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Abstract

The communication revelation principle of mechanism design states that any out-
come that can be implemented using any communication system can also be imple-
mented by an incentive-compatible direct mechanism. In multistage games, we show
that in general the communication revelation principle fails for the solution concept
of sequential equilibrium. However, it holds in important classes of games, including
single-agent games, games with pure adverse selection, games with pure moral hazard,
and a class of social learning games. For general multistage games, we establish that an
outcome is implementable in sequential equilibrium if and only if it is implementable
in a canonical Nash equilibrium in which players never take codominated actions. We
also prove that the communication revelation principle holds for the more permissive

solution concept of conditional probability perfect Bayesian equilibrium.
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1 Introduction

The communication revelation principle states that any social choice function that can be
implemented by any mechanism can also be implemented by a direct mechanism where
communication between players and the mechanism designer or mediator takes a canonical
form: players communicate only their private information to the mediator, the mediator
communicates only recommended actions to the players, and in equilibrium players report
honestly and obey the mediator’s recommendations. This result was developed throughout
the 1970s, reaching its most general formulation in the principal-agent model of Myerson
(1982), which treats one-shot games with both adverse selection and moral hazard.

More recently, there has been a surge of interest in designing dynamic mechanisms and
information systems.! Forges (1986) showed that the communication revelation principle
(RP) is valid in multistage games under the solution concept of Nash equilibrium (NE).
But NE is usually not a satisfactory solution concept in dynamic games: following Kreps
and Wilson (1982), economists prefer solution concepts that require rationality even after
off-path events and impose “consistency” restrictions on players’ off-path beliefs, such as
sequential equilibrium (SE) or various versions of perfect Bayesian equilibrium (PBE). And
it is unknown whether the RP holds for these stronger solution concepts, because—as we
will see—expanding players’ opportunities for communication expands the set of consistent
beliefs at off-path information sets.

The current paper resolves this question. We show that in general multistage games the
communication RP fails for SE. However, it holds in important classes of games, including
single-agent games, games with pure adverse selection, games with pure moral hazard, and a
class of social learning games. Our main result establishes that, in general multistage games,
an outcome is implementable in SE if and only if it can be implemented in a canonical Nash
equilibrium in which players never (on or off path) take codominated actions, which are

actions that cannot be motivated by any belief compatible with a player’s own information

'For dynamic mechanism design, see for example Courty and Li (2000), Battaglini (2005), Esé and
Szentes (2007), Bergemann and Viliméki (2010), Athey and Segal (2013), Pavan, Segal, and Toikka (2014),
and Battaglini and Lamba (2019). For dynamic information design, see for example Kremer, Mansour, and
Perry (2014), Ely, Frankel, and Kamenica (2015), Che and Horner (2017), Ely (2017), Renault, Solan, and
Vieille (2017), Ely and Szydlowski (2019), and Ball (2020).



and the presumption that her opponents will avoid codominated actions in the future. This
is an extension to SE of the main result of Myerson (1986), which we review in Section
2.2.2 We also show that the communication RP holds in general multistage games for the
solution concept of conditional probability perfect Bayesian equilibrium (CPPBE), a simple
and relatively permissive version of PBE.

Our results have a concise and practical message for applied dynamic mechanism design:
to calculate the set of outcomes implementable in sequential equilibrium by any communi-
cation system, it suffices to calculate the set of outcomes implementable in Nash equilibrium
excluding codominated actions, using direct communication.® These two sets are always the
same, even though actually implementing some outcomes as sequential equilibria might re-
quire a richer communication system (that is, even though the communication RP is generally
invalid for SE).

Let us preview the intuition for our key result: any outcome that can be implemented
in a NE that excludes codominated actions is also implementable in SE. By definition, any
non-codominated action can be motivated by some belief compatible with a player’s own
information. Such a belief can be generated in accordance with Kreps-Wilson consistency
by specifying that all players tremble with positive probability (along a sequence of strategy
profiles converging to the equilibrium) and then honestly report their signals and actions to
the mediator, and the mediator appropriately conditions his recommendations on the reports.
An obstacle to this construction is that a player who trembles to an action for which she
must be punished in equilibrium will not honestly report her deviation. To circumvent
this problem, the mediator may (with probability converging to 0) promise in advance that
he will disregard a player’s report almost-surely (i.e., with probability converging to 1).
Then, the desired belief can be generated by letting players believe that their opponents
received promises to disregard their reports, trembled, and then reported truthfully, and
that subsequently the mediator did not disregard their reports after all. However, to afford
the mediator the ability to make such an advance promise, the communication system must

be enriched with an extra message. Note that the mediator’s “promise to ignore reports”

2Myerson’s main result establishes the same characterization for the novel concept of sequential commu-
nication equilibrium, which is not the same as sequential equilibrium. See Section 2.2.
3The set of codominated actions itself can be calculated recursively. See Appendix A.



is made with equilibrium probability 0, so our construction is “canonical on path.”* At the
same time, the need to have this extra message available explains why the communication
RP is invalid for SE.

In several important classes of games, the set of non-codominated actions in each period
does not depend on the history of players’ signals and actions. These include single-agent
games, games of pure adverse selection, games of pure moral hazard, and a class of social
learning games. In such games, the above obstacle to implementing non-codominated actions
does not arise, and the communication RP holds for SE. Furthermore, SE and NE are
outcome-equivalent in many of these classes.

By way of further motivation, we note that there seems to be some uncertainty in the
literature as to what is known about the RP in multistage games. A standard approach in the
dynamic mechanism design literature is to cite Myerson (1986) and then restrict attention
to direct mechanisms without quite claiming that this is without loss of generality. Pavan,

Segal, and Toikka (2014, p. 611) are representative:

“Following Myerson (1986), we restrict attention to direct mechanisms where,
in every period t, each agent i confidentially reports a type from his type space
0;¢, no information is disclosed to him beyond his allocation x;;, and the agents
report truthfully on the equilibrium path. Such a mechanism induces a dynamic
Bayesian game between the agents and, hence, we use perfect Bayesian equilib-

rium (PBE) as our solution concept.”

Our results provide a foundation for this approach, while also showing that Nash, PBE,
and SE are outcome-equivalent in pure adverse selection settings like this one.’

Our simple positive results for games with one agent, pure adverse selection, or pure
moral hazard imply that the subtleties at the heart of our paper are most relevant for multi-

agent, multi-stage games with both adverse selection and moral hazard: that is, multi-agent

dynamic information design. Papers on this topic include Gershkov and Szentes (2009),

4As this discussion indicates, it is important that our definition of sequential equilibrium allows the
mediator to tremble. Section 5.2 discusses the case where the mediator cannot tremble.

A caveat is that much of the dynamic mechanism design literature assumes continuous type spaces to
facilitate the use of the envelope theorem, while we restrict attention to finite games to have a well-defined
notion of sequential equilibrium. We discuss this point in Section 5.2. We also assume a finite time horizon.
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Aoyagi (2010), Kremer, Mansour, and Perry (2014), Che and Horner (2017), Halac, Kartik,
and Liu (2017), Sugaya and Wolitzky (2017), Ely (2017), Doval and Ely (2020), and Makris
and Renou (2020). Some of these papers prove versions of the RP directly, while others
appeal to existing results with more or less precision. For example, Kremer, Mansour, and
Perry (2014) do not specify a solution concept and state that the RP is established for their
setting by Myerson; an implication of our Proposition 4 is that the RP is valid in their model
for SE. We hope our results will find application in this emerging literature; to this end, we

provide a compact summary at the end of the paper.

1.1 Example

We begin with an example that illustrates how letting the mediator make advance promises
to disregard players’ reports can expand the set of implementable outcomes.

There are two players (in addition to the mediator) and three periods.

In period 1, player 1 takes an action a; € {A, B,C'}.

In period 2, player 1 observes a signal 6§ € {n,p}, with each realization equally likely.
Then, the mediator (“player 0”) takes an action ag € {A, B}.

In period 3, the mediator and player 2 observe a common signal s € {0,1}, where s = 1
iff ag # a;. Then, player 2 takes an action ay € {N, P} (“Not punish,” “Punish”).

Player 1’s payoff equals 1¢444,3 — 1{as=P} — 3 X li4;—cy, and player 2’s payoff equals
—1{(a1,0)£(C;p)ras=P}» Where 11y denotes the indicator function. In particular, player 1 wants
to mismatch her action with the mediator’s action; action C' is strictly dominated for player
1; and player 2 is willing to punish player 1 iff a; = C' and 0 = p.

Consider the outcome distribution 3 (4, A, N) + 3 (B, B, N). It is trivial to construct a
canonical NE (i.e., a NE with direct communication, where in equilibrium players report their
signals and actions honestly and obey the mediator’s recommendations) that implements
this outcome: the mediator sends message/recommendation m; = A and m; = B with
equal probability, plays ag = m;, and recommends my = N if s = 0 and my = P if s = 1;
meanwhile, players are honest and obedient. Moreover, this NE is sequential iff player 2
believes with probability 1 that (a;,0) = (C,p) when s = 1 and ms = P. Thus, % (A A, N)+

% (B, B, N) is implementable in sequential equilibrium iff this belief is consistent.
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Our main result shows that the outcome of any NE that excludes codominated actions is
implementable in SE. In this example, the action a; = P is not codominated at the history
following signal s = 1, because as = P is an optimal action for player 2 if (a1, 0) = (C, p). Our
result thus implies that % (A,A,N) + % (B, B, N) is a SE outcome for some communication
system. We now explain intuitively why % (A, A,N) + % (B, B, N) is not implementable in

any canonical SE, but is implementable in a non-canonical SE.S

Non-implementability in canonical SE Throughout the paper, by a “tremble” to a
particular action a we mean a sequence of strategies converging to equilibrium along which
a player (or the mediator) takes action a with positive probability converging to 0. In a
canonical equilibrium, players who have not previously lied to the mediator obey all recom-
mendations from the mediator, even those that the mediator sends only as the result of a
tremble. Since action C' is strictly dominated for player 1, this implies that action C' can
never be recommended in a canonical equilibrium, even as the result of a tremble.” Hence,
the mediator can only ever recommend m; € {A, B}. If player 1 trembles to action C' af-
ter such a recommendation, she will subsequently (for each possible realization of §) make
whatever report (d1,9> minimizes the probability that ms = P. Since s = 1 whenever
a1 = C, Bayes’ rule then implies that Pr((a1,0) = (C,p)|s = 1,my = P) < 3 (in the limit

where trembles vanish). Hence, player 2 will not follow the recommendation my = P when

s =1, so the desired outcome is not implementable in a canonical SE.

Implementability in non-canonical SE  Why does enriching the communication system
overturn this negative result? Suppose the mediator can tremble by giving a “free pass” to
player 1 in period 1. If player 1 gets a free pass in period 1, the mediator will always
recommend my = N, barring another mediator tremble. This makes player 1 willing to
truthfully report any pair (aq, 0) after getting a free pass. Now, when player 2 is recommended
ms = P, he can believe that the mediator trembled by giving player 1 a free pass in period 1,
player 1 trembled to a; = C, player 1 honestly reported (&1, 9) = (C,p), and the mediator

trembled again by recommending my = P. This new possibility can rationalize player 2’s

6For the details, see the proof of Proposition 3.
"That is, action C must lie outside the mediation range in any canonical equilibrium. See Section 2.2.



belief that (a1,6) = (C, p).

More precisely, consider the following sequence of strategy profiles, indexed by k£ € N:

Mediator’s strategy: In period 1, the mediator recommends A and B with equal prob-
ability, while trembling to a third message, “x” (the “free pass”), with probability % In
period 2, if my € {A, B}, the mediator plays ag = my; if m; = x, he plays A and B with
probability % each. In period 3, if m; € {A, B}, the mediator recommends my = N if s =0
and mo = P if s = 1; if my = *, with probability 1 — % he recommends my = N (regardless
of <d1,9> and s), and with probability % he recommends my = P if <d1,9> = (C,p) and
mq = N otherwise.

Players’ strategies: If my € {A, B}, player 1 takes a; = m; and trembles to each other
action with probability k—14; if my; = x, she plays A and B with probability % each, while
trembling to C' with probability % Player 1 always reports her action and signal honestly.
Player 2 always takes as = ma.

Note that honesty is always optimal for player 1 in the £ — oo limit: if m; € {A, B},
then any deviation from a; = m, leads to a; = P with limit probability 1 regardless of player
1’s report; while if m; = %, then a; = N with limit probability 1 regardless of her report.

Now suppose player 2 observes s = 1 and my = P. There are two possible explanations:
either (i) player 1 trembled after m; € {A, B}, or (ii) the mediator trembled to m; = x,
player 1 trembled to a; = C, player 1 honestly reported (dl, é) = (C,p), and the mediator
trembled again to my = P. Case (i) occurs with probability of order 7, while case (ii) occurs
with probability of order % Hence, in the £ — oo limit, player 2 believes with probability 1
that (a1,6) = (C,p). This belief rationalizes a; = P, as is required to implement the desired

outcome.

Remark 1 The non-implementability result established above uses the fact that the mediator
cannot recommend C' in a canonical equilibrium, since player 1 will not obey such a recom-
mendation. However, the target outcome % (A,A,N) + % (B, B,N) can be implemented in a
non-canonical equilibrium of the direct mechanism where my € {A, B, C'} (without introduc-
ing the extra message x), by using message C' as a stand-in for message *. This trick always
works when each player has a strictly dominated (more generally, codominated) action at

every information set, but not more generally: in the proof of Proposition 3, we give an ex-
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ample where restricting attention to direct mechanisms (even without additionally requiring

honesty and obedience) is with loss of generality.

The remainder of the paper is organized as follows. Section 2 describes the model and
reviews some background theory, including the notion of codominated actions. Section 3
presents our results for SE: the communication RP fails in general but holds in some impor-
tant special classes of games; and in general games an outcome is SE-implementable if and
only if it is implementable in a canonical NE that excludes codominated actions. Section
4 defines CPPBE and shows that the communication RP holds for this more permissive
solution concept. Section 5 summarizes our results and discusses possible extensions. All

proofs are deferred to the print or online appendix.

2 Multistage Games with Communication

2.1 Model

As in Forges (1986) and Myerson (1986), we consider multistage games with communication.
A multistage game G is played by N + 1 players (indexed by i = 0,1,..., N) over T periods
(indexed by t = 1,...,T). Player 0 is a mediator who differs from the other players in three
ways: (i) the players communicate only with the mediator and not directly with each other,
(ii) the mediator is indifferent over outcomes of the game (and can thus “commit” to any
strategy), and (iii) “trembles” by the mediator may be treated differently than trembles by
the other players.® In each period ¢, each player i (including the mediator) has a set of
possible signals S;;, a set of possible actions A;;, a set of possible reports to send to the
mediator R;;, and a set of possible messages to receive from the mediator M;;. For each i
and t, let S¢ =[]/} Sir, let S; = [[, Sis, and let S* = [['_} S;, and analogously define A,
Ay, AU R Ry, RY, MY, My, and M". These sets are all assumed finite. This formulation lets
us capture settings where the mediator receives exogenous signals in addition to reports from

the players, as well as settings where the mediator takes actions (such as choosing allocations

8We also use male pronouns for the mediator and female pronouns for the players.



for the players). Note also the artificial assumption that the mediator “communicates with
himself,” which simplifies notation.

The timing within each period ¢ is as follows:

1. A signal s; € S; is drawn with probability p (s¢|s’,a’), where (s,a’) € S* x A' is the

vector of past signals and actions. Player i observes s;; € S;, the i component of s;.
2. Each player ¢ chooses a report 7;; € R;; to send to the mediator.
3. The mediator chooses a message m;; € M;, to send to each player 7.

4. Each player ¢ takes an action a;; € A, ;.

For each t, denote the set of possible histories of signals and actions (“payoff-relevant

histories”) at the beginning of period t by
Xt = {(St,at) eSix A :p (ST|ST_1,CLT_1) >0 Vr<t-— 1},

Similarly, denote the set of possible payoff-relevant histories after the period ¢ signal realiza-
tion s; by
Yyt — {(St+17at) c St Al :p(87—|8771,a771) >0 Vr < t}.

For each i, let X! and Y;' denote the projections of X* and Y* on S! x A! and S/™' x Al
respectively. Note that, typically, X' H?;O X! and Y # Hi]i() Y. Assume without loss
of generality that S;; = U,y suppp; (-|z*) for all 7 and ¢, where p; denotes the marginal
distribution of p.

Let H' = X' x R! x M denote the set of possible histories of signals, actions, reports, and
messages (“complete histories”) at the beginning of period ¢, with H! = (). Let Z = HT*!
denote the set of terminal histories of the game. Given a complete history h* = (2!, r!, m') €
H!, let ht = ! denote the projection of At onto X, the payoff-relevant component of H'; and
let At = (r*,m!) denote the projection of A onto R' x M, the payoff-irrelevant component
of H'. Let X = X™*! denote the set of payoff-relevant pure outcomes of the game. Let

u; : X — R denote player 7’s payoft function, where uq is a constant function.



We refer to the tuple I' := (N,T,S, A, p,u) as the base game and refer to the pair
¢ := (R, M) as the communication system. The implementation problem asks, for a given
base game I' and a given equilibrium concept, which outcomes p € A (X) arise in some
equilibrium of the multistage game G = (T', &) for some communication system €7 Such
outcomes p are implementable.

We now introduce histories, strategies, and beliefs. For each i and ¢, let Hf = X!x Rl x M}
denote the set of player i’s possible histories of signals, actions, reports, and messages at
the beginning of period t. When a complete history h' € H' is understood, we let h! =

topt

277

(x m!) denote the projection of h' onto H}; that is, hl is player i’s information set.
Conversely, let H' [h!] denote the set of histories h' € H' with i-component hf. Note that,
typically, H'[h;] # [[;,; Hj- Let ht = 2! denote the payoff-relevant component of hf, and let
ht = (rt,mt) denote the payoff-irrelevant component of ht. We also let H,"" = Y} x Rt x M}
and H"' = Y} x R x M denote the sets of reporting and acting histories for player i,
respectively. H® R, HARA] pEL R4t BT and M are similarly defined.

A behavioral strategy for player ¢ is a function o; = (Uf,a,‘;‘) = (th,aft);f:l, where
off H* — A(R;,) and oy H™ — A(A;,;). This standard definition requires that a
player uses the same mixing probability at all nodes in the same information set. Let J; be
the set of player i’s strategies, and let ¥ = HZ].VZO >

A belief for player i # 0 is a function 3, = (ﬁf,ﬁf) = ( ft, Z‘t)f:l’ where Bft : HiR’t —
A (H%) and B - HM — A(HAY). We write ol (riyt\hf’ﬂ for off (hf’t) (rit), and
similarly for O’f}t, ﬁft, and ﬁft. When the meaning is unambiguous, we omit the superscript
R or A and the subscript ¢ from o; and f3,, so that, for example, o; can take hf’t or h?’t as
its argument.

A mediation plan is a function f = (f,)__,, where f, : R™*' — M, maps a profile of
reports up to and including period ¢ to a profile of period-t messages.'’ A mized mediation
plan is a distribution p € A (F'), where F' denotes the set of (pure) mediation plans. A
behavioral mediation plan is a function ¢ = (¢t)tT:1, where ¢, : R x M — A(M,;) maps

past reports and messages to current messages. Since the mediator can receive signals and

9Since the mediator is indifferent over outcomes, there are no optimality conditions on the mediator’s
strategy, and hence no need to introduce beliefs for the mediator.
10Myerson (1986) calls such a function a feedback rule.



take actions in our model, he must choose both a mediation plan f and a report/action
strategy 0. However, we can equivalently view the mediator as choosing only f, while a
separate “dummy player” chooses o¢. The distinctive feature of the mediator is thus the
choice of f, while the strategy o( plays no special role in the analysis and is included only for
the sake of generality. As we will see, whether it is most convenient to view the mediator as
choosing a pure, mixed, or behavioral mediation plan depends on the solution concept under
consideration. All three perspectives will be used in this paper. In contrast, we always
view players as choosing behavioral strategies (ai)i]\il, and similarly view the mediator’s
report /action strategy o( as a behavioral strategy.

Denote the probability distribution on Z induced by behavioral strategy profile o =
(ai)fvzo and mediation plan f by Pr®/, and denote the corresponding distribution for a mixed
or behavioral mediation plan by Pr”* or Pr®?, respectively. Denote the corresponding prob-
ability distribution on X (the “outcome”) by p7, p”#, or p”?. As usual, probabilities are
computed assuming that all randomizations (by the players and the mediator) are stochas-
tically independent. We refer to a pair (o, f), (o, 1), or (o, ¢) as simply a profile.

