − γ (t) = λ (t) dt + (1− λ (t) dt) (1− rdt) (1− γ (t+ dt)), and taking a first-

order expansion in dt.
16A more general definition of T is provided in Section 3.2.
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3.2 Offsetting Beliefs and Strategies

This subsection solves the problem

inf
(π2,σ2):π2(γ)≥ε,σ2∈Σ∗2(π2)

u1 (γ, σ2) . (1)

The resulting (belief-strategy) pair (πγ2 , σ
γ
2) are the γ-offsetting belief and strategy.

The key step in solving (1) is computing the smallest time T by which agreement must

be reached under strategy profile (γ, σ2) for σ2 ∈ Σ∗2 (π2). I then show that the value of (1)

is simply mint≤T e
−rtγ (t), where γ (t) ≡ min {limτ↑t γ (τ) , γ (t)}.

Toward computing T , let v (t,−1) be the continuation value of player 2 from best-

responding to γ starting from date (t,−1) (for integer t), and let v (t) be the corresponding

continuation value starting from date (t, 1) (for any t ∈ R+):

v (t,−1) ≡ max
τ≥t

e−r(τ−t)
(
1− γ (τ)

)
,

v (t) ≡ max

{
1− γ (t) , sup

τ>t
e−r(τ−t)

(
1− γ (τ)

)}
, (2)

where γ (τ) ≡ min {lims↑τ γ (s) , γ (τ)}. Thus, the difference between v (t,−1) and v (t) is

that only v (t,−1) gives player 2 the opportunity to accept the demand 1− limτ↑t γ (τ). In

particular, v (t,−1) = v (t) if γ (or v) is continuous at t. Note thatmaxτ≥t e
−r(τ−t) (1− γ (τ)

)
is well-defined because γ is lower semi-continuous and limτ→∞ e

−r(τ−t) (1− γ (τ)
)

= 0, and

that v is continuous at all non-integer times t; let {s1, s2, . . .} ≡ S ⊆ N be the set of

discontinuity points of v. Finally, note that v can increase at rate no faster than r. That

is, v (t) ≥ e−r(t
′−t)v (t′) for all t′ ≥ t, because if v (t′) = e−r(τ−t

′)
(
1− γ (τ)

)
for some τ ≥ t′,

then v (t) ≥ e−r(τ−t)
(
1− γ (τ)

)
= e−r(t

′−t)v (t′). This implies that v is continuous but for

downward jumps,17 and that v is differentiable almost everywhere.18 These are but two of

the useful properties of the function v (which are not shared by γ) that reward working with

v rather than γ in the subsequent analysis.

Next, I introduce two functions λ : R+ → R+ and p : R+ → R+ with the property that if

player 1 mixes between mimicking γ and conceding the entire surplus to player 2, then λ (t)

17A function f : R→R is continuous but for downward jumps if lim inf fx↑x∗ (x) ≥ f (x∗) ≥

lim supx↓x∗ f (x) for all x ∈ R.
18Proof: Let f (t) = e−rtv (t). Then f is non-increasing, which implies that f is differentiable almost

everywhere (e.g., Royden, 1988, p. 100). Hence, v is differentiable almost everywhere.

15



(resp., p (t)) is the smallest non-negative hazard rate (resp., discrete probability) at which

player 1 must concede in order for player 2 to be willing to reject player 1’s time-t demand,

γ (t). Let

λ (t) =
rv (t)− v′ (t)

1− v (t)
(3)

if v is differentiable at t and v (t) < 1, and let λ (t) = 0 otherwise; note that λ (t) ≥ 0 for all

t, because v cannot increase at rate faster than r.19 Also, let

p (t) =
v (t,−1)− v (t)

1− v (t)
(4)

if v (t) < 1, and let p (t) = p (0) = 0 otherwise.

When player 2 expects player 1 to accept his demand at rate (resp., probability) λ (resp.,

p), he becomes convinced that player 1 is committed to posture γ at the time T̃ defined in

the following crucial lemma, which leads him to accept player 1’s demand no later than the

time T defined in the lemma. In the lemma, and throughout the paper, maximization or

minimization over times t should be read as taking place over t ∈ R+∪{∞} (i.e., as allowing

t =∞, with the convention that e−r∞γ (∞) ≡ 0 for all postures γ).

Lemma 1 Let

T̃ ≡ sup

t : exp

(
−
∫ t

0

λ (s) ds

) ∏
s∈S∩[0,t)

(1− p (s)) > ε

 ,
and let

T ≡ max argmax
t≥T̃

 e−rt (1− γ (t)) if t = T̃

e−rt
(
1− γ (t)

)
if t > T̃

.

Then, for any π2 such that π2 (γ) ≥ ε and any σ2 ∈ Σ∗2 (π2), agreement is reached no later

than time T under strategy profile (γ, σ2). In particular,

inf
(π2,σ2):π2(γ)≥ε,σ2∈Σ∗2(π2)

u1 (γ, σ2) ≥ min
t≤T

e−rtγ (t) . (5)

19If v′ (t) = 0, then λ (t) becomes the concession rate that makes player 2 indifferent between accepting and

rejecting the constant offer v (t), which is familiar from the literatures on wars of attrition and reputational

bargaining. However, in these literatures λ (t) is the rate at which player 1 concedes in equilibrium, while

here is the rate at which player 1 concedes according to player 2’s γ-offsetting belief, as will become clear.
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Thus, Lemma 1 shows that agreement is delayed for as long as possible when player 1’s

concession rate and probability are given by λ and p. This gives a lower bound for (1).

The remainder of this subsection is devoted to showing that (5) holds with equality,

which proves that (1) equals mint≤T e
−rtγ (t). The idea is that player 2 may hold a belief

that leads him to demand the entire surplus until time t∗ ≡ min argmint≤T e
−rtγ (t) and then

accept player 1’s offer; this is the γ-offsetting belief.20 I first define the γ-offsetting belief,

and then show that (5) holds with equality.

I begin by introducing a strategy, γ̃, which is used in defining the γ-offsetting belief.21

Let

χ (t) = max

exp
(
−
∫ t

0
λ (s) ds

)∏
s∈S∩[0,t) (1− p (s))− ε

exp
(
−
∫ t

0
λ (s) ds

)∏
s∈S∩[0,t) (1− p (s))

, 0

 ; (6)

let

λ̂ (t) =
λ (t)

χ (t)
(7)

if χ (t) > 0, and let λ̂ (t) = 0 otherwise; and let

p̂ (t) = min

{
p (t)

χ (t)
, 1

}
(8)

if χ (t) > 0, and let p̂ (t) = 0 otherwise. Thus, χ (t) is the posterior probability that player 2

assigns to player 1’s playing a strategy other than γ at time t when player 1’s unconditional

concession rate and probability are λ (t) and p (t), and λ̂ (t) and p̂ (t) are the conditional (on

not playing γ) concession rate and probability needed for the unconditional concession rate

and probability to equal λ (t) and p (t).

Definition 4 γ̃ is the strategy that demands γ (t) at all t, accepts with hazard rate λ̂ (t) at

all t < t∗, accepts with probability p̂ (t) at date (t, 1) for all t < t∗, and rejects for all t ≥ t∗,

for all histories ht.

I now define the γ-offsetting belief. Throughout, a history ht− (resp., ht+) is consistent

with posture γ if u1 (τ) = γ (τ) for all τ < t (resp., τ ≤ t).

20Note that min argmint≤T e
−rtγ (t) is well-defined, because γ (t) is lower semi-continuous (though it may

equal ∞, if T =∞). Note also that γ (t) > 0 for all t < t∗. This property of t∗ makes it more convenient

to define the γ-offsetting belief with reference to t∗, rather than some other element of argmint≤T e
−rtγ (t).

21This approach is related to a construction in Wolitzky (2011).
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Definition 5 The γ-offsetting belief, denoted πγ2, is given by π
γ
2 (γ) = ε and πγ2 (γ̃) = 1− ε.

The γ-offsetting strategy, denoted σγ2, is the strategy that always demands 1 and accepts or

rejects player 1’s demand as follows:

1. If ht is consistent with γ, then reject if t < t∗; accept at date (t∗,−1) if and only if

limτ↑t∗ γ (τ) ≤ γ (t∗); accept at date (t∗, 1) if and only if limτ↑t∗ γ (τ) > γ (t∗); and

reject if t > t∗.

2. If ht is inconsistent with γ, then reject.

Finally, I show that (5) holds with equality, and also that the γ-offsetting (belief, strategy)

pair (πγ2 , σ
γ
2) is a solution to (1). If t∗ =∞, then the following statement that agreement is

reached at time t∗ means that agreement is never reached:

Lemma 2 Agreement is reached at time t∗ under strategy profile (γ, σγ2), and σγ2 ∈ Σ∗2 (πγ2).

In particular, the pair (πγ2 , σ
γ
2) is a solution to (1), and u1 (γ, σγ2) = mint≤T e

−rtγ (t).

Proof. It is immediate from Definition 5 that agreement is reached at t∗ under strategy

profile (γ, σγ2), which implies that u1 (γ, σγ2) equals mint≤T e
−rtγ (t), the right-hand side of

(5). Since πγ2 (γ) ≥ ε, it remains only to show that σγ2 ∈ Σ∗2 (πγ2).

If t < min
{
T̃ , t∗

}
and ht is consistent with γ, then, by construction of γ̃, player 1

accepts player 2’s demand of 1 with unconditional hazard rate λ (t) and unconditional discrete

probability p (t) under πγ2 . It is established in the proof of Lemma 1 that it is optimal for

player 2 to demand u2 (t) = 1 and reject at any time t < min
{
T̃ , t∗

}
when player 1 accepts

his demand of 1 at rate λ and probability p until time T̃ ; and that in addition if t∗ < T̃

then player 2 is indifferent between accepting and rejecting at time t∗ when player 1 accepts

with this rate and probability until time T̃ . Therefore, it is optimal for player 2 to demand

u2 (t) = 1 and reject at time t when player 1 accepts with this rate and probability only until

time min
{
T̃ , t∗

}
.

If t ∈
[
T̃ , t∗

)
and ht is consistent with γ, then under πγ2 player 2 is certain that player

1 is playing γ at ht. Since t∗ ≤ T , this implies that it is optimal for player 2 to reject. If

a history ht is not reached under strategy profile (πγ2 , σ
γ
2) (as is the case if ht is inconsistent

with γ or if t > t∗), then any continuation strategy of player 2’s is optimal. Finally, to
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see that accepting γ (t∗) (i.e., accepting at the more favorable of dates (t∗,−1) and (t∗, 1))

is optimal, note that the fact that t∗ ∈ argmint≤T e
−rtγ (t) implies that γ (t) ≥ γ (t∗) for

all t ∈ [t∗, T ]. Hence, t∗ ∈ argmaxt∈[t∗,T ] e
−rt (1− γ (t)

)
. Because γ̃ coincides with γ after

time t∗, it follows that, conditional on having reached time t∗, player 2 receives at most

supt∈(t∗,T ] e
−rt (1− γ (t)

)
if he rejects, and receives e−rt

∗ (
1− γ (t∗)

)
if he accepts, which is

weakly more. Therefore, σγ2 ∈ Σ∗2 (πγ2).

3.3 Maxmin Strategies

This subsection shows that γ itself is a maxmin strategy given posture γ. Henceforth, I write

T̃ (γ) and T (γ) for the times defined in Lemma 1, making the dependence on γ explicit.

Lemma 3 For any posture γ, u∗1 (γ) = u1 (γ, σγ2) = mint≤T (γ) e
−rtγ (t).

Proof. By Lemma 2, (πγ2 , σ
γ
2) is a solution to (1), so

σγ2 ∈ argmin
π1∈Πγ1

u1 (γ, π1) . (9)

Under strategy σγ2 , player 2 always demands 1 and only accepts player 1’s demand if

she conforms to γ through time t∗. Hence, supσ1
u1 (σ1, σ

γ
2) = e−rt

∗
γ (t∗) = u1 (γ, σγ2), and

therefore

γ ∈ argmax
σ1

u1 (σ1, σ
γ
2) . (10)

Now (9) and (10) imply the following chain of inequalities:

sup
σ1

inf
π1∈Πγ1

u1 (σ1, π1) ≥ inf
π1∈Πγ1

u1 (γ, π1)

= u1 (γ, σγ2) (by (9))

= sup
σ1

u1 (σ1, σ
γ
2) (by (10))

≥ sup
σ1

inf
π1∈Πγ1

u1 (σ1, π1) .

This is possible only if both inequalities hold with equality (and the supremum and infimum

are attained at γ and σγ2 , respectively).
22 Therefore, u∗1 (γ) = u1 (γ, σγ2) = mint≤T (γ) e

−rtγ (t).

22The same argument applies with the order of the sup and inf reversed, which is why Theorem 1 continues

to hold when the order of the sup and inf are reversed in Definitions 2 and 3.
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3.4 Proof of Theorem 1

I now sketch the remainder of the proof of Theorem 1. The details of the proof are deferred

to the appendix.

The first part of the proof is constructing a sequence of postures {γn} such that limn→∞ u
∗
1 (γn) =

1/ (1− log ε) and {γn (t)} converges to γ∗ (t) ≡ min {ert/ (1− log ε) , 1} for all t ∈ R+. De-

fine γn by

γn (t) = min

{(
n

n+ 1

)
ert

1− log ε
, 1

}
for all t ∈ R+.

Let T 1
n be the time where γn (t) reaches 1. It can be shown that T 1

n > T̃ (γn) for all n ∈ N.

Hence, γn (t) =
(

n
n+1

)
ert

1−log ε
for all t ≤ T̃ (γn), and γn

(
T̃ (γn)

)
< 1. Since γn (t) is non-

decreasing and γn
(
T̃ (γn)

)
< 1, it follows from the definition of T (γn) that T (γn) = T̃ (γn).

Thus, by Lemma 3,

u∗1 (γn) = min
t≤T (γn)

e−rtγn (t) = min
t≤T̃ (γn)

(
n

n+ 1

)
1

1− log ε
=

(
n

n+ 1

)
1

1− log ε
.

Therefore, limn→∞ u
∗
1 (γn) = 1/ (1− log ε).

The second part is showing that no posture γ guarantees more than 1/ (1− log ε). Here,

the crucial observation is that any posture γ such that γ (t) ≥ ert/ (1− log ε) for all t ≤

T (γ) satisfies T̃ (γ) ≥ T 1, where T 1 is the time at which γ∗ (t) reaches 1. Since u∗1 (γ) =

mint≤T (γ) e
−rtγ (t), this implies that any posture γ that guarantees at least 1/ (1− log ε)must

satisfy T̃ (γ) ≥ T 1; in particular, player 2 may reject γ (t) until time T 1. But receiving the

entire surplus at T 1 is worth only 1/ (1− log ε), so it follows that no posture guarantees more

than 1/ (1− log ε). The appendix shows that in addition the maxmin posture is unique.

4 Extensions

This section presents three extensions of Theorem 1. Section 4.1 restricts player 1 to

announcing constant postures; Section 4.2 allows for heterogeneous discounting; and Section

4.3 considers higher-order knowledge of rationality.
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4.1 Constant Postures

Theorem 1 shows that the unique maxmin posture is non-constant. In this subsection, I

determine how much lower a player’s maxmin payoff is when she is required to announce a

constant posture. This establishes that value of announcing non-constant postures, and also

facilitates comparison with the existing reputational bargaining literature, in which typically

players can only announce constant postures.

A posture γ is constant if γ (t) = γ (0) for all t. If γ is constant, I slightly abuse

notation by writing γ for the constant demand γ (t) in addition to the posture itself. The

constant posture γ that maximizes u∗1 (γ) is the maxmin constant posture, denoted γ̄∗, and

the corresponding payoff is the maxmin constant payoff , denoted ū∗1. These can be derived

using Lemmas 1 through 3, leading to the following:

Proposition 2 For all ε < 1, the unique maxmin constant posture is γ̄∗ε =
2−log ε−

√
(log ε)2−4 log ε

2
,

and the maxmin constant payoff is ū∗1 (ε) = exp (− (1− γ̄∗ε)) γ̄∗ε.

Proposition 2 solves for γ̄∗ε and ū
∗
1 (ε), but it does not yield a clear relationship between

the maxmin constant payoff, ū∗1 (ε), and the (overall) maxmin payoff, u∗1 (ε). Figure 2 graphs

u∗1 (ε) and ū∗1 (ε). In addition, the following result regarding the ratio of u∗1 (ε) to ū∗1 (ε) is

straightforward:

Corollary 1 u∗1 (ε) /ū∗1 (ε) is decreasing in ε, limε→1 u
∗
1 (ε) /ū∗1 (ε) = 1, and

limε→0 u
∗
1 (ε) /ū∗1 (ε) = e.

The most interesting part of Corollary 1 is that a player’s maxmin payoff is approximately

e ≈ 2. 72 times greater when she can announce non-constant postures than when she can only

announce constant postures, when her commitment probability is small. Thus, there is a

large advantage to announcing non-constant postures. However, a player can still guarantee

herself a substantial share of the surplus when she can only announce constant postures, and

her maxmin payoff goes to 0 with ε at the same rate in either case.
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Figure 2: u∗1 (ε) (solid line) and ū∗1 (ε) (dashed line).

4.2 Heterogeneous Discounting

The assumption that the players have the same discount rate has simplified notation and

led to simple formulas for u∗1 (ε) and γ∗ε in Theorem 1. However, it is straightforward to

let player i have discount rate ri, with ri 6= rj, and doing so yields interesting comparative

statics with respect to the players’relative patience, r1/r2 (as will become clear, u∗1 depends

on r1 and r2 only through r1/r2). First, the standard result in the reputational bargaining

literature that player 1’s sequential equilibrium payoff converges to 1 as r1/r2 converges to

0, and converges to 0 as r1/r2 converges to ∞, also applies to player 1’s maxmin payoff.

This is analogous to the finding of Watson (1993) and Battigalli and Watson (1997) that the

limit uniqueness result of Fudenberg and Levine (1989) holds under knowledge of rationality.

However, I also derive player 1’s maxmin payoff for fixed r1/r2 (rather than only in the limit).

