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Econoinetrica, Vol. 49, No. 1 (Januarv, 1981) 

RESOURCE ALLOCATION' UNDER ASYMMETRIC INFORMATION 

BY MILTON HARRIS AND ROBERT M. TOWNSEND 

The purpose of this paper is to provide a method for characterizing efficient allocation 
processes and efficient allocations for a large class of environments in which asymmetric 
information is an important factor. This method is based on a rigorous application of 
statistical decision theory and makes explicit both the information available to agents ex 
ante and the way in which information is transmitted during any multistage allocation 
process. 

1. INTRODUCTION 

THE PURPOSE OF TH4IS PAPER is to provide a method for characterizing efficient 
allocation processes and efficient allocations for a large class of environments in 
which asymmetric information is an important factor.2 This method is based on a 
rigorous application of statistical decision theory and makes explicit both the 
information available to agents ex ante and the way in which information is 
transmitted during any multistage allocation process.3 Our approach is illustrated 
by its application to a principal-agent environment, a public goods environment, 
and a competitive environment with informed and uninformed traders. 

In much of the literature on environments with asymmetric information, 
efficiency is defined with respect to full or symmetric information.4 Much of the 
work on public goods, for example, focuses on constructing mechanisms to 
achieve Samuelson-Lindahl allocations (e.g., Groves-Ledyard [91). These are 
allocations which would be Pareto optimal if all agents possessed full information 
about the actual preferences of the agents. We argue that, as an alternative 
approach to characterizing efficient allocations and mechanisms, one must 
consider explicitly the restrictions imposed by asymmetric information). In 

IThis paper has formed the basis for presentations at the NBER-CEME Conference on )ecen- 
tralization (held at the University of Minnesota, April, 1978), the Econometric Societv mectings 
(Chicago, August, 1978), and Northwestern University (October, 1978). We would like to thank the 
participants at these seminars, and especially J. Jordan, J. Ledyard, E. Maskin, M. Satterthwaite, and 
C. Wilson for helpful comments. In addition we are grateful for the extremely valuable suggestionis of 
two anonymous referees. Financial support from the National Science Foundation iunder grant 
SOC-7826262) and the Federal Reserve Bank of Minneapolis is gratefuilly acknowledged. We assume 
full responsibility for any errors as well as the views expressed here. 

Such environments have recently been the object of conisiderable and growing attentionii. 
Examples include public goods (Groves and Ledyar-d [9]), signaliing and screening (Spence [29 1, Riley 
[22]), agency (Spence and Zeckhauser [30], Shavell [281), insurance (Rothschild and Stiglitz [251, C. 
Wilson [31]), competitive markets with some informed traders (Green [7], Grossman [8] , and auction 
markets (Holt [14], R. B. Wilson [32]). By asymmetric information, we mean a situation in which 
certain agents believe other agents to be better informed about some aspect of the economic 
environment. This is to be distinguished from differentiail information, a situation in which agentts have 
different ex ante information, but no agent believes any other agent to be better informed than himself. 

Since writing an earlier version of this paper we have discovered Myerson [18] whose approach is 
similar to our own in several crucial aspects. We also wish to acknowledge the influence of the seminal 
work of Hurwicz on resource allocation mechanisms (e.g., see Hurwicz [151). Reiter pioneered in this 
area as well (e.g., see Reiter [21]). 

4 Myerson [18] is a notable exception. 
Such restrictions have proved quite useful in developing positive theories of economic 

phenomena; see Prescott-Townsend [19]. 
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particulai we argue that in environments with asymmetric information, 
uncertainty about preferences, technology, and endowments may be charac- 
terized by probability distributions over unknown shocks or parameters. Then 
one must take account of this information structure in developing an equilibrium 
theory of allocation processes or mechanisms and in defining efficient allocations. 
This results in a different theory of allocation processes and a different definition of 
optimal allocations than those which would obtain under full information. In 
particular, both the normative and the positive implications of our approach 
differ, for some environments, from those of the traditional approach. 

The approach which we here propose consists of five steps. First, we carefully 
specify the economic environment including the information structure. Second, 
we define the concept of an allocation mechanism for an environment and specify 
the class of available mechanisms. Third, we define the concepts of equilibrium of 
a mechanism and equilibrium allocations of a mechanism. Fourth, we define 
preferences of the agents over mechanisms and the concept of an efficient 
mechanism. Fifth, and last, we characterize efficient mechanisms and their 
allocations. Each aspect of the approach is now discussed briefly. 

The genieral class of environments considered in this paper (see Section 3) 
includes arbitrary sets of agents, production, and a rich set of possible information 
structures comprising both public and private information. An environment 
consists of a specification of three objects. First is the set of agents and the 
technology of production and exchange available to each coalition of agents. 
Second, the preferences of each agent are specified. These are assumed to depend 
on a vector of exogenously determined parameters. The information structure is 
thein specified as the set of parameters which is observed by each agent together 
with a prior distribution for each agent describing his information about the 
parameters he cannot observe. More than one agent may observe the same 
parameter, i.e., some information may be public. These observations are the sole 
source of all information asymmetries. 

)nce an environment is specified, the concept of an allocation mechanism for 
the crivironmenit may be defined. Intuitively, an allocation mechanism for a given 
erlVironment is simply a set of rules which specify the game to be played by the 
agents in allocating resources and a specification of how the allocation is deter- 
n-ined, given the '"plays" of the agents during the game. In Section 4, this concept 
is defined formally, together with the class of all available mechanisms. 

INext wc must have a theory of the outcome of any given mechanism, i.e., we 
must define the concept of equilibrium strategies for a given mechanism. In this 
coIntext, &i ,)-trateg of an agent is a mapping which determines his play or signal at a 
given stage of a mechanism as a function of the parameters initially observed by 
him and the sequence of past signals of all agents. Optimality of a strategy is 
defii-wd relative to the information the agent has at the time the strategy is used. 
This intorniatioti will be different from the initial information if the signals of 
other agents convey information. In particular, agents are assumed to update their 
beliefs about unobserved parameters using Bayes' rule and the sequence of past 
signlais ot otiher agents. Using this definition of optimal strategies, we define a 
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perfect Bayesian equilibrium concept for any mechanism. This concept is related 
to Harsanyi's [13] "Bayesian equilibrium" and Selten's [27] "perfect equili- 
brium."6 It also draws on the work of Prescott and Visscher [20], Kydland and 
Prescott [17], and E. Green [6]. Once the equilibrium strategies are determined, 
the equilibrium allocation of a mechanism is easily defined. The equilibrium 
concept is discussed more fully in Section 5. 

As can be seen from the above discussion, equilibrium allocations of 
mechanisms are allocations which depend on the actual, realized values of the 
parameters of the environment (since equilibrium strategies depend on these 
values). Such allocations will be referred to as parameter-contingent (or p.c.) 
allocations. Preference orderings of agents over mechanisms then are naturally 
defined using expected utilities, based on the initial information structure, over 
these equilibrium p.c. allocations. Efficient mechanisms are defined in an obvious 
way, e.g., a core mechanism is one which cannot be improved upon by any 
coalition of agents, a Pareto optimal mechanism is one which cannot be improved 
upon by the set of all agents, and so on. These concepts are defined formally in 
Section 7. 

Our general results provide a fairly simple way of executing the final step of the 
approach, namely that of characterizing efficient allocation mechanisms and 
efficient allocations. Our first major result (see Section 6) is that the equilibrium 
p.c. allocations of any mechanism must satisfy certain self-selection properties. 
That is, any agent with private information must prefer (in the sense of expected 
utility relative to his initial information) the equilibrium allocation which is to 
result under the actual value of the parameters to the equilibrium final allocation 
which would result if the parameters observed by him alone took on some other of 
their possible values. This is because the actual (equilibrium) strategies must be 
preferred to all other strategies, including the strategy of acting as if one's 
observed parameters took on some other value. 

Our first result thus shows that certain technically feasible p.c. allocations, 
namely those which do not satisfy self-selection properties, cannot in fact be 
achieved.7 Conversely, a second major result (also in Section 6) is that any p.c. 
allocation which does satisfy self-selection properties can be achieved under a 
mechanism. Moreover, it is established that one can restrict attention to a 
mechanism of a particularly simple form, a direct mechanism under which each 
agent reports on the value of each parameter he observes.8 

These two results suggest that one can define notions of efficiency directly in the 
space of p.c. allocations which exhibit the self-selection property. This we do in 
Section 8 where the equivalence between efficient allocations (in a certain sense) 
and efficient mechanisms is established. Our third major result is that an allocation 

6 The Bayesian equilibrium concept is used in Arrow [1], d'Aspremont and Gerard-Varet [5], and 
Dasgupta, Hammond, and Maskin [4] (D-H-M), among others. It is closely related to the rational 
expectations equilibrium (see Prescott and Townsend [19]). We would like to thank L. Hurwicz, J. 
Jordan, and E. Maskin for calling our attention to some of this literature. 

7 Myerson derives similar results for one-stage mechanisms. 
8 The terminology "direct mechanism" is borrowed from the game theory literature (see, e.g., 

D-H-M [4]). 
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is efficient if and only if it is associated with an efficient mechanism. This, then, 
allows one to convert a problein of characterizing efficient mechanisms into one of 
characterizing efficient allocations, a problem which can usually be solved using 
standard mathematical programming techniques. Using the second result 
(outlined in the previous paragraph), one can then easily characterize an efficient 
direct mechanism which supports the efficient allocations. 

An additional result, which is somewhat less general than the three results 
mentioned above, concerns the relationship between optimal allocations in our 
sense and full-information (FI) optimal allocations. In particular, we show that if 
there are only two agents and one is fully informed while the other is not, then any 
p.c. allocation which is Fl optimal for every parameter value and satisfies 
self-selection is also optimal in our sense (see Section 8). That this result cannot be 
generalized (without adding other restrictions) is shown via an example (see 
Section 9). 

In addition to the general development of Sections 3-8, outlined above, we also 
present three examples. (A fourth example concerned with risk sharing in a pure 
exchange environment is discussed in Harris-Townsend [12], where a slightly 
different approach was taken 9) The three examples described in Sections 2, 9, and 
10 respectively are (i ) a principal-agent environment, (ii) a public goods 
environment, and (iii) a competitive, pure exchange environment. 

The agency problem presented in Section 2, before the general development, 
introduces several concepts and results central to that development. This 
environment is essentially the one analyzed by Hurwicz-Shapiro [16] in which the 
agent has better information about some parameters of a production process than 
the principal. The example illustrates four important points: (i) an allocation is 
achievable by a mechanism if and only if it satisfies certain self-selection condi- 
tions, (ii) not all allocations which are optimal in a full information sense are 
achievable (i.e., some fail to satisfy the self-selection conditions), (iii) there are 
allocations which are optimal in our sense but which are not full information 
optimal, and (iv) which allocations are optimal in our sense depend on prior beliefs 
of the agents. 