We extend players’ payoff functions from terminal histories to profiles in the usual way,
writing u; (o, f) for player i’s expected payoff at the beginning of the game under profile
(0, f), and writing @; (o, f|h') for player i’s expected payoff conditional on reaching the
complete history h'. Note that ; (o, f|h') does not depend on player i’s beliefs, as h' is a
single node in the game tree. The quantities @; (o, 1), @; (0, ¢), and 4; (o, p|h') are defined
analogously. In contrast, we avoid the “bad” notation @; (o, u|h'), which is not well-defined
when Pr”* (h) = 0.

A Nash equilibrium (NE) is a profile (o, ) such that @; (o, u) > 4, (0}, 0_;, ) for all i # 0
and o} € ¥;.'' (Or put ¢ in place of y; the definitions are equivalent by Kuhn’s theorem,

which implies that for any s, there exists ¢ such that Pr7# = Pr” for all o, and vice versa.)

"Tn the context of games with communication, a NE is also called a communication equilibrium (Forges,
1986).
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2.2 Theoretical Background

Our results build on four concepts introduced by Myerson (1986), which we briefly review
here: mediation ranges, conditional probability systems, sequential communication equilib-
ria, and codomination.

A mediation range Q = (Qiy), o, Specifies a set of possible messages Q); (rt,mt riy) C
M;, that can be received by each player ¢« # 0 when the history of communications be-

tween player i and the mediator is given by (rf, mf,r;;). Denote the set of mediation plans

compatible with mediation range () by
Flo = {F € F fur () € Qui (1t (i (77)12, i) Wistrt1

Say that a reporting history th’t € HiR ' is compatible with mediation range @ if m;, €
Qir (rT,m7, ;) for all 7 < t; similarly, an acting history h/"" € H*' is compatible with
mediation range Q if m; . € Q;. (r],m],r;,) for all 7 <.

Given a base game I' = (N, T, S, A, p,u), the direct communication system €* = (R*, M*)
is given by R}, = A;; 1 X Siy and M, = A;y, for all i and ¢. That is, players’ reports are
actions and signals, and the mediator’s messages are “recommended” actions. In a game
with direct communication G* = (T', €*), player i is honest at reporting history hZR ' if she
reports r; ¢ = (@;1—1, Sit), and she is obedient at acting history hf’t if she plays a; = m; ;. Let
¥f denote the set of strategies for player i in game G*. Let G*|¢ denote the game where, at
each history for the mediator Y x R x M", the mediator is restricted to sending messages
mis € Qi (rt, mk r;,) for each i.

Note that players will obey the mediator’s recommendations even after trembles by the
mediator only if the possibility that the mediator trembles to recommending unmotivatable
actions is excluded. This can be achieved by restricting the mediation range. Given a game
with direct communication G* and a mediation range @, the fully canonical strategy profile in
G*|g, denoted o*, is defined by letting players behave honestly and obediently at all histories
compatible with ). Later on, this will be contrasted with a more general notion of canonical
strategies, where honesty and obedience are required only for players who have not previously

lied to the mediator. Since the artificial assumption that the mediator “communicates with

11



himself” is purely for notational convenience, there is no loss in assuming throughout the
paper that &, = € and oy = o,

With direct communication, given a mediation plan f and a payoff-relevant history z* =
(s',a'), the unique complete history h' compatible with the mediator following f and all
players reporting honestly in every period 7 < t satisfies r;, = (a;,-1,si,) and m;, =
fir (") for all i and 7 < t. Denote this history by & (f,z!). Similarly, we denote by h (z!)
the unique complete history h' compatible with all players reporting honestly and acting
obediently in every period 7 < t.

Denote the set of terminal histories in G* compatible with mediation range () and honest

behavior by the players by
Z]Q = {z €Z:rip = (a;4-1,5,) and m;; € Qi (rf,mﬁ,ri,t) Vi,t} )

Analogously define Z%*|o and Z4%|,. Denote the set of pairs (f,2) € F x Z|g such that

terminal history z is compatible with mediation plan f by
2|Q:{(f,z) e F x Z|Q cmy = f (Tt+1) Vt},

Analogously define Z%¢|,, and Z4%|p. Denote the subset of Z|o with period-t reporting
history ™" by Z [A*] |q. Z[h*]|q, Z[hi*]|g, and Z[h;""]|q are similarly defined.

A conditional probability system (CPS) on a finite set  is a function p(-|-) : 2% x
20\0 — [0, 1] such that (i) for all non-empty C' C €, u(-|C) is a probability distribution
on C, and (ii) for all A C B C C C Q with B # (), we have u(A|B) u(B|C) = pn(A|C).
Theorem 1 of Myerson (1986) shows that u (+|-) is a CPS on 2 if and only if it is the limit
of conditional probabilities derived by Bayes’ rule along a sequence of completely mixed
probability distributions on Q (see also Reényi, 1955). Given a CPS fi on Z|g, f € F,
{f}xY C Z|g, and {f} x Y’ C Z|q, we write fi (f) = D (fo)ezlo B (f,2) and p(Y[f,Y") =
> yey B WIS YT). A sequential communication equilibrium (SCE) is then a mixed mediation
plan x4 € A (F) in a direct-communication game G* together with a mediation range ) and

a CPS i on Z|q such that
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e [CPS consistency] For all f € Flg, t, M = (s 7t mt at) € Z%g, hAt =
(s, 7 mttt at) € ZA g, my, ay, and s,4q such that (f, A e 2R, and (f,h*) €
ZA,t

0, we have

/_1’ (f) = ,LL (f) ) /_1’ (rt|f7 h‘R7t) = 1{Tt:(at—1,8t)}7
H (at|f7 hA’t) = La=me}s H (St+1|f7 hA’ta at) =D <3t+1|lolA7t7 at) )

fu (mel £, 5 ) = Ly py oty

(Here the first argument of fi(-|]-) must be read as a subset of Z|y. For example,

i (rlf W) = 300 panezmme g 1 ((F2) 1fR50).)

o [Sequential rationality of honesty] For alli # 0, t, o' € ¥;, and h"" = (sithrt,mt al) €

3 » ) 1) 7

HiR’t such that 7, ; = (@i r—1,5i-) and m; , € Q;, (r],m],r;,) for all 7 < t, we have

S a(ARE ) et ) = S (SRR ) (oot fIRRY)

(fﬁR’t)EZ;[hf’tHQ (fvhR’t)EE[th’t“Q
(1)

o [Sequential rationality of obedience] For alli # 0, t, o) € ¥;, and h?’t = (s’?+1 ritt mttt at) €

A A A S At

HiA’t such that 7, ; = (@;;-1,5i,) and m; ; € Q; - (17, m],r; ;) for all 7 <t, we have

DR O e KN G IS S O [ R GO A B

(fhANYEZ Mg (£ hAHEZ Mg
(2)

This definition of SCE is identical to Myerson’s, except that Myerson defines the CPS [
over F|g x X rather than F|g x Z|o. To sce that this difference is immaterial, note that
SCE imposes sequential rationality only for players who have not lied to the mediator, and
Z|lg € X x RT+1 x M™+1 is the set of history profiles at which all players have not lied to
the mediator. Therefore, for any (f, h') € F|g x Z|g such that fi (f, ht|hl) > 0 for some h
where sequential rationality is imposed, the complete history A’ is uniquely determined by
f and the payoff-relevant history x = h by specifying that all players have always reported
truthfully: that is, h = h(f, z). Hence, the two definitions are equivalent.
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Remark 2 Note that a CPS over F|g % Z lo is equivalent to a CPS over terminal nodes
in the tree of an alternative game where first the mediator chooses a (pure) mediation plan
f and a copy of the original game G follows each choice of f, where paths inconsistent
with the mediator’s initial choice of f are deleted and players’ information sets with the
same history of messages from the mediator are merged. The reader may ask why Myerson
considers CPS’s over F|o x Z|q (or equivalently F|g x X ) rather than only Z|q. The reason
is that specifying a CPS over F|g X Z \o implicitly lets the mediator tremble over strategies
rather than actions (i.e., in normal form rather than independently at each information set),
which allows a wider range of off-path expectations of future mediator behavior. Without this

additional flexibility, Myerson’s characterization of SCE outcomes would not be valid.'?

Myerson characterizes SCE in terms of codominated actions. The set of codominated
actions for player i at payoff-relevant history y! € Y}, denoted D, (y}) CA;+, can be given
either an recursive or a fixed point definition. Here we give the fixed point definition, which
is more concise. We give the recursive definition, which may be more useful for calculating
the correspondence ® in applications, in Appendix A.

Fix a direct-communication game G*. For any correspondence 8 that specifies a set of
actions B, (y!) C A;, for each i # 0, ¢, and y! € Y, let E*(B) = {f € F: fi. (r"™) ¢
B, (r]t") Vi,7 > t,r""' € R™™} be the set of mediation plans that avoid actions in B after
period ¢, with the convention that ET (B) = F,'* and let ¢' (B) = {(f,y)) € FxY':3i #0
s.t. fir (y') € By (yl)} be the set of mediation plans f and payoff-relevant history profiles y*

such that f recommends an action in B;;(y!) to some player i at 3. Such a correspondence

B is a codomination correspondence if, for every period ¢ and every probability distribution

m € A(F xY?") satisfying (i) 7 (E"(B) x Y*) = 1 and (ii) 7 (f,4") > 0 for some (f,y") €

2Roughly speaking, when CPS’s are defined over F|g x Z |o, a player can believe that her own past
deviations are inherently correlated with future deviations by the mediator. This is not possible when CPS’s
are defined only over Z lo. Indeed, if the SCE definition were strengthened by defining CPS’s only over
Z |@, the proof of Proposition 3 could be adopted to give a counterexample to the claim that every SE-
implementable outcome (and hence, every outcome of a NE in which players avoid codominated actions)
arises in a SCE.

3In this definition, let B, (r7 ™) =0 if r] ™" € RITM\ V7.

7
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@' (B), there exists i £ 0, y!, a;; € By, (y!), and o} € ; such that

Soow (L) w (ot fR () < > w (A (oh ot fIR(f.y))

(f,yt)EFXYt, (f,yt)eFth,

fi,t(?Jt)lei,t fi,t(yt):ai,t
That is, if there is positive probability that some player is recommended a codominated
action in period t, but zero probability that any player will be recommended a codominated
action after period t, then some (possibly other) player has a profitable deviation in the
event that she is recommended a codominated action in period ¢. The correspondence © is
then defined as the union of all codomination correspondences.'*

Myerson’s main result is that an outcome arises in a SCE if and only if it arises in a fully

canonical NE in which players never take codominated actions.

Proposition 1 (Myerson (1986; Theorem 2, Lemma 1)) For any base game T' and
any outcome p € A(X), there exists a SCE (u,Q, i) satisfying p = p° * if and only if
there exist a NE (0%, 1) in G*|q satisfying p = p” " and Qi (ri™', ml) N D, (ri*!) =0 for

all i #0, t, v, and mt.

The set of SCE outcomes can be calculated as follows: For every player ¢ and payoft-
relevant history y!, calculate the set of codominated actions ©;; (y!). Delete these actions
from the game tree. Then calculate the set of canonical NE (i.e., communication equilibrium)
outcomes in the resulting game: as is well-known, this set is a compact polyhedron, defined

by a finite set of linear inequalities (the incentive constraints).!®

14We occasionally extend the domain of D, from Y} to REH by letting ®; ; (ff“) = () for all fﬁ“ €
R\ Y

5Establishing the validity of this algorithm requires one fact beyond Proposition 1: the set of NE in G*|g
in which codominated actions are never played equals the set of NE in the game tree where codominated
actions are deleted. Since the latter set obviously includes the former, this amounts to showing that deleting
codominated actions never relaxes an incentive constraint: that is, to verify incentive compatibility in G*|g,
it suffices to consider only deviant strategies that never take codominated actions. This intuitive fact is
established by Myerson (1986; Theorem 3).
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2.3 Communication Revelation Principle: Definition

In a direct-communication game G*, a strategy profile ¢ € ¥* together with a mediation

range () is canonical if the following conditions hold:

1. [Previously honest players are honest] o}, <hﬁ’t> = (i1, 8i4) for all B € H*' such

that r; » = (a;r—1, i) and m; , € Q;, (r7,m],r; ) for all 7 < t.

2. [Previously honest players are obedient] o7y <h;4’t> = my, for all B € H™ such that

Tir = (Gir—1,Sir) and m; . € Q;, (r],m],r;,) for all 7 < t.

The communication RP states that it is without loss to restrict attention to direct com-

munication systems, and furthermore to restrict attention to canonical strategies.!®

Communication Revelation Principle Fix an equilibrium concept. For any game (T, €),
any outcome p € A (X)) that arises in any equilibrium of (', €) also arises in a canonical

equilibrium of (I', €*) | for some mediation range Q.

Forges (1986) established the communication RP for NE. For this result, it is not nec-
essary to restrict the mediator’s messages via a mediation range; it suffices to consider the

unrestricted mediation range QU given by QY (ri*!,m!) = A;, for all i # 0, ¢, r{*', and m!.

7

Proposition 2 (Forges (1986; Proposition 1)) The communication RP holds for NE,

with the unrestricted mediation range.

As we build on this result, we give a proof in Appendix B.!” The intuition is that,
in any game (I',€), we may view each player as reporting her signals and actions to a
“personal mediator” under her control, who then communicates with a “central mediator”

via communication system €, and then recommends actions to the player. Each player may

6 Townsend (1988) extends the RP by requiring a player to be honest and obedient even if she has
previously lied to the mediator, and correspondingly lets a player report her entire history of actions and
signals every period (thus giving players opportunities to “confess” any lie). Our results show that enriching
the communication system in this way does not expand the set of implementable outcomes. Townsend’s
motivation was to formulate incentive constraints in terms of one-shot deviations. In contrast, we follow
Myerson in considering multi-shot deviations, as in inequalities (1) and (2).

Forges’s proof is convincing but informal, as are all other proofs of this result that we are aware of (e.g.,
pp. 106-107 of Mertens, Sorin, and Zamir, 2015).

16



as well be honest and obedient vis a vis her personal mediator, since she controls her personal
mediator’s strategy. Now, view the collection of the N personal mediators together with the
central mediator as a single mediator in the direct-communication game (I", €*), where player
1’s personal mediator now automatically executes its equilibrium communication strategy
from game (I', ). Then it remains optimal for each player to be honest and obedient, as a

player has access to fewer deviations when she cannot directly control her personal mediator.

3 Sequential Equilibrium

3.1 Definition

Our definition of sequential equilibrium in a multistage game with communication is simply
Kreps-Wilson (1982) sequential equilibrium in the N + 1 player game where the mediator
is treated just like any other player. That is, a sequential equilibrium (SE) is an assessment
(o, ¢, ) consisting of behavioral strategies o for the players, a behavioral strategy ¢ for the

mediator, and beliefs 3 for the players, such that

e [Sequential rationality of reports] For all ¢ # 0, t, o), and hZR ' we have

] (hR’t|hZR’t) (oo™ = Y B (hR’t|hf"t> a; (0, 0_i, ¢|h"1)

hR,teHR,t[h?at] hR,teHR-,t[h?at]

o [Sequential rationality of actions] For all i # 0, ¢, o}, and hf‘ ' we have

S s () ooty > S 8 (W) @ (o o).

hAvtEHA’t[h?’t] hAvtEHA’t[hf’t}

e [Kreps-Wilson Consistency/ There exists a sequence of full-support behavioral strategy

profiles (o*, gbk)Zil such that limy_. (0%, ¢") = (0, ¢);

O'k, k ,

Rt Bt _ 1 Pr7 ¢ (th)
B; (AR ) = lim ———
() = b
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for all i # 0, t, K™ € HE and bt € HEURRY; and

O'k, k ,
3, <hA’t]hA’t) ~ im Pr7 ¢ (hAY)
() = i

for all i £0, t, k™ € HM, and hAt € HAY LM,

In this definition, the mediator takes a behavioral strategy and trembles independently

at every information set, just like each of the players.!®

3.2 Failure of Communication Revelation Principle

Our first substantive result is a negative one: the communication RP is generally invalid
for SE, and even restricting attention to direct communication systems (without necessarily

also restricting attention to canonical strategies) is generally with loss of generality.

Proposition 3 The communication RP does not hold for SE. Furthermore, there exists a
game (I, €) and an outcome p € A (X) that arises in a SE of (I', €) but not in any SE of
(T, €*).

The failure of the RP for SE was previewed in the introduction. The stronger result that
restricting attention to direct communication systems is with loss is proved by extending the
opening example so as to ensure that action C' must be recommended at some history. This
implies that a recommendation to play C' cannot be used to substitute for the extra “free

pass” message «, so the set of possible messages must be expanded.

3.3 Special Classes of Games

While the communication RP is invalid for SE in general multistage games, we show that it
does hold in several leading classes of games. Moreover, NE and SE are outcome-equivalent

in many of these classes.

18 An alternative definition, where the mediator cannot tremble at all, yields a more restrictive version of
sequential equilibrium, for which our main results do not hold. We discuss this possibility in Section 5.2.
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First, the communication RP holds and NE and SE are outcome-equivalent under a full
support condition: any NE outcome distribution under which no player can perfectly detect
another’s unilateral deviation is a canonical SE outcome distribution. This result is not very
surprising, but the formal proof is not completely straightforward.

Second, the communication RP holds and NE and SE are outcome-equivalent in single-
agent settings. This is a trivial corollary of the full support result. It is applicable to many
models of dynamic moral hazard (e.g., Garrett and Pavan, 2012) and dynamic information
design (e.g., Ely, 2017).

Third, the communication RP holds and NE and SE are outcome-equivalent in the fol-
lowing class of social learning games: A state w € Q is drawn with probability p(w) at
the beginning of the game. Given the state w and a payoff-relevant history =z = (s, a’),
period-t signals s; are drawn with probability p (s;|w, z). We assume that, for each player
i, there is a period ¢; such that |A;;| = 1 for all ¢ # ¢; and |S;;] = 1 for all ¢ < ¢;: that
is, each player is “active” in only a single period. Player i’s final payoff 4; (w, a;;,) depends
only on the state w and her own action. Such games are included in our model by letting
p(sea?) =, p(w)p(st|lw,2’) and u,; (x) = > Pr(w|z) 4; (w,a;y,) (where a;4, is i’s action
at outcome x).'” The model of Kremer, Mansour, and Perry (2014) lies in this class.

Fourth, the communication RP holds and NE and SE are outcome-equivalent in games of
pure adverse selection: |A;;| =1for alli# 0 and ¢t € {1,...,T}. In a pure adverse selection
game, players report types to the mediator, the mediator chooses allocations, and players
take no further actions. Much of the dynamic mechanism design literature assumes pure
adverse selection (e.g., Pavan, Segal, and Toikka (2014) and references therein).

Fifth, the communication RP holds (but NE and SE are not outcome-equivalent) in
games of pure moral hazard: for each i # 0, there exist (ﬂ@t)thl and (j;),_, such that
u; (x) = Yo, @iy (ar), and p(sey'™, a-1) = Pe (s¢)as_1). In a pure moral hazard game,
payoffs are additively separable across periods, and signals are payoff-irrelevant and time-
separable. This implies that the distribution of future payoff-relevant outcomes is indepen-
dent of the realization of past payoff-relevant outcomes, conditional on the path of future

actions. If these assumptions were violated, a player’s payoff-relevant history would consti-

9Here the dependence of u; (z) on w is accommodated by allowing |S; ¢| > 1 for ¢ > t,.
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tute a “hidden state” that the mediator might need to elicit, possibly leading to a failure
of the communication RP. Pure moral hazard games include finitely repeated games with

complete information.

Proposition 4 The following hold:

1. For any game, if (0,¢) is a NE and supp pJ"* = Uj;sz’an'.ezj supp p:j’afj’qs for all
’ J

i # 0, then p°? is a canonical SE outcome.*®

2. If N =1, any NE outcome is a canonical SE outcome.

3. In social learning games, any NE outcome is a canonical SE outcome.

4. In games of pure adverse selection, any NE outcome is a canonical SE outcome.
5. In games of pure moral hazard, the communication RP holds for SE.

The logic of these results is as follows:

Parts 1 and 2 are intuitive. In any NE, each player’s strategy is sequentially rational
at on-path histories, and each player’s strategy at off-path histories that follow her own
deviation can be changed to a sequentially rational strategy without affecting other players’
on-path incentives. Under the full-support condition, every history is either on path or
follows a player’s own deviation. Hence, any NE can be transformed into an SE by changing
each player’s strategies at histories that follow her own deviation.