This leads to a second comparative static result, which indicates that a geometric change in

relative patience has a similar effect on the maxmin payoff as does an exponential change in

commitment probability. An analogous result holds in equilibrium in existing reputational

bargaining models.

I first present the analog of Theorem 1 for heterogeneous discount rates, and then state

the two comparative statics results as corollaries, omitting their proofs.
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Proposition 3 If player i’s discount rate is ri, then player 1’s maxmin payoff, u∗1 (ε), is the

unique number u∗1 that solves

u∗1 =
1

1− r1
r2

log ε−
(
r1
r2
− 1
)

log u∗1

. (11)

Corollary 2 shows that the standard limit comparative statics on r1/r2 in reputational

bargaining models require only first-order knowledge of rationality.

Corollary 2 limr1/r2→0 u
∗
1 (ε) = 1. If ε < 1, then in addition limr1/r2→∞ u

∗
1 (ε) = 0.

Corollary 3 shows that the commitment probability ε must decrease exponentially to

(approximately) offset a geometric increase in relative patience (r1/r2)−1. The result is

stated for the case r1/r2 ≤ 1, where even an exponential decrease in ε does not fully offset

a geometric increase in (r1/r2)−1. If r1/r2 > 1, then an exponential decrease in ε can more

than offset a geometric increase in (r1/r2)−1.

Corollary 3 Suppose that r1/r2 ≤ 1 and that r1/r2 and ε both decrease while (r1/r2) log ε

remains constant. Then u∗1 (ε) increases.

4.3 Rationalizability

Theorem 1 derives the highest payoff that player 1 can guarantee herself under first-order

knowledge of rationality, the weakest epistemic assumption consistent with the possibility

of reputation-building. I now show that player 1 cannot guarantee herself more than this

under the much stronger assumption of normal-form rationalizability (or under any finite-

order knowledge of rationality), which reinforces Theorem 1 substantially.23

I consider the following definition of (normal-form) rationalizability:

Definition 6 A set of bargaining phase strategy profiles Ω = Ω1 × Ω2 ⊆ Σ1 × Σ2 is closed

under rational behavior given posture γ if for all σ1 ∈ Ω1 there exists some belief π1 ∈ ∆ (Ω2)

such that σ1 ∈ Σ∗1 (π1); and for all σ2 ∈ Ω2 there exists some belief π2 ∈ ∆ (Ω1 ∪ {γ}) such

that π2 (γ) ≥ ε, with strict inequality only if γ ∈ Ω1, and σ2 ∈ Σ∗2 (π2).

23The supplementary appendix shows that Theorem 1 also extends to iterated conditional dominance.
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The set of rationalizable strategies given posture γ is

ΩRAT (γ) ≡
⋃
{Ω : Ω is closed under rational behavior given posture γ} .

Player 1’s rationalizable maxmin payoffgiven posture γ is uRAT1 (γ) ≡ supσ1
infσ2∈ΩRAT2 (γ) u1 (σ1, σ2).

Player 1’s rationalizable maxmin payoff is uRAT1 ≡ supγ u
RAT
1 (γ). A posture γRAT is a ra-

tionalizable maxmin posture if there exists a sequence of postures {γn} such that γn (t) →

γRAT (t) for all t ∈ R+ and uRAT1 (γn)→ uRAT1 .

The result is the following:

Proposition 4 Player 1’s rationalizable maxmin payoff equals her maxmin payoff, and the

unique rationalizable maxmin posture is the unique maxmin posture. That is, uRAT1 = u∗1,

and the unique rationalizable maxmin posture is γRAT = γ∗.

Any rationalizable strategy given posture γ is also rational given posture γ. Therefore,

Lemma 1 applies under rationalizability. The only additional fact used in the proof of The-

orem 1 is that u∗1 (γ) = mint≤T (γ) e
−rtγ (t) for any posture γ (Lemma 3). Supposing that the

analogous equation holds under rationalizability (i.e., that uRAT1 (γ) = mint≤T (γ) e
−rtγ (t)),

the proof of Theorem 1 goes through as written. Hence, to prove Proposition 4 it suffi ces to

prove the following lemma, the proof of which shows that the γ-offsetting belief and strategy

are not only rational but rationalizable:

Lemma 4 For any posture γ, uRAT1 (γ) = mint≤T (γ) e
−rtγ (t).

5 Two-Sided Commitment

This section introduces the possibility that both players may announce– and become com-

mitted to– postures prior to the start of bargaining. I show that each player i’s maxmin

payoff is close to that derived in Section 3 when her opponent’s commitment probability,

εj, is small in absolute terms (even if εj is large relative to εi). In addition, each player’s

maxmin posture is exactly as in Section 3. This shows that the analysis of Section 3 pro-

vides a two-sided theory of reputational bargaining. The results of this section contrast with
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the existing reputational bargaining literature, which emphasizes that relative commitment

probabilities are crucial for determining equilibrium behavior and payoffs.

Formally, modify the model of Section 2 by assuming that in the announcement stage

players simultaneously announce postures (γ1, γ2), to which they become committed with

probabilities ε1 and ε2, respectively. The bargaining phase is unaltered. Thus, at the

beginning of the bargaining phase, player i believes that player j is committed to posture γj

with probability εj and is rational with probability 1 − εj (though this fact is not common

knowledge). The following definitions are analogs of Definitions 1 through 3 that allow for

the fact that both players may become committed to the postures they announce:

Definition 7 A belief πi of player i’s is consistent with knowledge of rationality given

postures
(
γi, γj

)
if πi

(
γj
)
≥ εj; πi

(
γj
)
> εj only if there exists πj such that πj (γi) ≥ εi and

γj ∈ Σ∗j (πj); and, for all σj 6= γj, σj ∈ supp (πi) only if there exists πj such that πj (γi) ≥ εi

and σj ∈ Σ∗j (πj). Let Π
γi,γj
i be the set of player i’s beliefs that are consistent with knowledge

of rationality given postures
(
γi, γj

)
. Player i’s maxmin payoff given postures

(
γi, γj

)
is

u∗i
(
γi, γj

)
≡ sup

σi

inf
πi∈Π

γi,γj
i

ui (σi, πi) .

Player i’s maxmin payoff is

u∗i ≡ sup
γi

inf
γj
u∗i
(
γi, γj

)
.

A posture γ∗i is a maxmin posture (of player i’s) if there exists a sequence of postures {γn}

such that γn (t)→ γ∗i (t) for all t ∈ R+ and infγj u
∗
i

(
γn, γj

)
→ u∗i .

I now show that u∗i (εi, εj) (player i’s maxmin payoff with commitment probabilities εi

and εj) is approximately equal to u∗i (εi) (her maxmin payoff in the one-sided commitment

model) whenever εj is small, and that the maxmin posture is exactly as in the one-sided

commitment model. This is simply because player i cannot guarantee herself anything in

the event that player j is committed (e.g., if player j’s announced posture always demands

the entire surplus), which implies that player i guarantees herself as much as possible by

conditioning on the event that player j is not committed. In this event, which occurs with

probability 1− εj, player i can guarantee herself u∗i (εi), and the only way she can guarantee

herself this much is by announcing γ∗εi .
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Theorem 2 Player i’s maxmin payoff is u∗i (εi, εj) = (1− εj)u∗i (εi), and player i’s unique

maxmin posture is γ∗i,(εi,εj) = γ∗εi.

Proof. Let γ0
j be the posture of player j’s given by γ

0
j (t) = 1 for all t. Note that ui

(
σi, γ

0
j

)
=

0 for all σi. Therefore, infγj ui
(
σi, γj

)
= 0 for all σi.

Next, let Π
γi,γj
i (εi, εj) be the set of beliefs πi that are consistent with knowledge of

rationality for commitment probabilities (εi, εj), and let Π
γi
i (εi) be the analogous set in

the one-sided commitment model. I claim that if πi ∈ Π
γi,γj
i (εi, εj), then there exists

π′i ∈ Π
γi
i (εi) such that πi puts probability 1 − εj on strategy π′i and puts probability εj on

strategy γj. To see this, note that πi
(
γj
)
≥ εj, so there exists a strategy π′i such that πi

puts probability 1 − εj on π′i and puts probability εj on γj. Furthermore, by definition of

Π
γi,γj
i (εi, εj), σj ∈ supp (π′i) only if there exists πj such that πj (γi) ≥ εi and σj ∈ Σ∗j (πj)

(whether or not σj equals γj). By definition of Π
γi
i (εi), this implies that π′i ∈ Π

γi
i (εi).

Combining the above observations,

inf
γj
u∗i
(
γi, γj

)
= inf

γj
sup
σi

inf
πi∈Π

γi,γj
i (εi,εj)

ui (σi, πi)

= inf
γj

sup
σi

inf
π′i∈Π

γi
i (εi)

(1− εj)ui (σi, π′i) + εjui
(
σi, γj

)
.

= sup
σi

inf
π′i∈Π

γi
i (εi)

(1− εj)ui (σi, π′i) + εj (0)

= (1− εj)u∗i (γi) .

Therefore, the definitions of u∗i (εi, εj) and u∗i (εi) imply that u∗i (εi, εj) = supγi (1− εj)u∗i (γi) =

(1− εj)u∗i (εi). Similarly, the definition of a maxmin posture in the one-sided commitment

model implies that γ∗i,(εi,εj) is a maxmin posture in the two-sided commitment model if and

only if it is a maxmin posture in the one-sided commitment model with ε = εi.

Note that the assumption that both players best-respond to beliefs that are consistent

with knowledge of rationality does not determine how bargaining proceeds. However, it

is interesting to compare a player’s opponent’s worst-case conjecture (i.e., offsetting belief)

about her strategy with her equilibrium strategy in, for example, Abreu and Gul (2000).

Both in equilibrium and in her opponent’s worst-case conjecture, a player mixes between

mimicking her announced posture and (in effect) conceding. In the worst-case conjecture,

a player concedes at the rate that makes her opponent indifferent between accepting and

26



rejecting her demand when she follows her maxmin posture and he demands the entire

surplus. In equilibrium, a player concedes at the rate that makes her opponent indifferent

between accepting and rejecting when both players make their equilibrium demands. There

is no general way to order the concession rates in equilibrium and in the worst-case conjecture,

because a player’s demand is often higher in equilibrium (implying a lower concession rate),

while her opponent’s demand is always lower in equilibrium (implying a higher concession

rate). Thus, a player’s concession rate in equilibrium and in her opponent’s worst-case

conjecture are determined by similar indifference conditions, but one cannot predict whether

agreement will be reached sooner in equilibrium or under knowledge of rationality (for either

the players’true strategies or for their opponents’worst-case conjectures).

6 Conclusion

This paper analyzes a model of reputational bargaining in which players initially announce

postures to which they may become committed and then bargain over a unit of surplus. It

shows that under first-order knowledge of rationality a player can guarantee herself a share

of the surplus that is large relative to her probability of becoming committed, and that

the unique bargaining posture that guarantees this much is simply demanding this share in

addition to compensation for any delay in reaching agreement. These insights apply for

one- or two-sided commitment, for heterogeneous discounting, for any level of knowledge of

rationality or iterated conditional dominance, and for any bargaining procedure with frequent

offers. In addition, if a player could only announce postures that always demand the same

share of the surplus (as in most of the existing literature), her maxmin payoff would be

approximately e times lower.

These results are intended to complement the existing equilibrium analysis of reputational

bargaining models. Consider the fundamental question, “What posture should a bargainer

stake out?” In equilibrium analysis, the answer to this question depends on her opponent’s

beliefs about her continuation play following every possible announcement. Yet it may be

impossible for either the bargainer or an outside observer to learn these beliefs, especially

when bargaining is one-shot. Hence, an appealing alternative approach is to look for a

27



posture that guarantees a high payoff against any belief of one’s opponent, and for the

highest payoff that each player can guarantee herself. This paper shows that this alternative

approach yields sharp and economically plausible results.

Appendix: Omitted Proofs

Proof of Proposition 1. 24Fix a posture γ and payoff u1 ∈ [u∗1 (γ) , 1). If u1 6= γ (0), then

let σ̂γ2 be identical to the γ-offsetting strategy defined in Definition 5, with the modification

that player 1’s demand is accepted at any history ht at which player 1 has demanded u1

at all previous dates.25 If u1 = γ (0), then let σ̂γ2 be identical to the γ-offsetting strategy

defined in Definition 5, with the modification that player 1’s demand is accepted at date

(− log (u1) /r,−1) if player 1 has demanded 1 at all previous dates. In either case, let

πγ2 be as in Definition 5, and note that π
γ
2 (γ) ≥ ε. If u1 6= γ (0), no strategy under which

u1 (0) = u1 is in the support of π
γ
2 ; similarly, if u1 = γ (0), no strategy under which u1 (0) = 1

is in the support of πγ2 (since u1 < 1). Therefore, the same argument as in the proof of

Lemma 2 shows that σ̂γ2 ∈ Σ∗2 (πγ2). Hence, the belief π̂1 given by π̂1 (σ̂γ2) = 1 is an element

of Πγ
1 . Furthermore, under strategy σ̂

γ
2 , player 2 always demands 1 and only accepts player

1’s demand if player 1 has either conformed to γ through time t∗ (defined in Section 3.2) or

has always demanded u1 (in the u1 6= γ (0) case) or 1 (in the u1 = γ (0) case). Note that

exp (−r (− log (u1) /r)) = u1. Hence, in either case, u1 (σ1, π̂1) ∈ {0, u∗1 (γ) , u1} for every

strategy σ1. Let σ̂1 be the strategy of player 1’s that always demands u1 (if u1 6= γ (0)) or 1 (if

u1 = γ (0)) and never accepts player 2’s demand. Then u1 (σ̂1, π̂1) = u1 = maxσ1 u1 (σ1, π̂1),

completing the proof.

Proof of Lemma 1. I prove the result for pure strategies σ2, which immediately implies

the result for mixed strategies.

Fix π2 such that π2 (γ) ≥ ε and pure strategy σ2 ∈ Σ∗2 (π2). The plan of the proof is to

show that if agreement is not reached by T̃ under strategy profile (γ, σ2), then player 2 must

be certain that player 1 is playing γ at any time t > T̃ . This suffi ces to prove the lemma,

24The proof uses results from Section 3, and therefore should not be read before reading Section 3.
25That is, modify the second part of Definition 5 to include this contingency.

28



because σ2 ∈ Σ∗2 (π2) implies that player 2 accepts γ (t) no later than time t = T if at any

time t > T̃ agreement has not been reached and he is certain that player 1 is playing γ.

I begin by introducing some notation. Let χ(π2,σ2) (t) be the probability that player 2

assigns to player 1 not playing γ at date (t,−1) when his initial belief is π2 and play up

until date (t,−1) is given by player 1’s following strategy γ and player 2’s following (pure)

strategy σ2; this is determined by Bayes’rule, because π2 (γ) ≥ ε > 0. By convention, if

agreement is reached at time τ , let χ(π2,σ2) (t) = χ(π2,σ2) (τ) for all t > τ . Let t (γ, σ2) be the

time at which agreement is reached under strategy profile (γ, σ2) (with the convention that

t (γ, σ2) ≡ ∞ if agreement is never reached under (γ, σ2)); and let

t̂ (γ, σ2, π2) ≡ sup
{
t : χ(π2,σ2) (t) > 0

}
,

the latest time at which player 2 is not certain that player 1 is playing γ under strategy

profile (γ, σ2) with belief π2. Let

T̂ ≡ sup
(π2,σ2):π2(γ)≥ε,σ2∈Σ∗2(π2),t(γ,σ2)≥t̂(γ,σ2,π2)

t̂ (γ, σ2, π2) . (12)

That is, T̂ is the latest possible time t at which player 2 is not certain that player 1 is

following γ and agreement is not reached by t. The remainder of the proof consists of

showing that T̂ = T̃ .

There are three steps involved in showing that T̂ = T̃ , that is, that the value of the

program (12) is T̃ . Step 1 shows that in solving (12) one can restrict attention to a simple

class of belief-strategy pairs (π2, σ2). Step 2 reduces the constraints that σ2 ∈ Σ∗2 (π2) and

t (γ, σ2) ≥ t̂ (γ, σ2, π2) to an infinite system of inequalities involving player 1’s concession

rate and probability. Step 3 solves the reduced program.

Step 1: In the definition of T̂ it is without loss of generality to restrict attention to

(π2, σ2) such that σ2 always demands 1, π2 puts probability 1 on player 1 conceding at

any history ht+ at which u1 (t) 6= γ (t), and π2 puts probability 0 on player 1 conceding at

any history ht−. That is, that the right-hand side of (12) continues to equal T̂ when this

additional constraint is imposed on (π2, σ2).

Proof. Suppose that (π′2, σ
′
2) satisfies π′2 (γ) ≥ ε, σ′2 ∈ Σ∗2 (π′2), and t (γ, σ′2) ≥ t̂ (γ, σ′2, π

′
2)

(the constraints of (12)). Let π2 be the belief under which player 1 demands γ (t) for
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all t ∈ R+; accepts player 2’s demand at every history of the form (γ (τ) , 1)τ≤t at the

same rate and probability at which player 1 deviates from γ at time t (i.e., at date (t,−1),

(t, 0), or (t, 1)) under strategy profile (π′2, σ
′
2); and rejects player 2’s demand at every other

history. Clearly, there exists a strategy σ2 ∈ Σ∗2 (π2) that always demands 1 and that in

addition rejects player 1’s demand whenever rejection is optimal under belief π2. Note that

player 1’s rate and probability of deviating from γ at history (γ (τ) , 1)τ≤t under belief π2

is the same as at time t under strategy profile (π′2, σ
′
2), and that player 2’s continuation

payoff after such a deviation is weakly higher in the former case. Recall that strategy γ

never accepts player 2’s demand, so agreement is reached only if player 2 accepts player 1’s

demand or if player 1 has deviated from γ. Therefore, since rejecting player 1’s demand

γ (t) under strategy profile (π′2, σ
′
2) is optimal for all t < t (γ, σ′2), it follows that rejecting

player 1’s demand γ (t) at history (γ (τ) , 1)τ≤t is optimal under belief π2, for all t < t (γ, σ′2).