In Section 9, after the genreral development, we examine a simple public goods 
environment in which each agent knows only his own preferences for public and 
private goods. 1The main point of this example. aside from further illustrating the 
power of our approach, is to establish that achievable full information optimal 
allocations (namely achievable Samuelson-Lindahl allocations) need not be 
optimal in our sense.' Thus if one takes our approach seriously, full information 

Further applications are coritained in Harris and Raviv [11, 12]. T 'his compleinents the results of D'Aspremont and Gerard-Var-et [5] (hereafter D-G-V) and 
Arrow [11 who establish that in some public goods environments there is at least one full information 
optimal p.c. allocation which can be achieved as a Bayesian equilibrium. A related question is whether 
a full information optimal p.c. allocation can be achieved under a mechanism satisfying a budget 
balance requirement under a dominant strategy (strong Nash) equilibrium, for as D-H-M [4] point out, 
any p.c. allocation which scan be attained as a dominant strategy equilibrium can also be attained as a 
Bayesian equilibrium. It is well known that there does not exist one mecfianism with this property for a 
fairly rich class of utility functionis. (Of course a given mechanism may work for a particular set of utility 



RESOURCE ALLOCATION 37 

optimal p.c. allocations are not necessarily desirable from a normative point of 
view. 

Finally, in Section 10 we note, by way of contrast, that in a pure exchange 
economy with informed and uninformed traders (informed traders are all 
informed about the same thing) competitive equilibrium allocations in which 
prices fully reveal ajl information are core allocations in our sense. This result 
turns on the standard definition of the core and the fact that with no private 
information there are no self-selection constraints. Section 11 contains some 
concluding remarks. 

2. A PRINCIPAL-AGENT ENVIRONMENT WITH TECHNOLOGICAL UNCERTAINTY 

We consider in this section a principal-agent model motivated by Hurwicz- 
Shapiro [16]. A principal, p, has sole access to a technology for transforming labor 
effort z into output y of the single consumption good of the model in accordance 
with a production function f. Let y = f(z, 0) = Oz. Here the parameter 0 is drawn 
from a known distribution. In particular, 0 can take on one of two values, 6 or 02, 

with 0 < 6 and sn denotes the probability that 0=6' The agent (worker), 
denoted a, knows the actual realization of 0; the principal (manager, landlord) 
does not. The principal takes the probability that 0 = 01 to be (p. The agent alone 
can supply labor, and such effort cannot be observed by the principal. 

The principal cares only about consumption. Thus, letting r denote the reward 
to the agent (his allotment of the consumption good), the utility function of the 
principal is assumed to be U,(y, r) = y - r. The agent values both leisure and 
consumption, and his utility function is assumed to be ua (r, z) = r - z 2. Hence with 
y = Oz, the agent's utility as a function of output, reward, and the productivity 
parameter 0 is Ua (y, r, 0) = r -(y/ 0)2. 

The environment is depicted in Figure 1. The space of feasible allocations is the 
area below the 450 line through the origin. Indifference curves of the principal are 
450 lines with his utility increasing toward the southeast. Indifference curves of the 

agent depend on 0 and are labeled by 6' or 02 . His utility increases toward the 
northwest. Allocations which would be efficient under full information are shown 
by the vertical lines labeled Cj (allocations which would be efficient if both parties 
knew that 0 = 6j for j = 1, 2). Thus any point on say C, is such that marginal 
product of labor equals the agent's marginal rate of substitution between effort 
and reward, if 0 = 06. 

A parameter-contingent (p.c.) allocation for this environment is an output 
quota y(0) and reward to the agent r(6) which depends on the true, realized value 

functions.) This has motivated some to consider a weaker notion of equilibrium, namely the (weak) 
Nash equilibrium. Under this notion of equilibrium there do exist mechanisms which satisfy both the 
budget balance and full information optimal criteria. (See, for example, the celebrated work of 
Groves-Ledyard and the "demand revelation" literature.) Yet here one may question how it is that the 
weak Nash equilibrium is to be attained; in a weak Nash equilibrium an agent's signal will vary with 
parameters unobserved by him. Both Groves-Ledyard [9] and D-H-M [4] have noted difficulties with 
adjustment schemes which are intended to circumvent this problem. 
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FIGURE 1 -Principal-agent environment. 

of the productivity parameter 6. Such a p.c. allocation can be denoted (y1, r1), 
j = 1, 2, where y1 = y(6') and r1 = r(61). In this environment, a p.c. allocation (y1, r1) 
satisfies self selection if and only if the agent (worker) prefers the allocation (y1, r1) 
in which he must produce yi in return for a reward r1 to (y2, r2) if, in fact 0 = 01, 
and vice versa if 0 = 02. A p.c. allocation satisfying this property is shown in Figure 
I as points B = (y1, r1) and D = (Y2, r2). Mathematically the condition which (y1, r1) 
must satisfy to be a self-selection p.c. allocation is 

(SS) ri - (yJ/61)2 r2- (Y2/01)2, 

r2- (Y2/02)2 r _- (YJ/02)2. 

The first point we wish to make with this example is that if a p.c. allocation does 
not satisfy (SS) it cannot be achieved by any mechanism and conversely, if it does 
satisfy (SS) it can be achieved by a very simple mechanism. In this regard, an 
allocation is achieved by a mechanism if that allocation is an equilibrium allo- 
cation of the mechanism. Although the above statement is true for any 
mechanism, it will be easier to motivate if we restrict ourselves to direct 
mechanisms. In a direct mechanism, the agent is asked to name a value for 0 
(either 0 1 or 02) and then some pre-determined allocation [y (mi), r(m )] is effected, 
where m is the value of 0 declared by the agent. To see the first part of the 
statement, suppose we have a p.c. allocation which does not satisfy (SS), say 
yl, ri) =A, (y2, r2)= B in Figure 1. That is, suppose we wish to achieve the 

allocation represented by point A (in Figure 1) when 6 = 01 and the allocation 
represented by point B when 6 = 02 . Now suppose that to achieve this allocation, 
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we choose the direct mechanism with 

[y (01), r(6 1)] = A, 

[y(02), r(02)] = B. 

Note, however, that A and B do not satisfy self-selection, and in particular the 
agent prefers B to A regardless of the true value of 0. Thus in the direct 
mechanism described above, the agent will always declare m = 02 even if 0 = 6'. 
Thus the equilibrium allocation of this mechanism will be B for either value of 0. 
In this case A will not be achieved when 0 = 61 by this mechanism. The only other 
choice of a direct mechanism which has any chance of resulting in A for 0 = 1 and 
B for 6= 02 iS 

[y (02), r(02)] = A 

[Y ('), r(61)] = B. 

In this case, the agent will always declare m = 01, and the equilibrium allocation 
will again be B for either value of 6. Consequently the p.c. allocation represented 
by (A, B) cannot be achieved by a direct mechanism. 

For the second part of the statement, suppose we have the p.c. allocation 
represented by (yl, r1) = B, (Y2, r2)= D in Figure 1. Consider the direct 
mechanism in which the final allocation as a function of the agent's declared value 
m of 0 is given by [y(m), r(m)] = (y,, r1) for m = 6i. Since the pair (B, D) in Figure 
1 satisfies (SS), the agent will always declare the true value of 0. Thus if 6 = 6', the 
equilibrium allocation of this mechanism is simply (y,, r,). That is, the p.c. 
allocation represented by (B, D) can be achieved using a simple direct mechanism 
in which the agent's equilibrium strategy is to "tell the truth." In Sections 3-8, 
these results are generalized to a large class of environments and mechanisms. 

The second point we wish to illustrate in this example is that there are full 
information optimal p.c. allocations which are not achievable. A full information 
optimal p.c. allocation is simply a p.c. allocation (y,, r,) such that (yl, r1) is on C1 
and (Y2, r2) is on C2 and both are below the 450 line. For example, consider the p.c. 
allocation represented by points A and E in Figure 1. Note that the agent prefers 
A to E no matter the value of 0. Therefore (A, E) does not satisfy (SS) and, as 
indicated above, cannot be achieved. 

The third point we wish to make with this example is that there are p.c. 
allocations which are optimal in our sense but which are not full information 
optimal (this will also serve to illustrate our definition of optimality in Section 8). 
For this environment, a feasible p.c. allocation (y,, r,) is Pareto optimal if (i) it 
satisfies (SS) and (ii) no other feasible p.c. allocation satisfying (SS) can make the 
principal better off (in the expected utility sense, taking expectations over 0 using 
his prior) without making the agent worse off for at least one value of 0, and (iii) no 
other feasible p.c. allocation satisfying (SS) can make the agent better off for at 
least one value of 0 without either making him worse off under the other value of 6 
or making the principal worse off. 
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Using this definition it is easy to establish that a solution of the following 
problem is a Pareto optimal p.c. allocation which is best for the principal subject to 
the constraint that the agent be no worse off for either value of 6 than in autarky, 
when (y, r) = (0, 0) (these individual rationality constraints are labeled "IR" in the 
problem). 

max p(yl-r1) +(1-f )(Y2-r2) 
(yj,r1),J=1,2 

subject to (SS), 

(IR) r_-(yi/60)2,() for j=1, 2, 

(Feasibility) 

Or sy1 for 1=1,2. 

In the objective function, p is the principal's prior probability that 6= A1. Note 
that since any solution must satisfy (SS), it can be achieved by a direct mechanism 
as outlined above. 

A typical solution (for a particular value of 'p) is shown as (y*, <r*) = C*(6i), 
j= 1, 2 in Figure 1. Notice that c*(01) is not on C1, thus showing that there are 
optimal p.c. allocations which are not full information optimal. 

The fourth, and last, point we wish to make in this example is that optimal 
allocations in our sense depend on prior distributions, whereas full information 
optimal allocations do not (this fact plays a key role in the public goods example of 
Section 9). To see this imagine that the probability which the principal places on 
the event 6 = 01, i.e., p, increases. The principal will then seek to increase his 
utility in this event. This can be accomplished by moving c*(6l) along the agent's 
01 indifference curve toward point A. Since self-selection must hold, c*(62) must 

2 move up C2 toward point F, i.e., p must give up utility in the event 6 = 6 . He is 
willing to make this tradeoff since his probability on 6 = 61 has increased. Thus the 
original values of c*(0) are no longer optimal when the principal's prior changes. 

This concludes our discussion of the agency example. We now proceed to the 
general development. 

3. THE GENERAL ENVIRONMENT 

The general economic environment consists of a finite set T c R of agents and a 
collection of production technologies associated with coalitions of agents. The 
agents are defined by their common consumption possibility set C c R I, where 1, 
the number of commodities, is a fixed integer, 1 - 2; by their preferences; and by 
their initial information. 

Preferences are assumed to depend on a vector, 0, of parameters. Let N= 
{1, ... , n} be the set of parameter indices; Ok c R, Ok finite, be the set of possible 
values of the kth parameter, k c N, with typical element 6k; and 0 = Xkc=N ok be 
the parameter space with typical element 6. Each agent a is assumed to have 
observed values of the parameters 6k for k in some subset Na ( N. The set of 



RESOURCE ALLOCATION 41 

possible values of parameters observed by agent a is then (53a = XkENa k, with 
typical element ga. We assume that each of the n parameters is observed by some 
agent, i.e. UaEETNa = N. For any subset of agents A c- T, let NA = Ua,A Na be the 
set of parameters observed by agents of A. Let OA = XkENA Ok- 

The preferences of each agent are represented by a utility function Ua which 
depends on his consumption bundle and the parameter vector, i.e. Ua: C x & -* R. 