In social learning games, since each player moves once and there are no payoff externali-
ties, changing a player’s off-path strategy never affects other players’ on-path incentives. So
again NE and SE are outcome-equivalent.

Part 4 follows from noting that the construction in Proposition 5 (in the next subsection)
is canonical in pure adverse selection games.

Finally, in pure moral hazard games, the set of codominated actions in a given period
t does not depend on the payoff-relevant history y'. Hence, the mediator does not need to
elicit information about ' to motivate all non-codominated actions in period ¢. Under this

condition, we show that the communication RP is valid for SE.?!

20Here, pf’¢ denotes the marginal distribution of p”® on X;.
21The set of codominated actions is also independent of the payoff-relevant history for social learning
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3.4 Characterization of SE-Implementable Outcomes

Our main result is that an outcome is implementable in SE if and only if it arises in an SCE,
or equivalently if and only if it arises in a canonical NE that excludes codominated actions.

Define the pseudo-direct communication system €* = (R*, M**) by R, = A;j; 1 X Sy
and M;} = A;; U {x}, for all i and ¢, where x denotes an arbitrary extra message. Under
pseudo-direct communication, in every period a single extra message from the mediator to

each player is permitted.

Proposition 5 For any base game, an outcome is SE-implementable if and only if it arises

in a SCE. In addition, every such outcome arises in a SE with pseudo-direct communication.

The “easy” implication of Proposition 5 is that every SE-implementable outcome arises
in a SCE: we abbreviate this statement as SE C SCE. This follows from Propositions 6
through 8 in Section 4.

The “hard” implication is that every SCE outcome is SE-implementable (and in particular
can be implemented with pseudo-direct communication): that is, SCE C SE. In our
construction, message x is not used on path. Moreover, players are honest and follow all
recommendations other than %, as long as they have done so in the past. The construction
is thus “almost” canonical.??

Message x corresponds to the “free pass” in the opening example. As in that example,
the role of message * is to cause a player to tremble with higher probability. (When a player
instead receives a message m;; # *, she plays a,; = m;, and trembles with much smaller
probability.) In addition, after receiving x, a player’s future reports to the mediator are
inconsequential (barring future mediator trembles), so honesty is optimal. Based on these
honest reports, the mediator’s future trembles can be specified so that, conditional on a

player receiving a future recommendation to take any non-codominated action, the player’s

games and pure adverse selection games. Thus, the proof of Part 5 of Proposition 4 also implies that the
communication RP holds for SE in social learning games and pure adverse selection games. However, Parts
3 and 4 of Proposition 4 establish the stronger result that NE and SE are outcome-equivalent in such games.

22A second way in which our construction is not canonical is that a previously honest but disobedient
player may not be honest. This difference from Myerson’s approach arises because the SE solution concept
limits the consistent beliefs available to a disobedient player: in particular, a player cannot believe that her
own past deviations are inherently correlated with past or future deviations by other players or the mediator.
This makes it hard to ensure that previously disobedient players are honest.
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beliefs are those required to motivate that action. For instance, in the example, when player
2 receives recommendation my = P, he believes that the mediator trembled first to m; =
and then to ms = P following (a;, @) = (C, p), which generates the belief required to motivate
as = P. Note that it is the possibility that one’s opponents received message x, trembled,

and then reported truthfully that motivates a given player to follow her recommendation.

We end this section by sketching the proof of Proposition 5.

It is useful to first briefly review Myerson’s proof that the outcome of every NE that
excludes codominated actions is a SCE, as we build on this proof. Myerson first shows that
every CPS is generated as the limit of beliefs induced from a sequence of full-support prob-
ability distributions over moves.?> He then constructs an arbitrary SCE with the property
that all non-codominated actions are recommended at each history with positive probability
along a sequence of move distributions converging to the equilibrium. Finally, he constructs
another equilibrium where the mediator mixes this “motivating” SCE with the target NE.
By specifying that trembles are much more likely in the former equilibrium, after any his-
tory in the mixed equilibrium that lies off-path in the target NE, players believe that the
motivating SCE is being played, and therefore follow all non-codominated recommendations.
Taking the mixing probability to 0 yields a SCE with the same outcome as the target NE,
in which all non-codominated recommendations are incentive compatible.

Our construction starts with an arbitrary trembling-hand perfect equilibrium (PE) in
the unmediated game: that is, the limit as ¢ — 0 of a sequence of NE in the unmediated,
e-constrained game where each player is required to take each action at each history with
independent probability at least . We let the convergence of ¢ to 0 be slow in comparison to
other trembles we will introduce: that is, action trembles in the PE are relatively likely. In
the SE we construct in the mediated game, the mediator uses the off-path message x to signal
to a player that the PE is being played. Since the PE is an equilibrium in the unmediated

game, a player who receives message x believes that her future reports are almost-surely

23This differs from Kreps-Wilson consistency in that the move distributions may not be strategies. For
example, some CPS’s can be generated only by supposing that a player takes different actions at nodes in
the same information set. This gap between SCE and SE has been noted before. See, for example, Kreps
and Ramey (1987) and Fudenberg and Tirole (1991).
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inconsequential, and thus reports honestly.?* Specifically, when the mediator implements
the PE, he recommends m;; € A;, according to the PE strategy of player ¢ with probability
1— /e and recommends m;; = * with probability /¢, independently across players. Player i
obeys each recommendation m;; € A;; (with negligible trembling probability) and, and after
message *, takes a;; according to her PE strategy but trembles with probability /. Since
the mediator’s tremble to m;; = % is independent across players, from the other players’
perspectives, it is as if player ¢ plays her PE strategy while trembling with probability
VE X e =¢.

In order to provide on-path incentives, the mediator must also be able to recommend
specific, non-codominated punishment actions off path. To make these recommendations
incentive compatible, we mix in trembles to mediation plans that recommend all motivatable
actions (as in Myerson’s construction). A key step in our construction is showing that, since
trembles in the PE are relatively likely and players who believe this equilibrium is being
played report truthfully, the mediator tremble probabilities can be chosen to generate the
beliefs required to motivate each non-codominated action.

An important difficulty is posed by histories that involve multiple surprising signals or
recommendations: for example, a player may receive a O-probability recommendation to
play some action a in period ¢ and update her beliefs about the mediation plan accordingly,
but may then observe another surprising (i.e., conditional 0-probability) recommendation
to play some action a’ in a later period #’. We need to ensure that every non-codominated
recommendation in period ¢’ is incentive compatible, no matter what recommendations were
made in earlier periods. This is challenging, because there is no guarantee that the mediation
plan that motivates action a in period ¢ is compatible with the mediation plan that motivates
action a’ in period t'.

To deal with this, we introduce an additional layer of trembles, whereby the mediator
may tremble to recommend any motivatable action even while he still “intends” to imple-
ment the PE. These trembles are less likely than both the action trembles within the PE and

the mediator trembles to mediation plans that rationalize non-codominated actions. There-

24This step is absent in Myerson’s proof, as the SCE solution concept allows mediator trembles to be
inherently correlated with player trembles about which the mediator has no information, so the mediator
does not need to elicit information from players about their trembles.
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fore, when a player receives a 0-probability recommendation to play action a in period ¢,
she believes with probability 1 that the mediator has trembled to the mediation plan that
motivates action a; but when she later receives another surprising recommendation to play
action a’ in period t’, she switches to believing that, in fact, her period-t recommendation was
due to a recommendation tremble “within” the PE (and thus that, in retrospect, she might
have been better-off disobeying the period-t recommendation), while the current, period-t
recommendation to play o’ indicates a tremble to the mediation plan that motivates a’.?
To complete the construction, this “motivating equilibrium” (the mixture of the PE,
the mediation plans that motivate each non-codominated action, and the additional layer
of trembles) is mixed with the original target NE, with almost all weight on the latter.
Players therefore believe that the mediator follows the target NE until they observe a 0-
probability signal or recommendation. Subsequently, players assign probability 1 to the
motivating equilibrium, and hence obey all non-codominated recommendations. Since the
target NE excludes codominated actions, all on- and off-path recommendations are incentive

compatible.

4 Conditional Probability Perfect Bayesian Equilibrium
Denote the set of terminal histories in G compatible with mediation range ) by
Zlg = {z €Z :miy € Qiy (rf,mf,rm) Vi,t} )

Note that, in contrast to the set Z|o defined in Section 2.2, the set Z|g is defined for any
communication system.? Analogously define Z%|q and Z41|4.

Denote the set of pairs (f,z) € F|g x Z|g such that terminal history z is compatible

25 This additional layer of trembles is also not needed in Myerson’s proof, because the SCE solution concept
allows mediator trembles to off-path recommendations to be inherently correlated with the earlier player
trembles needed to rationalize such recommendations.

26The set Z |@ also contained only histories at which players have been honest. This restriction is not
well-defined with indirect communication and does not appear in the definition of Z|g.
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with mediation plan f by
Z|Q { €F|Q ><Z|Q my = [ (TH—l) Vt}

Analogously define Z%|5 and Z4%|g. Denote the subset of Z|g with period-t reporting
history hftt by ZE [fH] . Z[h]|o, Z[hf|g, and Z[h*"|o are similarly defined.

We consider perfect Bayesian equilibria in which beliefs are derived from a common CPS
on Z|g. A conditional probability perfect Bayesian equilibrium (CPPBE) is a profile (o, j1)
together with a mediation range () and a CPS fi on Z|g such that

o [CPS Consistency] For all f € Flg, t, hf*' = (st rt mtat) € ZBYqg, Mt =
(s, P mitt at) € Z4| g, my, ap, and sy4q such that (f, R') € 2745 and (f, h*) €

Z4Y g, we have

) =nh), o (ril £, 070) =TT oF, (raalh™)
Iz (at|f= hAt) H]i Ot (azt’hAt> y M (5t+1|fa ht, “t) =D (5t+1’;lA’t7 at) ) (3)
H (mt|f7 it ) = 1{mt =fe(rtre)}-

e [Sequential rationality of reports] For alli # 0, t, o, € ;, and hi"" = (sithrt,mt,al) €

» L (Rt}

HiR’t such that m; , € Q;, (r],m],r;,) for all 7 < ¢, we have

R (A E OIS0 = SR 1 S Al A EACA R Ao

(fgh»R’t)GZ[thytHQ (fahR’t)GZ[th’tHQ
(4)

o [Sequential rationality of actions] For alli # 0, t, o, € 3;, and hiA’t = (SH_l rit mitt at-) €

3 P ) (2 »

H™ such that mir € Qir (r7,m],r; ;) for all 7 <, we have

7

S a(BrMEM) e ety = Y A (AR a (oo SR

(FhA)eZAL Mg (Fha0)ezAt g

(5)

To understand this definition, note that the conditional probabilities z ( 1, hR’tlhf"t> and

] ( £, AR ’t) in the sequential rationality conditions (4) and (5) correspond to player i’s
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beliefs in the alternative game discussed in Remark 2, where the mediator first chooses a pure
mediation plan f and a copy of the original game G follows each choice of f. In the language
of mechanism design, this corresponds to the designer first unobservably committing to a
deterministic dynamic mechanism, and the players then updating their beliefs about the
mechanism as they play it. Note that in an unmediated game, (i) i reduces to a CPS on Z,
(ii) o ( f, hA’t|h;4’t) reduces to a belief <hA’tlhf’t>, (iii) (4) disappears, and (iv) (5) reduces
to the usual definition of sequential rationality. In the context of unmediated games, the
CPPBE concept is not new: for example, Fudenberg and Tirole (1991), Battigalli (1996),
and Kohlberg and Reny (1997) study whether imposing additional independence conditions
on top of CPPBE leads to an equivalence with SE in unmediated games. In contrast, we will
see that CPPBE and SE are always outcome-equivalent in mediated games. The basic reason
why independence conditions are not required to obtain equivalence with SE in mediated
games is that the correlation allowed by CPPBE can be replicated through correlation in
the mediator’s messages.?”

We first verify that CPPBE is more permissive than SE.?8

Proposition 6 Fvery SE-implementable outcome p € A (X) is also CPPBE-implementable:
that is, SE C CPPBE.

Proof. Fix a SE (0,¢,3), and let (Ok,gbk)2; be a sequence of full-support behavioral
strategy profiles that converge to (o, ¢) and induce conditional probabilities that converge
to . By Kuhn’s theorem, there exists an equivalent sequence of full-support profiles
(ak, u’“) zozl converging to (o, u), where the mediator is now viewed as playing a mixed

strategy. By Theorem 1 of Myerson (1986), the limit of the sequence of conditional prob-

abilities on Z|gv derived from (ak, uk)zozl by Bayes’ rule gives a CPS i on Z|gu. Since

2TMailath (2019) defines a notion of “almost perfect Bayesian equilibrium,” which appears to coincide
with CPPBE in unmediated multistage games, though this remains to be proved. Most other notions of
“perfect Bayesian equilibrium” (e.g., Fudenberg and Tirole (1991), Watson (2017)) impose some form of “no
signaling what you don’t know,” which is not required by CPPBE.

28 As the proof shows, this holds even if the mediation range in the definition of CPPBE is required to be
unrestricted, @ = QV. In fact, Lemma 8 in the online appendix shows that if an outcome p is implementable
in CPPBE with some mediation range @Q, it is also implementable in CPPBE with mediation range QY. It
therefore would have been without loss to require Q = QU in the definition of CPPBE; however, the current
definition makes the connection between CPPBE and SCE more transparent.
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i (FRRRE) = B (£ hRR) and o (0B = B (040
nality of (o, ,3) implies sequential rationality of (o, u, QV, ). Hence, (0,1, QY,R) is a

hf’t), sequential ratio-

CPPBE and induces the same outcome as (o, ¢,3). =

The relationship between CPPBE and SCE is more subtle. The definition of a CPPBE in
the special case where the communication system is direct, € = €*, is similar to the definition
of a SCE. (Of course, CPPBE is defined for arbitrary communication systems €). There are

three differences:

1. SCE requires not only direct communication, but also canonical equilibrium (i.e., play-

ers are required to be honest and obedient).

2. SCE imposes sequential rationality only for players who have not previously lied to the

mediator.

3. SCE requires that a player who has not previously lied to the mediator believes with

probability 1 that her opponents have also not previously lied to the mediator.

These properties of SCE were already noted by Myerson (1986), who argued informally
that they should be without loss of generality.?’ The following result verifies this conjecture,
by showing that the set of SCE outcomes (equivalently, the set of outcomes of canonical NE

in which players avoid codominated actions) equals the set of outcomes implementable in a

canonical CPPBE.

Proposition 7 For any base game ', outcome p € A(X), and mediation range @, there
exists a SCE (1, Q, i) satisfying p° * = p if and only if there exist a canonical strategy profile
o and CPS [/ such that (o, p,Q,i1') is a CPPBE in (I, €) satisfying p°* = p.

Our final result establishes the communication RP for CPPBE.

29 For example, he writes, “...there is nothing to prevent us from assuming that every player always assigns

probability zero to the event that any other players have lied to the mediator... This begs the question of
whether we could get a larger set of sequentially rational communication equilibria if we allowed players to
assign positive probability to the event that others have lied to the mediator. Fortunately, by the revelation
principle, this set would not be any larger. Given any mechanism in which a player lies to the mediator with
positive probability after some event, there is an equivalent mechansim in which the player does not lie and
the mediator makes recommendations exactly as if the player had lied in the given mechanism,” (p. 342).
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Proposition 8 The communication RP holds for CPPBE, with mediation range equal to

the set of all non-codominated actions: ;4 (Tf“, mf) =Ai\D;y (rf“) for alli, t, r'**, and

t
m;.

To prove Propositions 7 and 8, we first establish that every SCE outcome is implementable
in a canonical CPPBE. To show this, we introduce the notions of a “quasi-strategy,” which
is simply a partially defined strategy, and a “quasi-equilibrium,” which is a profile of quasi-
strategies where incentive constraints are satisfied wherever strategies are defined. We say
that a quasi-equilibrium is “valid” if no unilateral deviation by a player can ever lead to
a history where another player’s quasi-strategy is undefined. We show that it makes no
difference whether we consider fully specified CPPBE or (valid) quasi-CPPBE. This result
saves us from having to specify what a player does after she lies to the mediator, and it also
lets us assume that a previously honest player always believes her opponents have also been
honest. Given this simplification, every SCE can be viewed as a canonical quasi-CPPBE.?’

We next establish that every (possibly non-canonical) CPPBE outcome is an SCE out-
come: that is, CPPBE C SCE. This completes the proofs of both Propositions 7 and 8.
Since every CPPBE is a NE, by Proposition 1 it suffices to show that codominated actions
are never played in any CPPBE. We prove this as Lemma 10 in Online Appendix 1. The
logic of this result is that if a player is willing to take a certain action in a CPPBE, this
action must be motivatable for some belief derived from a CPS, which implies that it is not
codominated.

Combining the inclusion CPPBE C SCFE with Proposition 6, we see that every SE-
implementable outcome arises in SCE: that is, SF C CPPBE C SCE. This proves the
“easy” direction of Proposition 5.

In total, Propositions 5, 6, 7, and 8 show that SCE ¢ SE ¢ CPPBE C SCE. This
implies that the characterization of SE-implementable outcomes in Proposition 5 applies
equally to any notion of PBE which is stronger than CPPBE but weaker than SE. Many
notions of PBE that impose some form of “no signaling what you don’t know” fall into this

category, such as PBE satisfying Battigalli’s (1996) “independence property” or Watson’s

30Quasi-strategies are also useful in proving Proposition 5.
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(2017) “mutual PBE.”!

5 Conclusion

5.1 Summary

Our main result is that to calculate the set of outcomes implementable in sequential equi-
librium by any communication system in a multistage game, it suffices to calculate the set
of outcomes of canonical Nash equilibria in which players avoid codominated actions.

We also show that the stronger communication revelation principle holds for conditional
probability perfect Bayesian equilibrium, but not for sequential equilibrium. In particular,
while the set of sequential equilibrium-implementable outcomes equals the set of outcomes
of canonical Nash equilibria in which players avoid codominated actions, it may be necessary
to allow one extra message to implement some of these outcomes as sequential equilibria.

There are however some important settings where the communication revelation principle
does hold for sequential equilibrium. These include games where no player can perfectly
detect another’s deviation, games with a single agent, social learning games, and games of

pure adverse selection or pure moral hazard.

5.2 Discussion

Sequential Equilibrium without Mediator Trembles In defining sequential equilib-
rium in games with communication, one must take a position on whether or not the mediator

” or more precisely whether players are allowed to attribute off-path

is “allowed to tremble,
observations to deviations by the mediator instead of or in addition to deviations by other
players. In the current paper, the mediator can tremble. If the mediator cannot tremble,
one obtains a more restrictive version of sequential equilibrium, which in a previous version

of this paper we called “machine sequential equilibrium” (MSE), to indicate that the medi-

ator follows his equilibrium strategy mechanically and without error. Gerardi and Myerson

31'Watson (2017) defines plain PBE, which does not require the existence of a common CPS across players.
His lectures (available at https://econweb.ucsd.edu/~jwatson/#other) further define “mutual PBE,” which
does require a common CPS.
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(2007; Example 3) showed that, in general, not all SCE outcomes are implementable in
MSE. However, we have shown that Claims 1 through 3 of Proposition 4 hold for MSE, as
does a “virtual-implementation” version of Claim 4. In particular, whether the mediator can

2

tremble or not is “almost irrelevant” in games of pure adverse selection.

Infinite Games The dynamic mechanism design literature often assumes a continuum of
types or actions to facilitate the use of the envelope theorem, while we restrict to finite games
to have a well-defined notion of SE.??> We conjecture that the communication RP for CPPBE
can be extended to infinite games under suitable measurability conditions. This extension
is not immediate, because we build on Myerson’s characterization of CPS’s as limits of full-
support move distributions, which does not apply in infinite games. Nonetheless, we believe
Myerson’s results can be generalized to infinite games by instead relying on an alternative
characterization of CPS’s as lexicographic probability systems (Halpern, 2010). This is an

interesting question for future research.

Non-Multistage Games Some recent models of dynamic information design go beyond
multistage games to consider general extensive-form games that lack a common notion of a
period (e.g., Doval and Ely, 2020). Modeling communication equilibrium in general extensive-
form games is a long-standing unresolved issue, and different approaches are possible (e.g.,
Forges, 1986; von Stengel and Forges, 2008). Characterizing implementable outcomes in

such games is another open question.

References

[1] Aoyagi, M. (2010), “Information Feedback in a Dynamic Tournament,” Games and
FEconomic Behavior, 70, 242-260.