Since σ2 prescribes rejection whenever it is optimal, this implies that t (γ, σ2) ≥ t (γ, σ′2).

Furthermore, χ(π2,σ2) (t) = χ(π′2,σ′2) (t) for all t ∈ R+, so t̂ (γ, σ2, π2) = t̂ (γ, σ′2, π
′
2). Hence,

t (γ, σ2) ≥ t̂ (γ, σ2, π2). Finally, π2 (γ) ≥ ε. Therefore, (π2, σ2) satisfies the constraints

of (12), σ2 always demands u2 (t) = 1, π2 puts probability 1 on player 1 conceding at any

history ht+ at which u1 (t) 6= γ (t), π2 puts probability 0 on player 1 conceding at any history

ht−, and t̂ (γ, σ2, π2) ≥ t̂ (γ, σ′2, π
′
2). So the right-hand side of (12) continues to equal T̂

when the additional constraint is imposed.

Step 2 of the proof builds on Step 1 to further simplify the constraint set of (12). For

any belief π2 satisfying the conditions of Step 1, let λ
π2 (t) and pπ2 (t) be the concession

rate and probability of player 1 at history (γ (τ) , 1)τ≤t when her strategy is given by π2;

let Sπ2 be the (countable) set of times s such that pπ2 (s) > 0; and let t̂ (π2) ≡ t̂ (γ, σ0
2, π2),

where σ0
2 is the strategy that always demands 1 and always rejects player 1’s demand.

Fixing a strategy σ2 ∈ Σ∗2 (π2) that always demands 1 (which exists, by Step 1), note that

(γ, σ2) and (γ, σ0
2) induce the same path of play until time t (γ, σ2) (at which point player

2 accepts under σ2, but not under σ0
2), and therefore t (γ, σ2) ≥ t̂ (γ, σ2, π2) if and only if

t (γ, σ2) ≥ t̂ (π2). Hence, there exists a strategy σ2 ∈ Σ∗2 (π2) that always demands 1 and

satisfies t (γ, σ2) ≥ t̂ (γ, σ2, π2) if and only if it is optimal for player 2 to reject player 1’s

offer until time t̂ (π2) when he always demands 1, player 1 plays γ, and his initial belief is
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π2. I now use this observation to simplify the constraints of (12).

Step 2a: For any belief π2 satisfying the conditions of Step 1, there exists a strategy

σ2 ∈ Σ∗2 (π2) that always demands 1 and satisfies t (γ, σ2) ≥ t̂ (γ, σ2, π2) if and only if

1− γ (t)

≤
∫ t̂(π2)

t

exp

(
−r (τ − t)−

∫ τ

t

λπ2 (s) ds

) ∏
s∈Sπ2∩(t,τ)

(1− pπ2 (s))

λπ2 (τ) dτ

+
∑

s∈Sπ2∩(t,t̂(π2))

exp

(
−r (s− t)−

∫ s

t

λπ2 (q) dq

) ∏
q∈Sπ2∩(t,s)

(1− pπ2 (q))

 pπ2 (s)

+ exp

(
−r
(
t̂ (π2)− t

)
−
∫ t̂(π2)

t

λπ2 (s) ds

) ∏
s∈Sπ2∩(t,t̂(π2))

(1− pπ2 (s))

 v
(
t̂ (π2)

)
for all t < t̂ (π2) . (13)

Proof. By the above discussion, it suffi ces to show that (13) holds if and only if it is

optimal for player 2 to reject player 1’s offer until time t̂ (π2) when he always demands 1,

player 1 plays γ, and his initial belief is π2. The left-hand side of (13) is player 2’s payoff

from accepting player 1’s demand at date (t, 1) when pπ2 (t) = 0. The right-hand side

of (13) is player 2’s continuation payoff from rejecting player 1’s demand until time t̂ (π2)

when pπ2 (t) = 0. Thus, (13) must hold if it is optimal for player 2 to reject until time

t̂ (π2), and (13) implies that it is optimal for player 2 to reject at times before t̂ (π2) where

pπ2 (t) = 0. It remains to show that (13) implies that it is optimal for player 2 to reject at

times before t̂ (π2) where pπ2 (t) > 0. Suppose that pπ2 (t) > 0. At date (t,−1), the fact

that Sπ2 is countable and (13) holds at all times before t that are not in Sπ2 implies that

limτ↑t (1− γ (τ)) is weakly less than player 2’s continuation payoff from rejecting player 1’s

demand until time t̂ (π2). Furthermore, the fact that player 1 concedes with probability 0 at

date (t,−1) (as π2 satisfies the conditions of Step 1) implies that limτ↑t (1− γ (τ)) is indeed

player 2’s payoff from accepting at date (t,−1). Thus, rejecting is optimal at date (t,−1).

At date (t, 1), player 2’s payoff from accepting is (1− pπ2 (t) /2) (1− γ (t)) + (pπ2 (t) /2) (1),

while his continuation payoff from rejecting until time t̂ (π2) is 1−pπ2 (t) times the right-hand

side of (13) plus pπ2 (t) (1). Hence, (13) implies that rejecting is optimal at date (t, 1) as
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well. So (13) implies that it is optimal for player 2 to reject at times before t̂ (π2) where

pπ2 (t) > 0 (when he always demands 1, player 1 plays γ, and his initial belief is π2).

Step 2b shows that one can replace 1− γ (t) with v (t) in Step 2a.

Step 2b: For any belief π2 satisfying the conditions of Step 1, there exists a strategy

σ2 ∈ Σ∗2 (π2) that always demands 1 and satisfies t (γ, σ2) ≥ t̂ (γ, σ2, π2) if and only if

v (t)

≤
∫ t̂(π2)

t

exp

(
−r (τ − t)−

∫ τ

t

λπ2 (s) ds

) ∏
s∈Sπ2∩(t,τ)

(1− pπ2 (s))

λπ2 (τ) dτ

+
∑

s∈Sπ2∩(t,t̂(π2))

exp

(
−r (s− t)−

∫ s

t

λπ2 (q) dq

) ∏
q∈Sπ2∩(t,s)

(1− pπ2 (q))

 pπ2 (s)

+ exp

(
−r
(
t̂ (π2)− t

)
−
∫ t̂(π2)

t

λπ2 (s) ds

) ∏
s∈Sπ2∩(t,t̂(π2))

(1− pπ2 (s))

 v
(
t̂ (π2)

)
for all t < t̂ (π2) . (14)

Proof. By Step 2a, it suffi ces to show that (13) is equivalent to (14). Note that (14)

immediately implies (13) because v (t) ≥ 1− γ (t) for all t. For the converse, suppose that

(13) holds, and that v (t) > 1− γ (t) (as (13) and (14) are identical at t if v (t) = 1− γ (t)).

Now v (t) > 1 − γ (t) implies that v (t) = e−r(τ−t)
(
1− γ (τ)

)
for some τ > t such that

v (τ ,−1) = 1 − γ (τ). Therefore, v (τ ,−1) is weakly less than the limit as s ↑ τ of the

right-hand side of (14) evaluated at time s (with the convention that the right-hand side of

(14) equals v (s) if s ≥ t̂ (π2)). But the right-hand side of (14) at time t is at least e−r(τ−t)

times as large as this limit, which implies that the right-hand side of (14) at time t is at least

e−r(τ−t)v (τ ,−1) = v (t). Hence, (14) holds.

Let χπ2 (t) ≡ χ(π2,σ0
2). By Step 1 and Step 2b (and the use of Bayes’rule to compute

χπ2 (t)), (12) may be rewritten as

T̂ = sup
π2:π2(γ)≥ε,
(14) holds

sup

t : χπ2 (t) =
exp

(
−
∫ t

0
λπ2 (s) ds

)∏
s∈Sπ2∩[0,t) (1− pπ2 (s))− ε

exp
(
−
∫ t

0
λπ2 (s) ds

)∏
s∈Sπ2∩[0,t) (1− pπ2 (s))

> 0

 .
(15)

The last step of the proof is solving this simplified program. Steps 3a and 3b show that there
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exists some belief π2 that both attains the (outer) supremum in (15) (with the convention

that the supremum is attained at π2 if t̂ (π2) = T̂ = ∞) and also maximizes limt↑T̂ χ
π2 (t)

over all beliefs π2 that attain the supremum (note that this limit exists for all π2, because

χπ2 (t) is non-increasing). I then show that (14) must hold with equality (at all t < T̂ ) under

any such belief π2, which implies that (15) may be solved under the additional constraint

that (14) holds with equality. This final program is also solved in Step 3a, and has value T̃ .

Step 3a: There exists a belief π2 that attains the supremum in (15). In addition, the

value of (15) under the additional constraint that (14) holds with equality equals T̃ .

Proof. The plan of the proof is as follows. I first construct a belief π2 such that π2 (γ) ≥ ε

and (14) holds at all times t < T̂ under π2. I then show that if there exists a time t < T̂

at which (14) holds with strict inequality under π2, then there exists an alternative belief π′2

that attains the supremum in (15). Finally, I show that if (14) holds with equality at all

times t < T̂ under π2, then π2 itself attains the supremum in (15), which equals T̃ .

Fix a sequence
{
χπ

n
2

}
such that t̂ (πn2 ) ↑ T̂ , πn2 (γ) ≥ ε for all n, and (14) holds for all n.

Note that χπ
n
2 (t) is non-increasing in t, for all n. Since the space of monotone functions from

R+ to [0, 1] is sequentially compact (by Helly’s selection theorem; see, e.g., Billingsley (1995)

Theorem 25.9), there exists a subsequence
{
χπ

m
2

}
that converges pointwise to some (non-

increasing) function χπ2 .26 Furthermore, χπ2 (0) ≤ 1− ε, because χπm2 (0) ≤ 1− ε for all m.

Let π2 ∈ ∆ (Σ1) be a belief such that π2 (γ) ≥ ε and player 1 demands γ (t) for all t, concedes

at rate λπ2 (t) = − χπ2′(t)
1−χπ2 (t)

if χπ2 is differentiable at t and χπ2 (t) > 0 and concedes at rate

λπ2 (t) = 0 otherwise, and concedes with discrete probability pπ2 (t) =
limτ↑t χπ2 (τ)−χπ2 (t)

(1−χπ2 (t)) limτ↑t χπ2 (τ)
if

limτ↑t χ (t) > 0 and concedes with probability pπ2 (t) = 0 otherwise. Note that such a belief

exists, because it can be easily verified that for any belief corresponding to concession rate

26Showing that the space of monotone functions from R+ → [0, 1] is sequentially compact requires a slightly

different version of Helly’s selection theorem than that in Billingsley (1995), so here is a direct proof: If {fn}

is a sequence of monotone functions R+ → [0, 1], then there exists a subsequence {fm} ⊆ {fn} that converges

on Q+ to a monotone function f : Q+ → [0, 1]. Let f̃ : R+ → [0, 1] be given by f̃ (x) = liml→∞ f (xl),

where {xl}∞l=1 ↑ x and xl ∈ Q+ for all l. Then f̃ is monotone, which implies that there is a countable set S

such that f̃ is continuous on R+\S. Since S is countable, there exists a sub-subsequence {fk} ⊆ {fm} such

that {fk} converges on S. Finally, let f̂ (x) = f̃ (x) if x ∈ R+\S and f̂ (x) = limk→∞ fk (x) if x ∈ S. Then

{fk} → f̂ .
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and probability λπ2 and pπ2 ,

χπ2 (t) =
exp

(
−
∫ t

0
λπ2 (s) ds

)∏
s∈Sπ2∩[0,t) (1− pπ2 (s))− (1− χπ2 (0))

exp
(
−
∫ t

0
λπ2 (s) ds

)∏
s∈Sπ2∩[0,t) (1− pπ2 (s))

for all t, (16)

and therefore player 1 never concedes with probability at least 1 − χπ2 (0) ≥ ε under any

belief with this concession rate and probability.

Observe that (14) holds at all times t < T̂ under π2. To see this, note that the fact that

χπ
m
2 (t)→ χπ2 (t) for all t implies that

exp

(
−
∫ t

0

λπ
m
2 (s) ds

) ∏
s∈Sπ2∩[0,t)

(
1− pπm2 (s)

)
→ exp

(
−
∫ t

0

λπ2 (s) ds

) ∏
s∈Sπ2∩[0,t)

(1− pπ2 (s))

for all t. Since for all t < T̂ , there exists M > 0 such that (14) holds at time t under πm2 for

all m > M , this implies that (14) holds at all times t < T̂ under π2.

I now show that if there exists a time t < T̂ at which (14) holds with strict inequality

under belief π2, then there exists an alternative belief π′2 that attains the supremum in (15).

Suppose such a time t exists. I claim that there then exists a time t1 < t̂ (π2) at which

(14) holds with strict inequality and in addition either
∫ t1+∆

t1
λπ2 (s) ds > 0 for all ∆ > 0 or∑

s∈Sπ2∩[t1,t1+∆) p
π2 (s) > 0 for all ∆ > 0. To see this, note that there must exist a time

t′ ∈
(
t, t̂ (π2)

)
such that either

∫ t′+∆

t′ λπ2 (s) ds > 0 for all ∆ > 0 or pπ2 (t′) > 0 (because

otherwise (14) could not hold with strict inequality at t). Let t1 be the infimum of such

times t′, and note that either
∫ t1+∆

t1
λπ2 (s) ds > 0 for all ∆ > 0 or

∑
s∈Sπ2∩[t1,t1+∆) p

π2 (s) > 0

for all ∆ > 0. Then the fact that (14) holds with strict inequality at time t implies that

(14) holds with strict inequality at time t1, because otherwise the fact that
∫ t1
t
λπ2 (s) ds = 0

and pπ2 (t′′) = 0 for all t′′ ∈ [t, t1) would imply that (14) could not hold with strict inequality

at time t. This proves the claim.

Thus, let t0 < t̂ (π2) be such that (14) holds with strict inequality at time t0 and in

addition
∫ t0+∆

t0
λπ2 (s) ds > 0 for all ∆ > 0 (the case where

∑
s∈Sπ2∩[t0,t0+∆) p

π2 (s) > 0 is

similar, and thus omitted). Since v is continuous but for downward jumps, there exist η > 0

and ∆ > 0 such that (14) holds with strict inequality at t for all t ∈ [t0, t0 + ∆) when λπ2 (t)

is replaced by (1− η)λπ2 (t) for all t ∈ [t0, t0 + ∆). Define λπ2′ (t) by λπ2′ (t) ≡ λπ2 (t)

for all t /∈ [t0, t0 + ∆) and λπ2′ (t) ≡ (1− η)λπ2 (t) for all t ∈ [t0, t0 + ∆). Next, I claim
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that at time t0 player 2’s continuation payoff from rejecting γ until t̂ (π2) is strictly lower

when player 1’s concessions are given by (λπ2 (t) , pπ2 (t)) than when they are given by

(λπ2′ (t) , pπ2′′ (t)), where pπ2′′ (t) is defined by pπ2′′ (t) ≡ pπ2 (t) for all t 6= t0, and pπ2′′ (t0) ≡

1 − exp
(
−η
∫ t+∆

t
λπ2 (s) ds

)
(1− pπ2 (t0)) > 0. This follows because the total probability

with which player 1 concedes in the interval [t0, t0 + ∆) is the same under (λπ2 (t) , pπ2 (t))

and under (λπ2′ (t) , pπ2′′ (t)), and some probability mass of concession is moved earlier to

t0 under (λπ2′ (t) , pπ2′′ (t)). Therefore, there exists ζ ∈ (0, pπ2′′ (t0)) such that at time

t0 player 2’s continuation payoff from rejecting γ until t̂ (π2) is the same when player 1’s

concessions are given by (λπ2 (t) , pπ2 (t)) and when they are given by (λπ2′ (t) , pπ2′ (t)),

where pπ2′ (t) is defined by pπ2′ (t) ≡ pπ2 (t) for all t 6= t0, and pπ2′ (t0) ≡ pπ2′′ (t0) − ζ <

pπ2′′ (t0). The fact that (14) holds at all t < T̂ when player 1’s concessions are given by

(λπ2 (t) , pπ2 (t)) now implies that (14) holds at all t < T̂ when player 1’s concessions are

given by (λπ2′ (t) , pπ2′ (t)). Furthermore, exp
(
−
∫ T̂

0
λπ2′ (t) dt

)∏
s∈Sπ2∩[0,T̂) (1− pπ2′ (s)) >

exp
(
−
∫ T̂

0
λπ2 (t) dt

)∏
s∈Sπ2∩[0,T̂) (1− pπ2 (s)) ≥ ε. Therefore, sup

{
t : χπ

′
2 (t) > 0

}
≥ T̂ ,

so by the definition of T̂ it must be that sup
{
t : χπ

′
2 (t) > 0

}
= T̂ . Thus, π′2 attains the

supremum in (15).

Finally, suppose that (14) holds with equality at all t < T̂ under belief π2 (defined

above). Then (14) holds with equality at all t < t̂ (π2) under belief π2, because t̂ (π2) ≤ T̂

(by definition of T̂ ). Let t < t̂ (π2) be a time at which v is differentiable. Then the

derivative of the right-hand side of (14) at t must exist and equal v′ (t). This implies

that pπ2 (t) = 0, and, by Leibniz’s rule, the derivative of the right-hand side of (14) equals

−λπ2 (t) + (r + λπ2 (t)) v (t). Hence,

λπ2 (t) =
rv (t)− v′ (t)

1− v (t)
.27

Since v is differentiable almost everywhere, this implies that∫ τ

0

λπ2 (s) ds =

∫ τ

0

λ (s) ds for all τ < t̂ (π2) , (17)

27Note that v (t) = 1 is impossible. For v (τ) ∈ [0, 1] implies that v′ (t) = 0 if v′ (t) exists and v (t) = 1.