We assume that each agent's beliefs concerning parameters not observed by 
him can be summarized by a nondegenerate prior distribution. This prior for agent 
a is a mapping Pa from & x O' into the interval [0, 1] where pa (eI a) is interpreted 
as a's prior probability that the value of the true parameter vector is 4 given that 
he observes 6a.11 Note that e specifies a value for the parameter vector observed 
by agent a; thus if (a: O a, Pa (el4a) = 0. We also assume that pa (e OIa) > 0 for all 4 
such that ea = Oa 

An essential ingredient in defining the economic environment is a specification 
of the allocations achievable by any coalition of agents. Thus, with any subset A of 
agents of T we associate a nonempty set A (A) c CA.12 A typical element of A (A), 
say CA, consists of a consumption bundle Ca C C for each agent a E A. We may 
think of A as a mapping which associates with each subset of agents of T its set of 
achievable allocations. The technology is a specification of A. 

We are now ready to define the economic environment. An environment E is a 
vector [T, 1, N, (Na)a T, 0, A, UT, PT, 6], where T is the set of agents, 1 is the 
number of goods, N is the set of parameter indices, Na is the set of parameters 
observed by agent a, Ua is the utility function of agent a, pa is agent a's prior, and 
0 is the actual value of the parameter vector. A sub-environment EA of E for a 
subset of agents A c T is a vector [A, 1, NA, (Na )a,A, OA, A, UA, PA, OA], where A is 
restricted to A. 

Crucial to our analysis is a specification of what each agent knows before any 
trade takes place, i.e., the initial information structure. Given an environment E, 
each agent in T is assumed to know everything except the values of certain 
parameters, i.e., everything except 6i for ji Na. It should be emphasized that if 
agent a knows Ok while agent b does not, then both know that agent a is better 
informed about parameter k. 

This completes our description of the general class of environments. We now 
turn to developing the concept of a resource allocation mechanism and proving 
some general results. 

4. MECHANISMS 

Our concept of a mechanism is simply a set of rules which define an extensive 
form game to be played by the agents. These rules are constraints on what 

1For most of our analysis the parameters may be thought of as being drawn from some 
exogenously specified joint distribution known to all agents with agents' priors being conditional 
distributions given their observed parameters. We do not require this consistency, however. 

12 In general, we use the following notation for Cartesian products of sets. If A C T and { Ya Ia c A} 
is any collection of sets, then we denote the product Xa-A Ya by yA An element of yA is denoted by 
(Ya)acA or by YA, 
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proposals the agents may make at each stage of a multistage bargaining process 
and a rule for determining the final allocation as a function of the sequence of 
these proposals.13 

The elements of a mechanism for a sub-environment EA for a set of agents 
A c T with technology A (or, for short, a mechanism for A) are as follows. First is 
an integer, r, which is interpreted as the number of stages in the mechanism, i.e., 
signals are sent by the agents sequentially in stages 1, 2,..., r. At each stage, each 
agent is assumed to have observed all previous signals. Second is a set 5° which is 
the set of all potential signals and an element so which is the null signal (hereafter 
taken to be the word "pass") introduced mainly for notational convenience. The 
mechanism is assumed to begin with all agents sending the null signal (at stage 0). 
Thereafter an agent may send the null signal only if required to do so. Thus 
observing the null signal provides no new information. Third is a sequence 
SA ={SatIa c A, t = 1,... , r} of constraint sets which define the set of feasible 
signals for each agent at each stage. Each of these subsets of y may depend on all 
past signals, i.e. each Sat is a correspondence which associates with each sequence 
of past signals, SA 1, a subset Sat(sA1 ) of the signal space '. Fourth is a function F 
which determines the final allocation in A (A) as a function of the entire sequence 
of signals, SA14 

A mechanism for a set of agents A will be denoted by MA or by an explicit listing 
[r, SA, F] of its elements (where S can be taken to be any set containing all signals 
consistent with SA). Note that the only aspect of the environment on which a 
mechanism depends is the technology, A. 

We denote by lA the class of all mechanisms for the set of agents A. 

5. EQUILIBRIUM OF A MECHANISM 

In this section we define the concept of an equilibrium for a mechanism. The 
concept we adopt is closely related to Harsanyi's [13] Bayesian equilibrium and 
Selten's [27] perfect equilibrium; consequently we call it perfect Bayesian equili- 
brium. Speaking loosely, we use the term equilibrium of a mechanism to mean a 
specification of a strategy and a posterior distribution for each agent at each stage 
of the mechanism such that two properties hold: (i) the specified strategy of each 
agent at each stage is maximal for him relative to his specified contemporary 

13 The definition of a mechanism used here is a straight-forward extension of the one used in our 
earlier paper (Harris-Townsend [12]). The reader is referred to that paper for a fuller discussion of the 
issues involved in this concept and some examples which motivate the definition. 

14 The formal definition is as follows: Given A c T and AA a mechanism for the set of agents A, MA, 
is: (i) an integer r > 1; (ii) a set, Y, a designated element, s E Y, and a sequence 

SA = {Sa,: (yA)t-l 2la e A, t = 1, ..., } where 

(A ) = {SA} X X 
A for t = 1, . .., s A = (S°)acA 

r=l 

and (YA) {s}. If so Sat(sA1) for some a, t, and s' 1, then Sa,(sA)= {so}; (iii) a function, 
F: (YA)T A(A). 
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posterior distribution, taking as given the past signals, specified contemporary 
strategies of the other agents, and specified future strategies of all agents, and (ii) 
the specified posterior distribution of each agent at each stage is consistent with 
Bayes' rule and the specified past strategies of all other agents. 

We now make this definitiun more precise. For what follows we consider a given 
mechanism [Tr, SA, F], for a set of agents A c T. A strategy at stage t for each agent 
a is a function cJat mapping previous signals, SA, and the vector of parameters 
observed by agent a, ga' into a signal in &y.15 

It is clear that a specification of strategies for each agent of A determines 
entirely the sequence of signals which will be sent under the given mechanism, as a 
function of the parameters observed by agents of A. In particular, given some 
stage r, a sequence of future strategies o.+Yt from stages r + 1 through r for each 
agent of A, a sequence of past and present signals SA, and a parameter draw OA, we 
may calculate the sequence of induced signals from stages r + 1 through r (see the 
Appendix and footnote 16 below for a more formal development). 

Now consider the decision problem confronting agent a at stage r. Agent a 
takes as given the past signals SA 1, the contemporary strategies of others, 
(0ubr(5A, A b)), b cA -{a}, and the future strategies of all agents, OA T. He may 
then calculate the contemporary signals of the other agents and all future signals 
as functions of the unobserved (by agent a) parameters and his own present signal. 
Finally, using this calculation, agent a may calculate his expected utility for the 
final allocation determined by this sequence of signals as a function of his current 

signal, i.e., EarXJUa[F,A(s), K]lSrA 
1 

r, A+1 T, a, where Fa is the allocation 
assigned by F to agent a, and the expectation is taken using his current beliefs 

Sr-1 .16 
Sr-1 r+,1- about e, par(eI6a, sA-). Here A SA Tar = (0Obr), b c A -{,a}, and oAK1 are 

taken as given. Agent a then chooses his current signal, Sar, to maximize this 
expected utility over the set of feasible signals at stage r, Sar( A). 

Agent a's current beliefs about e are, however, not arbitrary. Rather, agent a 
takes as given the strategy of every other agent b at each previous stage j, 
Obj(SIA, 8b) and eliminates from consideration any parameter vector 8 which is 
not consistent with previously observed signals. The posterior at any stage r is thus 

1 More formally we have a strategy at stage t for agent a, 1 z t S r, a E A, which is a function 
a_,: (yA),t- 

1 
X a * 

y. We assume that strategies and the allocation rule, F, are deterministic. In 
general this is inconsistent with the spirit of our approach, because the constraint that a proposal not be 
chosen in a random way is, in general, unenforceable. In many applications, however, this restriction is 
not binding, i.e., any mechanism whose equilibrium final allocations are random, because either the 
strategies or the allocation rule are random, can be dominated by one in which they are deterministic 
(see Harris and Townsend [12]). 

16 Note the recursive procedure used to define V'I (OA lo-') in the Appendix. Then starting at stage 
r, given past signals sA-, one may similarly define t'A'(GA, SarI A -, Qr, uAXl , the sequence of signals 
which will be sent under the given mechanism as a function of the parameter vector OA and the 
contemporary signal Sar of agent a, given past signals, contemporary strategies of others, and future 
strategies of everyone. Thus 

EarUa[Fa(5X),1 A O1,LTr,, aA , A a 

- E Par( AS2, Ga)Ua{Fa[S, rAr ((A, 
SWJSAr 

A 0tr, GA )}. 
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the initial prior normalized in this way. We are thus led to the following formal 
definition of an equilibrium.17 

DEFINITION 1: Let A be any subset of agents, and let MA be any mechanism for 
A. A perfect Bayesian equilibrium of MA is a sequence of strategies (TA 
{oaIr r- 1,..., r} for each agent in A, and a set of distribution functions p` = 
{p'Arr = 1,..., r} for each agent in A, where pr: 0 X ea x (yA)r-l - [0, 1], which 
satisfy the following two properties: 

(i) For any agent a E A, any stage r = 1,..., r, any parameter vector Ga C 0a 
and history S an1 and given strategies Oa*, let Aar(A 1) denote the set of parameter 
values which are consistent with the observed past signals SA1 of agents other 
than a, given those agents' equilibrium strategy functions. That is, 

Aar(slA )= { C E O|for every b E a, and 1 j r -1, c,*[SA 1 b] = Sbi}. 

Then let Kar(SA- a) denote the total prior probability assigned by a to such 
parameter values given that he observes values Ga for parameters he can observe. 
That is, 

r-I a(sj~- ) 
Kar[SA I Pa] pa(85Ga). 

S e1,jr (SA ) 

Then par(5tOa, A 1) is assumed to satisfy 

I pa(le a )/Kar(SA- 8a); Aar(SA) l 0; 

r(\0a, SA) = 0 O; O. ar(SrA-) A 0- ; 
(eloa), a(SA-l)= . Pa(5ea); ar(A ) = 0 

(ii) For any agent a cA, stage r = 1,.. ., r, parameter vector "a 0a and 
history A 1, the strategy O-r(SA -l, a) is assumed to solve 

~~max E* ~ [F r) r--l * r+I ea1, max Ear{Ua[Fa(sX), .: ]SsA , O'ar, A "}, 
SarCSar(SA I 

where the expectation E*r is taken with respect to p*r(10jl, sA ) taking o-r and 
Ar+r as given. 
Thus our equilibrium concept is Bayesian in the sense that each agent evaluates 

strategies and outcomes relative to that agent's prior (or posterior) distribution 
over unobserved parameters, and perfect in the sense that strategies are required 
to be optimal for all possible previous histories. 