[2] Athey, S. and I. Segal (2013), “An Efficient Dynamic Mechanism,” Econometrica, 81,
2463-2485.

[3] Ball, I. (2020), “Dynamic Information Provision: Rewarding the Past and Guiding the
Future,” working paper.

[4] Battaglini, M. (2005), “Long-Term Contracting with Markovian Consumers,” American
FEconomic Review, 95, 637-658.

32For a recent attempt to extend SE to infinite games, see Myerson and Reny (2020).

30



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Battaglini, M. and R. Lamba (2019), “Optimal Dynamic Contracting: The First-Order
Approach and Beyond,” Theoretical Economics, 14, 1435-1482.

Battigalli, P. (1996), “Strategic Independence and Perfect Bayesian Equilibria,” Journal
of Economic Theory, 70, 201-234.

Bergemann, D. and J. Vilimiki (2010), “The Dynamic Pivot Mechanism,” Economet-
rica, 78, 771-789.

Che, Y.-K. and J. Horner (2018), “Recommender Systems as Mechanisms for Social
Learning,” Quarterly Journal of Economics, 133, 871-925.

Courty, P. and H. Li (2000), “Sequential Screening,” Review of Economic Studies, 67,
697-717.

Doval, L. and J. Ely (2020), “Sequential Information Design,” Econometrica, Forthcom-
ing.

Ely, J.C. (2017), “Beeps,” American Economic Review, 107, 31-53.

Ely, J., A. Frankel, and E. Kamenica (2015), “Suspense and Surprise,” Journal of
Political Economy, 123, 215-260.

Ely, J.C. and M. Szydlowski, “Moving the Goalposts,” Journal of Political Economy,
128, 468-506.

Es6, P. and B. Szentes (2007), “Optimal Information Disclosure in Auctions and the
Handicap Auction,” Review of Economic Studies, 74, 705-731.

Forges, F. (1986), “An Approach to Communication Equilibria,” Econometrica, 54,
1375-1385.

Fudenberg, D. and J. Tirole (1991), “Perfect Bayesian Equilibrium and Sequential Equi-
librium,” Journal of Economic Theory, 53, 236-260.

Garrett, D.F. and A. Pavan (2012), “Managerial Turnover in a Changing World,” Jour-
nal of Political Economy, 120, 879-925.

Gerardi, D. and R.B. Myerson (2007), “Sequential Equilibria in Bayesian Games with
Communication,” Games and Economic Behavior, 60, 104-134.

Gershkov, A. and B. Szentes (2009), “Optimal Voting Schemes with Costly Information
Acquisition,” Journal of Economic Theory, 144, 36-68.

Halac, M., N. Kartik, and Q. Liu (2017), “Contests for Experimentation,” Journal of
Political Economy, 125, 1523-1569.

Halpern, J.Y. (2010), “Lexicographic Probability, Conditional Probability, and Non-
standard Probability,” Games and Economic Behavior, 68, 155-179.

31



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Kohlberg, E. and P.J. Reny (1997), “Independence on Relative Probability Spaces and
Consistent Assessments in Game Trees,” Journal of Economic Theory, 75, 280-313.

Kremer, I., Y. Mansour, and M. Perry (2014), “Implementing the ‘Wisdom of the
Crowd’,” Journal of Political Economy, 122, 988-1012.

Kreps, D.M. and G. Ramey (1987), “Structural Consistency, Consistency and Sequential
Rationality,” Econometrica, 55, 1331-1348.

Kreps, D.M. and R. Wilson (1982), “Sequential Equilibria,” Econometrica, 50, 863-894.
Mailath, G.J. (2019), Modeling Strategic Behavior, World Scientific Press.

Makris, M. and L. Renou (2020), “Information Design in Multi-Stage Games,” working
paper.

Mertens, J.-F., S. Sorin, and S. Zamir (2015), Repeated Games, Cambridge University
Press.

Myerson, R.B. (1982), “Optimal Coordination Mechanisms in Generalized Principal—
Agent Problems,” Journal of Mathematical Economics, 10, 67-81.

Myerson, R.B. (1986), “Multistage Games with Communication,” Econometrica, 54,
323-358.

Myerson, R.B. and P.J. Reny (2020), “Perfect Conditional e-Equilibria of Multi-Stage
Games with Infinite Sets of Signals and Actions,” Econometrica, 88, 495-531.

Pavan, A., I. Segal, and J. Toikka (2014), “Dynamic Mechanism Design: A Myersonian
Approach,” Econometrica, 82, 601-653.

Renault, J., E. Solan, and N. Vieille (2017), “Optimal Dynamic Information Provision,”
Games and Economic Behavior, 104, 329-349.

Reényi, A. (1955), “On a New Axiomatic Theory of Probability,” Acta Mathematica
Hungarica, 6, 285-335.

Sugaya, T. and A. Wolitzky (2017), “Bounding Equilibrium Payoffs in Repeated Games
with Private Monitoring,” Theoretical Economics, 12, 691-729.

Townsend, R.M. (1988), “Information Constrained Insurance: The Revelation Principle
Extended,” Journal of Monetary Economics, 21, 411-450.

Von Stengel, B. and F. Forges (2008), “Extensive-Form Correlated Equilibrium: Defin-
ition and Computational Complexity,” Mathematics of Operations Research, 33, 1002-
1022.

Watson, J. (2017), “A General, Practicable Definition of Perfect Bayesian Equilibrium,”
working paper.

32



Appendix: Omitted Proofs

A Recursive Definition of Codomination

Fix a direct-communication game G* and a set of mediation plans F CF'. For any ¢, given
a correspondence A, = (Ql;t)z 0 with 2}, : Y = A, say that o} € X; is A} ;-obedient if o]
is honest and obedient at every history h! with ¢' > ¢ such that m;, € ;,(y!). Say that a
correspondence 2y = (A, ;). 40 with 2, : V! = A;, is (F,2A})-motivatable if there exists a
distribution 7, € A(F x Y*) such that, for all i # 0 and 2 ;-obedient o7,

S om(fy) (o AR (fy) = Y. m (fyh) w (o), 0% fIR (f.0))

(fyt)eFxY? (fyt)eFxY?

and for all yf and all a;; € 2A;4(yf) there exist f € F and y'; € [, Y] satisfying

fie (i y5s) = aia, (viyls) €Y', and m (4, 9",) > 0.
We now characterize ©;; and its complement 7, by backward induction. We first

recursively construct a finite sequence of correspondences Qllﬁ} , Q[[Tl], e Ql[z% 7] satisfying Ql[; Tl =
D¢.. Define Ql[ﬁ} by QL[TO](yiT ) = 0 for each i # 0 and y € Y;'. Recursively, for each [ > 1,

let QLF;] denote the union of all (F . ﬂ¥71}>—motivatable correspondences 7.3 Let Ly be the

smallest integer [ such that 2@] = ngﬂ*”, and let % = Ql% Tl (Such Lt exists because A is
finite.)

By backward induction, for each t < T, let F; C F denote the set of mediation plans f
such that f;y (y) € D5, () for all i £ 0, ¢' > ¢, and y!' € V" 3 Let AL (1) = @ for each

)

i # 0 and y! € Y;'. Recursively, for each [ > 1, let Qly] denote the union of all (.7-}, 9{?‘”)-

motivatable correspondences 2l;. Let L; be the smallest integer [ such that Al = 52[£1+1], and
let D¢ = A" Finally, let ® denote the complement of D¢ that is, Dy, (1) = A \D5, (v7)
for each i # 0, t, and y!. For a player i # 0, period ¢, and payoff-relevant history y!, an
action a;; € A;, is codominated if a;; € D, (yl).

The equivalence of this recursive definition and the fixed-point definition given in the
text follows from the fact that, for any correspondence B; = (2B8;;), £0 with B, : V' =2 Aiy
that is not a codomination correspondence, there exists a correspondence B} C B, such that
every action in B;\B;} is (F, B7)-motivatable, where F; is the set of mediation plans that

t.35

. . . . . . l
never recommend codominated actions after period Hence, if some action outside 917[5]

is not codominated—so (2@) is not a codominated correspondence—then there exists a

33Tt may be helpful to note that AEI}T (le ) is the set of actions that are played with positive probability
by type y! in the one-shot game where each player j’s type space is YjT7 for some correlated equilibrium
and some prior on [, Y}

BFor v 1 e RUFI\ Y, f;.0(r!*1) is not restricted.

35This fact is established by the first paragraph of the proof of Lemma 3 of Myerson (1986), setting k = ¢
and B! =B, x H72t+1 D,.
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C C C C
correspondence (ngﬂ}) C (ng”) such that every action in <Ql£l]) \ (QIEZH]) = Ql,[flﬂ]\%ly]
is (]-"t, Ql,g”) -motivatable.

B Proof of Proposition 2

Fix a game G = (I', €) and a NE (0, ¢). We construct a canonical NE (5, &) in G* = (T, %)

with p®? = p®?. We take & = o*: players are honest and obedient at every history. The
mediator’s strategy (}5 is constructed as follows:

Denote player i’s period t report by 7;; = (@i¢-1,8it) € Aig—1 X Siy, with A;o = (. In
period 1, given report 7;;, the mediator draws a “fictitious report” r;; € R;; (the set of
possible reports in ) according to afl (5:1) (player ’s equilibrium strategy in G, given period
1 signal §;;), independently across players. Given the resulting vector of fictitious reports
ry = (7"1-71)1., the mediator draws a vector of “fictitious messages” m; € M; (the set of possible
messages in ) according to ¢, (mq|ry). Next, given (8;1,7;1,m;1), the mediator draws an
action recommendation m, ; € A;; according to O'f}l (Mi|Si1, 71, mi1), independently across
players. Finally, the mediator sends message m, ; to player i.

Recursively, for ¢t = 2,...,T, given player i’s reports 7, = (@i r—1,3;,) for each 7 < ¢
and the fictitious reports and messages (r; r,m; ) for each 7 < ¢, the mediator draws r;; €
R;; according to o/} (8!, rf,m!, at,8;,), independently across players.’® Given the resulting
vector 1, = (75,),, the mediator draws m; € M, according to ¢,(m,|r', m’,r;). Next, given
(8it,7it, miy), the mediator draws m;; € A;; according to a{}t(éff rtomb ak, S, rig, miy),

independently across players.?” Finally, the mediator sends message 1m;, to player i.

That p%® = p°® follows by induction from the beginning of the game: given that players
are honest and obedient, 7! equals player i’s period ¢ payoff-relevant history, so, conditional
on each profile (7, rf, m}),, the variables r;;, m;;, and a;; are all chosen with the same

R ]

probabilities under strategy (5’, <~b> in game G* as they are under strategy (o, ¢) in game G.
It remains to prove that (&, &) is a NE in G*. We first show that, for any deviant

strategy & that player i can play against (5_1, g}) in game G*, there exists a strategy o

that yields the same outcome when played against (o_;, ¢) in game G.

Lemma 1 For each i and strateqy 6 € X, there exists a strategy o, € X; such that
Tho—isb — FiT—ix®
Pl P = pi i

Proof. Fix i and ¢, € Xf. We construct o € %; as follows: In period 1, given signal s; 1,
player ¢ draws a fictitious type report 7;; € S;; according to 6;§ (si1). Player i then sends
report 7;1 € R; 1 according to afl (7i1). Next, after receiving message m;; € M, 1, player i
draws a fictitious action recommendation 7, ; € A;; according to afl (Ti1,7i1,mi1). Finally,
player ¢ takes action a;; € A;; according to &;ﬁ (Si1, i1, M)

30T (8t,at, 3,4) € Y, the mediator can draw r;; € R;; arbitrarily (e.g., uniformly at random).

(Rt 2

37 Again, if (8!, at, 5;;) € Y, the mediator can draw r; ; arbitrarily.
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t—1
=1’

her past reports and

Recursively, for ¢t = 2,...,T, given her past signals and actions (s;.,a;)
t—1

her past
fictitious type reports and action recommendations (7., .) _;,
t—1 . . e
messages (7, M;) _,, and her current signal s;;, player i draws a fictitious type report
i € Aiy_1 x Sy according to 6% (st, 7, m!, at,s;;). Player i then sends r;; € R;; according
to o (7, rl, mk,7;,).*® Next, after receiving message m;; € M;,, player i draws a fictitious
action recommendation 1m;; € A;; according to o (7t rt, m!, 74, v, my,). Finally, player i
takes action a;; € A;; according to 6%(5} Tr b, ak, Siv, Tig, Miy).
. . . / ) 5 5 - 5 &
Given this construction, p%i7-#? = p%7-i:¢ by the same argument as for p>¢ = p”¢. =
Now suppose towards a contradiction that there exist i # 0 and &, € ¥ such that

U; (5;, 0, (}5) > Uy (61-, 0, g~b) By Lemma 1, there exists o) € ¥; such that

u; (0}, 0, ¢) = U (5275—1‘7&) > Uy <6i75—i7§5) = (0;,0_4,9) .

This contradicts the hypothesis that (o, ¢) is a NE in G.

C Proof of Proposition 3

We first prove that, in the opening example, the outcome distribution % (A,A/N )+% (B,B,N)
is implementable in non-canonical SE but not in canonical SE. In the online appendix (Ap-
pendix E), we extend the example to prove that restricting to direct communication is with
loss of generality.

Implementability in Non-Canonical SE Propositions 1 and 5 show that any out-
come that is implementable in a canonical NE in which codominated actions are never
played is SE-implementable. It thus suffices to construct a canonical NE that implements
% (A,A,N) + % (B, B, N) in which players avoid codominated actions. Such a NE is: the
mediator recommends m; = A and m; = B with equal probability, plays ag = m,, and
recommends mg = N if s = 0 and my = P if s = 1. Note that each a; € {A, B} and
as = N are never codominated, and ay = P is not codominated after s = 1 as P is optimal

if (a1,0) = (C,p).

Non-Implementability in Canonical SE Since a; = C'is strictly dominated, if a canon-

ical SE implements 3 (4, A, N)+1 (B, B, N), the mediation range Q1 () must equal {A, B}.

That is, the mediator can never recommend m; = C' (even as the result of a “tremble”).
Note that, for each strategy of the mediator and player 2, and for each realization of

<m1,d1,9, s), the resulting probability Pr (mg = P|mq,a1,0, a4, 0, 3) does not depend on
(a1,0), since neither the mediator nor player 2 observes (a;,f). Conditional on reaching

history (m1,a; = C,0), player 1 chooses her report (ay, @) to minimize Pr (my = P) (since

in a canonical equilibrium, with probability 1 conditional on (ml, ai, 0, an, 9, s), ay = P iff

381f ff“ ¢ Y, player i can draw r; ; arbitrarily, and similarly for /m;; in what follows.
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my = P). Since a; = C implies s = 1, and when a; = C player 1 must be willing to report

(&1, 9) = (C,0) for each value of 0, we have

Pr (m2 = Plmq,a; = C.H=n,s= 1) =Pr (m2 = Plmq,a; = C.H=p,s= 1) :
In addition, if a canonical SE implements % (A,A,N) + % (B, B, N), it must satisfy
Pr(mg = P|my,a; = C,s = 1) > 0 for each m; € {A, B}.

Otherwise, given that player 2 never plays a; = P with positive probability when s = 0 (since
s = 0 implies a; # ('), player 1 could guarantee a payoff of % by, after each m; € {A, B},
playing A and B with equal probability and reporting a; = C. Hence, for each m; € {A, B},

Pr <m2 = P|lmy, a; =C.0=n,s= 1) = Pr <m2 = Plmq, ay =C,0=p,s= 1> > 0.
Since player 1 honestly reports each (ai, ) in a canonical SE,
Pr(my = Plmy,a1 = C,0 =n,s =1) = Pr(my = Plmy,a1 = C,0 = p,s =1) > 0.

Hence, along any sequence of completely mixed profiles indexed by k converging to the
equilibrium,

klim Prk(mg:P|m1,a1:C,6’:n,s:1):klim Pr* (my = Plmy,a; = C,0 = p,s = 1) > 0.
(6)

Therefore,

Pr((a1,0) = (C,p)|s =1,ms = P)
— lim Pr* ((a1,0) = (C,p),s = 1,my = P)

k—00 Pr* (s =1,my = P)
— lim Pr* ((ay,0) = (C,p),s = 1,my = P)

k—o0 P1* ((ay,0) = (C,p),s = 1,my = P) + Pr*((a1,0) # (C,p),s = 1,my = P)
< lim Pr* ((a1,0) = (C,p),s = 1,my = P)
koo PrP ((al, 0) = (C,p),s =1,my = P) + Pr* ((a1,0) = (C,n),s =1,my = P)
1 ((a1,0) = (C,p) s = 1) Pr* (my = P| (a1, 0) = (C,p),s = 1)
= (PR =), S )P oy = Pl 0) = (C.p) 5= 1) )
+Pr* ((ay,0) = (C’,n),s:l)Prk( = P|(a1,0) = (C,n),s 1)
~ lim Pr* (my = P|(a1,0) = (C,p),s =1)
k;oo Pr* (my = P|(a1,0) = (C,p),s = 1) + Pr* (my = P| (ay,0) = (C,n),s = 1)

27

= lim

where the second-to-last line follows because § = n or p with equal probability, independent
of a; and s, and the last line follows since (6) holds for each m; € {A, B}, which are the only
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possible values for my. This implies that player 2 will not follow recommendation ms = P
when s = 1 in any canonical SE. Hence, as = P cannot be played with positive probability
at any history in any canonical SE. Given this, player 1 can guarantee a payoff of % by
playing A and B with equal probability after each m;, so % (A,A,N) + % (B, B, N) cannot
be implemented.

D Main Results for Sequential Equilibrium

This section contains our analysis of SE, culminating in the proofs of Propositions 4 and 5.

D.1 Quasi-Strategies and Quasi-SE

We begin by introducing notions of “quasi-strategy,” which is simply a partially defined
strategy, and “quasi-equilibrium,” which is a profile of quasi-strategies where incentive con-
straints are satisfied wherever strategies are defined. We use these concepts to show that
defining strategies and assessing sequential rationality only after a subset of histories (which
necessarily includes all on-path histories) suffices to establish the existence of a SE with the
specified on-path behavior. The basic idea is that strategies outside the specified subset can
be defined implicitly without affecting incentives at histories within the subset.

Fix a game G = (I', €).

Intuitively, a quasi-strategy for player 7 consists of a subset of histories J; C H; and a
strategy x; that is defined only on J;. Formally, for each player i, a quasi-strategy (x;, J;)
consists of

1. A set of histories J; = ", (Jf’t U TR U A Jf’”) with J& ¢ gRY R o
HY x Ry, JM ¢ HM, and JM" ¢ HM x A,y = H!*! for each t, such that (i) for

3
each A" € J' there exists hI ™ € J" that coincides with A" up to the period-t
reporting history, (i) for each hi ™' € JiA T and every hl"' € H[*' that coincides
with A7 ! up to the period-t reporting history, we have hf’t € JiR ' and (iii) the same

conditions hold for JiR s JiA ' and JZ-A "t with th’t replaced by (hf’t,ri,t>, hf’t, and

<h;4’t, a,-7t> , respectively.

T
2. A function x; = (Xf’t, XiA’t) , where X' . J — A(R;;) and xM M — A (A;y)
t=1

for each ¢.

The key requirement in the definition of a quasi-strategy (x;,J;) is thus that for each
history hf’t € Jf’t there is some continuation path of play that terminates at a history
Rt ¢ JiA T+ and conversely any history hf’t reached along the path of play leading to any
terminal history 27! e J*" is contained in J/** (and similarly for b € J). We also
let J ={heH:h;eJ;¥i=0,..,N}. Note that hfo* € JBt if and only if h*" € J** for
all 4, and similarly for (R r;) € JRF, R4 € JA and (R a,) € JAH.

Similarly, a quasi-strategy (1, K) for the mediator consists of
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1. A set of histories K = |J]_, (K* U K**) with K* C R*! x M* and K** C R*" x M'+!
such that (i) for each (r'*!,m') € K’ there exists (r’™,m’) € K’ that coincides
with (r**1 m?!) up to period ¢, (ii) for each (r’*! m”) € KT and every (r'™' m!) that
coincides with (r7™1 m”) up to period ¢, we have (r'™! m') € K*, and (iii) the same
conditions hold for K" with (r**! m!) replaced by (r'™! mi*1).