But then the equation v′ (t) = −λπ2 (t) + (r + λπ2 (t)) v (t) would reduce to 0 = r, violating the assumption

that r > 0.
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where λ is defined by (3). Similarly, if (14) holds with equality then the difference between

the limit as s ↑ t of the right-hand side of (14) evaluated at s and the limit as s ↓ t of the

right-hand side of (14) evaluated at s must equal v (t,−1) − v (t), for all t < t̂ (π2). By

inspection, this difference equals pπ2 (t)− pπ2 (t) v (t). Hence,

pπ2 (t) =
v (t,−1)− v (t)

1− v (t)

for all t < t̂ (π2) at which v is discontinuous, and pπ2 (t) = 0 otherwise.28 Therefore,∏
s∈Sπ2∩[0,τ)

(1− pπ2 (s)) =
∏

s∈S∩[0,τ)

(1− p (s)) (18)

for all τ < t̂ (π2), where S is the set of discontinuity points of v, and p is defined by (4).

Combining (17) and (18), I conclude that if (14) holds with equality under belief π2, then

t̂ (π2) = sup

t : exp

(
−
∫ t

0

λ (s) ds

) ∏
s∈S∩[0,t)

(1− p (s)) > ε

 ,
which equals T̃ . In addition, χπ2 (t) ≤ 0 for all t > T̃ (by (16), recalling that 1−χπ2 (0) ≥ ε),

so T̂ = T̃ and the supremum in (15) is attained by π2.

Step 3b: There exists a belief that both attains the supremum in (15) and maximizes

limt↑T̂ χ
π2 (t) over all beliefs π2 that attain the supremum in (15).

Proof. Let χ ∈ [0, 1] be the supremum of limt↑T̂ χ
π2 (t) over all beliefs π2 that attain

the supremum in (15). If χ = 0, then any belief π2 that attains the supremum in (15)

also satisfies limt↑T̂ χ
π2 (t) = χ. Thus, suppose that χ > 0. Let {πn2} be a sequence of

beliefs that all attain the supremum in (15) such that limt↑T̂ χ
πn2 (t) ↑ χ. The sequential

compactness argument in Step 3a implies that there exists a subsequence {πm2 } ⊆ {πn2} and a

belief π2 satisfying the constraints of (15) such that χπ
m
2 (t)→ χπ2 (t) for all t. Furthermore,

χπ2 (t) is non-increasing, so limt↑T̂ χ
π2 (t) exists. Because π2 satisfies the constraints of (15),

limt↑T̂ χ
π2 (t) ≤ χ. Now suppose, toward a contradiction, that limt↑T̂ χ

π2 (t) < χ. Then there

exists η > 0 and t′ ≤ T̂ such that χπ2 (t′) < χ− η. Since limm→∞ limt↑T̂ χ
πm2 (t) = χ, there

existsM > 0 such that, for all m > M , limt↑T̂ χ
πm (t) > χ−η. And χπm2 (t) is non-increasing

for all m, so this implies that χπ
m
2 (t′) > χ − η for all m > M . Now χπ

m
2 (t′) → χπ2 (t′)

28The fact that v cannot jump up rules out v (t) = 1.
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implies that χπ2 (t′) ≥ χ − η, a contradiction. Therefore, limt↑T̂ χ
π2 (t) = χ. Finally, the

fact that limt↑T̂ χ
π2 (t) > 0 implies that π2 attains the supremum in (15).

I now complete the proof of Lemma 1. If (14) holds with strict inequality at some time

t < T̂ under a belief π2 such that t̂ (π2) = T̂ , then the procedure for modifying π2 described

in the fifth paragraph of the proof of Step 3a yields a belief π′2 such that t̂ (π′2) = T̂ and

limt↑T̂ χ
π′2 (t) > limt↑T̂ χ

π2 (t). This implies that the only beliefs π2 that both attain the

supremum in (15) and maximize limt↑T̂ χ
π2 (t) (over all beliefs that attain the supremum in

(15)) satisfy the additional constraint that (14) holds with equality. Since such a belief

exists by Step 3b, the value of (15) equals the value of (15) under this additional constraint,

which equals T̃ by Step 3a.

Proof of Theorem 1. Let γn and γ∗ be defined as in Section 3.4. To show that

limn→∞ u
∗
1 (γn) = 1/ (1− log ε), it remains only to show that T 1

n > T̃ (γn) for all n ∈ N. To

see this, note that T 1
n = 1

r
log
(
n+1
n

(1− log ε)
)
. Since γn (t) =

(
n
n+1

)
ert

1−log ε
for all t ≤ T 1

n

and γn is non-decreasing, it follows that v (t) = 1−
(

n
n+1

)
ert

1−log ε
for all t ≤ T 1

n . Therefore,

exp

(
−
∫ T 1

n

0

rv (t)− v′ (t)
1− v (t)

dt

) ∏
s∈S∩[0,T 1

n ]

(
1− v (s,−1)

1− v (s)

)

= exp

(
−
∫ T 1

n

0

r

(
n+ 1

n

)
(1− log ε) e−rtdt

)

= exp

(
− 1

n
(1− log ε)

)
ε

< ε.

Hence, by the definition of T̃ (γn), T 1
n ≥ T̃ (γn). Furthermore, the fact that exp

(
−
∫ τ

0
rv(t)−v′(t)

1−v(t)
dt
)

is strictly decreasing in τ for all τ ∈ [0, T 1
n ] implies that T 1

n > T̃ (γn).

I now complete the proof of Theorem 1 by showing that γ∗ is the unique maxmin

posture.29 That is, I show that if {γn} is any sequence of postures converging point-

wise to some posture γ satisfying u∗1 (γn) → u1 ≥ 1/ (1− log ε), then γ = γ∗. There

are two steps. First, letting {vn} be the continuation value functions corresponding to

the {γn}, and letting v∗ be the continuation value function corresponding to γ∗ (that is,
29Technically, I must also show that u∗1 (γ∗) ≤ 1/ (1− log ε). In fact, u∗1 (γ∗) = 0, by Lemma 3 and the

observation that T (γ∗) =∞ (which follows because γ∗ (t) = 1 for all t ≥ T̃ (γ∗)).
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v∗ (t) = max {1− ert/ (1− log ε) , 0}), I show that supt∈R+
e−rt |v∗ (t)− vn (t)| → 0. This

step is dividing into showing first that supt≤T̃ (γ) |v∗ (t)− vn (t)| → 0 (Step 1a) and then that

supt∈R+
e−rt |v∗ (t)− vn (t)| → 0 (Step 1b). Second, I show that this implies that γ = γ∗.

Step 1a: For all δ > 0, there exists ζ > 0 such that if u∗1 (γ) ≥ 1/ (1− log ε) − ζ, then

supt≤T̃ (γ) |v∗ (t)− v (t)| ≤ δ (where v is the continuation value function corresponding to γ).

Proof. The plan is to first note that any posture γ that guarantees close to 1/ (1− log ε)

must demand close to ert (1/ (1− log ε)) (or more) for all t ≤ T (γ) and must also have T̃ (γ)

close to T 1 (the time at which γ∗ (t) reaches 1), and then to show that any posture with

these two properties must correspond to a continuation value function that is close to v∗

until time T̃ (γ).

Formally, suppose that u∗1 (γ) ≥ 1/ (1− log ε) − ζ for some posture γ and some ζ ∈

(0, 1/ (1− log ε)). Let T 1 ≡ (1/r) log (1− log ε). Then it must be that T̃ (γ) ≤ T 1 −

(1/r) log (1− ζ (1− log ε)), for otherwise it would follow from T (γ) ≥ T̃ (γ) that

u∗1 (γ) = min
t≤T (γ)

e−rtγ (t) ≤ e−rT̃ (γ)γ
(
T̃ (γ)

)
< exp

(
−rT 1 + log (1− ζ (1− log ε))

)
(1) =

1

1− log ε
− ζ.

Furthermore, if u∗1 (γ) ≥ 1/ (1− log ε)−ζ, it must also be that γ (t) ≥ ert (1/ (1− log ε)− ζ)

for all t ≤ T (γ), for otherwisemint≤T (γ) e
−rtγ (t) would be strictly less than 1/ (1− log ε)−ζ.

I will show that, for all δ > 0, there exists ζ ∈ (0, 1/ (1− log ε)) such that if γ (t) ≥

ert (1/ (1− log ε)− ζ) for all t ≤ T (γ) and supt≤T̃ (γ) |v∗ (t)− v (t)| > δ, then T̃ (γ) > T 1 −

(1/r) log (1− ζ (1− log ε)). This completes the proof of Step 1a.

Fix δ > 0 and ζ ∈ (0, 1/ (1− log ε)), and suppose that γ (t) ≥ ert (1/ (1− log ε)− ζ)

for all t ≤ T (γ) and supt≤T̃ (γ) |v∗ (t)− v (t)| > δ. A straightforward implication is that

v (t) ≤ 1− ert (1/ (1− log ε)− ζ) for all t ≤ T (γ). Also, if T̃ (γ) is finite then

exp

(
−
∫ T̃ (γ)

0

rv (t)− v′ (t)
1− v (t)

dt

) ∏
s∈S∩[0,T̃ (γ)]

(
1− v (s,−1)

1− v (s)

)
≤ ε.

Thus, if T̃ (γ) is finite then it must be that

inf
v:R+→R+:

v(t)≤1−ert( 1
1−log ε

−ζ),
supt≤T̃ (γ)|v

∗(t)−v(t)|>δ

exp

(
−
∫ T̃ (γ)

0

rv (t)− v′ (t)
1− v (t)

dt

) ∏
s∈S∩[0,T̃ (γ)]

(
1− v (s,−1)

1− v (s)

)
≤ ε, (19)
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where T̃ (γ) is viewed as a parameter and the infimum is taken over all functions v : R+ → R+

satisfying the constraints. I will show that if ζ > 0 is suffi ciently small then (19) can hold

only if T̃ (γ) > T 1 − (1/r) log (1− ζ (1− log ε)).

I first show that any attainable value of the program on the left-hand side of (19) can

be arbitrarily closely approximated by the value attained by a continuous function v (t)

satisfying the constraints of (19); hence, in calculating the infimum over such values, attention

may be restricted to continuous functions. To see this, fix η ∈ (0, 1) and let

Sη ≡
⋃

s∈S∩[0,T̃ (γ)]

[s− η, s] .

Define the function vη (t) by vη (t) ≡ v (t) for all t /∈ Sη, and

vη (t) ≡
(

1− t− (s− η)

η

)
v (s− η) +

t− (s− η)

η
v (s) for all t ∈ Sη.

Observe that vη is continuous, and that vη satisfies the constraints of (19) if η is suffi ciently

small.30 Furthermore, for all s ∈ S,

exp

(∫ s

s−η

vη′ (t)

1− vη (t)
dt

)
=

1− vη (s− η)

1− vη (s)
=

1− v (s− η)

1− v (s)
.

Also, since vη (t) ≤ 1− (1/ (1− log ε)− ζ) < 1 for all t ∈
[
0, T̃ (γ)

]
, and the measure of Sη

goes to 0 as η → 0,

lim
η→0

exp

(
−
∫
Sη

rvη (t)

1− vη (t)
dt

)
= 1.

Therefore,

lim
η→0

exp

(
−
∫ T̃ (γ)

0

rvη (t)− vη′ (t)
1− vη (t)

dt

)

= lim
η→0

exp

(
−
∫

[0,T̃ (γ)]\Sη

rvη (t)− vη′ (t)
1− vη (t)

dt

)
exp

(
−
∫
Sη

rvη (t)

1− vη (t)
dt

) ∏
s∈S∩[0,T̃ (γ)]

(
1− v (s− η)

1− v (s)

)

= exp

(
−
∫ T̃ (γ)

0

rv (t)− v′ (t)
1− v (t)

dt

) ∏
s∈S∩[0,T̃ (γ)]

(
1− v (s,−1)

1− v (s)

)
.

30Proof: The constraint v (t) ≤ 1 − ert
(

1
1−log ε − ζ

)
specifies that the graph of v (t) lies in a convex

subset of R2
+. Since the graph of vη (t) lies in the convex hull of the graph of v (t), the graph of vη (t) lies

in any convex subset of R2
+ that contains the graph of v (t). Hence, vη (t) ≤ 1 − ert

(
1

1−log ε − ζ
)
(for all

η > 0). In addition, the fact that supt≤T̃ (γ) |v∗ (t)− v (t)| > δ and vη (t)→ v (t) for all t ∈ R+ implies that

supt≤T̃ (γ) |v∗ (t)− vη (t)| > δ for suffi ciently small η.
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Thus, the value of the program in (19) attained by any function v is arbitrarily closely ap-

proximately by the value attained by the continuous function vη as η → 0, and for suffi ciently

small η > 0 this function also satisfies the constraints of (19).

I now derive a lower bound on the left-hand side (19) under the additional constraint

that v is continuous. Using the fact that v (s,−1) = v (s) for all s when v is continuous and

integrating the v′ (t) / (1− v (t)) term, this constrained program may be rewritten as

inf
v:R+→R+ continuous:
v(t)≤1−ert( 1

1−log ε
−ζ),

supt≤T̃ (γ)|v
∗(t)−v(t)|>δ

exp

(
−
∫ T̃ (γ)

0

rv (t)

1− v (t)
dt

) 1− v (0)

1− v
(
T̃ (γ)

)
 .

Since v (t) ≥ 0 for all t, the value of this program is bounded from below by the value of the

program:

inf
v:R+→R+ continuous:
v(t)≤1−ert( 1

1−log ε
−ζ),

supt≤T̃ (γ)|v
∗(t)−v(t)|>δ

exp

(
−
∫ T̃ (γ)

0

rv (t)

1− v (t)
dt

)
(1− v (0)) . (20)

Note that the value of the program (20) is continuous and non-increasing in T̃ (γ).

Let T̃ζ ≡ 0 if the value of the program (20) is less than ε when T̃ (γ) = 0, let T̃ζ ≡ ∞

if the value of the program is greater than ε for all T̃ (γ) ∈ R+, and otherwise let T̃ζ be

the value of the parameter T̃ (γ) such that (20) equals ε (which exists by the Intermediate

Value Theorem). I will show that T̃ζ > T 1−(1/r) log (1− ζ (1− log ε)) for suffi ciently small

ζ ∈ (0, 1/ (1− log ε)).

I first show that this inequality holds for ζ = 0, that is, that T̃0 > T 1. To see this,

note that (20) decreases whenever the value of v (t) is increased on a subset of
[
0, T̃ (γ)

]
of

positive measure. Hence, the unique solution to the program (20) without the constraint

supt≤T̃ (γ) |v∗ (t)− v (t)| > δ is v (t) = 1 − ert/ (1− log ε) = v∗ (t) for all t ≤ T̃ (γ) (when

ζ = 0). Using this observation, it is straightforward to check that the value of T̃ (γ) such

that the value of the program (20) without the constraint supt≤T̃ (γ) |v∗ (t)− v (t)| > δ equals

ε is T 1. Therefore, the constraint supt≤T̃ (γ) |v∗ (t)− v (t)| > δ binds in (20), and T̃0 > T 1.

Next, T̃ζ is continuous in ζ, by the Maximum Theorem (which implies that the value

of (20) is continuous in ζ, for fixed T̃ (γ)) and the Implicit Function Theorem. And T 1 −

(1/r) log (1− ζ (1− log ε)) is continuous in ζ as well. Hence, the fact that T̃0 > T 1 implies

that T̃ζ > T 1 − (1/r) log (1− ζ (1− log ε)) for some ζ ∈ (0, 1/ (1− log ε)).
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By (19), if γ (t) ≥ ert (1/ (1− log ε)− ζ) for all t ≤ T (γ) and supt≤T̃ (γ) |v∗ (t)− v (t)| > δ,

then T̃ζ is a lower bound on T̃ (γ). Thus, the fact that T̃ζ > T 1− (1/r) log (1− ζ (1− log ε))

for some ζ ∈ (0, 1/ (1− log ε)) completes the proof.

Step 1b: For all δ > 0, there exists ζ > 0 such that if u∗1 (γ) ≥ 1/ (1− log ε) − ζ, then

supt∈R+
e−rt |v∗ (t)− v (t)| ≤ δ.

Proof. Step 1a implies that, for any δ > 0 and K > 1, there exists ζ (K) ∈ (0, 1/ (1− log ε))

such that if u∗1 (γ) ≥ 1/ (1− log ε) − ζ (K), then supt≤T̃ (γ) e
−rt |v∗ (t)− v (t)| ≤ δ/K. I

now argue that, for K suffi ciently large, there exists ζ ′ ∈ (0, ζ (K)) such that if u∗1 (γ) ≥

1/ (1− log ε)−ζ ′, then in addition supt>T̃ (γ) e
−rt |v∗ (t)− v (t)| ≤ δ. To see this, note that as

K → ∞, T̃ (γ) → T 1 uniformly over all postures γ such that supt≤T̃ (γ) e
−rt |v∗ (t)− v (t)| ≤

δ/K. ChooseK∗ > 1 such that
∣∣∣e−rT̃ (γ) − e−rT 1

∣∣∣ < δ/2 and v∗
(
T̃ (γ)

)
≤ erT̃ (γ)δ for any such

posture γ, and suppose that a posture γ is such that supt≤T̃ (γ) e
−rt |v∗ (t)− v (t)| ≤ δ/K∗ but

e−rt0 |v∗ (t0)− v (t0)| > δ for some t0 > T̃ (γ). Now v∗ (t0) ≤ v∗
(
T̃ (γ)

)
≤ erT̃ (γ)δ ≤ ert0δ,

so it follows that e−rt0v (t0) > δ + e−rt0v∗ (t0). Therefore,

max
t≥T̃ (γ)

e−rt
(
1− γ (t)

)
≥ e−rt0v (t0) ≥ δ.

By the definition of T (γ), this implies that there exists t1 ∈
[
T̃ (γ) , T (γ)

]
such that

e−rt1
(
1− γ (t1)

)
≥ δ, or equivalently γ (t1) ≤ 1− ert1δ. Hence,

u∗1 (γ) = min
t≤T (γ)

e−rtγ (t) ≤ e−rt1
(
1− ert1δ

)
≤ e−rT̃ (γ)

(
1− erT̃ (γ)δ

)
= e−rT̃ (γ) − δ < e−rT

1 − δ/2 = 1/ (1− log ε)− δ/2.