In general, a mechanism may have more than one equilibrium. In what follows, 
we assume that one particular equilibrium prevails and refer to "the equilibrium " of 
a mechanism. For the specific mechanisms considered below, the equilibrium 
assumed to prevail will be clear from the context. 

17 Note that in the definition, P*r(IOa, sA-1) = .p,(lea) for any history s^-1 which is inconsistent 
with the equilibrium strategies of agents other than a, evaluated at any possible parameter values, i.e., 
for SA-1 for which iaA (sA- ) = 0. Also note that for r= 1, Pa*l (4|6, SA) = a(lOa) for any e and 6" 

and eQpr[,· srA ] for any r-- 1 
and Y-.P[sel parSA ]= 1 for any ,SA. 
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Given any mechanism MA for a set of agents A, the equilibrium strategies for 
MA determine an equilibrium sequence of signals, S*A(6A), for each possible value 
OA of the vector of parameters observed by agents of A. This equilibrium 
sequence of signals, in turn, determines the equilibrium allocation, F[s*T(HA)] for 
MA as a function of OA, which we denote by CA(MA, A)- If a mechanism has 
multiple equilibria, we could denote each one explicitly by including the equili- 
brium sequence of strategies as an argument in CA. This notation would allow us to 
make explicit which equilibrium sequence of strategies is assumed to prevail. This 
would, however, make the notation more cumbersome. In what follows we will 
rarely need to make explicit which equilibrium sequence of strategies is assumed 
to prevail. We have therefore chosen to suppress the equilibrium strategies in the 
notation. 

At this point the reader may well wonder why we have not restricted our 
analysis a priori to games in normal as opposed to extensive form and used the 
(regular) Bayesian equilibrium notion. This would simplify the notation and 
proofs considerably. Our answer is that games which are sequential and use the 
perfect equilibrium notation are of intrinsic interest and seem natural in many 
economic contexts.18 Thus, for us, the real question is whether games in extensive 
form with the perfect Bayesian equilibrium notation are equivalent in some sense 
to games in normal form with the (regular) Bayesian equilibrium. In this regard we 
agree with Selten [27] that ". . . in the transition from the extensive form to the 
normal form some important information is lost." In particular, in the asymmetric 
information environments of this paper, the (regular) Bayesian equilibrium 
concept for normal form games allows neither an explicit representation of 
learning nor the concept of perfectness. That the latter concept has content is well 
illustrated by noting that the perfect Bayesian equilibrium for our extensive form 
games admits far fewer equilibria than does the (regular) Bayesian equilibrium for 
their normal form counterparts.1 

6. SELF-SELECTION TVIEOREFMS 

In this section we demonstrate two closely related results. The first result 
characterizes allocations which result from mechanisms. It is shown that the 
equilibrium allocation of any mechanism must satisfy certain self-selection pro- 
perties.2" The second result is that, conversely, any allocation which satisfies these 
self-selection properties can be achieved by a mechanism. 

18See, for example, Kydland and Prescott [171, Prescott and 'vkisscher [20], and E. Green [6]. 
19 We are indebted to Jim Jordan for providing us with an example. The example is omitted for the 

sake of brevity but is obtainable from the authors on request. It may well be, however, that every 
perfect Bayesian equilibrium of an extensive form game (mechanism) is one of the many Bayesian 
equilibria of its normal form counterpart. We might well have set out to prove this so that the 
self-selection theorem, Theorem 1, would be more easily established (for normal form vames). Here 
we hazard the opinion that such a proof would be similar in many respects to the proof of Tzheor-em 1. In 
any event we would still need to consider extenlsive form games and endure the consequent notational 
burden. 

2) The concept of self-selection has been used extensively in insurance and screening literaturcs 
(see, e.g., Rothschild-Stiglitz [25], C. Wilson [31], Salop and Salop [26]). This concept is closely rclaatcd 
to incentive compatibility as discussed by h-iurwicz [15]. 
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These results are important and require some elaboration. First, note that 
mechanisms result in parameter-contingent (p.c.) allocations, i.e., allocations 
which depend on the realized values of the parameters. This would suggest that if 
one is interested in characterizing optimal allocations for this class of environ- 
ments, one could ignore the mechanisms by which these allocations are achieved 
and simply search over the set of all technically feasible p.c. allocations. Our first 
result shows that certain technically feasible p.c. allocations, namely those that do 
not satisfy the self-selection properties, cannot, in fact, be achieved. This implies 
that, at least, one must eliminate from consideration all p.c. allocations which do 
not satisfy these properties. Our second result then shows that only these 
allocations need be eliminated. This latter result is established by showing that any 
p.c. allocation satisfying the self-selection properties can be achieved by a 
mechanism of a certaini, simple form. This result itself is important since it implies 
that the class of mechanisms that need be considered can be reduced to those of 
this form. 

Having emphasized the crucial importance of self-selection properties, it 
remains to define them precisely and show why they arise. To motivate these, 
consider an agent, say a, who has private information about, say, 01 (i.e., only this 
agent observes the value of 61). Whatever mechanism is used, say M, agent a may 
behave as though 01 = 8 even if he has observed 01 to be y (y and 8 are any two 
elements of 01). That is, he may use the functional form a* of the equilibrium 
strategy to generate signals, but evaluate this strategy at the counterfactual 
realization 01 =8 instead of at 01 = y. This strategy is an alternative to the 
equilibrium strategy. Since agent a is the only agent who knows 01, this alternative 
strategy will generate the equilibrium allocation for the counterfactual 01 = 8, 
namely CA(NI, 8, 02 . 6 . . On). Of course equilibrium strategies are preferred 
(maximizing) so agent a must prefer the allocation CA(M, Y, 02,. . , On) where his 
parameter draw is 01 = y. 

It should be pointed out that if more than one agent observes a parameter, i.e., if 
the information is public, then the above argument does not hold. This is due to 
the fact that the adoption of the Bayesian equilibrium concept for mechanisms 
precludes collusion. In general, the existence of public information does not 
constrain the allocations which may be achieved by mechanisms (this point is 
illustrated by example in Section 10). 

We now proceed with a formal treatment of self-selection. For the rest of this 
section let A be a subset of agents, let MA be a mechanism for A with 
MA [T, SA, F], and let (o-J, pA ) be an equilibrium of MA. 

Parameters observed only by one agent are private to that agent, and as noted 
above, play a special role in the analysis. Accordingly, for any vector of 
parameters 6 and for any agent a, we write 0 = (H , 6T), where 6' consists of those 
components of 6 which only a observes and Oa consists of the remaining 
components of 6. The vector Oa is called the private parameter vector of agent a. 

The first main result of this section (discussed above) is as follows: 

TniFoRFE--.\% 1 (Self-Selection for Mechanisms): For any mechanism MA, any 
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agent a, and any value of agent a's observed parameters )", 

EU. [Ca (MA, eA) e]PA ((ISa) _ E U" [C', (MA.~ BP5 ;- 11 1 

for any other possible value of agent a's private parameter vector, 8"P. 

PROOF: See Appendix. 

As discussed above, a mechanism for the set of agents A results in a p.c. 
allocation which is feasible relative to the technology A, i.e., mappings p,: 6A --)* 

A (A). Clearly, we can discuss such p.c. allocations regardless of whether they are 
the result of some mechanism (hereafter the term p.c. allocation will be taken to 
mean a p.c. allocation which is feasible relative to the appropriate technology). 
Accordingly, for an arbitrary p.c. allocation, CA, for any agent a and 3nv value of 
his observed parameters Ha, define a's expected utility for ja by 

Va(Ja, a) 
y Z Ua[ja( A), 4jPa(ela). 

The p.c. allocation jA is said to satisfy self-selection (SS) if for every a Ec+ A, 

Va(ja, Ha) Ua[ja (aH) ea (f |a) TLcuP, H), eTPak 

for any Oa and any alternative value of a's private parameter vector 5". Thus 
Theorem 1 can be interpreted as saying that all p.c. allocations achievable by a 
mechanism must satisfy SS. (An allocation is achievable by a mechanism if it is an 
equilibrium allocation of the mechanism.) Theorem 2 (below) states that the 
converse is also true, i.e., any p.c. allocation which satisfies SS is achievable by a 
mechanism. Moreover, the mechanism which can be used to achieve the allo- 
cation (referred to as the direct mechanism, D, below) is of the following simple 
form: there is only one stage in which each agent reports a value for each 
parameter he observes; the final allocation is given by a pre-specified function of 
the values reported by each agent. If all information is private, this allocation 
function is the p.c. allocation to be achieved. 

More formally, a direct mechanism is any mechanism in which T = 1, S( I'sA7) 

c9a, for each agent a. 

THEOREM 2: For any p.c. allocation C-A which satisfies SS, there exists a direct 
mechanism DA such that Ca (OA) = CA (DA, OA) for any parameter vector OA and sUc(i 
that the equilibrium strategies under DA are truth-telling. Furthermore, if all 
parameters are privately observed, i.e., Oa = O 6for each agent a, then the allocation 
rule Ffor DA can be assumed to be the same as the p.c. allocation CA- 

PROOF: See Appendix. 
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For the case in which all parameters are privately observed, the direct 
mechanism DA of Theorem 2 is Bayesian incentive compatible in the sense of 
d'Aspremont and Gerard-Varet [5]. Thus the SS condition generalizes this notion 
for mechanisms to environments with public information. 

7. PREFERENCES OVER MECHANISMS AND EFFICIENCY 

We ^,- ume that at the time when each agent a must express a preference over 
mechanisms he already knows the value of the parameter vector 0a. Thus 
preferences over mechanisms are defined using expected utilities, based on the 
initial information structure, for the final allocation of an equilibrium of the 
mechanism. Again if the equilibrium is not unique, one particular equilibrium 
must be selected. The definitions below rely heavily on this assumption.21 

More precisely, given a set of agents A, an environment EA, and a mechanism 
MA with equilibrium (o-*p), p the expected utility of agent a eA for the 
mechanism MA is defined as 

Wa[MA, a] = E Ua{ca[MA, e], }Pa(leOa). 
fEO 

Given these preferences for mechanisms, we can define the concepts of 
blocking a mechanism and core mechanism. A coalition BcA can block a 
mechanism MA if there exists a mechanism MB such that Wb[M', eb] 
Wb[MA, eb] for every b e B, eb e Ob with strict inequality for some b e B, e^ E Ob. 
Note that in this definition, w e requir e that the expected utility for M for each b 
be at least as great as his expected utility for MA for each possible draw of b's 
observed parameters.22 The reason for this specification is to ensure that efficient 
mechanisms (defined below) will be independent of the actual parameter draw. 
That is, the mechanism which we denote as efficient may well depend on the 
technology, preferences, and general information structure, but we do not want 
our selection to depend on particular values of parameters. The elements of the 
environment on which we allow dependence will be referred to as the partial 
environment. More precisely, the partial environment relative to EA, denoted E°, 
includes all elements of EA except the specific parameter draw, OA. 