2. A function ¢ = (¢,),_,, where ¢, : K* — A (M,) for each t.

A strategy profile (o, ¢) has support within (J, K) if (i) for each (r**1, m?) € Kt ¢,(my|rt™,
0 only if (r**1,m!™) e K'*, (ii) for each h["" € J™*', Uft(ri7t|h?’t) > 0 only if (hZR’t rit) €
JE and (iii) for each h e JM, aft(a,-7t|h;4’t) > 0 only if (b, a;,) € JMT

Recall that A®* denotes the payoff-irrelevant component of h®*. Define hf* € H Rtk
if B e J for each i and A € K~ with the convention that 2% € K% vacuously
holds. For each i and h)** € J*', define h'** € H™[h]™"]|;
HER. Define h € HAY ; , and hAt € HA[h™')| ;x analogously.

We say a quasi-strategy profile (x, v, J, K) is valid if

1. JB = Sy, For each t > 1, W € H™ ;. i # 0, 05, 7 > ¢, and h®" with
Pr7iX=o¥ (RR7|pfY) > 0, we have hf’T € JJR’T for each j # i and A" € K™~5+ 39 Sim-

ilarly, for each r, with ProiX-i¥ (hR’T,rT|hR’t) > 0, we have (hR’T, TT) € K7; and for

each m, with Proix-i¥ (R, 77, m.|RfY) > 0, we have <hf’7, Tjrs ij) € JJAJ for each
j # i. The same condition holds when we replace hft' € HT!|; - by h™ € HA| .
That is, no unilateral player-deviation leads to a history where either the mediator’s
or another player’s quasi-strategy is undefined.

2. For each (0, ¢) with support within (J, K), we have Pr®?(hT+t € HT+1|; ;) = 1.9

The first requirement implies that, for every valid quasi-strategy profile (x, ¥, J, K), every
history hf*! (respectively, h') with Pr¥? (hft) > 0 (Pr¥¥ (h4t) > 0) lies in HB|;x
(HM k). That is, HT*!|;x includes all on-path histories under (x,). This implies in
particular that (y,) induces a well-defined outcome pX¥ € A (X). The second requirement
implies that the same conclusion is true for each strategy profile with support within (J, K).

Finally, a quasi-SE (x,, J, K, 3) is a valid quasi-strategy profile (x, v, J, K) together
with a belief system [ such that

1. [Sequential rationality of reports] For all i # 0, t, o} € ¥;, and hf’t € JiR’t, we have

DR (U Y O 0 = A

hRte HRA YY) hBte HRARY| )k

(7)

39If there exists j # i with hf’T71 ¢ JJA’T*l, or if A7 ¢ K71 then ProiX-i:¥ (RRT|AT) is not well-
defined. In this case, the above condition vacuously holds. The same caution applies to the following
conditions.

40Note that, since (o, ¢) is a fully-specified strategy profile, Pr7? is well-defined.
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2. [Sequential rationality of actions] For all i # 0, t, o, € ¥;, and hiA’t € JiA’t7 we have

S s a (et =SS B (W) e (o i)

hA,teHA,t[h;‘ht”J’K hA,teHA,t[h;A,t]lJ’K

(8)

3. [Kreps-Wilson consistency] There exists a sequence of strategy profiles ( o) ) such
that

(a) (0%, ¢") has support within (J, K) for each k.
(b) Pro"e" (th) > 0 and Pro"¢" <h ) > 0 for all i, K € J®*, and B € .

limy_ oo oRk th =X hE) for each i and A € JRt limy,_ oo O'A b hAt =
1,t ) 7

Xit (hf" ) for each i and h™ € JM | and limy_o ¢F (1141, mt) = o, (1, m?) for

each (r'™,m') € K.

(d)

o ok Rt
B, (th|th) N el G

o w (10) - P

k—o0 Pr ok " <hA t>
for each 4, hf"" € J' B e TN RRY € HRRY| )k, and A € HARM| ;5 «

The following lemma shows that it is without loss to consider quasi-SE rather than fully
specified SE.

Lemma 2 For any game G and outcome p € A (X), p is a SE outcome in G if and only if
p = pX¥ for some quasi-SE (x, v, J, K, ) in G. Moreover, for any quasi-SE (x, ¢, J, K, 3),
there exists a SE (o, @) such that (o, ¢) and (x,) coincide on (J, K).

Proof. Fix a game G. One direction is immediate: If (o, ¢, ) is a SE in G, then define
(x, ) = (0,9¢), J& = mg gt = g xR,y JM = HM M = HM x A, Kt =
RY x M1 and K" = R' x M*. Then (x,, J, K, 3) is a quasi-SE with pX¥ = p7¢,
For the converse, fix a quasi-SE (x, v, J, K, ) and a corresponding sequence of strategy
~k
profiles (5’“, ) ) satisfying the conditions of Kreps-Wilson consistency on (J, K). For each
k
k, let
o= omin o min{aR (s A, 54 (@ h), B (il ).
(Rt rie )b,
(h?’t,aiyt)e‘]:l’t+,
(Tt+1 mttl ) cKt+

Let %ft

(hf) = supp & (B, 2k, (M) = supp 6255 (-|BM), and IME(r+, m*) = supp y (-[r*+,
Since (6 g?)k

) as support within (J, K), (hft, Tz'7t> e J* for each h' € J*" and 7y, €

39

m?).



RE (B, (hf"t, aiyt> e JM'* for each by € J' and a;, € A (A1), and (rH!, mitY) € Kt
for each (r'™! m?) € K* and m; € ME(rt 1 m?).

We now define an auxiliary game (Fk, Qf) indexed by k. In this game, each player ¢ chooses
a strategy oF € ¥; and the mediator chooses a behavioral mediation plan #*, subject to the
requirement that their choices coincide with (5]“, qgk) at histories in H|; x. These strategies

are then perturbed so that every history h! occurs with positive probability, but when k is
large all histories outside H|; x occur with much smaller probability than any history within
H|; k. Formally, the game (Fk, QI) is defined as follows:

1. The mediator chooses probability distributions ¢F (-|[r**1, m?) € A(M,) for each (r'+1, mt) €
(R x M*) \ K'. At histories (r'*!,m') € K', the mediator is required to choose

SF(-|rtTt mt) = (Nbf(,|rt+17mt)_

2. Each player i chooses probability distributions 5" (-|hf") € A(R;,) and afgk(~|hf’t) €
A(A;y) for each t, hi™" € H"'\J™ and hAt € HAt\JAt At histories hR’t e J*" and
htt e JM player i is required to choose a R = Gl ( |th) and a (R =

~Ak ( ’hAt)

3. Given (0%, ¢"), the distribution of terminal histories 7+ is determined recursively
as follows:

Given hf € H®' each r;; € R;; is drawn independently across players with proba-
bility

R\ (0| ) I g )i B € I A € b (),
¥ if bt € J A @ RE (B,
(1= 5 |Rigl) o (ol ™) + it nt ¢ I

Given (r'™! mt) € R x M!, each m; is drawn with probability

(1= M, m) )3 (mafr 1) (7 m) € K Ay € (1, ),
N it (7 m) € K* Ay ¢ D, m),
(1= % 100) o (el m) + it (41, m') ¢ K.

Given ht € HA' each a;; € A;; is drawn independently across players with proba-
bility

A \AE (R ) G (aig BN if b e JM A a, € A (hA’t),
E if B e TN A ag, ¢ AL (R,
(1= [As]) o7 (as g ™) + if g

Given b4t € HtA Tand a, € Ay, each s;q € Syyq is drawn with probability p (st+1 |iLA’t, at).
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4. Player i’s payoff at terminal history h**t €¢ HTH! is u, (fOLt“).

The interpretation of the distribution of r;; in part 3 is as follows (the interpretation of
the distributions of m; and a,; are similar): If the current history th " Jies in JiR ’t, then player
i reports each r;; € RY (hF") with probability &R’k(ritlhﬁ’t) (in which case the resulting pair

<hf t,ri7t> lies in Jl-R "), barring a low-probability tremble to a report outside 9‘{’“ (th)

Such low-probability trembles occur with uniform probability <, which is much smaller

than the probability of any report in the support of 6?”“ when k is large. Finally, if the
current history th ' is already outside JiR’t, then player ¢ follows her chosen strategy af’k,

while trembling uniformly with probability <
Note that the strategy set in the game (Fk @) is a product of simplices. In addition each
player i’s utility is continuous in o* and affine (and hence quasi-concave) in o%. Hence, the
Debreu-Fan-Glicksberg theorem guarantees existence of a NE in (Fk, @). Moreover, since
(ak, ¢k) has full support on Z for any strategy profile o* in (Fk , Qf), Bayes’ rule defines a
belief system 3% by .
N AL

e
Pr F,;g (ht)

for all i # 0, all hf, and all h* € H'[h}], where Prp« ¢ denotes probability in game (I'*, €).
So let (5" ,qb ,B )i denote a sequence of NE <5k,g_bk> in (Fk,Q) with corresponding

beliefs Bk Taking a subsequence if necessary to guarantee convergence, let (7,¢,3) =
limy o (5%, &k,ﬁ’k). Note that (6,&5) and (x,) coincide on H|;x. We claim that (7, ¢, 3)
is a SE in (I',€). Since 3 satisfies Kreps-Wilson consistency by construction, it remains to
verify sequential rationality. We consider reporting histories hf *. the argument for acting
histories h/"" is symmetric.

There are two cases, depending on whether or not hf’t € JiR If hf’t ¢ JiR ' then
hIth ¢ JiA T for all hI*t! that follow hzR ' so by inspection the outcome distribution (and
hence player i’s expected payoff) conditional on hf’ ' is continuous in ¥, ¢*, i, and k. Since

gk ( |th> is sequentially rational in (I'*,€) (as <6’“, g_bk> is a NE in (T, €), where the

distribution over A" has full support), it follows that & (-|hf’t) is sequentially rational

n (I', €).

Now consider the case where th J; "t We show that player i believes that h®! €
H™ | 5 ¢ with probability 1. Note that, for each 7 1 € J" and hT}! with (hI 1, A7) ¢
HTHRIHY| s i, there exists A”7M! such that (h] ™, h'_TiH) HTH[hiT“HJK and

Pr ak,tj)k(hT—l—l hT+1)
lim - =
k—oo Ppo k. (hT-H h/T—H)

This follows because in (Fk , Q:) each “tremble” leading to a history outside J occurs with
probability at most ¢, /k (this is an implication of Condition 3(a) of Kreps-Wilson consistency
for quasi-SE and the third condition in the definition of a valid quasi strategy profile),
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while every history h] T € JZ-A TF oceurs with positive probability given (ak, qbk) (this is an
implication of Condition 3(b) of Kreps-Wilson consistency for quasi-SE).
Therefore, for each b € J™ we have 3, (hR’t|hf’t> = B;(h™' ) for all RP €

HP[R")| ) k. Moreover, by the second condition in the definition of a valid quasi strategy
profile, for any o, player ¢ believes that players —i follow y_,;. Hence, the fact that (7) holds
for belief 3; implies that aft(-|hf = Xit (-|hf ’t) is sequentially rational in (I, €). m

In the proofs of Propositions 4 and 5, it will be convenient to describe the mediator’s
strategy as first choosing a period-t “state” 0, € O, as a function of the mediator’s history
(rt,m') and the past states 0" = (01,...,0;,_1), and then choosing period-t messages m; as
a function of the vector (Ht, rt,mt, 0y, rt). When convenient, we will include these states as
part of the mediator’s history.

D.2 Proof of Proposition 5

Here we prove that every SCE outcome is SE-implementable with pseudo-direct communi-
cation, and hence SCE C SFE. As discussed in Section 4, the reverse inclusion follows from
Propositions 6, 7, and 8.

By Proposition 1, it suffices to show that every outcome that arises in a canonical NE
in which codominated actions are never recommended at any history is SE-implementable
with pseudo-direct communication.

Under pseudo-direct communication, we say that player i is faithful at history hl =
(st,rt,mb al) if r;; = (aj;-1,8,) for each 7 < ¢t and a;, = m;, for each 7 < ¢ with
m;, € A;» (ie., with m; . # ). That is, player 7 is faithful at history hf if thus far she has
been honest and has obeyed all action recommendations. Note that faithfulness places no
restriction on player ¢’s action in periods 7 in which she received message *. Faithfulness at
histories h/™" and h? * are similarly defined.

Trembling-Hand Perfect Equilibrium As previewed in Section 3.4, our construction
begins by defining an arbitrary trembling-hand perfect equilibrium (PE).

Fix (ej),ey satisfying e, — 0 and k(ek)NT — 00. For each k, let % be a NE in the
unmediated, ei-constrained game where each player is required to play each action with
probability at least €, at each information set. Taking a subsequence if necessary, (6k)k€N
converges to a PE & in the unconstrained game (T', (). Thus, for each i, t, 3!, and strategy
0%, we have

Z Bi,t (yt‘yf) U; (6|yt) > Z Bi,t (yt|yf) U; (0276—z’|yt) ; 9)

Y Y [y] y ey y;]
where Y*[y!] is the set of y* € Y with i component equal to y! and

, . Pr7 (y)
Bir (W']4)) = I}Lff)lo f)rak—(yt)

7

For future reference, for each y!, let B%t (yl) = Ais\supp 6. (y) denote the set of actions that
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are taken at y! only when player i trembles. For ™" € R\ Y}, we define B, (ri™?) = 0.

Consider now the mediated, unrestricted, direct-communication game (I", €*). Suppose
the mediator performs all randomizations in the PE & on behalf of the players, so that the out-
come of & results if players are honest and obedient: that is, the mediator follows the behav-
ioral mediation plan 9?5 constructed from & as in the proof of Proposition 2. Note that, since
0 is a strategy profile in the unmediated game, &i,t (rt*1,m?) depends only on r!*™*, for all 4, t,
and (71, m?). In particular, the correspondence defined by Q;, (rit!) = supp &i’t (rith) for
all 7 and t is a mediation range.*! Moreover, since player i’s recommendations and player j’s
recommendations are drawn independently, we can write ¢,(m,|r*', m*) =[], ngLt (Mgt
for all t, my, and (r'™!, m?).

Now let <6k, g?ﬁ) denote the profile in the mediated game (I", €*) where players are honest
and obedient, while trembling uniformly over actions with probability ;. Note that "
converges to the fully canonical strategy o*. Define x = o*, ¢ = ¢, J&' = {(s!*1, vt m!, al) :

7 ) » g 1) 7

Tir = (Qir-1,8i7) AN M, € Qi,t (r[“) V7 <t —1} for all i and ¢t (and similarly for Jf’“,
JA and JAT), K= {(rt,mt) s m,, € Qix (r7*™") Vi,7 <t } for all ¢ (and similarly for

K3 (2

KT), and

B P &k,;b hR,t
Bis (hRJ‘hf’t) = lim r~k~—()
’ k—o0 Pre N0 <hf%,t>

for all 4, t, b1, and h™* € HR'[h1*')|; x (and similarly for Bm (hA’t|h;“vt)). For y* € Y[,
we write ) )
B (o) = )3 B ()
hRte HRA R ) o with hRt=yt
and we write 7; <0i70’ii,<~b|hf ’t7yt) for player i’s continuation payoff at the history At

where h/" = (yf,hft> (recall that A™' is the payoff-irrelevant components of h/"") and

hf’t = h;(y}) for each j # i.%2

Lemma 3 <X,1/1, J, K, B) is a quasi-SE. Moreover, for each i, t, o, hf"t € JZ-R’t, and h;R’t €

t . 7 Ryt 7 IRt
JIE with ' = B we have

Z Bi,t (yt|h’zR7t> ai (0*7 (%|}.7“2R’t7 yt> Z Z Bz‘,t <yt|h’f’t> ai (O{D Jii? &‘h;R’ta yt) .
yteYt[hf! yreyth]

(10)

Proof. For each i, let J; be the set of histories where players are honest and all past messages

41Since we construct é in Proposition 2 such that, after rf“ € R;"Hl \ Yt the mediator sends all action
recommendations with positive probability. Hence, Q; (rf“) = A;y for ritt € RFTL\ Y
“2Here, hj(yg) is the history for player j that obtains under honesty and obedience given payoff-relevant

history y?.
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lie in the mediation range: for each ¢,

)

Rt Rt Rt . _
J; = {hi € H" :rir = (ajr-1,57) and m; - € Qi (r],m,7i;) VT < 75} )

At A At .
J: = {hi e H™ i1 =(0ir-1,817) and m;, € Q;, (r],m],1,) V1 < t} ,

T
R+ Rt . p Rt R _
J; = {(hl >7“i,t> cht e JP and iy = (a1, si,t)} ,
At+ Ayt LA At

Similarly, for each ¢, let

Kt = {(TtJrl’mt) c R % Mt M. € Qm (rf,mz,mJ) Vi, T < t},
Kt = {(rt—i-l’mt—&-l) e Rt x Mt mi, € QiJ (Tz,mf,rw) Vi, < t}.

The quasi-strategy profile (x, 1, J, K) satisfies the two defining conditions for validity in G,
since (i) J! = S* by definition, (ii) histories outside .J; cannot arise as long as player i is
honest and the mediator follows v, and (iii) for each i, a terminal history h! ™ arises with
positive probability when players are honest and take all actions with positive probability
and the mediator sends all messages within the mediation range with positive probability if
and only if all reports in k] ™! are honest and all messages in h] ™' lie in the mediation range.

To establish that (X, U, J, K, B) is a quasi-SE, it remains to show sequential rationality:

o (A O D S

hR,teHR,t[th,t”J,K hR,teHR,t[th,t”J,K

nfi) i (o0, 6|™)
(1)

for each i, t, h* € J*' and strategy o} in game (I, €*) (and similarly for 2:*"). Since (i)
h"* € J" implies that player i has been honest, (i) ¢,(r'*, m") = [, ¢, (ri™!), and (iii)
player i always believes that her opponents are honest, for each i, ¢, hf“ te JZ-R’t, and o}, we
can write (11) as

Z Bi,t (yt’hf7t> ai (U*a é’hﬁﬂf’yt) 2 Z Bi,t <yt|hf7t> ai (0—27 0*—i7 &V‘L?t?yt> .
yteyt[ﬁf’t] thYt[lsz”t}
(12)

Moreover, for each y' € Y{[h*], we have

&k p &k b o'lC ¢ &k "
2 (e _ o PrTC )P (mlly) L Pr7? (y) P (miyf)
Bii (V'hi = lim —— 5k = lim —— 55 ¢
k—oo Ppo ¢ (yf) Pr° ¢(mﬂyf) k—oo Pyd” ¢ (yf) Pr° ¢(mf|yf)
~k 7 ~k
P b (ot Pr® L o
= gim S W) iy PR WDy,
k—oo Prd” ¢ (y!) k= Pro (yt ’
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IL ggi’t (miz|ri™). Hence, (12) is equivalent to

Z Bi,t (yt’ﬁf’t) ai (0*7 é,h?,t’ yt> 2 Z Bi,t <yt|ﬁf7t> ai (0-2'7 Uti? &‘hﬁt7 yt) .

yteyt[hlth yteyt[hlt"

By the same argument as in the proof of Proposition 2, (a*, g%) induces the same outcome
distribution in (T, €*) as ¢ does in (T", (). Hence,

Z Bi,t (?Jt‘hﬁt> U; <U*> &’f‘%ﬁ’t»yt> = Z Bi,t <Z/t|iLzR7t> u; (&’yt) :

yteyt [i.bf,t] yteyt [;Zf’t}

In addition, by the same construction as in the proof of Lemma 1, for each hi"* € J** and
every strategy o’ in game (T', €*), there exists a strategy ¢ in game (T, (}) such that

Z Bi,t (yt‘ilfit) ai <U;7 O-iia é’hz&ta yt> = Z Bi,t (yt|]3'f7t> ﬂi (&;7 &*Z|yt) .

yteyt[h!oh yteyt[ht"

Hence, (9) implies (12).

To complete the proof, we show that (12) can be strengthened to (10). To see this,
note that, under strategy o, = o7, since ¢ implements the play of a PE in the unmediated
game, player i’s continuation play in periods 7 > t does not depend on m!. Hence, for each

o

t t IRt t . 7 Rt IRt
hit e g and KR e JP with B = B!, we have

]

Z Bi,t (yt|th’t> u; <‘7*> %Ihf’t,yt) = Z Bi,t (yt‘h?t) U (o*,éﬁ]th’t,yt) .

yteYt[ho) yteyt[h]

Moreover, again because <}> pertains to the unmediated game, players’ recommendations are
independent. Hence, for any o/, that depends on m!, there is another strategy o/ that does
not depend on m! and achieves the same payoff. Hence, for each h!"* € J/*" and b/ e J/**

v PRt JIRE
with h;"" = h;™", we have

o tip R\ — 1o« (LRt t) p tip Rt - /% IRt t
H}T%lx E Bis (y |hi )Uz (Uiaa_iaﬁb“%‘ 7y> —H}f}x § Bis (y | )Uz <Ui7(7_i7¢|hi ay> .
yrey it " yreY iRt

Hence, (12) implies (10). m
By Kuhn’s theorem, there exists a mixed mediation plan i € A (F') such that (o, i) and

<0, (25) induce the same distribution on terminal histories Z in (I', €*) for all strategies o.