Therefore, taking ζ ′ ≡ min {ζ (K∗) , δ/2}, it follows that if u∗1 (γ) ≥ 1/ (1− log ε) − ζ ′

then supt≤T̃ (γ) e
−rt |v∗ (t)− v (t)| ≤ δ/K∗ and supt>T̃ (γ) e

−rt |v∗ (t)− v (t)| ≤ δ, and hence

supt∈R+
e−rt |v∗ (t)− v (t)| ≤ δ.

Step 2: If γn (t)→ γ (t) for all t ∈ R+ for some posture γ, and supt∈R+
e−rt |v∗ (t)− vn (t)| →

0, then γ = γ∗.

Proof. First, note that if γ (t) < γ∗ (t) for some t ∈ R+, then there exist N > 0 and η > 0

such that γn (t) < γ∗ (t) − η for all n > N . Since vn (t) ≥ 1 − γn (t), this implies that

vn (t) ≥ 1− γ∗ (t) + η = v∗ (t) + η for all n > N , a contradiction.
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It is more diffi cult to rule out the possibility that γ (t) > γ∗ (t) for some t ∈ R+. Sup-

pose that this is so. Since γ and γ∗ are right-continuous, there exist η > 0 and a non-

degenerate closed interval I0 ⊆ R+ such that γ (t) > γ∗ (t) + η for all t ∈ I0. If it were

the case that γn (t) ≥ γ∗ (t) + η/2 for all t ∈ I0 and n suffi ciently large, then the condition

supt∈R+
e−rt |v∗ (t)− vn (t)| → 0 would fail, so this is not possible.31 Hence, there exists

t1 ∈ I0 and n1 ≥ 0 such that γn1
(t1) < γ∗ (t1) + η/2. Since γn1

and γ∗ are right-continuous,

there exists a non-degenerate closed interval I1 ⊆ I0 such that γn1
(t) < γ∗ (t) + η/2 for

all t ∈ I1. Next, it cannot be the case that γn (t) ≥ γ∗ (t) + η/2 for all t ∈ I1 and

n > n1 (by the same argument as above), so there exists t2 ∈ I1 and n2 > n1 such that

γn2
(t2) < γ∗ (t2) + η/2. As above, this implies that there exists a non-degenerate closed

I2 ⊆ I1 such that γn2
(t) < γ∗ (t)+η/2 for all t ∈ I2. Proceeding in this manner yields an infi-

nite sequence of non-degenerate closed intervals {Im} and integers {nm} such that Im+1 ⊆ Im,

nm+1 > nm, and γnm (t) < γ∗ (t) + η/2 for all t ∈ Im and m ∈ N. Let I ≡ ∩m∈NIm, a non-

empty set (possibly a single point), and fix t ∈ I. Then γnm (t) < γ∗ (t) +η/2 for all m ∈ N,

and since nm+1 > nm for all m ∈ N this contradicts the assumption that γn (t)→ γ (t).

Proof of Proposition 2. Lemmas 1 through 3 apply to any posture, whether or not

it is constant. In addition, if γ is constant then T (γ) = T̃ (γ). Thus, Lemma 3 implies

that u∗1 (γ) = mint≤T (γ) e
−rtγ = e−rT̃ (γ)γ. Furthermore, λ (t) = r (1− γ) /γ and p (t) = 0

for all t, so it follows by the definition of T̃ (γ) that exp
(
−r
(

1−γ
γ

)
T̃ (γ)

)
= ε. Hence,

T̃ (γ) = −1
r

(
γ

1−γ

)
log ε if γ < 1, and T̃ (γ) =∞ if γ = 1. Therefore,

ū∗1 = max
γ∈[0,1]

e−rT̃ (γ)γ = max
γ∈[0,1)

exp

(
γ

1− γ log ε

)
γ. (21)

31Proof: Suppose that supt∈R+ e
−rt |v∗ (t)− vn (t)| → 0. Fix N > 0, suppose that γn (t) ≥ γ∗ (t) + η/2

for all t ∈ I0 and n > N , and denote the length of I0 by 2∆ and the midpoint of I0 by t0. Then

player 2 cannot receive a payoff above e−rt0 (1− γ∗ (t0)− η/2) from accepting at any time t ∈ [t0, t0 + ∆]

when facing posture γn for any n > N . Hence, vn (t0) ≤ max
{

1− γ∗ (t0)− η/2, e−r∆vn (t0 + ∆)
}
for

all n > N . In addition, noting that γ∗ (t0) < 1 − η/2, there exists N ′ > 0 such that vn (t0 + ∆) <

v∗n (t0 + ∆) +
(
er∆ − 1

)
(1− γ∗ (t0)− η/2) = 1 − γ∗ (t0 + ∆) +

(
er∆ − 1

)
(1− γ∗ (t0)− η/2) for all n >

N ′. Therefore, vn (t0) ≤ max
{

1− γ∗ (t0)− η/2, e−r∆ (1− γ∗ (t0 + ∆)) +
(
1− e−r∆

)
(1− γ∗ (t0)− η/2)

}
≤

max
{

1− γ∗ (t0)− η/2, 1− γ∗ (t0)−
(
1− e−r∆

)
η/2
}

= v∗ (t0) −
(
1− e−r∆

)
η/2 for all n > max {N,N ′},

which contradicts the hypothesis that supt∈R+ e
−rt |v∗ (t)− vn (t)| → 0.
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Note that (21) is concave in γ. The first-order condition is

1 = − γ̄∗ε
(1− γ̄∗ε)

2 log ε, (22)

which has a solution if ε < 1. Solving this quadratic equation yields the formula for γ̄∗ε.

Finally, substituting (22) into (21) yields ū∗1 = exp (− (1− γ̄∗ε)) γ̄∗ε.

Proof of Proposition 3. Lemmas 1 through 3 continue to hold, replacing r with r1 or

r2 as appropriate. In particular, λ (t) = r2v(t)−v′(t)
1−v(t)

, and the same argument as in the proof

of Theorem 1 implies that the unique maxmin posture γ∗ satisfies γ∗ (t) = min {er1tu∗1, 1},

where u∗1 is the (unique) number such that the time at which γ
∗ (t) reaches 1 equals T̃ (γ∗).

Thus, given posture γ∗, it follows that λ (t) =
r2(1−er1tu∗1)+r1er1tu∗1

er1tu∗1
= r2

e−r1t

u∗1
+ r1 − r2. Now

exp

(
−
∫ T̃ (γ∗)

0

(
r2
e−r1t

u∗1
+ r1 − r2

)
dt

)
= exp

(
− 1

u∗1

(
r2

r1

)(
1− e−r1T̃ (γ∗)

)
+ (r1 − r2) T̃ (γ∗)

)
.

Setting this equal to ε and rearranging implies that T̃ (γ∗) is given by

e−r1T̃ (γ∗) − r1

r2

u∗1 log ε+

(
r1

r2

− 1

)
u∗1r1T̃ (γ∗) = 1. (23)

Using the condition that er1T̃ (γ∗)u∗1 = 1, this can be rearranged to yield (11). Finally,

there is a unique pair
(
u∗1, T̃ (γ∗)

)
that satisfies both (23) and er1T̃ (γ∗)u∗1 = 1, because the

curve in
(
u∗1, T̃ (γ∗)

)
space defined by (23) is upward-sloping, while the curve defined by

er1T̃ (γ∗)u∗1 = 1 is downward-sloping.

Proof of Lemma 4. The fact that ΩRAT
2 (γ) ⊆ Πγ

1 immediately implies that u
RAT
1 (γ) ≥

u∗1 (γ) = mint≤T (γ) e
−rtγ (t). Therefore, it suffi ces to show that uRAT1 (γ) ≤ mint≤T (γ) e

−rtγ (t).

Let Ṫ ≡ min argmaxt e
−rt (1− γ (t)

)
. Note that Ṫ is well-defined and finite because γ (t)

is lower semi-continuous and limt→∞ e
−rt (1− γ (t)

)
= 0. Let σ̇2 ∈ Σ2 be the strategy that

always demands 0, rejects up to time Ṫ , accepts at date
(
Ṫ ,−1

)
if and only if limτ↑Ṫ γ (τ) ≤

γ
(
Ṫ
)
, and accepts at all dates

(
Ṫ , 1

)
and later (for all histories). Let π̇γ2 ∈ Σ1 be identical

to the γ-offsetting belief πγ2 , with the modification that π̇
γ
2 always accepts demands of 0.

Since p (0) = 0 for any posture γ, it follows that u1 (π̇γ2 , σ̇2) = 1, and therefore π̇γ2 ∈ Σ∗1 (σ̇2).

In addition, it is clear that u2 (πγ2 , σ2) ≥ u2 (π̇γ2 , σ2) for all σ2 ∈ Σ2, so the observations that

σγ2 ∈ Σ∗2 (πγ2) (by Lemma 2) and u2 (πγ2 , σ
γ
2) = u2 (π̇γ2 , σ

γ
2) imply that σγ2 ∈ Σ∗2 (π̇γ2). Finally,
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it is clear that σ̇2 ∈ Σ∗2 (γ), and γ ∈ Σ∗1 (σγ2) by Lemma 3. Summarizing, I have established

that the arrows in the following diagram may be read as “is a best-response to”:

γ → σγ2

↑ ↓

σ̇2 ← π̇γ2

.

Therefore, the set {γ, π̇γ2}×{σ
γ
2 , σ̇2} is closed under rational behavior given posture γ, which

implies that {σγ2 , σ̇2} ⊆ ΩRAT
2 (γ). Hence, uRAT1 (γ) ≤ supσ1

u1 (σ1, σ
γ
2) = u1 (γ, σγ2) =

mint≤T (γ) e
−rtγ (t).
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Supplementary Appendix (NOT FOR PUBLICATION)

This appendix shows that the characterization of the maxmin payoff and posture (Theorem

1) continues to apply when the solution concept is strengthened from first-order knowledge

of rationality to iterated conditional dominance, or when the continuous-time bargaining

protocol of the text is replaced by any discrete-time bargaining protocol with suffi ciently

frequent offers. However, the characterization does not apply with both iterated conditional

dominance and discrete-time bargaining, as the fact that (complete-information) discrete-

time bargaining is solvable by iterated conditional dominance implies that the predictions of

the model with iterated conditional dominance and discrete-time bargaining depend on the

order and relative frequency of offers.32

Iterated Conditional Dominance

This section shows that Theorem 1 continues to hold under a natural notion of iterated con-

ditional dominance. Because the model has incomplete information and is not a multistage

game with observed actions (as players do not observe each other’s choice of demand paths

on the integers), no off-the-shelf version of iterated conditional dominance is applicable, and

even the simplest version that is applicable requires some new notation.

For integer t, let σi (ht) be the element of ∆ (U t) prescribed by strategy σi at date (t, 0)

and history ht. I first introduce the idea that a triple
(
ht, u

btc
1 , u

btc
2

)
is “σi-coherent” if

u
btc
i ∈ suppσi

(
hbtc
)
and at ht the path of realized demands between btc and t coincides with(

u
btc
1 , u

btc
2

)
.

Definition 8 A triple
(
ht, u

btc
1 , u

btc
2

)
is σi-coherent if u

btc
i ∈ suppσi

(
hbtc
)
and

(
u
btc
1 (τ) , u

btc
2 (τ)

)
=

32Informally, there is a race between the number of rounds of iterated conditional dominance and the

frequency of offers. I conjecture that, for any number of rounds of iterated conditional dominance, the

maxmin payoff and posture in discrete-time bargaining converge (in the sense of Proposition 6) to the

maxmin payoff and posture in continuous-time bargaining as offers become frequent. This is consistent with

Rubinstein bargaining, where the round at which any demand other than 0 or 1 is deleted goes to infinity as

the time between offers vanishes (so that iterated conditional dominance has no “bite”in the continuous-time

limit). I thank Jeff Ely for helpful comments on this point.
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(u1 (τ) , u2 (τ)) for all τ ∈ [btc , t], where ht = (u1 (τ) , u2 (τ))τ≤t. A history h
t is σi-coherent

if there exist demand paths
(
u
btc
1 , u

btc
2

)
such that

(
ht, u

btc
1 , u

btc
2

)
is σi-coherent.

For any strategy profile (σ1, σ2) and any triple
(
ht, u

btc
1 , u

btc
2

)
such that

(
u
btc
1 (τ) , u

btc
2 (τ)

)
=

(u1 (τ) , u2 (τ)) for all τ ∈ [btc , t], where ht = (u1 (τ) , u2 (τ))τ≤t, each player i’s expected

payoff under strategy profile (σi, σj) conditional on reaching the triple
(
ht, u

btc
1 , u

btc
2

)
is well-

defined, and is denoted

ui

(
σi, σj|ht, ubtc1 , u

btc
2

)
.

I also write ui (σi, σj|ht) for player i’s expected payoff conditional on reaching ht at date

(t, 0) for integer t.

I now define iterated conditional dominance. Informally, the idea is that a strategy is

conditionally dominated if it is either strictly dominated or is “conditionally weakly dom-

inated.” The difference between the definition of iterated conditional dominance for the

two players reflects the fact that player 1 is committed to strategy γ with probability ε,

and therefore that player 2 is restricted to assigning probability at least ε to strategy γ at

histories that are consistent with γ. Note that the support of the γ-offsetting belief πγ2 in-

cludes strategies that are iteratively conditionally dominated, as it is easy to verify that any

strategy of player 1’s that ever accepts a demand of 1 is iteratively conditionally dominated.

Definition 9 For any posture γ and set of bargaining phase strategy profiles Ω = Ω1×Ω2 ⊆

Σ1×Σ2, a strategy σ1 ∈ Σ1 is conditionally dominated with respect to (γ,Ω) if either of the

following conditions hold

1. There exists a strategy σ′1 ∈ Σ1 such that

u1 (σ′1, π1) > u1 (σ1, π1)

for all beliefs π1 ∈ ∆ (Ω2).

2. There exists a strategy σ′1 ∈ Σ1 such that

u1

(
σ′1, π1|ht, ubtc1 , u

btc
2

)
≥ u1

(
σ1, π1|ht, ubtc1 , u

btc
2

)
for all σ1-coherent

(
ht, u

btc
1 , u

btc
2

)
and all beliefs π1 ∈ ∆ (Ω2), with strict inequality for

some σ1-coherent
(
ht, u

btc
1 , u

btc
2

)
and some belief π1 ∈ ∆ (Ω2).
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A strategy σ2 ∈ Σ2 is conditionally dominated with respect to (γ,Ω) if either of the

following conditions hold

1. There exists a strategy σ′2 ∈ Σ2 such that

u2 (σ′2, π2) > u2 (σ2, π2)

for all beliefs π2 ∈ ∆ (Ω1 ∪ {γ}) such that π2 (γ) ≥ ε with strict inequality only if

γ ∈ Ω1.

2. There exists a strategy σ′2 ∈ Σ2 such that

u2

(
σ′2, π2|ht, ubtc1 , u

btc
2

)
≥ u2

(
σ2, π2|ht, ubtc1 , u

btc
2

)
for all σ2-coherent

(
ht, u

btc
1 , u

btc
2

)
that are inconsistent with γ and all beliefs π2 ∈

∆ (Ω1), with strict inequality for some σ2-coherent
(
ht, u

btc
1 , u

btc
2

)
that is inconsistent

with γ and some belief π2 ∈ ∆ (Ω1).

A set of bargaining phase strategy profiles Ω = Ω1 × Ω2 ⊆ Σ1 × Σ2 is closed under

conditional dominance given posture γ if every σi ∈ Ωi is conditionally undominated (i.e.,

not conditionally dominated) with respect to (γ,Ω). The set of iteratively conditionally

undominated strategies given posture γ is

ΩICD (γ) ≡
⋃
{Ω : Ω is closed under conditional dominance given posture γ} .

Player 1’s maxmin payoff under iterated conditional dominance given posture γ is

uICD1 (γ) ≡ sup
σ1

inf
σ2∈ΩICD2 (γ)

u1 (σ1, σ2) .

Player 1’s maxmin payoff under iterated conditional dominance is

uICD1 ≡ sup
γ
uICD1 (γ) .

A posture γICD is a maxmin posture under iterated conditional dominance if there exists a

sequence of postures {γn} such that γn (t)→ γICD (t) for all t ∈ R+ and uICD1 (γn)→ uICD1 .
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This version of iterated conditional dominance is stronger than rationalizability, in that

ΩICD (γ) ⊆ ΩRAT (γ) for any posture γ. This can be seen by noting that every set Ω

that is closed under conditional dominance is also closed under rationalizability, because

rationalizability is equivalent to imposing only the first of the two conditions in the definition

of conditional dominance (for both player 1 and player 2). An immediate consequence of this

observation is that the maxmin payoffunder iterated conditional dominance is weakly greater

than the maxmin payoff (under first-order knowledge of rationality), that is, uICD1 ≥ u∗1. In

fact, the two payoffs are equal, as are the corresponding maxmin postures.

Proposition 5 Player 1’s maxmin payoff under iterated conditional dominance equals her

maxmin payoff, and the unique maxmin posture under iterated conditional dominance is the

unique maxmin posture. That is, uICD1 = u∗1, and the unique maxmin posture under iterated

conditional dominance is γICD = γ∗.

The rest of this section is devoted to proving Proposition 5. The proof builds on that

of Proposition 4. This is because it can be shown that the set of iteratively conditionally

undominated strategies and the set of rationalizable strategies are identical up to strategies

that are “exceptional”in the following sense.

Definition 10 A strategy σi ∈ Σi is exceptional given posture γ if either of the following

conditions hold:

• i ∈ {1, 2} and σi ever accepts a demand of 1, rejects a demand of 0, makes a demand

of 0 or a path of demands converging to 0 (i.e., limτ↑t ui (τ) = 0), or makes a demand

of 1 at every successor of some history ht.

• i = 1 and σi ever accepts a demand u2 (t) ≥ 1 − e−r(t∗−t)γ (t∗) > 0 at any history ht

consistent with γ with t ≤ t∗, rejects a demand u2 (t) ≤ 1 − e−r(t∗−t)γ (t∗) < 1 at any

history ht consistent with γ with t ≤ t∗, or demands γ (t∗) at any history ht
∗
consistent

with γ.

The relationship between iterated conditional dominance and rationalizability is formal-

ized in the following lemma, which is a key step in the proof of Proposition 5.
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Lemma 5 For any posture γ, every strategy that is rationalizable and non-exceptional given

posture γ is also iteratively conditionally undominated given posture γ.