There are three concepts of efficient mechanisms which we wish to consider: 
First, define a mechanism M* for A to be a core mechanism (relative to the partial 
environment E° ) if no coalition B can block M*. Second, define a mechanism 
M* to be a Pareto optimal mechanism (relative to EA) if A cannot block M*. 

21 An alternative approach would be to define blocking (see below) in terms of the equilibrium 
allocations of mechanisms instead of the mechanisms themselves. Then we could define a core 
mechanism to be one with at least one equilibrium which could not be blocked. The results which 
follow would not be affected by this alteration of the definition. 

2An alternative formulation would be to suppose that preferences over mechanisms are expressed 
prior to the revelation of 6a to agent a, but the mechanism must be "played out" (as before) 
subsequent to this revelation. In this case each agent may be imagined to have a prior distribution over 
the entire parameter vector (say a common joint distribution). Expected utility of each agent for a 
mechanism would then involve integration relative to this prior. 
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Third, define a mechanism MA to be an individually rational Pareto optimal 
mechanism (relative to E° ) if M* is a Pareto mechanism and no single agent in A 
can block M*. We use the term "efficient mechanism" to refer to any mechanism 
which satisfies at least one of the above efficiency concepts. 

8. EFFICIENT MECHANISMS AND EFFICIENT ALLOCATIONS 

The results of Section 6 suggest that there is an equivalence between p.c. 
allocations which satisfy SS and allocations generated by mechanisms. This would 
lead one to conjecture that the search for efficient mechanisms can be accom- 
plished by searching for p.c. allocations which are efficient in some sense. In this 
section we define a notion of efficient p.c. allocations and establish the equivalence 
between such allocations and allocations generated by efficient mechanisms. 

For this section E° is any fixed partial environment. A coalition B c A can 
block a p.c. allocation CA satisfying SS if there is a p.c. allocation for B, XB, such that 
XB satisfies SS and Vb(Xb, 0) > Vb(Cb, 0b) for every be B, 

b 0b with strict 
inequality for at least one b eB, ob E 0b. There are again three concepts of 
efficiency we consider. A p.c. allocation CA which satisfies SS is a core allocation if 
for any B c A, B cannot block CA, a Pareto optimal allocation if A cannot block 
CA, and an individually rational Pareto optimal allocation if CA is a Pareto optimal 
allocation and for each a E A, {a} cannot block CA. 

THEOREM 3: If CA is a core allocation, then there is a direct core mechanism MA 
such that the equilibrium allocation of MA coincides with CA, i.e. CA(OA) CA(MA, 
OA) for all OA. Conversely, if MA is a core mechanism, then CA(MA, ') is a core 
allocation. The theorem also holds if "core" is replaced by "Pareto optimal" or 
"individually rational Pareto optimal." 

PROOF: See Appendix. 

Theorem 3 has the important implication that one need only characterize 
efficient allocations in order to characterize efficient mechanisms. This is useful 
because an efficient allocation can often be found as the solution of a constrained 
optimization problem. Moreover Theorem 3 implies that the direct mechanism (in 
which agents signal values of parameters observed by them) is always efficient if its 
allocation function, F, is constructed to generate an efficient allocation. Thus the 
problem of finding an efficient mechanism can be reduced to finding an efficient 
allocation, then constructing F to generate this allocation. In the special case in 
which all information is private, F can be taken to be the efficient p.c. allocation. A 
method for constructing F in other cases is given in the proof of Theorem 2. 

We would like to conclude this section by defining full information (FI) optimal 
allocations in general and stating a limited result on their relation to optimal 
allocations in our sense. Intuitively, a p.c. allocation is FI optimal if it would be 
Pareto optimal in the usual sense for any value of the parameter vector. More 
formally, a p.c. allocation CA for a set of agents A is FI optimal if for any parameter 
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value 0 there is no other feasible allocation CA such that 

Ua[Ca, j0]> Ua[Ca(OA), 0] 

for each agent a E A with strict inequality for at least one a e A. 
Our result is that if there are only two agents and one is fully informed while the 

other is not, then any FI optimal allocation which satisfies the self-selection condition 
is also optimal in our sense. This is stated formally as Theorem 4. 

THEOREM 4: If T = {a, b}, Na = N, Nb  N, and c is a FI optimal p.c. allocation 
which satisfies SS, then c3 is a Pareto optimal p.c. allocation. 

PROOF: See Appendix. 

Note that this theorem applies to the principal-agent example of Section 2. 
Thus, in that example, while there are optimal p.c. allocations which are not FI 

optimal, any FI optimal allocation which satisfies SS is also optimal in our sense. 
That the result cannot be generalized to more complicated information structures 
is shown by example in the section on public goods which follows. 

9. A PUBLIC GOODS ENVIRONMENT 

Here we describe one of the simplest public goods environments we could think 
of and the results of applying the general approach of this paper to that environ- 
ment. There are two agents labeled a and b, one private good and one public good. 
The public good can be produced on a one-for-one basis from the private good, 
but only integer amounts can be produced.23 Each agent has an endowment of 
e < 1 units of the private good and no public good. Thus neither agent can produce 
any public good on his own, and together they can produce either zero or one unit. 
Each agent i has a linear utility function of the form Ui(xi, y, 0i) = Oixi + y, where xi 
represents consumption of the private good, y consumption of the public good, 
and 0i is i's marginal utility for the private good, i = a, b. 

Initially, each agent knows only his own marginal utility for the private good, 
i.e., agent i knows 0i but not 0i for j - i. Moreover, each agent knows that the 
other agent's parameter (marginal utility) can be one of two possible values, 01 or 
02 with 0 < 6 1, 02>2 (the reason for this assumption will be clear shortly). 
Agent i has a prior probability distribution on the value of agent j's parameter 
which may depend on his own parameter value, 0i. We denote by ak agent a's 

prior probability that b = 01, given that Oa = 0k for k - 1, 2. Naturally, agent a's 

prior that Ob = 02, given 0a = 0k is 1 -ak. Similarly, f1k is agent b's prior that 

23 This integer assumption is made only to avoid the subtle issue of how to define "blocking" and the 
core in a public goods environment. This issue is considered by Rosenthal [23, 24], Champsaur, 
Roberts, and Rosenthal [3], and others. It is peripheral to the points we wish to make here. 
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Oa = 01 given that Ob = k for k = 1, 2.24 Thus, typically, knowledge of one's own 
tastes for public and private goods allows one to infer something about the tastes 
of the other agent. For example if al were near 1 and a2 were near 0, this would 
reflect agent a's belief that agent b is likely to be similar in tastes to himself. We 
assume that O < ak < 1 and < ,k < 1 for k = 1, 2. Finally, each agent knows the 
production technology for the public good, the endowments of both agents, and 
the utility functions of both agents (except for the parameter value of the other 
agent). 

This environment is very similar to that studied by Arrow [1] and d'Aspremont 
and Gerard-Varet [5], but, as will be seen below, our results are somewhat 
different from theirs. Applying Theorem 1 (Section 6) we note first that only p.c. 
allocations which satisfy certain self-selection (SS) conditions are achievable (as 
equilibrium final allocations of mechanisms). For this environment there are two 
parameters, 0a and 0b, where 0i E Oi = {01, 02} for i = a, b. Thus, we can represent 
a p.c. allocation by (Yij, ai, bij), i, j = 1, 2, where y,i is the total output of public good 
if a = 0i and 0b = 0, aij is agent a's allocation of private good if Oa = 0' and 
0b = i, and bij is agent b's allocation of private good if 0a = 0' and 0b = 0'. For 
convenience, we define Y to be the 2 x 2 matrix whose (i, j) entry is yii and 
similarly for A and B. The SS conditions state that if a = 01, agent a's expected 
utility for (yli, ali), j = 1, 2 (where the expectation is taken with respect to a's 
prior on 0b given Oa = 01, i.e., using the probabilities a i and 1 - a 1) must be greater 
than his expected utility for (Y2i, a2i) and vice-versa if Oa = 02. Also included in 
(SS) are similar conditions for agent b. Using the matrix notation mentioned 
above, a p.c. allocation [Y, A, B] satisfies SS if 

-S 1 
aI- al 

(SS.2) (0,1)[Y+02A](1a2l >(,0) 1[y+ A] 1a2 ) 

(SS.3) (1i, 1-01) [Y+ B](0 (13i, ) [Y+Os B] ), 

(SS.4) (02, 1-32) [y+02B]() (32, 1- c2) * [Y+02B](1) 

Second, we note using Theorem 2 (Section 6) that any p.c. allocation satisfying 
SS, say [Y,A,B], can be achieved using a direct mechanism. In a direct 
mechanism for this environment, each agent names a value for his parameter from 

24 In order that these priors be consistent, i.e., be conditional distributions derived from the same 
joint distribution on (0a, Gb), it must be the case that 

a2(1 -aC1) 12(1 - i1) 

al( l-a2) 21(l -- 2) 

Independence of priors (a stronger condition than consistency) would require that a I = a2 and fi1 = 32. 
In general, we do not assume consistency or independence of these priors. 
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the set {01, 02} (not necessarily the true value). This is done by both agents 
simultaneously. The two messages, say m1 and M2, are then mapped into a final 
allocation by a function F(, *). The allocation [Y, A, B] can be achieved simply 
by setting F(0i, 0') = (yij, aii, bij). 

Finally, it follows from Theorem 3 (Section 8) that a Pareto optimal p.c. 
allocation and a Pareto optimal mechanism can be found by solving 

max AI1(,0O) [Y+6 A] 
a, 

+A2(0, 1)[ . [+ 02Al( ) 
[Y,A,BI 1 -(X 1 1 - a2 

+ A3A81, 1 -.1) [ Y + 6 B] 10 + AA(82, 1-{2) * [ Y+6 
2 
B] ( 

0 

subject to (SS.1)-(SS.4) and 

Y 2e 2e] Y+A +B sE = 2e 2eJ, 

A,B ::-0, yii {zO1, 1 , i,j=1, 2. 

In this problem, the objective function is a weighted sum (Ai's are the weights) of 
the expected utilities of each agent for each possible marginal utility (0 ). This 
guarantees that no agent can be made better off for some possible value of his 
parameter without making him or another agent worse off for some parameter 
value. The constraints are the self-selection conditions (SS.1)-(SS.4) and the 
technological feasibility constraints. In the remainder of this section, we consider 
the relationship between these Pareto optimal allocations (i.e., solutions of the 
above problem) and full-information Pareto optimal allocations. 

Among the full-information (FI) optimal allocations for this environment are 
those that satisfy the familiar Samuelson-Lindahl (SL) conditions. Because of the 
linearity of utility functions and the production technology, these SL conditions 
are that the public good should be built (yij = 1) if and only if the sum of the 
marginal rates of substitution of private for public good exceed the marginal cost 
of building the public good (namely 1), i.e., 

yii=l ifandonlyif 1/0 + 1/0'> 1. 