Since ¢, (mq|r**!, mt) =[], ngijt (me|ri™) for all 4, ¢, my, and (r'!, m'), we have

pf) = T iy (fi) for all f. (13)

For each t, let F} denote the set of functions f; : Rt — M,, and define F'<! = x,_,F, and
F2' = x,54F,. Thus, (f<', f=") € F for each t. For f<' € F<', we write f<' € supp p~" if
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there exists f=! € F=! such that (f<', =) € supp ji. Define f; € supp fi; and [~ € supp ;"
analogously, focusing on the mediation plan for player .

Rationalizing Non-Codominated Actions We now construct a sequence of mixed me-
diation plans that induce all non-codominated actions with positive probability.
Let
Fr={feF: fi,(r'"") € Ay \ Dip(ri*h) Vi, t,r"}

be the set of mediation plans that never recommend codominated actions, and let
F*>t {f>t c F>t . sz( T—‘rl) c A'LT \ 91t< T—‘rl) VZ T > t TT—‘rl}

be the projection of F* on F=!.* As in Myerson’s Lemma 3, the deﬁnition of codomination
T

requires that there exist L > 1 and distributions ((W,E”)ZL: 1) with 7l € A (F*= x X' x Sy)
t=1

for each t and [ satisfying the following conditions:
First, define 7% = Zz 1 ( ) ﬂil]. Then, for each 4, ¢, and y!, denote the support of fz-it
at y! under 7F by

() = c A there exist f=! and y' with i-component equal to !
SUPPi ¢ \Yi) = it bt such that 7% (fzt, yt) >0A fftt(yt) = My ’

Note that this set is the same for all £ € N. Finally, for each ¢, let
prot (f2, jT+1 mt:T) _ 7_‘,? (fzt iLR,t) ppo ! (;LTJrl mt:TV_.L (ER,t))

where m“T*! = (m,, ..., ms). Note that supp Pr” ™ is the same for all k € N.

T
With these definitions, the required conditions on ((wi”)@) are
=1

1. Every non-codominated action is recommended with positive probability:
SUPpi,t(yf) = Ais\ gzt(yf)

2. At every history reached with positive probabihty under profile (0 7rt) honesty and
obedience is optimal under the beliefs 5” Tt derived from (a 7rt) as k — oo: for each

i, t, T >t, (th, mET) satisfying Pr? "t (th, miT) > 0 (for any k € N), and strategy
0%, we have

Z BZ:M < ty |hRT ;T)a ( | £2, T)

fRteF =t yrey TR

> > CHA (fzﬂ yT|n mﬁ”) w (o 0% 7 yT) . (14)

fztEF*zt,y"GY"[iole’T}

43 Note that in the definition of F*Z*, there is no restriction for f; ,(r™*1) if r™+1 € RITT1\ V7.
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where

* k .
o* e >t 7 R, tT I Prg T (th’ yT7 miT)
Bi,’r ="y |hz‘ » 1Y = lim - , .
Foee Pr? T (y], myT)

Since every reachable history A7 under (0 7Tt) is faithful and f=! sends only ac-

tion recommendations (that is, * is not Eecommended), ( f2ty ) uniquely pins down
hitT = h( ™) given that we have h™' = h (y'). Hence, we write u; (o}, 0%, f=,y") for

i (07, 0%, 24 b (y)).

“Motivating Equilibrium” Construction We next define a sequence of quasi-strategy
profiles (ak oF I K )k in the game with pseudo-direct communication (I', €**), where the
quasi-SE profile for the desired “motivating equilibrium” is given by (o, ¢, J, K) = limy_, (a

Players’ strategies o*: Each player i is faithful: with probability 1, she plays a;; = m;,
after each m;, € A;; and reports r;; = (a;¢—1, S;¢) after each (a; -1, si¢) € Air—1 X S;s. After
receiving message m;; = %, with probability 1 — /g player ¢ takes a;; according to her PE
strategy 6;,(y!), and with probability /g she plays all actions with equal probability.

Mediator’s strategy ¢*: At the beginning of the game, the mediator draws the following
three variables: First, for each player i and each period ¢, independently across ¢ and ¢, he
draws 6,, € {0,1} with Pr(6,, = 0) = 1 — /e¢. Second, again independently for each i and
t, he draws ¢;, € {0,1} with Pr (¢;, =0) =1— (3) 2T Third, independently for each 1,
he draws f; from fi;. Given a vector ¢ = (771, let ¢l = >_; 4 Cix be the l;-norm of ¢.

In each period ¢, the mediator has a state

1 € Useapps 09U (Urceemger-aee (€51)

with initial state wg = <0,f>. Let w = w't'. Given 6§ = 7™ and ¢ = ¢, for each

period ¢, the mediator recursively calculates the state w; and recommends m;; € A;; U {*}
as follows:

e Notation: For each 7, t, and yf_l, denote the number of tuples ( <t 0, f) with

[t € supp fi;" such that, for all 7 < ¢ — 1, the mediator sends m;, = [ (y]) if
;- =0 and sends m;, = x if 0, . = 1 by

(f,07, mi) € supp it x {0, 131 > [ (Air U {x})
#HM;(yi ) = o mis =[] VT <t —1st. 6, =0, . (15)
| mis=*xVr<t—-1st. 6,,=1

Let #M(y 1) = [1X, #Mi(y. ™). In addition, for f<* € supp <!, denote the number

of recommendation strategies f* € supp fi which coincide with f<t for the first ¢t — 1
periods by #(f<") = [{f" € supp i : ['<" = [<'}.

e Calculation of w;: We define the distribution of w; given w,_;, !, 0, and (. If
wi_1 # wo then wy = w;_1 with probability 1. If w; 1 = wg then the mediator calculates
the probability of (6, (,w;_1 = wg, r**t, m!) given o and the construction of #F up to
period t. Denote this probability by p* (0, ¢, wg, r'™t, mt).
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If p*(0, ¢, wo, ', mt) = 0 then w; = w;_; with probability 1. If p*(0, {,we, 7', m?) >
0 then, for each = € F*=!, the mediator draws w; = (¢, f=') with probability

t+1

k

1\ EHDEH2AL+DTC] 1 TR (f2t, rtH)
X X —t2 ,
( > PH(O, Cwo, T ml) g (f<)#M (rt)
(16)
and draws w; = wy with the remaining probability. Note that p* (6, ¢, wp, 7', m?) > 0

implies that 71 corresponds to some y' € Y, so 7 (f=!, r'*1) and #M(r!) are well-
defined.

qk (wt’97 C,WO,T 7mt) =

e Calculation of my: If w;, = <0, f), then the mediator recommends m; ; = ﬁt(rfﬂ) if
Ciy = 0ir = 0, recommends m;; = % if (;;, = 0 and 6;; = 1, and recommends all non-
codominated actions A;; \ D;,(ri*") with equal probability if ¢;, = 1. If w, = (¢, f=")

(2

with ¢t > 1, then the mediator recommends m;; = fff(?“”l).

Definition of K and J: Let K™" = {(r™1, m™™) :my € [T, Ay U {x} \ Dy (ri™) Vi};
for each ¢, K' and K'* consist of all truncations of histories in K7+, Let J/** be the set
of player i’s histories A ™' such that (i) m;; € A;; U {x}\ D (rFY) Vi, (i) 7ip = (@501, Sis)
Vt, and (iil) a;; = m;, Vt with m;; € A;; \ D;(ri*h); the other elements of J; consist of all

. . . . AT
truncations of histories in J;/"' .

Let us give some interpretation of the mediator’s strategy. The mediator’s state w;
indicates whether the mediator currently intends to implement the PE & (in which case

wp = <0, f)) or has switched to implementing some other mediation plan f=" for some
7 < t (in which case w; = (T, f 2T), where 7 is the period when the mediator switched).
The mediator’s state switches at most once in the course of the game: that is, every state wy
except (0, f ) is absorbing. Moreover, the probability that the mediator’s state ever switches

converges to 0 as k — 0o. A crucial feature of the construction is that the mediator’s state
transition probability, ¢*, is determined so that, conditional on the event that the mediator’s
state switches in period ¢, the likelihood ratio between any two mediation plans and payoff

relevant histories ( fzt,iof) and ( f’zt,loz’t> is the same as the likelihood specified by 7¥.

This feature will guarantee that the recommendation to play any non-codominated action is
incentive compatible in the limit as £ — oc.

In addition to possibly “trembling” from the initial state (0, f ) to another state (t, f Z'5),
the mediator can also tremble in his recommendations while remaining in state (0, f)

Specifically, when w; = (0, f), 0;+ = 1 indicates a mediator tremble that sends message *

to player 7. Player ¢ then plays her PE strategy &; in period ¢ but trembles with probability
VEk. Since Pr(6;, = 1) = /g; from the perspective of each of i’s opponents, they assess
that player ¢ trembles with probability /e, X \/ex = €, exactly as in strategy profile o
This argument is formalized in Lemma 5.

Also, when w; = (0, f), ¢;+ = 1 indicates a mediator tremble that recommends all non-
codominated actions with positive probabilities. This event is very rare, so that when player
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i is recommended a non-codominated action outside supp d;; (y!) in period ¢, she believes
that ¢;, = 0 and this surprising recommendation is instead due to a switch in the mediator’s
state in period t. However, if she later reaches a history inconsistent with this explanation,
she updates her belief to ¢;, = 1. This is formalized in Lemma 4.

We note that the quasi-strategy profile (o, ¢, J, K) is valid. To see this, observe that a
profile (o, ¢) has full support on (J, K) if and only if each player i is faithful and the support
of the mediator’s recommendation equals [, A;; U {x} \ D;:(ri*") for each ¢ and (rF1, m?).
Given this observation, the three conditions of the definition of validity are immediate.

Joint Distribution of Histories and Mediator States Given the quasi-strategy profile
(0’“, gbk) just defined, we calculate the joint distribution of (9, (,w, hT“), which we denote
by o".

For each (6, (,wq, 7', m') such that p*(0, ¢, we, r*t, mt) > 0, we have

NT 2(L+1)T¢]
k t+1 ¢ ~ (7 (ek) 1
p(Q,C,wo,r+,m)Z,u<f)>< |AT| X <E) .

Hence, for each (0, ¢, wq, 7", m?) and w; # wy, we have

o 1 e
b (

B (wilf, ¢ we, T mt) < (— = ~ - )
7 ol oo ) en) X,:L(f) H#(f<)#M ()

Since k (e)V" — oo as k — oo, this implies

klim ¢~ (wt|9, {,wo,rt“,mt) =0. (17)

Given yt, f<t € supp i<, 0, and (', let M*(f<%, 0" (", y") denote the set of m! such that,
for each i and 7 = 1,....t — 1, (i) mr = f5H(]) if (;; = 057 = 0, (il) mir = % if (;, =0
and 91'77— = 1, and (111) m;r € Ai’q— \ @w(yn if Ciﬂ_ =1.

For any ¢, if wg = -+ = wy;_1 = (O, f) and w; = -+ = wr = <t, f2t>, we define t*(w) =t
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and f(w) = <f<t,f2t>. We have*t

6k(97 Ca wa hT+l)
= Lumwovty X Pr¥° (wp = wo¥t) x Pr?" (6,¢) x i f(w)) x Pro" (AT f(w),0,¢)
pk(g’ ¢, wo, iLR,t’ mt) (%)(L+1)t+2(L+1)T\§|

T % 1 b (f2tw) A1)
pk(97<7w07hR’tamt) #(f<t(w))#M(hR’t)
+ Z 1{t*(w)=t « Pro" <]°2T+1|}°1R,t fzt(w)>

Fif<t=f<t(w)
X 1{mt€Mt(f<t(w),9t,§tht) and m,=f>t(w) (A7) VTZt}

Canceling out p* and , and Zf et p<t(w) and f<t( 5y We have

5k(97 C? CU, h’T+1>
uwom x Pr?" <wt = wo¥t) x Pr? (,¢) x i(f(w)) x Pr7" (W74 f(w), 6, ¢)
1\ (LADH2(LADTIC] 7§ (£2 (w),hB?) P lozT“ }DlR’t =

#M (hRot)
X 1{mteMt(f<t(w) 6'.¢tht) and mo=f>H(w) (A7) Vr>t}

Conditions for Quasi-Sequential Equilibrium The main remaining step in the proof
is showing that (o, ¢, J, K), together with a belief system /3, is a quasi-SE. (The proof will
then be completed by mixing this quasi-SE with the target SCE outcome.) We first show

that, for each k, i and ¢, 6 <hf’t> > 0 for all A" € J™" and 6 (hiA’t> > 0 for all hM" € JA.

We then compute £ as the limit of conditional probabilities under §%. We will then be ready
to verify sequential rationality given beliefs /3.

We show that 6" (hf’TJr) > 0 for each k, i, and AT = (sith e m!IT el ™) €

1 P2 (2 a2

JATT . Fix any (sTH', a”7') such that (s; ™', s"/" a1 a”f') € XTF!. For each t, define
0;+ = 1 for each j and t; for each t, define m;; = x and (;, = 0 for each j # ¢ and ¢; and for
each ¢, define (;, = 1 if and only if m;; # *. It suffices to show that

(SZT-iﬂ’ sTH pTHL T+ T+ affjl)
happens with a positive probability given oF if r, = (at—1,s;) for each t and a;; = m,, for
each t with m;; € A;;. Since any m;; € A;; \ D;(ri™) is recommended with a positive
probability given ¢;;, = 1, m;; = % is recommended given (;, = 0 and ¢;;, = 1 for each j
and ?, and each player j takes all actions with positive probability given m;, = %, we have

5 <h;4’T+> > 0.

44Here h! is the projection of AT*+! on X!. Since players are faithful, h! fully determines the reports,
and hence 7! does not appear in this calculation. We also write Pr? (iLT“mR’t,th(w)) instead of

Pro (;LT“VLR’t, fzt(w)) since (i) if wy = ( ,fZT) for some 7 # 0, then m; € A, and (ii) players follow all

non-x recommendations given o”.
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We now define the belief system 3 by

B (RPRF) = 37 By (0.Con BRI

07C7wt

where

o (0 G W) = 1
ﬁz,t ( 7(7(")157 | i kggo 5k(hR,t)
for i-component of h®! being equal to h?’t. By construction, this belief system satisfies
Kreps-Wilson consistency given quasi-strategy profile (o, ¢, J, K). Thus, to establish that
(0,0, J, K) is a quasi-SE, it remains to verify

1. [Sequential rationality of reports] For all i # 0, t, o} € ¥;, and hf’t € JZ-R’t,

S B (B )@ (oen) = 3 B (WA i (oo oln™)
hR’tEHR’t[hfyt”‘]’K hR’tGHR’t[hf’t”Lij

(18)

2. [Sequential rationality of actions] For all i # 0, t, o) € ¥;, and h?’t € JiA’t,

Z Bis <hA’t|h24’t> u; (‘77 WhA’t) > Z B <hA’t]h;4’t) U (02, o, q§|hA’t) )

hA’tEHA’t[hf’tHJyK hA,teHA,t[h?,t”J,K

(19)

Mediator States that Explain a Faithful History We now present Lemma 4, which
was previewed above following the definition of (ak, o, J K ) We first define the notion of
a mediator state “explaining” a given faithful history.

Given a faithful history 2™ for some i and t, we say (0,¢) explains hl"" if there exist
f e suppi, 0, and hlj;t such that, for each jand 7 =1,...,t — 1, (i) mj, = a;, = f]T(th)
if (;, = 0;, =0, (ii) mj, =% if ¢;, = 0 and 0, = 1, (iii) mj, = a;, € A;, \ D, (A7) if
Cjr =1, and (iv) p(s,4a]s™"', ™) > 0 (and also p (s1) > 0).

Given a faithful history hf’t for some i and t, we say (t*,() with t* > 1 explains hZR a
if there exist f<'" € supp <", f2*", 0, and h™' such that (i)-(iii) hold for 7 = 1, ...,¢*,
(iv) p(sr41]|s™,a™™) > 0 for each 7 = 0,....t — 1, (v) 7k (fzt*,iozR’t*) > 0, and (vi)

m, = a, = f2°°(h™7) for each 7 = t*, ...t — 1.

Similarly, given a faithful history k"', we say (0,¢) explains hi"" if (i)-(iii) hold for
T7=1,...,tand (iv) holds for 7 = 0, ...,t — 1; and (t*, () explains hf’t if my = tzt*(foLA’t) holds
in addition to the above conditions (i)—(vi).

Let

[1]

= Uogt*gT,ge{o,l}NT (t*, O .
Order the elements of = such that (t*,¢) < (*,) if (i) |¢| < ‘E or (ii) €| = ‘E‘ and t* < {*.
Lemma 4 will establish that (t*,¢) < (£*,¢) if and only if a mediator trembles to 7% with
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Cjr = 1for |~C | values of (j,7) is infinitely more likely than a mediator tremble to %, with
¢;,=1for ‘C) values of (j, 7).

Given the specified order on Z, let £(h*") and £(h") denote the smallest pairs (t*,¢)
that explain 2/"" and h;"', respectively. Since Z is a finite set and &" (hf ’t) and 0" <h;4 ’t> are

strictly positive for all faithful histories hZR " and hf’t, such pairs always exist. Note in addition
that each realization ((, w) defines a realization (¢*, () € Z. Denote the corresponding random
variable that takes realizations in Z by (t*, ¢).

For any ¢! € {0,1}", define (0,¢) = (0,8) where 6'; = (!, Z” =0 for all 7 > ¢, and
¢ ;- =0for all j # ¢ and all 7. Define (t*, Qf) similarly.

Lemma 4 For all faithful histories hX*" and h*', the following claims hold:

1. We have
zim ot ({(&,0) = e} 1) = 1, (20)
Jim " ({(t*,g) (h } h“) ~ 1 (21)
2. FEither §(hf’t) = (O,Cf) for some Ct, or §(hR’t) = ( e ) for some 0 < t* <t and ¢".
Likewise, eitheré“(hf”) (O, C-) for some (%, or &(h ;“) ( ) for some 0 < t* <t

and ¢

Claim 1 of the lemma says that & (th’t) is an infinitely more likely explanation for faithful
history hf’t than any other (t*,(¢), and & (h;“) is an infinitely more likely explanation for
faithful history h:"' than any other (¢*,¢).

Claim 2 says that the most likely explanation (t*, ¢) for a faithful history has the following
three properties. First, the most likely explanation never involves a player j # i receiving a
recommendation outside the support of ¢; while the mediator intends to implement ¢: that
is, (;, = 0 for all j # 4 and all 7. Second, the most likely explanation never involves player
1 receiving a future recommendation outside the support of &; while the mediator intends to
implement &: that is, (;, = 0 for all 7 >t (for hf ' we also have C;i+ = 0; note that player i
has not received her period-t recommendation at history hf’t). Third, for an acting history
hAt the most likely explanation never involves a recommendation outside the support of 7;
Whlle the mediator intends to implement ¢ in the current period: that is, for each h " with
My € Ay N Biy(ri*h), we have €(h™") = (t*,¢!) with 0 < ¢* < t.

Proof. We prove first Claim 2 and then Claim 1.

Claim 2: We first observe that, whenever & (hf’t) = (0,¢), we have ¢ = (!. To see this,
note that whenever (0, ¢) explains 1™, so does (0,(') with ¢}, = ¢, , for all 7 and ¢, =
for all j and 7, since, for each 7 and a;,, we can take (; . =0, 0;, = 1, and m;, = *, rather
than ¢; . =1 and m;, = a;,. Moreover, whenever (0,¢") explains hf’t, so does (O, Cf) As
(0,¢%) < (0,¢) with strict inequality if ¢} # ¢, this implies the observation.

We next observe that, whenever £(h/"") = (t*,¢) for t* > 0, we have ¢ = ¢!". To see
this, note that whenever (t*,() explains hf’t, so does (t*,¢’) with ¢’ ir = (j, forall j and
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T < t* and C;T = 0 for all j and 7 > t*, since m;; is independent of (; . for all j and 7 > ¢*.
Moreover, whenever (t*, (') explains th’t, so does (t*, Cﬁ*), since for each 7 < t* and a; ,,
we can take (; . = 0, 0;, = 1, and m;, = *, rather than (;, = 1 and m;, = a;,. The
observation follows as (t*, Cf) < (#*,¢) with strict inequality if ¢! # ¢. Given these two

observations, Claim 2 for £(h"") holds.
The proof for (k") is the same, except that we also show &(h:™') # (0,¢1) with
¢ = (¢}, 1). To see why this new condition holds, note that whenever (0, CEH) explains

hiA’t, so does some (t*, C: ) with t* =t and z” = (;, for each 7 <t — 1. This is because,
given t* = t, for each %1, each m;; € A;; \ i (ri™!), and each f<' € supp i<!, we have
M € Suppi,t(rfﬂ). Since <t, 5:) < (O, Cf“), we have f(hiA’t) =+ (0, C';H) with (;, = 1.