The proof of the lemma uses the concept of a unique optimal action: an action (ac-

cepting, rejecting, or choosing a demand path for the next integer) is the unique opti-

mal action at a triple
(
ht, u

btc
1 , u

btc
2

)
under a belief πi if every strategy σi that maximizes

ui

(
σi, πi|ht, ubtc1 , u

btc
2

)
prescribes that action at history ht (where the arguments

(
u
btc
1 , u

btc
2

)
are omitted in the case of choosing a demand path for the next integer).

Proof of Lemma 5. Fix a posture γ; for the duration of the proof, I omit the modifier

“given posture γ.”To prove the lemma, I show that for every non-exceptional strategy σi and

every σi-coherent history ht that is inconsistent with γ, there exist demand paths
(
u
btc
1 , u

btc
2

)
and belief πi with support on strategies that are rationalizable and non-exceptional such that(
ht, u

btc
1 , u

btc
2

)
is σi-coherent and σi prescribes the unique optimal action at

(
ht, u

btc
1 , u

btc
2

)
under belief π2. If i = 1, this conclusion also holds at σi-coherent histories that are

consistent with γ. This implies that the second of the two conditions in the definition

of conditional dominance can never hold if σi is non-exceptional, for i = 1, 2. Therefore,

every non-exceptional strategy that is conditionally dominated is also strictly dominated, and

hence every non-exceptional strategy that is rationalizable is also iteratively conditionally

undominated.

I start by establishing a statement with the important implication that, starting from

a history that is inconsistent with γ, any continuation strategy is part of a rationalizable

strategy.

Step 1: Any strategy σ1 ∈ Σ1 that demands γ (t) and rejects player 2’s demand at every

history ht that is consistent with γ is rationalizable. Any strategy σ2 ∈ Σ2 that demands 1

and accepts at (and not before) the more favorable of dates (t∗,−1) and (t∗, 1) if player 1

follows γ until time t∗ is rationalizable.

Proof. By the proof of Lemma 4, strategy π̇γ2 is rationalizable for player 1, and strategy

σγ2 is rationalizable for player 2. Now if strategies σ1 and σ2 are as in the statement, then

σ1 ∈ Σ∗1 (σγ2) and σ2 ∈ Σ∗2 (π̇γ2), so σ1 and σ2 are rationalizable as well.

Step 2: For i = 1, 2, if a strategy σi is non-exceptional and a history ht is σi-coherent

and inconsistent with γ, then there exist demand paths
(
u
btc
1 , u

btc
2

)
and a belief πi with
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support on strategies that are rationalizable and non-exceptional such that
(
ht, u

btc
1 , u

btc
2

)
is

σi-coherent and σi prescribes the unique optimal action at
(
ht, u

btc
1 , u

btc
2

)
under belief πi.

Proof. Fix a non-exceptional strategy σi and a history ht that is σi-coherent and inconsistent

with γ. Step 1 implies that any continuation strategy of player j’s is part of a rationalizable

strategy. Hence, the restriction that πi has support on strategies that are rationalizable and

non-exceptional implies only that continuation strategies are non-exceptional.

Suppose that σi accepts at ht. Then the fact that σi is non-exceptional and ht is

σi-coherent imply that ui (t) > 0 and uj (t) < 1. Let
(
u
btc
1 , u

btc
2

)
specify that the players

continue to demand ui (t) and uj (t) until dte, and let πi assign probability 1 to a rationalizable

strategy under which at every successor history of ht player j demands 1+uj(t)

2
(after time dte)

and rejects any strictly positive demand; such a strategy exists by the previous paragraph,

and is clearly non-exceptional (in particular, player j always chooses demand paths that

always make demands u2 (τ) ∈ (0, 1)). Then it is clear that accepting at ht is the optimal

action at
(
ht, u

btc
1 , u

btc
2

)
under belief πi.33

Suppose that σi rejects at ht. Then the fact that σi is non-exceptional and ht is σi-

coherent imply that ui (t) > 0 and uj (t) > 0. Let πi assign probability 1 to a rationalizable

and non-exceptional strategy under which player j reduces his demand to uj (t) /2 by some

time τ such that

e−r(τ−t)
(

1− uj (t)

2

)
> 1− uj (t) ,

subsequently demands uj (t) /2 forever, and rejects player i’s demand at every successor

history of ht unless player i demands 0 (or let
(
u
btc
1 , u

btc
2

)
specify that player j’s demand

follows such a path, in case there is no integer between t and τ). Choose any
(
u
btc
1 , u

btc
2

)
such that

(
ht, u

btc
1 , u

btc
2

)
is σi-coherent and player j’s demands follow such a path. Now

rejecting until time τ and then accepting (while never demanding 0) is strictly better for

player i under belief πi than is accepting at ht, so rejecting is the unique optimal action at(
ht, u

btc
1 , u

btc
2

)
under belief πi.

Finally, suppose that t is an integer and that σi chooses demand path uti at h
t. The

fact that σi is non-exceptional implies that uti (τ) > 0 for all τ ∈ [t, t+ 1) and that

33Note that the possibility that player i could reject at ht but accept “immediately”after ht is ruled out

by the assumption that the probability that a player accepts by date (t, 1) is right-continuous in t.
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limτ↑t+1 u
t
i (τ) > 0. Let πi assign probability 1 to a rationalizable and non-exceptional

strategy under which player j demands 1 − e−r limτ↑t+1 u
t
i(τ)

2
at ht and at every successor his-

tory of ht; accepts at date (t+ 1,−1) if ui (τ) = uti (τ) for all τ ∈ [t, t+ 1); and otherwise

rejects any strictly positive demand at every successor history of ht. Now choosing demand

path uti at h
t and rejecting player j’s demand until time t+ 1 yields payoff e−r limτ↑t+1 u

t
i (τ)

under belief πi, while every other continuation strategy yields payoff at most
e−r limτ↑t+1 u

t
i(τ)

2

under belief πi, so choosing demand path uti is the unique optimal action at h
t under belief

πi.

Step 3: If strategy σ1 ∈ Σ1 is non-exceptional and a history ht is σ1-coherent and

consistent with γ, then there exist demand paths
(
u
btc
1 , u

btc
2

)
and a belief π1 with support on

strategies that are rationalizable and non-exceptional such that
(
ht, u

btc
1 , u

btc
2

)
is σ1-coherent

and σ1 prescribes the unique optimal action at
(
ht, u

btc
1 , u

btc
2

)
under belief π1.

Proof. If t > t∗, then if player 2 plays a rationalizable and non-exceptional strategy σ2 that

accepts at time t∗ under strategy profile (γ, σ2) (which exists), then player 2’s continuation

play starting from ht is restricted only by the requirement that it is non-exceptional. Hence,

the proof in this case is just like the proof of Step 2. I therefore assume that t ≤ t∗.

Suppose that σ1 accepts at ht. Then the fact that σ1 is non-exceptional, ht is σ1-coherent

and consistent with γ, and t ≤ t∗ implies that u1 (t) > 0 and u2 (t) < 1 − e−r(t
∗−t)γ (t∗).

Define the strategy σ̈2 ∈ Σ2 as follows:

• If hτ is consistent with γ, then demand 1 until time dt∗ + 1e, subsequently demand 1
2
,

reject all positive demands until the more favorable of dates (t∗,−1) and (t∗, 1), and

subsequently accept all demands of less than 1.

• If hτ is inconsistent with γ, then demand 1+u2(t)
2

and reject all positive demands.

Note that σ̈2 ∈ Σ∗2 (γ), so σ̈2 is rationalizable. In addition, σ̈2 is clearly non-exceptional.

Let π1 assign probability 1 to σ̈2, and let
(
u
btc
1 , u

btc
2

)
specify that player 1 demands u1 (τ) =

γ (τ) for all τ ∈ [t, dte) and that player 2 continues to demand u2 (t) until dte. Then

accepting at
(
ht, u

btc
1 , u

btc
2

)
yields payoff 1 − u2 (t) under belief π1, while any strategy that

rejects at
(
ht, u

btc
1 , u

btc
2

)
yields strictly less. So accepting is the unique optimal action at(

ht, u
btc
1 , u

btc
2

)
under belief π1.
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Suppose that σ1 rejects at ht. Then the fact that σ1 is non-exceptional, ht is σ1-coherent

and consistent with γ, and t ≤ t∗ implies that u1 (t) > 0 and u2 (t) > 1− e−r(t∗−t)γ (t∗). Let

σ̈2, π1, and
(
u
btc
1 , u

btc
2

)
be as above, with the modification that σ̈2 demands 1− e−r(t

∗−t)γ(t∗)

2

rather than 1+u2(t)
2

at histories hτ that are inconsistent with γ.34 Then rejecting and following

strategy γ at
(
ht, u

btc
1 , u

btc
2

)
yields payoff e−r(t

∗−t)γ (t∗) under belief π1, while any strategy

that rejects at
(
ht, u

btc
1 , u

btc
2

)
yields strictly less. So rejecting is the unique optimal action

at
(
ht, u

btc
1 , u

btc
2

)
under belief π1.

Finally, suppose that t is an integer and that σ1 chooses demand path ut1 at h
t. Since

ut1 and γ are continuous on [t, t+ 1), there are three cases.

1. ut1 (τ) = γ (τ) for all τ ∈ [t, t+ 1).

2. ut1 (t) = γ (t) but ut1 (τ) 6= γ (τ) for some τ ∈ [t,min {t+ 1, t∗}).

3. ut1 (t) 6= γ (t).

Start with case 1. Here, the fact that σ1 is non-exceptional, ht is consistent with γ,

and t ≤ t∗ implies that in fact t + 1 ≤ t∗, as σ1 never demands γ (t∗) at a history ht
∗

consistent with γ. Now for all η > 0, Step 1 implies that there exists a rationalizable and

non-exceptional strategy σ2 that demands 1 at all times τ such that e−r(τ−(t+1)) ≥ η, accepts

at (but not before) time t∗ under strategy profile (γ, σ2), rejects all strictly positive demands

at dates (t+ 1,−1) and earlier, rejects all strictly positive demands at dates after (t+ 1, 0)

such that u1 (τ) 6= γ (τ) for some τ < t + 1, and accepts all demands less than 1 at dates

after (t+ 1, 0) such that u1 (τ) = γ (τ) for all τ < t + 1 but u1 (t+ 1) 6= γ (t+ 1). Since

e−r(t
∗−(t+1))γ (t∗) < 1 (which follows from the definition of t∗), choosing demand path ut1 and

then deviating from γ to a demand close to 1 at time t + 1 yields a strictly higher payoff

under any belief that assigns probability 1 to such a strategy than does choosing any other

demand path, for η suffi ciently small.

For case 2, the fact that σ1 is non-exceptional, ht is consistent with γ, and t ≤ t∗ implies

that t < t∗. Let τ 0 be the infimum over times τ ∈ [t,min {t+ 1, t∗}) such that ut1 (τ) 6= γ (τ).

34This modification serves only to ensure that σ̈2 does not demand 1 forever after some history, and thus

that σ̈2 is non-exceptional.
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Now for all η > 0, Step 1 implies that there exists a rationalizable and non-exceptional

strategy σ2 that demands 1 at all times τ such that e−r(τ−max{t+1,t∗}) ≥ η, accepts at (but

not before) time t∗ under strategy profile (γ, σ2), rejects all strictly positive demands at all

histories that are inconsistent with either γ or ut1, and, for all k ∈
{

0, 1, . . . ,
⌊
t+1−τ0

η

⌋
− 1
}
,

accepts at time τ 0 + kη with probability ηk (1− η) if u1 (τ) = ut1 (τ) for all τ ∈ [t, τ 0 + kη],

and accepts at date (t+ 1,−1) with probability ηb
t+1−τ0

η c if player 1’s demands are consistent

with ut1 on [t, t+ 1). Since ut1 is continuous, player 1 receives a strictly higher payoff from

choosing ut1 and then rejecting until time t+ 1 than from mimicking γ, under the belief that

player 2 plays such a strategy for suffi ciently small η (as player 1 strictly prefers to have her

demand accepted at any time prior to t∗ than at t∗, by definition of t∗). In addition, player

1 receives a strictly higher payoff from choosing ut1 than from choosing any demand path

that coincides with ut1 until some time τ ∈ [t, t+ 1) and then diverges from ut1. Therefore,

choosing demand path ut1 is player 1’s unique optimal action at ht under the belief that

player 2 plays such a strategy for suffi ciently small η.

For case 3, Step 1 implies that for all η > 0 there exists a rationalizable and non-

exceptional strategy σ2 that accepts at (but not before) time t∗ under strategy profile (γ, t∗),

rejects all strictly positive demands at all histories that are inconsistent with γ, and, for

all k ∈
{

0, 1, . . . ,
⌊

1
η

⌋
− 2
}
, with probability ηk (1− η) demands 1 until time t + kη and

reduces its demand to η by time t + (k + 1) η, and with probability ηb
1
ηc demands 1 until

time t + 1 − η and reduces its demand to η by time t + 1. Step 1 also implies that there

exists a rationalizable and non-exceptional strategy that accepts at (but not before) time t∗

under strategy profile (γ, t∗), demands 1 −
(
e−r limτ↑t+1 u

t
i(τ)

2

)
η at ht and at every successor

history of ht; accepts at date (t+ 1,−1) if ui (τ) = uti (τ) for all τ ∈ [t, t+ 1); and otherwise

rejects any strictly positive demand at every successor history of ht (as in the last part of

the proof of Step 2). Let π1 assign probability 1− η to player 2’s playing a strategy of the

first kind and assign probability η to player 2’s playing a strategy of the second kind. I

claim that, for η suffi ciently small, ut1 is player 1’s unique optimal action at ht under belief

π1. To see this, first note that e−r(t
∗−t)γ (t∗) < 1 implies that choosing ut1 is strictly better

than choosing any demand path that coincides with γ until time t∗, for η suffi ciently small.

Finally, any strategy that chooses a demand path other than ut1 that diverges from γ before
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time t∗ does no better than choosing demand path ut1 and rejecting until time t + 1 in the

event that player 2 plays a strategy of the first kind, and does strictly worse in the event

that player 2 plays a strategy of the second kind. Therefore, choosing demand path ut1 is

player 1’s unique optimal action at ht under belief π1, for η > 0 suffi ciently small.

I now complete the proof of the lemma. By the definition of conditional dominance

and Step 2, strategy σ2 can be conditionally dominated (with respect to some (γ,Ω)) by

strategy σ′2 only if either σ
′
2 strictly dominates σ2 (with respect to (γ,Ω); i.e., if the first

condition in the definition of conditionally dominance with respect to (γ,Ω) holds) or σ′2

agrees with σ2 at all σ2-coherent histories that are inconsistent with γ. But, again by the

definition of conditional dominance, if σ′2 conditionally dominates σ2 and agrees with σ2 at

all σ2-coherent histories that are inconsistent with γ, then σ′2 must strictly dominate σ2.

The same argument applies for player 1, noting that Steps 2 and 3 imply that a strategy

σ1 can be conditionally dominated by a strategy σ′1 only if σ
′
1 strictly dominates σ1 or if σ′1

agrees with σ1 at all σ1-coherent histories ht, whether or not ht is consistent with γ (which

is needed for the argument given the difference in the definitions of conditional dominance

for players 1 and 2). Therefore, for i = 1, 2, if σi is non-exceptional then it cannot be

conditionally dominated unless it is also strictly dominated. Finally, if σi is rationalizable

and non-exceptional, then it is not strictly dominated with respect to
(
γ,ΩRAT

)
, hence

not conditionally dominated with respect to
(
γ,ΩRAT

)
, and hence also not conditionally

dominated with respect to the smaller set
(
γ,ΩICD

)
. This proves that every rationalizable

and non-exceptional strategy is iteratively conditionally undominated.

I now prove Proposition 5.

Proof of Proposition 5. As was the case for Proposition 4, it suffi ces to show that

uICD1 (γ) = γ (t∗) for every posture γ. The proof proceeds by approximating the γ-offsetting

belief πγ2 with beliefs {π
γ
2 (η)}η>0 that have support on rationalizable and non-exceptional

strategies only (unlike the offsetting belief πγ2 itself, which assigns positive probability to

the exceptional strategy γ̃), and by approximating the γ-offsetting strategy σγ2 with non-

exceptional strategies {σγ2 (η)}η>0 such that σ
γ
2 (η) ∈ Σ∗2 (πγ2 (η)) for all η > 0. Lemma 5

then implies that the strategy σγ2 (η) is iteratively conditionally undominated for all η > 0.
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Finally, as η → 0,

sup
σ1

u1 (σ1, σ
γ
2 (η))→ u∗1 (γ) ,

which implies that uICD1 (γ) ≤ u∗1 (γ). Since uICD1 (γ) ≥ u∗1 (γ) is immediate because

ΩICD (γ) ⊆ ΩRAT (γ), this shows that uICD1 (γ) = u∗1 (γ) = γ (t∗), completing the proof

of the proposition.

I now present an argument leading to the construction of the beliefs {πγ2 (η)}η>0 and

strategies {σγ2 (η)}η>0. I start by defining the strategies of player 1’s that receive positive

weight under belief πγ2 (η). Fix t ∈ (0, t∗) and η ∈
(
0, 1

2

)
. Let

η′ ≡

 min
{
η, r(t

∗−t)
3

, γ(t∗)
2

}
if γ (t∗) > 0

min
{
η, r(t

∗−t)
3

}
if γ (t∗) = 0

,

and let γ̃ (t, η) be the strategy that demands u1 (τ) = γ (τ) for all τ ∈ [0, t); demands

u1 (τ) =
t+ η′/r − τ

η′/r
γ (t) +

(
1− t+ η′/r − τ

η′/r

)
(1− η′)

for all τ ∈ [t, t+ η′/r]; demands

u1 (τ) =
t+ 2η′/r − τ

η′/r
(1− η′) +

(
1− t+ 2η′/r − τ

η′/r

)
η′

for all τ ∈ [t+ η′/r, t+ 2η′/r]; demands u1 (τ) = η′ if τ > t+2η′/r; and accepts a demand of

player 2’s if and only if it equals 0. Intuitively, γ̃ (t, η) mimics γ until time t and then quickly

rises to almost one before quickly falling to almost zero, where “quickly”and “almost zero”

are both measured by η (the point of having η′ rather than η in the formulas will become

clear shortly).