These allocations are then Fl optimal for any feasible allocation of the private good 
in this environnment. Given our assumption that 0 < ' - 1, 02> 2, these SL 
conditions reduce to Yii = Y12 = Y21 = 1, Y22 - 0, i.e., any feasible p.c. allocation 
[Y, A, B] is an SL allocation so long as 

1_r 11 
L =1 o0 

In addition to these Samuelson-Lindahl (or SL) allocations, it is sometimes 
optimal not to build the public good even when 1 / 6'i + 1/ 6' > 1. Such an allocation 
is optimal when the agent with low value of 0 (high marginal utility for public 
good) has too little of the private good to compensate the other agent. Consistent 
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with much of the literature on public goods, however (e.g., Groves-Ledyard [9] 
and Brock [21) we shall focus attention on SL allocations, rather than on such 
corner solutions. 

We would like to use the remainder of this section to focus on a question which 
is not addressed in the other examples, namely, is it possible for an SL allocation to 
be achievable but not Pareto optimal in our sense? The answer is yes, thus 
suggesting that SL allocations, even when achievable, may not be desirable from a 
normative viewpoint. From the positive viewpoint, the affirmative answer means 
that one might be able to explain public goods allocations which do not fit the SL 
definition of optimality by using our approach. 

To answer the above question in the affirmative, one need only provide an 
example. Before presenting such an example, however, we would like to motivate 
the result.25 

An SL allocation requires (only) that the allocation of resources be Pareto 
optimal for each possible specification of the parameters (0a, Oh). An SL allocation 
does not take into account any trade-off between utility under one parameter 
specification and utility under another parameter specification, whereas all that 
matters for an optimum in our sense is expected utility of each agent across 
parameter values he cannot distinguish (i.e., those of the other agent). 
Consequently it may be possible to increase expected utility for example by giving 
agent a more utility and b less utility for some specification of (0a, Ob) while doing 
the opposite for another specification of (a, 6Oh)- 

To make this verbal argument a bit more explicit, suppose we have an initial SL 
allocation which we want to improve. Moreover, suppose we restrict ourselves to a 
reallocation which involves only the private good (i.e., consider only reallocations 
which are themselves SL allocations). Let Jaaj be the change in a's allocation of 
private good in the event that (0a, Ob) = (6 08), i, 1, 2. Since we are not 
changing the allocation of public good, the change in b's allocation of private good 
is given by -Aaji. The corresponding changes in expected utility are given by 

"lJ, = ait9d Jail + (l -aj)t9'ai2, i=-1, 2, 

a ui = -,j6'AaajX- (1 -f3j)0",a21-, j =1XX2, 

where AU' is the change in a's expected utility when O9a = 06i and similarly for 
A Ui. Ignoring the fact that the new allocation must satisfy SS, manipulation of the 
above expressions for IAU? and ,AU reveals that we can accomplish a Pareto 
improvement only if 

at2(1 - a 1) ?612(l -:X) 

a1(I-a2) 11(t132) 

This nonequality will hold if, for example, a2 < a I and 82 > 1 1 . In this case, agent a 
believes that agent b tends to have preferences for the public good which are 
similar to his own while agent b believes that agent a tends to have preferences 

25 The intuition which follows is due largely to the suggestion of a referee. 
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which are opposite to his own. Thus the improvement exploits the fact that the 
agents hold different beliefs about the probabilities of the same events.26 

The above discussion does not constitute a proof that there are achievable SL 
allocations which can be improved upon. The reasons that it is not a proof are that 
(i) we have not shown that there are achievable SL allocations in the first place, (ii) 
the construction of the zaia's ignores the requirement that the new allocation must 
be achievable, and (iii) we restricted ourselves to changing only the private good 
allocation, i.e., we considered only reallocations which were also SL allocations. 
As mentioned, however, the proof requires only an example. One such example is 

27 the following. The SL allocation 

s [1 1 o.44399 0.228981 
v J v_-0.5 0.72487J, 

B-_ 0.05601 0.271021 -o.o 0.77513J 

is achievable and can be strictly dominated by the achievable SL allocation 

F= yS, A =0 1 5]' B 0.5 0.0] 
1 2 

when a, =0.9, a2=0.1, 3,3=0.1, f32=0.9, El= 1, 0 =2.1. 
The above example shows that an achievable SL allocation can be dominated by 

another SL allocation. We have also computed an example in which an achievable 
SL allocation is dominated by an achievable non-SL-allocation (this example is 
omitted for the sake of brevity but is available on request). 

10. COMPETITIVE ALLOCATIONS AND PUBLIC INFORMATION 

In this section we present one final example which illustrates the important 
point that when information is public (or common) the set of feasible allocations is 
not restricted by any self-selection conditions. As a consequence, in the environ- 
ment of this section, a pure exchange economy, the standard result of welfare 
economics that competitive allocations are core allocations continues to hold 
when the term "core" is used in the sense defined in the previous section. 

Consider a pure exchange economy with at least three agents and 1 : 2 
commodities. The consumption set is C = R '. Each agent t has an initial endow- 
ment et c C. For any A c T, A (A) = ICA C CAIXa6A Ca = XaCA ea}. There is a single 
parameter, 0o E 0, = 10 l, 02}, and given 01, agent t has preferences defined by 

26 Note that this is precisely the condition that the agents' priors be inconsistent (see footnote 23, 
above). If we had more general utility functions, say of the form Gu(x) + y where u'" 0, then the 
condition which the priors must satisfy in order to be able to improve on some SL allocation would 
involve marginal utilities like u'(ai1) as well as the probabilities ak, Ir3k. In this case a Pareto 
improvement could be possible even with consistent priors. 

7 We are grateful to Jeffrey Branman for use of his mixed integer-linear computer code and for 
assistance in implementing it to solve the maximization problem presented in the text. The example 
presented below was generated using this code. 
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Ut(c, 01) for c c C where U, is concave and monotone increasing in c. There is 
assumed to be a set of informed traders, T1 (with at least two members), who 
observe 01, i.e., N, = {1} for each t c T1. Let T2 = T- T1 be the set of uninformed 
traders, i.e., N, = 0 for t c T2 (we assume T2 # 0). We assume that all informed 
traders have the same endowment and preferences. We further assume that all 
uninformed traders have the same preferences, endowments, and the same prior 
distribution on 01.28 

We restrict our attention to competitive allocations which result from the 
competitive equilibrium concepts discussed in Green [7] and Grossman [8] in 
which all information is revealed in equilibrium. Suppose CT(Oi) is a competitive 
allocation in the above sense when 01 = 0' for j = 1, 2. Therefore CT(Oj) is a core 
allocation relative to preferences defined by U,(, Oi), for j = 1, 2. The proof that 
the parameter contingent allocation CT(') is also a core allocation in the sense of 
Section 8 is by contradiction. Suppose C( * ) is not a core allocation. Then there is a 
coalition B and a parameter-contingent allocation CB(-) such that for each 
b B n T2, 

2 2 

(1) Z (p,Ub[c;b(O), 01 Z pij Ub[cb(Oi), 0 ] 
j=l i=1 

where 'pi is the prior probability of all uninformed agents that 01 = Oi (j = 1, 2) and 
for each b c B n T1, 

(2) Ub[cb(0'), 0']l Ub[Cb(6J), 06] for j =1, 2, 

with at least one inequality strict. Since all uninformed traders have identical 
concave preferences, endowments, and priors, we may assume, without loss of 
generality, that c b () is the same for all b c B n T2. Now suppose (2) is strict for 
some b cB n T1 and j = 1. Since CT(01) cannot be blocked relative to 01 pref- 
erences, we must have Ub[Cb(01), 01]< Ub[Cb(01), 01] for all b cB n T2. But by 
(1), this implies that Ub[C (02), 02]> Ub[Cb(02), 02] for all b c B n T2. But since 

(2) holds for j = 2, this implies that B can block CT(02) relative to 02 preferences. 
This is a contradiction. Clearly, the same argument applies if (2) is strict for some 
b c B cn T1 and j = 2. The only case left to consider is when (2) holds as an equality 
for all b c B cn T1 and j = 1, 2. In this case, (1) must hold strictly for all b E B n T2. 
Therefore Ub[cb(0i), 01]> Ub[Cb(6i), 60] for at least one j for all b E B n T2. This 
again contradicts the fact that CT(0j) is a core allocation relative to 0' preferences 
for this j. This completes the proof. 

By Theorem 3, the above core allocation CT( ) can be generated using a direct 
mechanism. To see how this mechanism operates in this environment, consider 
the following simple example. There are only two informed agents, T1 = {1, 2}. 
Suppose there are two goods and the competitive allocations for the informed 
agents are given by c1(01) = c2(0'1) = (10, 10) and c1(62)= C2(02) = (5, 5). Note that 

28 This is consistent with the notion that priors reflect the information of the agents and would be 
different across agents only if information varied across these agents. Since we are assuming that the 
information structure is fully described by Nt = {1} for t c T1, N, = 0 for t c T2, there is no reason to 
assign different prior beliefs to different uninformed agents. 

55 
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both informed traders prefer the allocation associated with 01 = 01 regardless of 
the true value of 01. In the first stage of the mechanism, each informed trader 
signals an element of {0', 02}. The final allocation as a function of the two signals is 
described by Table I (only the bundles assigned to the informed agents are shown). 

Signal of Agent 1 

81 82 

ir \ ~~10, 10) (10, 10) 

Signal of (O, 10) \ (5,5 
Agent2 25 ,5) (5,5) 

( 10, I0 (5, 5) \ 

The upper half of each box shows the fnnal bundle of agent 1 while the lower half 
shows the final bundle of agent 2. Thus, for example, if agent 1 signals 01 and agent 
2 signals 02, then agent 2 receives (10, 10) and agent 1 receives (5, 5). We claim 
that a Bayesian equilibrium pair of strategies is for each informed agent to signal 
0' if the true value of 01 is 01. To see this, suppose 01 = 0'. If agent 2 believes that 
agent 1 will signal 0', agent 2 is indifferent as to signalling 01 or 02 since he 
receives (10, 10) in either case.29 He may just as well signal 0a. Similarly if agent 1 
believes that agent 2 will signal 01, it is optimal for agent 1 to signal 01 as well. An 

2~~~~~~ identical argument holds if 01 = 0 . Note that the (competitive) allocation (5, 5) 
for both informed agents is achieved when 0l _ 02 even though both would prefer 
the competitive allocation corresponding to 01 = 01, i.e., (10, 10) for each 
informed agent. Thus the informed agents would very much like to collude. Such 
collusion is ruled out here by the restriction that there be no communication 
between players prior to the start of any game and by the adoption of a 
noncooperative equilibrium concept. 

1 1. CONCLUSION 

In this section, rather than summarizing our results, we consider some direc- 
tions for future research which are suggested by our analysis. These directions 
include both theoretical extensions and empirical work. 