Claim 1: We prove (20); the proof of (21) is analogous. Let (t*,¢) = £(h").
Denote the smallest probability of any message vector m; ' among those in the support

of gbz by
T
€ = min Hg}ﬁzt <mlt|hf> )

. TH41 3T+1.7% bt
i,m; " ,h; -¢i,t(ml7t‘hi)>0 ViR

T+1

Denote the smallest probability of any signal vector s among those in the support of p

by

T
€y = min Hp (s¢]s",a").

aT+1 sT+1:p(s¢|st,at)>0 Vt ey

We claim that

o ({(t,.0) = 0.Qh) = (II<1_<%)@HW>>

t=1

1\ 2EADTIC 1\ 2407 NT=[¢]
J— 1 _ _
" <k) ( (k) )

N(t=1)
« (yaen o WA (22

‘At’ X§1 X§2‘

The explanation is as follows: Define éf € {0, 1}1t_1 by éw = 0 if m;, # % and 9“ =1if
T

m; ., = *. First, [] (1 - (1)(L+I)t) is a lower bound for the probability that w, = wq for all
=1

k
7 <T. Second,

1\ 2E+DTIC] 1\ 20T NT—[c]
J— 1 o -
(k> <k)

is the probability that ¢ = ( (independently of w). Third, conditional on any w and ¢,

(1 o \/5)|T§t71:mi1,;é*| (@)‘Tﬁi*l:miﬂ—:ﬂ (@)(N*l)(tfl)
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is a lower bound for the probability that 6 = é: and 0;, = 1forall j #4iand 7 <t —1;
moreover, for sufficiently large % this product is no less than (\/5) NGE=1), Fourth, conditional

~ N(t—1)
on any 6" such that 0} = 0: and 6, = 1 for all j # i and 7 < ¢ — 1, for any a’, %

is a lower bound for the probability that player j takes a;. for all j (including j = i) and
7 < t—1 with §;, = 1. Fifth, conditional on w,; = wy for all 7 < T, any ¢, and any 0

satisfying 0% = ét g, is a lower bound for the probability of (m; ) Finally,

Te{l,...,t—1}m; ~#x°
t—i—l

conditional on any a‘, g, is a lower bound for the probability of s;
Similarly, for t* 2 1, denote the smallest probability of any tuple (f="",y",z) in the
support of 7r[] for any t* and [ by
cmin o () P (al f2y) 2
t*>11,f20 eFZY gyt €Yt zeX
ITI'EZ,‘]( (th* 7yt* ) Pro” (x|f2t* ,yt* )>0

We claim that

(uea=weon) = (TH(-()")
X <%)2 (LnTic] ( (%>2(L+1 T) NT—[(|

N(t*—1)

5¢ (@)N(t -1) % T

(1)(L+1)t* 1 (1>L
X | = 5 X | = X Eaq.
k MAaX, jr.icyt # M (hf:t) k =

The first three lines represent the same probability as (22), up to period t* — 1. For the

. . " s g (1)(LADE 1 _
fourth line, (i) conditional on t* > t*, (1) max, it oyt M)

probability that t* = t* (ii) conditional on t* = t*, (%)L is a lower bound for the probability
selecting index I for i3, for each [ € {1,..., L}, and (iii) conditional on t* = t* and I, g, is

a lower bound for the probability of (f= >t , )
In contrast, for each (£, C) # &(h[™"), if (%, () does not explain 2" then 6* ({(t*, ¢) = (7,0}, th’t) =
0. If (#*,¢) does explain A, then

X €1 X €

is a lower bound for the

?

)2(L+1)T’E‘+(L+1)f*

3 (1,0 = (.03 h) < (%

since (%)2@“) s an upper bound for the probability that ¢ = ( and (%) LHDE s an upper

bound for the probability that t* = ¢*.
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Ignoring terms that converge to 1 as k — oo, we have

A (GRS R Gs N N
Jm —— FYANR PR (A TRy T oy G '
0 ({(t Q) = (t*, Q) ) hy® ) (E) maxX; jrtcyt #M(h ) \AT| £1E9E3
(23)

(l)z(L+1)T|E|+(L+1)£*
k

Since either || = ‘E‘ and t* < t* or |(] < ‘5‘, we have

<2L+1 M (L+1)t >—(2(L+1)T|C|+(L+1)t*+L)
2L+ 1)T —(L+1)T — L 1f|§|<‘§‘

>
- L+1-1L if [¢| = ‘g’ and t* < *

> 1.

Hence, the right-hand side of (23) is no more than
1

(er) T : Rt

Since k (5k)NT — 00 by assumption and gy, &, €5, and max, jrcy #M(iLR’t) are constants
independent of k, this converges to 0 as k — oo. Finally, since there are only finitely many
possible values for (¢*, (), this implies (20). m

Sequential Rationality We now establish (18) and (19). By Lemma 4, there are two
cases:

Case 1: Reporting histories satisfying g(hf ’t) = (O,Cf) and acting histories
satisfying ¢(hM') = (0,¢).

Let Q0 = Ufcoupp <0, f) be the set of all possible mediator states wo. Since Pr¢" (wr = weVt|wp) —
1 for each wy € Qo by (17), £(hF") = (0,¢}) implies limy_o 6" (wr € Qolhf"") = 1, and
g(hMy = (0,¢}) implies limy_o 6" (wr € QoA M) = 1.

For each i, t, and y}, fix any action m;,(yf) € Ais \ Bis(y!). With a slight abuse of
notation, we write

: if m;, € Asy \ Bi, ( )
m* hR,t+1 :{ mvé,t 1 it it \ D :
DT Um0 e A\ Bl

where m;, is the corresponding element of hf’tﬂ. For each faithful history hf’t with
S (hZR ’t> > 0, let A(h™") € H*" denote the history where each message m,, is replaced

by m; (W™ € A\ B”( ™) for every 7 < ¢t — 1. That is, we replace each action rec-
ommendation outside the support of i with some fixed recommendation within the support.

Note that Pr’ 7 <)\(hf’t)> > 0 whenever £(h™") = (0,¢!) and 6" (hf’t) > 0: this follows

7
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because, given 6%, players take each action profile a, with probability at least €5/ |4;| > 0 at
every history, and ji recommends all actions in A;; \ B; +(r t+1) in each period with positive
probability. Define )\(hf”) € HZA " analogously.

The following lemma confirms that, whenever &(h7") = (0,¢)) or ¢ (hM) = (0,¢7), player
1’s beliefs in the constructed quasi-SE coincide with those in (&k, [l).

Lemma 5 The following two claims hold:

1. For each h'*' € J&" and ¢! satisfying €(h1") = (0,¢}) and each y' € Yt[hR |, we have

lim &* <y W“) - <yt|>\ (R ) (24)

k—o0
2. For each hiA’t e JM and ¢t satisfying €(hV') = (0,¢)) and each y' € Y! [E?’t], we have
zim % (1) = B (s A0 (25)

Lemma 5 follows from applying Bayes’ rule inductively on t. We relegate the proof to
the online appendix.
We now verify (18). &(hf") = (0,¢!) implies 6*(w; € QolhF*) = 1. Given w; € Q and

T-‘rl)
r]

h®t (13) implies that the distribution of future recommendations m., follows [1; ngj7 (mj,r
for each 7 > t. Hence, Lemma 5 implies that (18) is equivalent to

ST B (B (o Sy ) = S By (VIR ) i (o0 Bl )

e R, 7 Rt
yteYt[h;”] yteYt[h;"]

Finally, since the payoff-relevant component of A(h"") equals that of h/™*, (10) implies (18).
The proof for (19) is analogous.

Case 2: Reporting histories satisfying &(h') = (t*,(’f—*) and acting histories
satisfying ¢(h') = (t*, Cf*), for t* > 0.

The next lemma confirms that, whenever &(h R’t) (t* Cf) or & (hf’t) (t* ¢ ) player

o* ﬂ't*

t’s beliefs in the constructed quasi-SE are given by [3;
Lemma 6 The following two claims hold:
1. For each hl"" € JI*" and ¢ satisfying £(hF)
y' € Y'REY, we have

lim &" ( fzt*,yt\hf’t> = 7, (F”,yt!izf’ﬁmf:t) : (26)

k—oo

(t*a Cf*); eaCh th* € th*, Cmd €aCh

2. For each hi"* € J and ¢! satisfying €(hi"") = (t*,¢1), each fZ'" € F>*, and each
yt € Y[hM), we have

lim 4" ( fzt*,yt|h?’t) = BT, (fzt*,ytll‘%?’t,mf*“> : (27)
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Lemma 6 follows from another application of Bayes’ rule. We again relegate the proof to
the online appendix.

Given & (hf’t) = (t*, CZ**I), player ¢ believes that the mediator and players —¢ do not
tremble after period t*, and that recommendations are independent of  and ( after period
t*. Hence, by Lemma 6, (18) is equivalent to (14), and therefore follows from the definition
of 7k The proof for (19) is analogous.

This completes the proof that (o, ¢, J, K, ) is a quasi-SE.

Final Construction Fix any canonical NE (¢* 7*) in which codominated actions are
never recommended.*® The proof is completed by mixing the “motivating” quasi-SE (o, ¢, J, K, 3)
with this NE (with almost all weight on the latter) to create a quasi-SE that implements the
same outcome.

We construct a sequence of quasi-strategy profiles <6’“, (?ﬁk, J, K ) indexed by k that limit

to a quasi-SE profile (6, b, J, K ) (with the same sets J and K as in the motivating quasi-SE)
satisfying p7¢ = po ™.

Players’ strategies o*: Players are faithful, and after receiving m;; = %, with probability
1 — \/€x player i takes a;; according to the PE strategy 6i,t(foLlR’t), and with probability /e,
she takes all actions with equal probability.

Mediator’s strateqgy ¢": At the beginning of the game, the mediator draws f € F*
according to 7" with probability 1 — % (and subsequently follows f), and the mediator
follows quasi-strategy ¢" with probability %

Letting (6, Eb) = limj_, 00 <6k, g?ﬁk), we have p7? = po ™ .

Since J includes all faithful histories where no codominated actions have been recom-
mended, (6,&5, J, K) is valid. For each 1, t, hf’t € JiR’t, and h®! with i-component hf’t,
define I

B (b =t ),
| b P ()
_ ok
Define Bi7t(h’4’t|hiA’t) analogously. Since Pr? ¢ (h') > 0 for each h™' € J™* conditional on
the mediator following ¢, 3 is well-defined, and hence Kreps-Wilson consistent.

To prove that (6,&, J, K, B) is a quasi-SE, it remains to verify sequential rationality.
Under belief system 3, so long as a player i has been faithful and has not observed a signal
or recommendation that occurs with probability 0 conditional on the mediator following 7*,
she believes that with probability 1 the mediator is following 7* and other players have been
faithful so far. At such a history, it is optimal for player i to be faithful, since (o*, 7*) is a NE.
On the other hand, if player ¢ has been faithful and does observe a signal or recommendation
that occurs with probability 0 conditional on mediator strategy 7*, then she believes with
probability 1 that the mediator is following ¢" and other players have been faithful. In this
case, faithfulness is optimal by (18) and (19).

4> Note that if (¢**,7*) is a canonical NE for some canonical (but possibly not fully canonical) player
strategy profile o**, then (¢*, 7*) is also a canonical NE, where o* denotes the fully canonical player strategy
profile. One way of seeing this is to note that the strategy profile constructed in the proof of Proposition 2
is fully canonical.
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Online Appendix

E Extending the Opening Example

In the extended example, there are four players (in addition to the mediator) and four
periods. The roles of players 2 and 4 are similar to those of players 1 and 2 in the original
example, respectively. The timing is as follows:

Period 1. No signals are observed. Player 1 takes an action a; € {A;, By }.

Period 2. The mediator observes a;. Player 2 takes as € {As, By, Cy} and player 3
takes a3 € {As, Bs}.

Period 3. Player 2 observes 6 € {n,p} such that § = n with probability 3/4. The
mediator takes ag € {Ag, Bo}.

Period 4. The mediator and player 4 observe s € {0,1}, where s = 0 if a; = A; and
either ag = Ag A ag = Ay or ag = By A ag = Bs. Player 4 takes ay € {N, P}.

Player 1’s payoff equals 1¢,,—p,} — 1{ay—conas=p}- Player 2’s payoff is given by

Ao By Ag By
Ay 0—1g=py 1-14-p Ay 1—14q—py 1—14,—p}
By 1-1gapy O0—Tlgepy Bo 1=liapy 1—liapy
Co —3—lgary —3—lgp O 0 0
ap = Al a; = Bl

Player 3’s payoff is constant. Player 4’s payoff equals —1{(; a,.0)2(41,05.p)} 1 {aa=P} -

Consider the target outcome distribution where (i) 1A4; + 1By is played in period 1, (ii)
when A; is played in period 1, 3 (As, A3, Ag) + 3 (Ba, Bs, Bo) is played in periods 2 and 3,
(iii) when B is played in period 1, (Ag, A3, Ag) is played in periods 2 and 3, and (iv) N is
played in period 4. We claim that this distribution is implementable in SE, but not with
¢ ="

Implementability with € # €* Again, it suffices to implement the target distribution in
a canonical NE in which players avoid codominated actions. Consider the following mediator
strategy:

The mediator draws m; € {A;, By} with equal probability.

When m; = a; = A;, the mediator draws my € {Ag, Bo} with equal probability, and
recommends my = Ay A mg = Az if mg = Ay and recommends my = By A ms = By if
mg = By. If s =0, he recommends my = N; if s = 1, he recommends my4 = P.

When m; = A; but a; = B, the mediator recommends moy = Cy, m3 = Az, and my = P.

When m; = By (regardless of a;), the mediator recommends my = Ay, ms = Aa,
mgz = As, and my = N.

It is straightforward to check that this is a NE. Moreover, no codominated actions are
recommended: For player 4, N is weakly dominant and hence never codominated, while P
is recommended only following s = 1. Hence, we need only check that P is not codominated
following s = 1. But this holds, because the event (ay, as, ) = (A1, Cs, p) is compatible with
s =1, and in this event P is optimal.
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Given that P is not codominated for player 4 following s = 1, no action is codominated
for player 2, as each as € {Ay, B2} can be optimal after a; = A, and ay = C5 is optimal
after a; = B; when a4 = P is anticipated. Finally, given that ay = C5 and a4 = P are not
codominated after a; = By, action a; = A; is not codominated for player 1.

Non-Implementability with € = €* Suppose towards a contradiction that such a SE
exists. In what follows, each fraction p/q should be read as limy,_,, p*/¢*, where p*,¢* > 0
denote probabilities along a sequence of strategy profiles converging to the equilibrium.

For each player ¢ and action a; that is played with positive probability in the target
outcome, assume without loss that a; is played with positive probability after m; = a;.
Moreover, since the on-path actions of players 2 and 3 must be perfectly correlated, it is
without loss to assume that, for i € {2,3}, a; € {A;, B;} is played with probability 1 after
m; = a;. Further, to deter a deviation to a; = B; by player 1 following m; = A;, player
2 must play ay = C5 with probability 1 after some message, which without loss we take
to be my = (5. Since player 3 is indifferent among all outcomes, we can also let ag = ms
with probability 1. Finally, since player 4 moves last, the usual static revelation principle
argument implies that we can let a, = m,4 with probability 1. We have thus established that,
for players ¢ € {2,3,4}, a; = m; with equilibrium probability 1 at every history.

Note that Cs is strictly dominated conditional on a; = A; and weakly dominated
conditional on a; = B;. Since player 2 is willing to take Cy after my = (5, we have
Pr (a; = Bi|ms = C3) = 1. Therefore,

Pr(a; = Bi|mse = Cy, a5 = As)
Pr(a; = By) Pr(mgy = Csla; = By) Pr(as = Ag|la; = By, my = C5)
Pr (mg = C3) Pr (ag = Ag|mgy = Cs)
Pr(a; = By) Pr(ms = Csla; = By) Pr(as = As|mg = Cs)
Pr (mgy = C3) Pr(ay = Ag|my = ()
Pr(ay = By) Pr(ms = Csla; = By)
Pr (m2 = 02)
= Pr(a; = Bylmy =C3) = 1.

Hence, if player 2 trembles to a; = Ay after my = (5, she believes that a; = B; with
probability 1, and she therefore chooses her report (dQ,é to minimize the probability that

a; = By and a4 = P. Since a; = By implies s = 1 and player 2 can always report as if she
took as = (5, this implies that

Pr (a1 = Bl,CL4 == P|m2 == CQ,(IQ = AQ) S Pr (a1 = Bl,CL4 == P|m2 == CQ,CLQ = Cg) . (28)

Note that if Pr(a; = By, a4 = Plms = Cs,as = A3) < 1 then player 2 would deviate to A,
after my = Cy. So this probability must equal 1, and hence (28) implies

PI‘((Il == Bl,CL4 == P|m2 == 02,(12 == CQ) =1.
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Since a; = By implies s = 1, we have
Pr(a; = By,mq = P,s = 1lmy = Cy, a3 = Cy) = 1.
Finally, since a; = C5 with probability 1 after mo = Cs, we have
Pr(a; = Bi,as = Cy,mg = P,s = 1lmy = Cy) = 1. (29)

On the other hand, since player 4 is willing to take P after s = 1 and my = P, we have
Pr(a; = A1,as = C3,0 = p|s = 1,my = P) = 1. In particular,

Pr(m2 :CQ)Pr(al :Al,ag :CQ,QZP,TTM:P,S: 1|m2 :CQ)
+Zm27502 Pr (mg) Pr(a; = Ay,as = Cs,0 = p,my = P, s = 1|my) .
Pr (mq = C5) Zalm Pr(ai,as,my = P,s = 1lmy = Cy)
+ Zm#CQ Pr (my) Zal’az Pr (a1, as,my = P, s = 1|my)

Since (a +¢)/(b+d) < (a/b) + (¢/d) for all non-negative numbers a, b, ¢, d, the left-hand
side is no more than
Pr(a; = Aj,as = Coy,0 = p,myg = P,s = 1,|mg = Cs)
Zalm Pr (a1, a9, my = P,s = 1|my = C5)
Pr(ay = A1,as = Co,0 = p,myg = P, s = 1|my)
* Z > ar.ay P1(a1,a2,m4 = P, s = 1|my) '

ma#Cs

Note that by (29),

Pr(a1 :Al,ag:Cg,sz,m4:P,3=1,|m2:C'2)
< Pr(a; = Aj,a3 =Cy,mg = P,s=1lmy =C3) =0

and

ZPr(al,ag,m4:P,3:1|m2:C’2) ZPI‘(CLl :BI,QQICQ,m4:P,S:1|TTL2:CQ>:1.

ai,a2
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Hence,

] Z Pr(ay = Aj,as = Co,0 = p,myg = P,s = 1|my)

mao#Co Zal,ag Pr (ah A2, My = P, S = 1|m2)

Z Pr(a; = Aj,as = Co,0 = p,myg = P, s = 1|my)
PI‘((Zl :Al,a,g :Cg,m4 :P,Si ].‘TTLQ)

IN

ma#Cs
_ Z Pr(a; = Ay, a = C3,0 = p,my = P|my)
Pr (a1 = Al,CLQ = Cg,m4 = P|m2)

ma#Cs
_ Z Pr (a1 = Al,CLQ = C'2|m2) Pr (9 =Pp,My = P|CL1 = Al,mg,ag = 02)
Pr (Gl Al, a9 = Cg|m2) Pr (m4 P|a1 Al, mo, Gy = CQ)

ma#Cs
_ Z Pr (0 = p,my = Play = Ay, ma, a2 = Cs)
Pr(my = Pla; = A1, ma, a5 = Cy)

(30)
mo#Co

where the second line drops the event (ay, az) # (A1, C2) from the denominator and the third
line uses the fact that a; = Cy implies s = 1.