I claim that γ̃ (t, η) is iteratively conditionally undominated. To see this, observe that

γ̃ (t, η) is a best response to any strategy σ2 with the following properties:

• σ2 demands 1 and accepts at (and not before) date (t∗,−1) if player 1 follows γ until

time t∗.

• If hτ is inconsistent with γ but consistent with γ̃ (t, η), then σ2 demands 1 and accepts

if and only if τ ≥ t+ η′/r.

57



• If hτ is inconsistent with both γ and γ̃ (t, η), then σ2 demands 1 and rejects player 1’s

demand.

This follows because playing γ̃ (t, η) against such a strategy σ2 yields payoff

e−rt−η
′
(1− η′) ,

while the only other positive payoff that can be obtained against strategy σ2 is

e−rt
∗
γ (t∗) ≤ e−rt

∗
,

and e−rt−η
′
(1− η′) ≥ e−rt

∗
because η′ ≤ min

{
1
2
, r(t

∗−t)
3

}
(as can be easily checked). Now,

by Step 1 of the proof of Lemma 5, there exists a rationalizable strategy σ2 of this form,

so γ̃ (t, η) is rationalizable. In addition, γ̃ (t, η) is non-exceptional, because γ (t) > 0 for all

t ∈ [0, t∗) (recalling the definition of γ∗) and γ̃ (t, η) always demands η′ 6= γ (t∗) at time t∗,

so Lemma 5 implies that γ̃ (t, η) is iteratively conditionally undominated.

I now introduce versions of some of the key objects of Section 3.2, indexed by η. Let

λ (t, η) =
rv (t)− v′ (t)

e−2η′ (1− η′)− v (t)

if v is differentiable at t and v (t) < e−2η′ (1− η′), and let λ (t, η) = 0 otherwise; and let

p (t, η) =
v (t,−1)− v (t)

e−2η′ (1− η′)− v (t)

if v (t) < v (t,−1) ≤ e−2η′ (1− η′), and let p (t, η) = 0 otherwise. Define T̃ (η), T (η), t∗ (η),

λ̂ (t, η), and p̂ (t, η) as in Section 3.2, with λ (t, η) and p (t, η) replacing λ (t) and p (t) in the

definitions. Note that, as η → 0, λ (t, η) ↓ λ (t) and p (t, η) ↓ p (t) for all t ∈ R+. Hence,

λ̂ (t, η) ↓ λ (t), p̂ (t, η) ↓ p (t), T̃ (η) ↑ T̃ , T (η) ↑ T , and t∗ (η) ↑ t∗.

Let µγ (η) be the belief that player 1 rejects all non-zero demands of player 2’s and that

her path of demands begins by following γ (t) and then switches to following γ̃ (t, η) at time

t with hazard rate λ̂ (t, η) and discrete probability p̂ (t, η), for all t < t∗ (η).35 Let µγ,t (η) be

the belief that coincides with µγ (η) until date (t,−1) and subsequently coincides with the

35There is a technical problem here because it is not clear that µγ (η) can be written as a finite-dimensional

distribution over Σ1, that is, as an element of ∆ (Σ1). However, it should be clear that µγ (η) can in turn

be approximated by a finite-dimensional distribution over Σ1 in a way that suffi ces for the proof.
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belief that player 1 follows γ. Let πγ2 (η) put probability ε on strategy γ and put probability

1 − ε on strategy µγ,t∗ (η). Let σγ2 (η) be some best response to πγ2 (η) with the following

properties:

• σγ2 (η) demands 1 at all times t such that t ≤ t∗ and e−rt ≥ η.

• σγ2 (η) rejects player 1’s demand at those histories that are consistent with πγ2 (η) where

accepting and rejecting are both optimal actions.

• σγ2 (η) rejects all positive demands at histories that are inconsistent with γ.

• σγ2 (η) is non-exceptional.

It is clear that such a strategy exists. Furthermore, any such strategy is rationalizable,

by Step 1 of the proof of Lemma 5, and hence any such strategy is iteratively conditionally

undominated, by Lemma 5.

I claim that as η → 0, the time at which agreement is reached under strategy profile

(γ, σγ2 (η)) converges to t∗, uniformly over possible choices of σγ2 (η) satisfying the above

properties. To see this, observe that, as in Section 3.2, if v (t) < e−2η′ (1− η′) then λ (t, η)

and p (t, η) are the rate and probability of player 1’s switching to γ̃ (t, η) that make player 2

indifferent between accepting and rejecting γ. And, under belief πγ2 (η), player 2 believes that

player 1 switches to γ̃ (t, η) with rate and probability λ (t, η) and p (t, η) if v (t) < e−2η′ (1− η′)

and t < t∗ (η). Furthermore, since γ (t) is positive and continuous on [0, t∗), it follows that

lim inf
η→0

{
t : v (t) ≥ e−2η′ (1− η′)

}
= t∗.

Hence, for small η player 2 is indifferent between accepting and rejecting γ until close

to time min {t∗, t∗ (η)}, and therefore σγ2 (η) specifies that he rejects until close to time

min {t∗, t∗ (η)}. Since t∗ (η) → t∗, this shows that the time at which agreement is reached

under strategy profile (γ, σγ2 (η)) converges to t∗.

The proof is nearly complete. Strategy σγ2 (η) is iteratively conditionally undominated

for all η > 0. When facing strategy σγ2 (η), the highest payoff that player 1 can receive

when player 2 accepts at a history that is consistent with γ converges to γ (t∗) as η → 0.

Furthermore, for any η > 0, the most player 2 accepts at a history that is inconsistent with
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γ is η′; and the highest payoff player 1 can receive by accepting a demand of player 2’s is η

(since σγ2 (η) demands 1 at all times t such that e−rt ≥ η). It follows that

uICD1 (γ) ≤ lim
η→0

sup
σ1

u1 (σ1, σ
γ
2 (η)) = max

{
γ (t∗) , lim

η→0
η′, lim

η→0
η

}
= max

{
γ (t∗) , 0, 0

}
= γ (t∗) ,

completing the proof.

Discrete-Time Bargaining with Frequent Offers

This section shows that Theorem 1 continues to hold when the continuous-time bargaining

protocol of the text is replaced by any discrete-time bargaining protocol with suffi ciently

frequent offers. More precisely, for any sequence of discrete-time bargaining games that

converges to continuous time (in that each player may make an offer close to any given time),

the corresponding sequence of maxmin payoffs and postures converges to the continuous-

time maxmin payoff and posture given by Theorem 1. Abreu and Gul (2000) provide a

similar independence-of-procedures result for sequential equilibrium outcomes of reputational

bargaining. Because my result concerns maxmin payoffs and postures rather than equilibria,

my proof is very different from Abreu and Gul’s.

Formally, replace the (continuous time) bargaining phase of Section 2 with the following

procedure: There is a (commonly known) function g : R+ → {0, 1, 2} that specifies who

makes an offer at each time. If g (t) = 0, no player takes an action at time t. If g (t) = i ∈

{1, 2}, then player imakes a demand ui (t) ∈ [0, 1] at time t, and player j immediately accepts

or rejects. If player j accepts, the game ends with payoffs (e−rtui (t) , e
−rt (1− ui (t))); if

player j rejects, the game continues. Let Igi = {t : g (t) = i}, and assume that Igi ∩ [0, t] is

finite for all t and that Igi is infinite. The announcement phase is correspondingly modified

so that player 1 announces a posture γ : Igi → [0, 1], and if player 1 becomes committed to

posture γ (which continues to occur with probability ε), she demands γ (t) at time t and

rejects all of player 2’s demands. I refer to the function g as a discrete-time bargaining

game.

I now define convergence to continuous time. This definition is very similar to that of

Abreu and Gul (2000), as is the above model of discrete-time bargaining and the correspond-

ing notation.
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Definition 11 A sequence of discrete-time bargaining games {gn} converges to continuous

time if for all ∆ > 0, there exists N such that for all n ≥ N , t ∈ R+, and i ∈ {1, 2},

Igni ∩ [t, t+ ∆] 6= ∅.

The maxmin payoff and posture in a discrete-time bargaining game are defined exactly

as in Section 2. Let u∗,g1 be player 1’s maxmin payoff in discrete-time bargaining game g,

and let u∗,g1 (γ) be player 1’s maxmin payoff given posture γ in g. The independence-of-

procedures result states that, for any sequence of discrete-time bargaining games converging

to continuous time, the corresponding sequence of maxmin payoffs {u∗,gn1 } converges to u∗1,

and any corresponding sequence of postures {γgn} such that u∗,gn1 (γgn)→ u∗1 “converges”to

γ∗, where u∗1 and γ
∗ are the maxmin payoffand posture identified in Theorem 1. The nature

of the convergence of the sequence {γgn} to γ∗ is slightly delicate. For example, there may

be (infinitely many) times t ∈ R+ such that limn→∞ γ
gn (t) exists and is greater than γ∗ (t),

because these demands may be “non-serious”(in that they are followed immediately by lower

demands).36 Thus, rather than stating the convergence in terms of {γgn} and γ∗, I state

it in terms of the corresponding continuation values of player 2, which are the economically

more important variables. Formally, given a posture γgn in discrete-time bargaining game

gn, let

vgn (t) ≡ max
τ≥t:τ∈Ign1

e−r(τ−t) (1− γgn (τ)) .

Let v∗ (t) = max {1− ert/ (1− log ε) , 0}, the continuation value corresponding to γ∗ in the

continuous-time model of Section 2. The independence-of-procedures result is as follows:

Proposition 6 Let {gn} be a sequence of discrete-time bargaining games converging to con-

tinuous time. Then u∗,gn1 → u∗1, and if {γgn} is a sequence of postures with γgn a posture in

gn and u
∗,gn
1 (γgn)→ u∗1, then v

gn (t)→ v∗ (t) for all t ∈ R+.

The key fact behind the proof of Proposition 6 is that for any sequence of discrete-

time postures {γgn} converging to some continuous-time posture γ, limn→∞ u
∗,gn
1 (γgn) =

limn→∞ u
∗
1 (γgn) (where u∗1 (γgn) is the maxmin payoff given a natural embedding of γgn in

36The reason this complication does not arise in Theorem 1 is that the assumption that γ is continuous

at non-integer times rules out “non-serious”demands.
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continuous time, defined formally in the proof). This fact is proved by constructing a belief

that is similar to the γgn-offsetting belief in each discrete-time game gn and then showing

that these beliefs converge to the γ-offsetting belief in the limiting continuous-time game.

Proof of Proposition 6. Observe that a posture γ in discrete-time bargaining game

g induces a “continuous-time posture” γ̂ (i.e., a map from R+ → [0, 1]) according to

γ̂ (t) = γ (min {τ ≥ t : τ ∈ Igi }). That is, γ̂’s time-t demand is simply γ’s next demand

in g. I henceforth refer to a posture γ in g as also being a continuous-time posture, with

the understanding that I mean the posture γ̂ defined above.

However, γ may not be a posture in the continuous-time bargaining game of Section

2, because it may be discontinuous at a non-integer time. To avoid this problem, I

now introduce a modified version of the continuous-time bargaining game of Section 2.

Formally, let the continuous-time bargaining game gcts be defined as in Section 2, with

the following modifications: Most importantly, omit the requirement that player i’s de-

mand path uti : [t, t+ 1) → [0, 1] (which is still chosen at integer times t) is continu-

ous. Second, specify that the payoffs if player i accepts player j’s offer at date (t,−1) are

(e−rt (1− lim infτ↑t uj (τ)) , e−rt lim infτ↑t uj (τ)) (because limτ↑t uj (τ) may now fail to exist).

Third, add a fourth date, (t, 2) to each instant of time t. At date (t, 2), each player i

announces accept or reject, and, if player i accepts player j’s offer at date (t, 2), the game

ends with payoffs (e−rt (1− lim infτ↓t uj (τ)) , e−rt lim infτ↓t uj (τ)). Adding the date (t, 2)

ensures that each player has a well-defined best-response to her belief, even though uj (t)

may now fail to be right-continuous. One can check that the analysis of Sections 3 and 4,

including Lemmas 1 through 3 and Theorem 1, continue to apply to the game gcts, with the

exception that in gcts the maxmin posture γ∗ is not in fact unique; however, every maxmin

posture corresponds to the continuation value function v∗ (by the same argument as in Step

1 of the proof of Theorem 1).37 Because of this, for the remainder of the proof I slightly

abuse notation by writing u∗1 (γ) for player 1’s maxmin payoff given posture γ in the game

37The reason I did not use the game gcts in Sections 3 and 4 is that it is diffi cult to interpret the assumption

that player i can accept the demand lim infτ↓t uj (τ) at time t, since the demand uj (τ) has not yet been

made at time t for all τ > t. Thus, I view the game gcts as a technical construct for analyzing the limit of

discrete-time games, and not as an appealing model of continuous-time bargaining in its own right.
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gcts, rather than in the model of Section 2. Importantly, u∗1 (γ) equals player 1’s maxmin

payoff given γ in both gcts and in the model of Section 2 when γ is a posture in the model

of Section 2, but u∗1 (γ) is well-defined for all γ : R+ → [0, 1]. Similarly, I write u∗1 (v)

for player 1’s maxmin payoff given continuation value function v : R+ → [0, 1]. This is

well-defined because u∗1 (γ) = mint≤T e
−rtγ (t) by Lemma 3, T depends on γ only through

v (by Lemma 1), and it can be easily verified that mint≤T e
−rtγ (t) = mint≤T e

−rt (1− v (t))

(and thus depends on γ only through v). A similar argument, which I omit, implies that

one may write u∗,gn1 (vgn) for player 1’s maxmin payoff given continuation value function vgn

in discrete-time bargaining game gn.

I now establish two lemmas, from which Proposition 6 follows. Their proofs require some

additional notation. Let Σg
i be the set of player i’s strategies in g

cts with the property that

player i’s demand only changes at times t ∈ Igi , player i only accepts player j’s offer at times

t ∈ Igj , and player i’s action at time t only depends on past play at times τ ∈ I
g
i ∪ I

g
j . One

can equivalently view Σg
i as player i’s strategy set in g itself. Thus, any belief π2 in g may

also be viewed as a belief in gcts (with supp (π2) ⊆ Σg
i ).

Lemma 6 For any sequence of discrete-time bargaining games converging to continuous

time, {gn}, there exists a sequence of postures {γgn′} with γgn′ a posture in gn and limn→∞ u
∗,gn
1 (γgn′) ≥

u∗1.

Proof. Let γgn′ be given by γgn′ (t) =
(

n
n+1

)
γ∗ (max {τ ≤ t : τ ∈ Ign1 }) for all t ∈ R+,

with the convention that max {τ ≤ t : τ ∈ Ign1 } ≡ 0 if the set {τ ≤ t : τ ∈ Ign1 } is empty. I

first claim that limn→∞ u
∗
1 (γgn′) ≥ u∗1.

38 To show this, I first establish that T̃ (γgn′) ≤

min {τ > T 1 : τ ∈ Ign1 } for all n, where T 1 is defined as in the proof of Theorem 1. Since

γ∗ (and thus γgn′) are non-decreasing, supτ≥t e
−r(τ−t) (1− γgn′ (τ)) = 1− γgn′ (t). Therefore,

by Lemma 1, T̃ (γgn′) satisfies

exp

(
−
∫ T̃ (γgn′)

0

r
(
n+1
n
− γ∗ (max {τ ≤ t : τ ∈ Ign1 })

)
γ∗ (max {τ ≤ t : τ ∈ Ign1 })

dt

) ∏
t∈Ign1 ∩[0,T̃ (γgn′))

γ∗ (max {τ < t : τ ∈ Ign1 })
γ∗ (t)

≥ ε.

(24)

38Theorem 1 implies that limn→∞ u∗1 (γgn′) ≤ u∗1, so this inequality must hold with equality. But only

the inequality is needed for the proof.
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Now

exp

(
−
∫ T̃ (γgn′)

0

r
(
n+1
n
− γ∗ (max {τ ≤ t : τ ∈ Ign1 })

)
γ∗ (max {τ ≤ t : τ ∈ Ign1 })

dt

) ∏
t∈Ign1 ∩[0,T̃ (γgn′))

γ∗ (max {τ < t : τ ∈ Ign1 })
γ∗ (t)

≤ exp

(
−
∫ T̃ (γgn′)

0

r (1− γ∗ (t))

γ∗ (t)
dt

)
γ∗ (0)

γ∗
(

max
{
τ < T̃ (γgn′) : τ ∈ Ign1

})
≤ exp

(
−
∫ max{τ<T̃ (γgn′):τ∈Ign1 }

0

r (1− γ∗ (t)) + γ∗′ (t)

γ∗ (t)
dt

)
. (25)

Observe that if T̃ (γgn′) > min {τ > T 1 : τ ∈ Ign1 } then max
{
τ < T̃ (γgn′) : τ ∈ Ign1

}
> T 1,

and therefore (25) is less than ε, which contradicts (24). Hence, T̃ (γgn′) ≤ min {τ > T 1 : τ ∈ Ign1 }

for all n. In addition, γgn′ (t) is non-decreasing and γgn′ (t) < 1 for all t, which implies

that T (γgn′) = T̃ (γgn′). Therefore, by Lemma 3, u∗1 (γgn′) = mint≤T̃ (γgn′) e
−rtγgn′ (t).

Since T̃ (γgn′) ≤ min {τ > T 1 : τ ∈ Ign1 } for all n, and {gn} converges to continuous time,

limn→∞ T̃ (γgn′) ≤ T 1. In addition, limn→∞ supt∈R+
|γgn′ (t)− γ∗ (t)| = 0, so it follows that

lim
n→∞

u∗1 (γgn′) = lim
n→∞

min
t≤T̃ (γgn′)

e−rtγgn′ (t) ≥ lim
n→∞

min
t≤T̃ (γgn′)

e−rtγ∗ (t) ≥ min
t≤T 1

e−rtγ∗ (t) = u∗1.