With regard to theoretical extensions, we would like to point out three 
assumptions whose relaxation may be of interest. The first is the assumption that 

29 The method of filling in the entries of the box here corresponds to the construction in the proof of 
Theorem 2. It is easy to fill in the entries so that each agent strictly prefers to signal the true value of 0, 
given that the other agent is also signalling the truth. On the other hand, it should be noted that there is 
an alternative equilibrium for the game in the table. It is easy to check that the strategy "always signal 
6 regardless of the true value of 0' is also an equilibrium. Moreover both informed agents end up 
better off in this equilibrium when 6 = 62 than in the competitive equilibrium. It turns out, however, 
that with very mild assumptions on the way preferences depend on 0, it is possible to fill in the 
"off-diagonal" entries of the table in such a way that "truth-telling" is the only equilibrium and the 
competitive allocation the only equilibrium allocation. 
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there are only a finite number of possible values of each parameter. We would 
hope that our results continue to hold even when some parameters can take on a 
continuum of values. In this context, we note, however, that some results of the 
signalling literature are not robust to this specification (see Riley [22]). The second 
is that the parameters enter the model only through preferences and not through 
the technology of production and exchange. It is our conjecture that the results 
will go through without this restriction.30 Third, we note that our model is 
essentially static. If the environment involves allocation of resources over time, we 
could use the Arrow-Debreu device of regarding commodities delivered at 
different dates as different commodities. The analysis is static, however, in the 
sense that the mechanism which determines the allocation must be fully played 
out at the initial date. Thus, although mechanisms may be sequential in nature, we 
do not allow them to be played out over calendar time with consumption occurring 
while the mechanism is being played. Relaxing this assumption appears to be 
difficult and may result in somewhat different conclusions. 

With regard to empirical work, we believe that when our general methodology 
is applied to specific environments modeled in sufficient detail, testable impli- 
cations will be forthcoming. Since we have not modeled explicitly the process by 
which mechanisms are chosen, such implications would have to follow from the 
hypothesis that somehow an "efficient" (core, etc.) mechanism is chosen. 
Unfortunately, this procedure has two drawbacks. First, there may be constraints 
which limit the ability of the agents to achieve core mechanisms. If one thinks such 
limitations important in a specific application, then one must incorporate them 
into the environment or explicitly model the mechanism choice process. Second, 
there may be (and usually are) a large number of core mechanisms. This will, of 
course, reduce the sharpness of any predictions. Explicit modeling of the 
mechanism choice process may greatly sharpen the predictions. One trivial way of 
modifying our approach to include a specification of the mechanism choice 
process is to assume that one agent has the power to choose the mechanism while 
all other agents are left only with the choice of whether or not to participate. This 
approach has been taken by Harris and Raviv [10, 11] to explain various types of 
observed monopoly marketing schemes. Obviously this modification of the 
approach is appropriate only in environments in which one agent has monopoly 
power. More generally applicable approaches to the issue of the mechanism 
choice process are clearly needed:. 

Finally, we would like to focus some attention on the role of prior beliefs in our 
approach. As the foregoing analysis makes clear, such beliefs play an important 

3" The problem with allowing the parameters to enter through say the production technology 
instead of through preferences, is that then which allocations are feasible may depend on the particular 
parameter draw. If so, it may not be possible to specify a mechanism which is independent of the 
parameters but which still always results in a feasible allocation. In some applications this problem can 
be finessed, if the model can be formulated so that the set of feasible allocations does not depend on the 
parameter draw. In the agency model of Section 2, for example, the original specification of the model 
was such that the relevant parameter was associated with the production technology. In that case. 
however, it was possible to respecify the model in such a way that the parameter entered through 
preferences. 

31 Much of the discussion in this paragraph is due to the suggestion of a referee. 
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role in the analysis: which mechanisms and which allocations are efficient in our 
sense often depend on prior beliefs of agents concerning parameter values they 
cannot observe. For the purposes of positive analysis, if priors are not observable 
by the economist, then the theory may be consistent with a very large class of 
observed mechanisms and allocations, although some positive implications are 
robust to the specification of prior beliefs. Thus, in order to get strong testable 
implications, it may be necessary for the economist to specify particular priors (or 
classes of priors) as part of his theory. For some applications, this may be no more 
difficult than specifying other aspects of the environment, however. For normative 
purposes, the economist may also need specific information on priors in order to 
suggest an efficient mechanism. Again, this may or may not be difficult relative to 
the ever present task of modeling the other aspects of an environment. Finally, we 
would like to point out that for some environments (e.g., the agency model 
analyzed above), there are mechanisms which are efficient for any prior beliefs.32 
Such mechanisms have great intuitive appeal, probably for this reason. Indeed, a 
reasonable hypothesis is that observed mechanisms will be such prior-free 
efficient mechanisms when they exist. An interesting topic for further theoretical 
and empirical research is under what conditions will such prior-free efficient 
mechanisms exist. 

Carnegie-Mellon University 

Manuscript received January, 1979; revision received February, 1980. 

APPENDIX: PROOFS OF THEOREMS 

Before proving the theorems stated in the text, some further notation and a definition are required. 
As mentioned in the text, if, for some given mechanism for a set of agents A, one knows the actual 
parameter values, OA, and the strategies to be used by each agent at each stage, oA, then one may 
compute the implied sequence of signals which will be sent under this mechanism. This can be done 
recursively as follows. The signals sent at stage 1 are 

SA,1 = [-0a,I(SA, a )]asA = (UA 1(SA, GA)- 

Thus 

(Al) SA = [SA, UA 1(5AS, A)]- 

Similarly 

SA= [SA, UA,2(5A, GA)] 

when sA is given in (Al). Clearly we may continue this process until all the signals S have been 
computed. We denote by 'TX (OAIo_T ) this sequence of signals as a function of eA given the strategies 

XA. We also denote by VAi (OAIo0A ) the subsequence consisting of signals for each agent from stage 0 
through stage t (for 0 S t S T). Note that this sequence of signals depends only on strategies through 
stage t. 

32 For example, in the agency environment the following mechanism is a core mechanism regardless 
of the principal's prior. (A proof of this statement for a slightly different model is given in Harris and 
Townsend [12].) The mechanism has two stages. In the first, the principal proposes any pair of feasible 
allocations. In the second, the agent may choose either of these two allocations or autarky. Naturally, 
the equilibrium allocation of this mechanism will depend on the principal's prior. 
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We will also need to define precisely the concept of feasibility (relative to some mechanism) for 
sequences of signals and strategies. A sequence of signals sA is feasible for a mechanism MA= 
[r, SA, F] if s,t E S,t(s 1 ) for each a E A, t = 1,..., T. A sequence of strategies ao- is feasible for MA if 
for any OA C OA, tA (0AIoA') is a feasible sequence of signals for MA. 

Theorem 1 is proved using the following two lemmas. 

LEMMA 1: Let A be any set of agents, MA be a mechanism for A with equilibrium (ac', p*'), and let 
ep be any possible value of a's vector of private parameters. Then for any vector of values for those 
parameters which are not privately observed by a, e:H, \A (0P, 'Hlot'AT) is a feasible sequence of signals 
for MA. 

PROOF: This is obvious since /T, (0P aHl raT) is an equilibrium sequence of signals for MA in any 
environment in which the parameter values are given by (0p, e5). Q.E.D. 

Lemma 1 shows that it is always feasible for any agent to evaluate his equilibrium strategy at any 
value for his vector of private parameters even if this value is different from the true value. Lemma 2 
will show that, relative to prior beliefs about the parameter vector e, it is always optimal for any agent to 
use his equilibrium strategy as opposed to any other strategy which, given the equilibrium strategies of 
the other agents, results in a feasible collection of strategies. 

LEMMA 2: Suppose A is any set of agents and MA = [r, SA, F] is a mechanism for A with equilibrium 
(OT*, p*). For any agent a c A, if (o-a, o a ) is a feasible sequence of strategies, then 

Ea{Ua[Fa (A(cA o *)), 0V] A 1} EA{Ua[F a(aA (:A,a rr* )), s1i0"} 

for any value of the parameter vector Oa observed by agent a. Here the expectation Ea is taken over the 
entire parameter vector e using a's prior distribution Pa (elOa). 

PROOF: The proof is by backward induction on the stage. We first show that if agent a has used 
strategies aao for t = 1..., r - 1, it is optimal (relative to his prior) to use ar- at stage r. By definition of 
equilibrium for a mechanism, it is optimal (relative to his posterior at stage r) for agent a to use o*. at 
stage r, for any previous history, sA . This is true, in particular, if SAI is a history generated by the 
strategies (ro-*-, a-a ) for some parameter vector e. Let 

ST-1 () T-1 (|*a a ) 1 
SA ( A:)-A- 01. 

Also, to streamline the notation, let 

Q* (SA-1) = Ua{Fa[sT 1SA (, A-1 )], 

Qa(SA 1, = UaFa[s-\ aAT(SA 5a) 0aaT A )] } 

Thus Q* (sA -1, ) is agent a's utility if the history through stage - 1 is sA 1 the parameter value is e, 
and each agent uses his equilibrium strategy at the last stage. Similarly, QaA(sa-., ) is agent a's utility 
in the same circumstances except that a is assumed to use the alternative strategy aar at the last stage. 

Now for sA~ =sA (), AAar(sA- ) 0 since at least cAE d(sA 1). Thus, it follows (from the 
definition of equilibrium for a mechanism), that 

o I [s- (), 8] P(S a)/KaT[s- (), 0"] 
6 Aar[SA (0)] 

) I [ Qaa sA- (e), ]Pa(E1;")/K8Oa)KaTA[sA (:), ] 
A E Aar[SA (6)] 

or, multiplying both sides by Kar[sAT~ (). 0 ], 

(A2) Z {Qa[SA -l()S ]Qa[sA- (), ]pa(8a) O. 
5e1at{sA ( )1 

But (A2) must hold for each e. Moreover, for any two parameter values, s and e', either LaT[s (s)]= 
[aTSA (e')] or the two sets do not intersect at all, i.e., if the two sets intersect, then the two histories 
SA (e) and sA (e') must be the same. Therefore, if we sum the relation (A2) over all parameter 
values, e, but eliminate double counting by eliminating one of the values e or e' whenever 
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'a,T[SAT( )] t.T [SAT($) we obtain 

v QA [ST (;), 
-I 

pa 6a) >j Q1[s? JU).(]p (16 a). 

Recalling the definitions of Qa anid Qa, this shows that it is optimal (relative to his prior) for agent a to 
use strategy (T*a at stage T if he has used oa, in stages 1, ..., 1, assuming that all other agents are 
using their equilibrium strategies at all stages. It can then be shown (using the same argument) that it is 
optimal (relative to his prior) for agent a to use or*,-, at stage 7 -- 1 given that he used oat for 

t = 1 . .,7T - 2 and that he plans to use a-* at stage T. This then shows that (relative to his prior) the *~~~~~~~~~~~~~~~~~~ 
sequence of strategies o', . o'a.,T2, ca _ 1, cr* dominates the sequence 

o for agent a. If we 
proceed with this backward induction we obtain that o_*T dominates cr for agent a (relative to his 
prior) as is claimed in the lemma. Q.E.D 

We may now prove T heorem 1. 