Next, I claim that u∗,gn1 (γgn) ≥ u∗1 (γgn) for any posture γgn in discrete-time bargaining

game gn. To see this, note that if supp (π2) ⊆ Σgn
1 and σ2 ∈ Σ∗,gn2 (π2), then σ2 ∈ Σ∗2 (π2) as

well (i.e., there is no benefit to responding to a strategy in ∆ (Σgn
1 ) with a strategy outside

of Σgn
2 ). Therefore, if π1 ∈ Πγgn ,gn

1 (i.e., if π1 is consistent with knowledge of rationality in

gn), then π1 ∈ Πγgn ,gcts

1 ; that is, Πγgn ,gn
1 ⊆ Πγgn ,gcts

1 . Now

u∗,gn1 (γgn) = sup
σ1∈Σgn1

inf
π1∈Πγ

gn ,gn
1

u1 (σ1, π1)

≥ sup
σ1∈Σgn1

inf
π1∈Πγ

gn ,gcts

1

u1 (σ1, π1)

= u1

(
γgn , σγ

gn)
= u∗1 (γgn) ,

where σγ
gn is as in Definition 5, and the second line follows because Πγgn ,gn

1 ⊆ Πγgn ,gcts

1 ; the

third line follows because u1

(
γgn , σγ

gn
)

= sup
σ1∈Σg

cts

1

inf
π1∈Πγ

gn ,gcts

1

u1 (σ1, π1) by Lemma 3,

and γgn ∈ Σgn
1 ⊆ Σgcts

1 ; and the fourth line follows by Lemma 3.

Combining the above claims, it follows that limn→∞ u
∗,gn
1 (γgn′) ≥ limn→∞ u

∗
1 (γgn′) ≥ u∗1.
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Lemma 7 For any sequence of discrete-time bargaining games converging to continuous

time, {gn} and any sequence of functions {vgn} such that vgn is a continuation value function

in gn and limn→∞ v
gn (t) exists for all t ∈ R+, it follows that limn→∞ u

∗,gn
1 (vgn) exists and

equals limn→∞ u
∗
1 (vgn).

Proof. Fix a sequence of continuation value functions {vgn} (with vgn a continuation

value function in discrete-time game gn) converging pointwise to some function v : R+ →

[0, 1]. I have already shown that u∗,gn1 (γgn) ≥ u∗1 (γgn) for any posture γgn in game gn,

or equivalently u∗,gn1 (vgn) ≥ u∗1 (vgn). This immediately implies that limn→∞ u
∗,gn
1 (vgn) ≥

lim supn→∞ u
∗
1 (vgn) for every convergent subsequence of {u∗,gn1 (vgn)}. Hence, I must show

that limn→∞ u
∗,gn
1 (vgn) ≤ lim infn→∞ u

∗
1 (vgn) for every convergent subsequence of {u∗,gn1 (vgn)}.

I establish this inequality by assuming that there exists η > 0 such that limn→∞ u
∗,gn
1 (vgn) >

lim infn→∞ u
∗
1 (vgn) + η for some convergent subsequence of {u∗,gn1 (vgn)} and then deriving

a contradiction. The approach is to first define analogs of the continuous-time γ-offsetting

belief and the time T̃ (defined in Section 3.2) for game gn, denoted πn2 ∈ Σgn
2 and T̃ n ∈ R+,

and then show that T̃ n → T̃ .

I must introduce some additional notation before defining the belief πn2 . Let t
next
gn (i) =

min {τ > t : τ ∈ Igni } be the time of player i’s next demand at t. Given continuation value

function vgn and any corresponding posture γgn , let γ̃gn
n
be defined as follows: First, γ̃gn

n

demands γ̃gn
n

(ht) = γgn (ht) for all t ∈ Ign1 . Second, γ̃gn
n
accepts player 2’s demand at

time t ∈ Ign2 with probability

p̂n (t) ≡ min

{
pn (t)

χn (t)
, 1

}
,

where

pn (t) ≡ max
τ<t:

τ∈Ign1 ,τnextgn (2)=t

er(t−τ)vgn (τ)− vgn (t)

1− vgn (t)

if
{
τ < t : τ ∈ Ign1 , τnextgn (2) = t

}
is non-empty and vgn (τ) < 1 for all time τ in this set, and

pn (t) ≡ 0 otherwise; and

χn (t) ≡ max

{
Πτ<t:τ∈Ign2

(1− pn (τ))− ε
Πτ<t:τ∈Ign2

(1− pn (τ))
, 0

}
.
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Let T̃ n be the supremum over times t at which χn
(
tnextgn (2)

)
p̂n
(
tnextgn (2)

)
= pn

(
tnextgn (2)

)
,

and let

T n ≡ sup argmax
t≥T̃n:
t∈Ign1

e−rtvgn (t) .

By an argument similar to the proof of Lemma 2, if γgn (t) < η for some t ≤ T n, then there

exists a belief π2 ∈ ∆ (Σgn
1 ) and strategy σ2 ∈ Σgn

2 such that π2 (γgn) ≥ ε, σ2 ∈ Σ∗,gn2 (π2), and

the demand γgn (t) is accepted under strategy profile (γgn , σ2). In particular, ugn1 (γgn , σ2) <

η. Thus, by the hypothesis that limn→∞ u
∗,gn
1 (vgn) > lim infn→∞ u

∗
1 (vgn) + η, there must

exist N > 0 such that γgn (t) ≥ η for all t ≤ T n and all n > N , and hence vgn (t) ≤ 1− η for

all t ≤ T n and all n > N .

Let πn2 assign probability ε to γ
gn and probability 1− ε to γ̃gnn, and fix σn2 ∈ Σ∗,gn2 (πn2 )

with the property that σn2 always demands 1 and rejects player 1’s demand at any history

at which player 1 has deviated from γgn (which is possible because πn2 assigns probability 0

to such histories, except for terminal histories), as well as at any history at which player 2

is indifferent between accepting and rejecting player 1’s demand under belief πn2 . Note that

γgn is a best-response to σn2 in gn. This implies that u∗,gn1 (γgn) ≤ ugn1 (γgn , σn2 ) for all n.

Thus, to show that limn→∞ u
∗,gn
1 (vgn) ≤ lim infn→∞ u

∗
1 (vgn) + η (the desired contradiction),

it suffi ces to show that limn→∞ u
gn
1 (γgn , σn2 ) ≤ lim infn→∞ u

∗
1 (vgn) + η.

Observe that pn (t) satisfies

exp (−r (t− τ)) (pn (t) (1) + (1− pn (t)) vgn (t)) ≥ vgn (τ)

for all τ ≤ t such that τ ∈ Ign1 and τnextgn (2) = t. Hence, it is optimal for player 2 to reject

player 1’s demand γ at any time τ at which χn
(
τnextgn (2)

)
p̂n
(
τnextgn (2)

)
= pn

(
τnextgn (2)

)
(under belief πn2 ). Therefore, ugn1 (γgn , σn2 ) ≤ mint≤Tn e

−rt (1− vgn (t)). Now u∗1 (vgn) =

mint≤T (vgn ) e
−rt (1− vgn (t)), and limn→∞ T̃ (vgn) = T̃ (v). Hence, showing that limn→∞ T̃

n =

T̃ (v) ≡ T̃ would imply that limn→∞ u
gn
1 (γgn , σn2 ) ≤ lim infn→∞ u

∗
1 (vgn), yielding the desired

contradiction. The remainder of the proof shows that limn→∞ T̃
n = T̃ .

To see that limn→∞ T̃
n = T̃ , first fix t0 ≤ T̃ and note that for all δ > 0 there exists N ′ > 0

such that, for all t ≤ t0 and all n ≥ N ′, if gn (t) = 2 thenmin
{
τ ≤ t : τ ∈ Ign1 , τnextgn (2) = t

}
≥

t− δ (if this set is non-empty). Next, since both e−rtv (t) and e−rtvgn (t) are non-increasing
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(as is easily checked) and vgn (t)→ v (t) for all t ∈ R+, it follows that for all δ
′ > 0 there exists

δ > 0 such that t ≤ t0 and τ ∈ [t− δ, t] implies that
∣∣er(τ−t)vgn (τ)− v (t,−1)

∣∣ < δ′. Since

1 − v (t) ≥ η for all t ≤ T̃ , combining these observations and letting S be the (countable)

set of discontinuity points of v (t), for all δ′ > 0 there exists N ′′ such that if t = snextgn (2) for

some s ∈ S ∩ [0, t0], and n ≥ N ′′, then
∣∣∣pn (t)− v(t,−1)−v(t)

1−v(t)

∣∣∣ < δ′.39 Hence,

lim
n→∞

∏
s∈S∩[0,t0]

(
1− pn

(
snextgn (2)

))
=

∏
s∈S∩[0,t0]

(1− p (s)) (26)

for all t0 ≤ T̃ , where p is as in Section 3.2.

Finally, I establish that whenever v is continuous on an interval [t0, t∞] with t∞ ≤ T̃ ,

lim
n→∞

∏
t∈Ign2 ∩[t0,t∞]

(1− pn (t)) = exp

(
−
∫ t∞

t0

rv (t)− v′ (t)
1− v (t)

dt

)
= exp

(
−
∫ t∞

t0

λ (t) dt

)
, (27)

where λ is as in Section 3.2. I will prove this fact by showing that the limit as n→∞ of a

first-order approximation of the logarithm of
∏

t∈Ign2 ∩[t0,t∞] (1− pn (t)) equals −
∫ t∞
t0

rv(t)−v′(t)
1−v(t)

.

Let
{
t1,gn , t2,gn , . . . , tK(n),gn

}
= {t ∈ [t0, t∞] : pn (t) > 0}, with tk,gn < tk+1,gn for all k ∈

{1, . . . , K (n)− 1} and all n ∈ N, and let t0,gn = max
{
τ : τ ∈ Ign1 , τnextgn (2) = t1,gn

}
. Note

thatK (n) is finite because Ign2 ∩[t0, t∞] is finite, and that in addition tnextk,gn
(1) < tk+1,gn for all

k (where tnextk,gn
(1) ≡ tnextk,gn,gn

(1) to avoid redundant notation). Furthermore, since e−rτvgn (τ)

is non-increasing,

tnextk,gn (1) ∈ argmax
τ<tk+1,gn :

τ∈Ign1 ,τnextgn
(2)=tk+1,gn

er(tk+1,gn−τ)vgn (τ)

for all k ∈ {0, 1, . . . , K (n)− 1}. Therefore,
K(n)∏
k=1

(1− pn (tk,gn)) =

K(n)∏
k=1

min
τ<tk,gn :

τ∈Ign1 ,τnextgn
(2)=tk,gn

1− er(tk,gn−τ)vgn (τ)

1− vgn (tk,gn)

=

K(n)∏
k=1

min
τ<tk,gn :

τ∈Ign1 ,τnextgn (2)=tk,gn

1− er(tk,gn−τ)vgn (τ)

1− e−r(tnextk,gn
(1)−tk)vgn

(
tnextk,gn

(1)
)

=

K(n)−1∏
k=1

1− er(tk+1,gn−tnextk,gn
(1))vgn

(
tnextk,gn

(1)
)

1− e−r(tnextk,gn
(1)−tk,gn)vgn

(
tnextk,gn

(1)
)
 1− er(t1,gn−tnext0,gn

(1))vgn
(
tnext0,gn (1)

)
1− e−r

(
tnext
K(n),gn

(1)−tK(n),gn

)
vgn
(
tnextK(n),gn

(1)
) .(28)

39S is countable because e−rtv (t) is non-increasing, and monotone functions have at most countably many

discontinuities. Unlike in Section 3, S need not be a subset of N here.
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Next, taking a first-order Taylor approximation of log (1− erxvgn (t)) at x = 0 yields

log (1− erxvgn (t)) = log (1− vgn (t))− rxvgn (t)

1− vgn (t)
+O

(
x2
)
.

Therefore, a first-order approximation of the logarithm of (28) equalsK(n)−1∑
k=1

− (tk+1,gn − tk,gn)
rvgn

(
tnextk,gn

(1)
)

1− vgn
(
tnextk,gn

(1)
)


+ log
(

1− er(t1,gn−tnext0,gn
(1))vgn

(
tnext0,gn (1)

))
− log

(
1− e−r(t

next
K(n),gn

(1)−tK(n),gn)vgn
(
tnextK(n),gn (1)

))
.

I now show that

lim
n→∞

K(n)−1∑
k=1

− (tk+1,gn − tk,gn)
rvgn

(
tnextk,gn

(1)
)

1− vgn
(
tnextk,gn

(1)
) = −

∫ t∞

t0

rv (t)

1− v (t)
dt (29)

and

lim
n→∞

(
log
(

1− er(t1,gn−tnext0,gn
(1))vgn

(
tnext0,gn (1)

))
− log

(
1− e−r(t

next
K(n),gn

(1)−tK(n),gn)vgn
(
tnextK(n),gn (1)

)))
=

∫ t∞

t0

v′ (t)

1− v (t)
dt, (30)

which completes the proof of (27). Equation (30) is immediate, because, since v is continuous

on [t0, t∞], both the left- and right-hand sides equal

log (1− v (t0))− log (1− v (t∞)) .

To establish (29), let

fn (t) ≡ exp

(
−r
(

1 + η

η

)
t

)
rvgn (t)

1− vgn (t)

and let

f (t) ≡ exp

(
−r
(

1 + η

η

)
t

)
rv (t)

1− v (t)
.

For all n > N , it can be verified that both fn (t) and f (t) are non-increasing on the interval

[t0, t∞], using the facts that e−rtvgn (t) and e−rtv (t) are non-increasing and that vgn (t) ≤ 1−η

for all n > N and t ≤ t∞ ≤ T̃ . Fix ζ > 0 and m ∈ N. Because vgn (t) → v (t) for all

t ∈ R+, there exists N ′′′ ≥ N such that, for all n > N ′′′, |fn (t)− f (t)| < ζ for all t in the

set {
t0,

(m− 1) t0 + t∞
m

,
(m− 2) t0 + 2t∞

m
, . . . , t∞

}
.
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Since both fn and f are non-increasing on [t0, t∞], this implies that

|fn (t)− f (t)| < ζ+ max
k∈{1,...,K(n)−1}

(
f

(
(m− k) t0 + kt∞

m

)
− f

(
(m− k − 1) t0 + (k + 1) t∞

m

))
for all t ∈ [t0, t∞]. Since f is continuous on [t0, t∞], takingm→∞ implies that |fn (t)− f (t)| <

2ζ for all t ∈ [t0, t∞]. Therefore
∣∣∣ rvgn (t)

1−vgn (t)
− rv(t)

1−v(t)

∣∣∣ ≤ 2ζ exp
(
r
(

1+η
η

)
t∞

)
for all t ∈ [t0, t∞].

Hence,

lim
n→∞

K(n)−1∑
k=1

− (tk+1,gn − tk,gn)
rvgn

(
tnextk,gn

(1)
)

1− vgn
(
tnextk,gn

(1)
) = lim

n→∞

K(n)−1∑
k=1

− (tk+1,gn − tk,gn)
rv
(
tnextk,gn

(1)
)

1− v
(
tnextk,gn

(1)
)

= lim
n→∞

K(n)−1∑
k=1

− (tk+1,gn − tk,gn)
rv (tk,gn)

1− v (tk,gn)

= −
∫ t∞

t0

rv (t)

1− v (t)
dt,

where the first equality follows because
∑K(n)−1

k=1 (tk+1,gn − tk,gn) ≤ t∞ − t0 for all n ∈ N, the

second follows because tnextk,gn
(1) ∈ [tk,gn , tk+1,gn ] and v is continuous on [t0, t∞], and the third

follows by definition of the (Riemann) integral.

Combining (26) and (27), it follows that

lim
n→∞

∏
s∈Ign2 ∩[0,t]

(1− pn (s)) = exp

(
−
∫ t

0

λ (s) ds

) ∏
s∈S∩[0,t]

(1− p (s))

for all t ≤ T̃ . This implies that limn→∞ T̃
n = T̃ , completing the proof of the lemma.

I now complete the proof of Proposition 6.

Let {gn} be a sequence of discrete-time bargaining games converging to continuous time.

Recall that u∗,gn1 = supγgn u
∗,gn
1 (γgn). Thus, there exists a sequence of postures {γgn}, with

γgn a posture in gn, such that limn→∞ |u∗,gn1 − u∗,gn1 (γgn)| = 0. Let {vgn} be the correspond-

ing sequence of continuation value functions. Because e−rtvgn (t) is non-increasing and the

space of monotone functions from R+ → [0, 1] is sequentially compact (by Helly’s selection

theorem or footnote 26), this sequence has a convergent subsequence {vgk} converging to

some v on R+.

I claim that v = v∗. Toward a contradiction, suppose not. Since v∗ is the unique maxmin

continuation value function in gcts, there exists η > 0 such that u∗1 > limk→∞ u
∗
1 (vgk) + η.

By Lemma 7, limk→∞ u
∗,gk
1 (vgk) = limk→∞ u

∗
1 (vgk). Finally, by Lemma 6, there exists an
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alternative sequence of postures {γgk′} such that limk→∞ u
∗,gk
1 (γgk′) ≥ u∗1. Combining these

observations implies that there exists K > 0 such that, for all k ≥ K,

u∗,gk1 (γgk′) > u∗1 − η/3 > u∗1 (vgk) + 2η/3 > u∗,gk1 (vgk) + η/3,

which contradicts the fact that limk→∞ |u∗,gk1 − u∗,gk1 (γgk)| = 0. Therefore, v = v∗. In

addition, since this argument applies to any convergent subsequence of {vgn}, and every

subsequence of {vgn} has a convergent sub-subsequence, this implies that vgn → v∗ pointwise.

A similar contradiction argument shows that limk→∞ u
∗,gk
1 (vgk) = u∗1, for any convergent

subsequence {vgk} ⊆ {vgn}. Since limk→∞ |u∗,gk1 − u∗,gk1 (γgk)| = 0, it follows that u∗,gk1 → u∗1.

And, since this argument applies to any convergent subsequence of {vgn}, this implies that

u∗,gn1 → u∗1.
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