THEOREM 1 (Self-Selection for Mechanisms): Suppose MA is a mechanism for a set of agents A. 
Then for any agent a and any value of agent a's observed parameters 6', 

V4 Ua [ Ca (MA, (A) ? . lPa. (e 1) Ua [ Ca ( MA, 6 CP ( H ), ( 1Pa (61 O a 
e.O 

for ani other posrihle valuie of a1ge7nt a's private parameter vector, ,8. 

PROOF: Let Oa be any vector of values for agent a's observed parameters and let 8" by any (other) 
values for agent a's privately observed parameters. Let M, be any mechanism for A (where a t A) 
with equilibrium ((T*', p* ). Then 

CAMA,' BP, 71w -YA(5, ellI(JA 7)] 

for any values e" for the parameters that agent a does not privately observe. For any t -- 1, . ., 7, any 
values a of a's observed parameters, and any history s' define a strategy cr', for a by 

(S t ( a,( ) = (T*t (S A i 6 ( 

where $` is the sub-vector of (e consisting of those values which a observes but not privately. Thus 0at 
is the equilibrium strategy of a at stage t but with the values $' substituted for a's private parameters 
regardless of their true values. Then for any parameter vector (A observed by agents of A, 

*.>(SfzT (T) - *T,6[ {l( 

Therefore, by Lemma 1. ((T cr, ) is feasible. The result then follows frorn Lemma 2 and the definition 
of CA(MA, A). QED. 

TH-EOREM 2: For any) p.c. allocation JA vihich satisfies SS, there exists a direct mechianisnm DA SUCIh 
that 8A(60A) =CA(DA, OA) for any parameter vector OA. Fuirthiermnore, if all parameters are privately 
observed, i.e. O 

a= 
' pfor each agentt a, thietn the allocationi rule Ffor DA Can be assumed to be thte same as 

the p.c. allocation CA. 

PROOF: Let jC be atv tfeasible} p.c. allocation which satisfies SS. Define N 0a with 
typical elements aA ( a , A' Note that, in general, 0A i 6)A sinice an element of &0 will contain 
repeat values of any parameter which is observed by more than one agent. (For example, suppose 
A = {a, b}, N = {1, 2, 3}, Ni, = {1, 2), N;, -- <2, 31. Then 6' = (Oa, 6") and 6h = 6,) so that DA 

a .ab b A 
(91, O2, 692, O3A while OA would be of the form (19, 62, 63).) Let Z be the subset of ( consisting of all 
those values of 6A such that whenever two agents. a and b, both observe a parameter, say parameter k, 
the values O} and Sk agree, i.e., 

Z ={0A C ( A'for any a. bcA andany kcNa r Njt,,6 a = 'g6}. 

For any k E N and any OA C Z. define Zk (ItOA) to be the common value of 6" for any agent a who 
observes parameter k, i.e. for any a such that k E Na. Thus Zk is a function from Z into (-)k. Finally, let 
Z = (Zk)k E NA. (In terms of the above example, Z consists of all those values of 63A for which 6' = 6t. 
If 6A is such a value, then z(OA) = ()9a, Oa, })= (Oa, 6X, 693).) 

We wish to construct a mapping F which associates with each value OA a feasible allocation. i.e. 
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F: 0A - A (A), such that F satisfies the following two constraints: 

iA3) for any 6A Z, F(A) = CA[(A )] 

and 

iA4) Va (F, 5", ")< ,a (F, y, y") 

for any agent a and values 8" and y" of a's observed parameters, where 

Va(F, , a, y") = E,{Ua[F,("a, a), ]ya}. 

Here Fa is the bundle assigned by F to agent a, ea = (b )b c a, and the expectation is taken with respect 
to a's prior Pa,(ly"). 

The mapping F will be the allocation rule of the direct mechanism whose equilibrium allocation is 
CA. Recall that in this mechanism, there is only one stage in which each agent a reports a value for each 
parameter he observes. Thus a's signal will be an element Oa in Oa. Condition (A3) requires that if the 
reported parameter values of all agents, 6A, agree for jointly observed parameters, i.e. 6A c Z, then the 
rule F should give the same allocation as CA would if evaluated at the corresponding value z(OA), i.e. 
after throwing out duplicated parameter values sent in by several agents. Condition (A4) requires that, 
given F, each agent (weakly) prefers to report the true values of his observed parameters, y", to 
reporting any other values "a, provided that all other agents report their true values. That is, condition 
(A4) requires that F be such that telling the truth are Nash strategies against F. From this discussion, it 
is clear that if we can find such an F, then the direct mechanism with allocation rule F will be the 
mechanism required in the statement of the theorem and that the identity maps on 0" for each agent a 
will constitute a set of (Nash) equilibrium strategies for this mechanism. The remainder of the proof 
consists of constructing such a rule F using the assumption that CA satisfies SS. 

First consider the case where all parameters are privately observed, i.e., N, n Nb 0= for any a  b. 
In this case Z = 0 A so any allocation rule, F, for the direct mechanism is just a p.c. allocation. 
Therefore, for any such rule, F, the above definitions reduce to 

IV(F, ", y'")= = U.[F.(S~p, _H),, ]pa(,lya) (note St = 8a in this case) 

and 

Va(F, y", '" )= V (Fa, y'). (See the definition of V', in Section 8.) 

\Moreover, if we take F -- CA, then F satisfies (A3) (since Z = OA and z is the identity in this case). Also 
F = CA satisfies (A4) by definition of SS for p.c. allocations (see Section 8). This proves the theorem for 
this case. 

For the case in which some parameters are observed by more than one agent, define F as follows. For 
0A e Z, let 

F(OA)= CA[Z(OA)] 

so that (A3) is satisfied by definition. We must now define F on Z' = 0A - Z such that (A4) holds. 
From the definition of Va, it is clear that we need only be concerned with elements of Z of the form 
i8", ( ) in which all signals agree for jointly observed parameters except that one particular agent (a) 
may disagree with the other agents. Accordingly, for any 0A e Z' of the form (a, da), define 

F(8^" a)= A(8aP, a). 

Thus F is defined to be CA evaluated at values reported by a for his privately observed parameters and 
at values reported by the other agents (assuming they agree on jointly observed parameters) for all 
Ither parameters. 

For elements of Z' not of the above form, let F be any feasible allocation, i.e. any element of A (A). 
This completes the construction of F: Given the remarks following the statement of conditions (A3) 
and (A4), it remains only to show that F satisfies (A4). But 

Va (F, ", a)- LJaU,[c,(8, ps), e ]pa( ya) by construction of F, 

Va (a, y ) since CA satisfies SS, 
= Va(F, ya, y") since F satisfies (A3). 

Fhus F does satisfy (A4). 

61 
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The mechanism DA = [1, OA, F] is the required mechanism since under DA identity maps will be 
equilibrium strategies (since F satisfies (A4)). Therefore the equilibrium signals will be 6A if the true 
value of the parameter vector is OA. Since all agents will report the same (true) value of jointly observed 
parameters, OAC Z, so that F evaluated at these equilibrium signals will simply be CA(OA), i.e. 
CA(DA, OA)= CA(OA) as required. Q.E.D. 

THEOREM 3: If CA is a core allocation, then there is a direct core mechanism MA such that the 
equilibrium allocation of MA coincides with CA, i.e. CA(OA)- CA(MA, OA) for all OA- Conversely, if MA is 
a core mechanism, then cA(MA, ') is a core allocation. The theorem also holds if "core" is replaced by 
"Pareto" or "individually rational Pareto." 

PROOF: We prove the theorem only for core mechanism and allocation. The proofs for Pareto and 
individually rational Pareto mechanism and allocation are exactly analogous. 

Suppose CA is a core allocation. By definition CA satisfies SS. Using Theorem 2, let MA be a 
mechanism for A such that 

CA(A) = cA[MA, A]. 

We claim that MA is a core mechanism for E(A, for suppose not. Then there is a coalition B c A and a 
mechanism MB for B such that 

Wb[M, Ob]>_ Wb[MA, 06] 

for all agents b c B and b6 c Ob with at least one inequality strict. Let XB =CB[MB, ]. Then 

Vb(b, 0b) = Wb[MA, 0b] 

and 

Vb(x, 0b) = Wb[MB, Oh]. 

But XB satisfies SS (by Theorem 1), so B can block CA (using XB) contrary to the assumption. 
Now suppose MA is a core mechanism for EA. Let CA = CA(MA, ). Thus CA satisfies SS by Theorem 

1 and the fact that Va(Ca, · ) = W[MA, ]. Now suppose that B can block CA for some coalition B c A. 
Then there is a p.c. allocation XB (feasible for B) such that XB satisfies SS and 

Vb(xb, 0b)>- Vb(Eb, 0b) 

for all b and 0b with at least one inequality strict. Using Theorem 2, let M' be a mechanism for B such 
that XB =cB(MB,). Then Vb(Xb, 6b) Wh(M', 0 ), and so B can block MA (using MB) in 
contradiction of the assumption that MA is a core mechanism. Q.E.D. 

THEOREM 4: If T = {a, b}, Na = N, Nb  N, and 5c is a FI optimal p.c. allocation which satisfies SS, 
then CT is a Pareto p.c. allocation (in the sense defined at the beginning of Section 8). 

PROOF: First note that since Na = N, for any 0 c O 

(A5) Va,(j, 0a)= Ua[Ca,(), 0]. 

Now suppose j* is FI optimal and satisfies SS. We need only show that no other Cr can strictly 
dominate c* in the sense of Section 8. Suppose, to the contrary, that C' is a p.c. allocation which 
satisfies SS and 

v,(c,, o') > V,(c*, 0') 
for each t e T and O' e 01 with at least one inequality strict. 

CASE 1: Vb(C,, b)> Vb(C*, 0b) for some 0b e O . Then for some cE 0 such that = 0b, 

Ub [C'b(), ] > Ub [Cb (), f. 

Since C* is FI optimal, this implies 

Ua[caf), ]< Ua[i (), ] 

or using (A5), 

Va [CaL, ] < Va [a, ]. 

62 
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This is the desired contradiction. 

CASE 2: Va(c,, Ga)> Va(3*, Ga) for some 0E 0. Using (1), this implies that 

Ua[Ia(0), 6 1> Ua[Ia (G), G, 

and since CT is Fl optimal, we must have 

(A6) Ub[ib'(6), 0]< Ub[Cb ()0 

Furthermore, since Va (c a, (a )__ Va (j*, (a) for every (a E d', using (A5), 

Ua[3a(4), 4]1: Ua[3a(4), 4j for every e C0. 

Consequently, since c is Fl optimal, 

(A7) Ub[c((), 4j s Ub[C (s), 41 for every f C O. 
But (A6), (A7) and the definition of Vb imply that 

Vb(3j, G ) < Vb(3b, 0 ), 

the desired contradiction. Q.E.D. 
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