Now, after ay = Cs, player 2 is strictly better off when player 4 takes N if a; = A;, and
player 2 is indifferent between player 4’s actions if a; = B;. Moreover, Pr (a; = A;|msy) > 0
for each my # Cy. Hence, for each my # Cy and 6, after (mg, ay = Cy, 0) player 2 chooses

her report <d2, 9) to minimize the conditional probability that ay = P given a; = Ay, and
hence to minimize the conditional probability that my = P given a; = A; (since ay = my
with probability 1). Therefore, for each my # Cs,
Pr (0 = p,m4 = Pla; = A1, my, a9 = Cy)
Pr (0 = pla; = A1, ma,as = Co) Pr(my = Pla; = Ay, ma, a9 = Co,0 = p)
(0 = p)Pr(my = Play = A1, ma, a3 = Cs,0 = p)
(

= Pr(6=p) (mm) Pr <m4 = Play = A1, ma, a3 = Cy, 6 = p, dg,@)
asz,0

= Pr (0 =p) min Pr <m4 = Play = Ay, mg, a0 = CQaané>
asz,0

= Pr(0 =p)Pr(my = Pla; = A1, mg,ay = Cs),

where the fourth equality follows since the distribution of my is independent of 6 conditional
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on (&2, 9) . Thus,

Z Pr (0 = p,my = Play = A1, ma, a9 = Cy)

— Pr (m4 = P|a1 Al, Mo, Qg = Cg)

_ Z Pr (0 = p) Pr (my4 = Play = A1, ma, a3 = Cs)
Pr (m4 == P|CL1 == Al,m27a2 == 02)

ma#Co

1 1
me#C2

This contradicts (30).

F Proof of Lemma 5

We prove (24); the proof of (25) is analogous. We will prove the following: for each i, ¢, faith-
ful history A" with ¥ (hf’t) >0, ¢!, and yt € YI[h™, there exist numbers F(h% 1) > 0
and el (hf’t, ¢t yt) > 0 such that

O, CLyflwor € Qo) = (0, ) (P PRI, o) + eff (R, CLyt) ) 1
e (hf»“, Cﬁ,yt) (31)

(1)2(L+1)T S .
k

(31) is sufficient for (24), since the former implies, for each ¢! € {0,1}"! and y* € Y![A*],

Tim 6" (4[4, )
= lim & (y]CL A wr € Qo) (by §(0f) = (0,¢) and (17))
i BT, ¢y (P H AR, 1) + ef (h )
= 1m
S v PR G (P PR, ) + eff (R, L) )
P IO, o) + eft (W, ¢yt
= lim
k200 S vy PO, 31 + g ey e (i L
gteyt[hh) i gteyt[ho ’
y Pr7 FA(h{™), ")
= lim pr —
2 S e PR, 1)
= B (REI0).

46There is a slight redundancy in this notation: the payoff-relevant part of )\(hf’t) equals y!, since the

(by (31))

payoff-relevant component of A(h/"") equals A/ and y* € Y[h11).
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where the second-to-last equality follows as Pr&k’ﬂ()\(hf’t), y) > e1g, (€)™ /(T A7), ef (hf’t, ¢, yt> <
(%)2(LH)T T, and k (e,)N" — oo.

We prove (31) by induction on t. Taking @ (R, ¢}) =1 and eff (hf’l, C%,yl) =0, (31)
holds for ¢ = 1.

Suppose it holds for ¢. We prove it holds for ¢ 4+ 1. For the rest of the proof, arbitrarily
fix h* e JEH ¢ e {01}, it € YR, and ¢, € {0,1}. Whenever we write
(at, S¢11), it means the components in 3.

Since 0, ¢, and randomizations under (6’“, /]) are independent across players, we have

SE (R Lyt wr € Qo)
= §"(hF ¢yt lwr € Qo)

1\2(LADTY PRt
I{Citzo mi 1 =ai 1€A; \Bio (b t)} ( ) ( (E) ) O-’iﬂf(hz' )(az t)
2(L+1) Rt N
| e amegvE (1= BT) (0 = V&) i)+ 4
+1 Rt (l) T —
{Cz t_l mq t=aj, teAz t\gz t(h )} k |A , yt(hi 775)‘
2L+1)TY .
s 05,1=0,(;,=0 (1= V&%) (1 - (%) > G5,¢(y5)(ajz)
2(L+1)T . .
x 3|} Ty mr, im0 v (1= (7Y (1= VAR G (i) + 345
0_it,¢_;, 1\2(L+1)T 1
t X Hﬁél Cie=La;jt€A;:\D;¢(y) (k) |Aj,t|*|©j,t(y;~)|
xp(se41ly’s ar).- (32)

By the inductive hypothesis, the first line of (32) equals

PR (P F ), o) + f (1, Cy') ).

Note that

& i : - Sk
Pr ’“(a_i,t|/\(hft),yt) = Hj;éi ((1 — €k) Uj,t<y§')<aj,t) + |A’t|> :
]7

Define

2(L+1)T\ ~ (3Rt
1{Cit:0 mit:aiteAit\Bit(ilRt)} (1 - \/_) (1 - (%) ) Ui,t(hz' )(ai,t)
5 (7 2(L+1)T ~ (3R,

P (hz}'%’t7mi7t) Qi) Ciﬂf) = +1{<Z +=0,m; 1= *}\/_ (1 - ( ) ) ((1 — \/€—k) O-i,t(hz' t)(ai’t) -+ %)

IN2(LA+1)T 1
+1{Q,til»mi,t:ai,tGAi,t\Qi,t(Ef’t)} (E)
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and

[lsi0, =0, =0 (1 = v/E&) (1 (1 W) 65041 (a30)
€k (yt+l) = Z x ]I j#1:05,0=1,(; =0 VEk ( ( 2 ) ((1 - \/_) th(y])(aj,t) + |ﬁ|)

1
k
Gfi,t,C_i,t ) L+1)T I

| A= |91 ()]

X HHAZ (=105t €45,:\Dj, t(y] (

— P P (a_ i  ANBEY), o)

1\ 2E+DT 1{a~t€A‘t\©'t(yt')} Sk
_ 1 » 7, 7, J,t\J 4 _ (1 _ 6]{:) 6—.7 (yt)<a7 ) — .
(k) Wi \ T4, = 2,00)] T 1A

Substituting these into (32), we have

SF(REE Ly ¢ lwr € Qo)
= R ) (P P OB,y + eff (b CLy'))
X Dy, (fOLR Mgy Gty G t)
< (P (asa MBS o) + @ () )
xp(si1ly", ar)- (33)
Next, define
Py, (ilf’ta Mty Qi t, Ci,t)

R/p Rt+1l ~t+1 Rt t
o (b G = o (b ) X ——— e
P (g (), g )

We can write

5k(hf’t+1’ CfﬂaytHWT € Qo) (34)
Pro" B (AR, o) x Py (a_; | A (R, yt)

= Ry [P (i (B, aul ) < plsiialy’ )

eft (R cLyt)

Y

where el! (hR RN yt“) is defined to satisfy this equality given (33): that is,

(hR 41 <t+1 t+1>

() P P (), o)
teft (b cz,y)( o A )t (y)
).

x Py (g, (! am|y) plscialy'sac).
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Since hf’t is faithful, the distribution of player i’s message and action in period ¢ is fully
determined by her own payoff-relevant history hf"t. Hence,

Pe™ 7 (i (1), ) = Pr? (i (), @ MRS, o)

Given this equality, we have
~k =~ ~k ~ “k ~ " °
Pr (A, y') x P (ayy MBE), o) x P (st (W), g 1) < plsial o)
= PR, .
Substituting this into (34), we have
(R Gy wr € Qo)
= QR (P OB,y + eff (B Ly )

Finally, we have

) i (hf’tﬂ’ GH’ t+1) . ér (y'™) K (hf’t’ Cf’ yt) S (ot
i, 1\ 2(L+1)T < Im = rmr T~ egenr (LtHe (¥"))
(%) (%) (%)
< 14t
ék(yﬂ'l)

where the last line uses limy_., W < 1 (and hence ¢ (y'™!) — 0 by (16)) and the

1
(zR(hR’t,g’%,yi) .
’“)’2(—L+§)T < t. Hence, (31) holds for ¢ + 1, as desired.

(+
G Proof of Lemma 6

We prove (26); the proof of (27) is analogous. Let 3! = h*'. By definition of Bft e (26) is
equivalent to

inductive hypothesis that limy_.

k (F20° Y Prot (yt] £217 ot
lim 5]45 (th ’yt|hf,t> — lim Ty (f Y ) r (y |f Y ) (35)

k— k— F>px ~px o () Fope o~ )
- X eyt o T (fzt g )Pr (ytlf =y )

From the definition of &%, §* <f2t* Lyt

hf’t, t*, gf) equals

o (207 P (Y2 yT) Bill CiD

k. (fz::*’gt*> Pr7 (gt|f2t*’gt*> B, H#i éjb7
(36)

AD gz o (57 5 ),

J#

A ~t Lo t] F>t* <t* pt* <t* pt* ot
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where the summation is tal*ien over = € supp s, 01 € {0,1}*" 1, and (fj<t ,0§*, ) e
supp ;" x {0, 1} x [T (A, U{x}) Vj, and we define

(1 (L+1)t*+2(L+1)T . 1
A= (E) 1 ’ ?ﬁ - #M-(y?*)’
Ci = #M; () ij #M; (**)’
D = D =

L ene e <im0 )} Lmerenrer g e 0 010}
Note that A and B; cancel in (36). Moreover, we have

00 01 o1 1
D = D7 xDixD; XHJ#Z( XD]‘)’
N — 01 ol M1
D = DPx D x D x []; (D x D}) .

where

D% — 1 . DOl =1
i {m,.r:fff (y7) Vr<t*—1s.t. Ci,7=9i,-r=0}’ {mI r=x ¥7<t*~1s.t. (; ;=0 and 0; T:l}’

ol __ 0 _

Di - 1{mi,7-eAi,T\©i,T(y.z—) Vr<t*—1 s.t. Ci,T:]'}, DJ - 1{771] T_f]<:* (y ) Vr<t*—1 s.t. 9] 7__0}
1 _ 0 _

Dj - l{mjn—:* Vr<t*—1s.t. 05-=1}s Dj - ]'{mJ ,-—ff,ﬁ (§7) Vr<t*—1s.t. 0; 7——0}

Nl _
D] - 1{mj77-:* Vr<t*—1 s.t. 9j77—=1}'

(The pneumonic here is that the first superscript of D; indicates the value of §; € {0, 1},

where e indicates that 6; is not specified, and the second superscript indicates the value of

¢; € {0,1}. For player j # i, the superscript of D; indicates the value of 6; € {0,1}.)
Having cancelled A and B;, since (i) the term D D% D#! does not depend on ( fj<t 0" m

(i) DPDY'Det is the only term that depends on (f~",0") in the numerator of (36), and

(iti) TL,. (C'jD?Djl-) is the only term that depends on (fj<t*,0§*, ) i the numerator of

(36) equals

D DPDEDM x| m (1) P W) Y T (GD)D))

<t* pgt* <t* pt* o t*
005 (fj 0] M )j7ﬁi

Since DYDY D! also does not depend on f=! and y' ;, the denominator of (36) equals

) J ’ )jil’

S oprpitort <[ Y A (L) (1P 5) Y T (GDID!

<t* pt* ot t[yt] F>t* <t* pt* mt*
o0 .0; greYtyi], f= (f 05 m; )j#
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Moreover, < g v C;D?D; = 1 by (15). Hence, (36) equals

wh (77 ) Pr7 (67 ") |
p teYty!], f2 e < > Pr? (?J |f27, ~t*)

Taking the limit £ — oo, we obtain (35).

H Proof of Claims 1-4 of Proposition 4

We postpone the proof of Claim 5 to Appendix J, since it relies on results proved in Appendix
L.

H.1 Proof of Claim 1

We first show that, if an outcome can be implemented in a NE in which no player can detect
another’s unilateral deviation, it can also be implemented in a canonical NE in which no
player can detect another’s unilateral deviation.

Lemma 7 For any game G = (T, €) and NE (0, ¢) withsupp p7* = U, ;.0 Uy ey, supp py” "
’ J

for all i # 0, there exists a canonical NE (6 q~b> in game G* = (I, €*) such that p°* = pé"z’

5.8 —js®
and supp p; P = Uizio U&;ezj supp pl for all i # 0.

Proof. Fix such a G and (o, ¢). Let (&, &5) be the profile in G* constructed in the proof
of Proposition 2. Recall that ,0&’(;5 = p°?. By Lemma 1, for each i # 0, j # 4, and &;- € Xy,

g 10——]7¢ &‘/jv&*j7¢

there exists a strategy o’ € ¥; such that p;” X . Hence, we have

5'7~ O’7 50 ea ¢
Supp p; ¢ = Supp p; U U sSupp Plj 3 U U Supp sz - supp Pl
j#1,0 0%, €35 J7#1,05€xy

n
Thus, let (0, ¢) be a canonical NE in game G* = (T, €*) such that supp p7 = UjzioUo ex:

supp pjj’a_j’d) for all i # 0. We first construct a (possibly non-canonical) SE in G* with out-
come p°®. Then we construct a canonical SE with the same outcome.

Non-canonical SE construction: Denote the set of on-path histories for player i by H, =
{h; € H; : Pr™% (h;) > 0}. Since (o, ¢) is canonical, h; € H; if and only if h; € supp p7* and
rit = (ait—1, Si¢) and m;; = a;; for all t.

For each k, let o¥ denote the perturbation of o; where player i trembles uniformly with
probability |R;:|/k at each reporting history hf’t € HiR ' and trembles uniformly with
probability |A;,| /k at each acting history h* e H.

For each k, let (Fk (’S*) denote the constrained game where the mediator follows strategy

while each player ¢ is require o play o;; at each on-pa 1story n.” € A",is
¢ while each pl d to play % (hF') at each th history h'* e H*'
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required to play afgk (hf’t> at each on-path history hf’t € f]f‘ ' is required to send each

report with probability no less than 1/k at each off-path history th’t € HiR A\ fIlR ' and
is required to take each action with probability no less than 1/k at each off-path history
hiA’t € Hf’t \ f[f"t. By standard arguments, this game admits a NE (5’“,¢). Taking a
convergent subsequence if necessary, let (7, ¢) = limy_. (6%, ¢). Clearly, p°* = p7?.

Let M, (hf’t, Ti,t) denote the set of messages m;, that player ¢ receives with positive
probability at history (hf’t,riﬂf) under profile (6’“, ¢). Since &% has full support, this set

depends only on player ¢’s reports and messages (rt“, ml?) at history (hf”’t, ri,t>. Therefore,

% 7
we can define a mediation range () by Q;; (rtH, m"f) = M;, <hf’t, ri7t> for all 4, t, ritt m?

7 7 7 ) 2

and hf’t such that (Tf“, mf) equals i’s reports and messages at (hf’t, r@t).

For each k, let ¢" denote the perturbation of ¢ where the mediator trembles uniformly

with probability |Q; (ri", m!)| /kV1Z over messages m;; € Qi (ri™", m!) at each (r™, m}),
_k ik

independently across ¢ and t. Define a belief system [ as limg_, pro"9", By construction of

the relative tremble probabilities for players and the mediator, for each i, t, and " € HR|q,

we have o k
3o (R = Tim Pa?™* (WA = lim PO (),

and similarly for 6i7t(h‘4’t|hf’t).

Let J be the set of histories compatible with the mediation range (), and let K be the
set of the mediator’s history compatible with the mediation range Q).

We show that (7, ¢, J, K, ) is a quasi-SE in G*. The two conditions for validity hold since
the messages are within the mediation range as long as the mediator follows ¢. Consistency
of 3 is by construction. Sequential rationality at off-path histories h; € J; \ H; follows from
a standard upper hemi-continuity argument. To verify sequential rationality at on-path
histories, fix hf’t € fIzR ' note that

Bua (W) = Tim Pa7 (PR = Proe (WPRE) = Pro (1

i PGy

where the second equality follows because Pr7¢ (hf’t> = Pro? (hf"t> >0.Let H={h e J:

Pr7¢ (h) > 0}. (Note that H is not necessarily equal to [], H;.) Since Uyrex, SUPP p;;’gﬂ'"p —

supp pj"z) for each j # i, we have
Prouo-i (hJTH € supp p}”d) Yy # i|hR’t) =1

for all K" € HR' and o} € £*.47 Since (o, ¢) is canonical, with probability 1 conditional on
it e HR a;. = m;, and r;, = (aj,—1, ;) for each 7 > t. Hence,

Pu7te= (W4 € I Wj £ ™) =1,

47Note that Pr7?~? is well-defined since (6,90,J, K) is valid.
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Finally, since o_; and &_; coincide at all on-path histories, we have
Pr7to= (RETE € ;) A ") =1, (38)

By (37), player i’s belief over h®t € JRt at hf’t under [ is the same as the conditional
probability distribution over hft € JR at b under (o,¢); and for each hft, by (38),
the conditional probability distribution over Z induced by (o%,5_;, ¢) is the same as that
induced by (0%, 0_;, ¢). Hence, since (o, ) is a NE, o, is sequentially rational at h/"". The
argument for acting histories hf te ]f[ZA " is analogous.

Canonical SE construction: First, construct a canonical strategy profile (7, q~b) from (7, ¢)
as in the proof of Proposition 2. As in that proof, we let » and m denote the mediator’s
fictitious reports and messages, and let 7 and m denote actual reports and messages. Here
we also let h®* € HE' and h** € HA' denote the reporting and acting histories without

fictitious reports or messages. Thus, (N, &) is a canonical NE satisfying ,057‘2’ = p°?. To

complete the proof, we construct beliefs f3, subsets of histories J and K, and a mediation
range () such that (& 0. J, K ﬂ) is a quasi-SE and, for each 4, J; includes all histories where
player ¢ has not lied to the mediator or received a message outside the mediation range.

For each k, let (6" (b ) denote the perturbatlon of (&, ®) where (i) players report honestly
with probability 1 at all reporting histories h 3 (11) players tremble uniformly over actions
with probability |A;+| /k at all acting histories hMt | and (iii) the mediator trembles uniformly
with probability |R;;|/k when she draws ﬁctltlous report 7;, at history (71 rt m! m?')
(but does not tremble when he draws fictitious messages m; or recommendations 7). By
construction, for each s”+1, rT+1 mT+l and a”*!, we have

PI' ,¢ ( T+1,TT+1,TTLT+1, CLT+1) PI' kb ( T+1’ rT—f—l’ mT—i-l’ aT—l—l) ) (39)

Let Mzt (h nt) denote the set of messages m;, that player ¢ receives with positive

- ~k
probability at history (hf’t, ﬁ,t) under profile (5%, ¢ ). Since players —i take all actions with
positive probability and the mediator selects each fictitious report with positive probability,

this set depends only on player ’s reports and messages ( f“, T f) at (ﬁf’t, fi,t) Therefore,

2

we can define a mediation range Q by Q”( Pt oml) = M;, <ﬁf’t,f¢,t> for all 4, ¢, 71

’L

mt, and th such that ( L g ’?) equals player i’s reports and messages at (hi * fi,t>. By

construction, Pr? k.o <mi7t|hi ’ ,f@t> > 0 if and only if m;, € ta ( Fitt Th’?).

7

~ ~L ~k ~
For each i, let J*T equal the set of histories A7 "' such that Pr’ ? <h?+1> > 0. Let

T+1 T+1)

KT+ equal the set of mediator histories (f 1M such that there exists 6 € X such
~ 7k ~ ~
that Pr>? (7F7+1,m7*1) > 0. Let the other elements of J and K include all truncations of

histories in J4T+ and K7+, Since .J; includes all histories where player 7 has not lied to the
mediator or received a message outside the mediation range, (7, ¢, J, K) is valid.
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Define a belief system [ on (j K ) as limy o Pr‘}k’g’k. This is well defined because

L~k ~ 1~k ~ ~ ~ ~ ~
P17 ? (hF") > 0 and P ? (A > 0 for all i, t, K™ € J&' and b € J*'. By construc-
tion, [ is consistent, and for each A" € J*' and A®* with Bi,t (BR’t|l~zf ’t> > 0, all players
have been truthful at A%, o

It remains to show that (7, ¢, J, K, [3) is sequentially rational. We prove this for reporting

histories; the argument for acting histories is analogous. Suppose towards a contradiction
that there exist i # 0, t, h;"" € J/*', and a strategy &) € ¥} such that

P IR TRt — ~/ ~ 217 R,
Z 61‘,7& (h 7ta"ﬂtﬂfnqhi >ul (U;7U—i7¢|h t77nt7mt>

RRAEHRLRY| 5 et mt

> Z Bi,t (ﬁR7t7 rt7 mt|]~1f7t> U; (6'7 &lﬁR’t7 Tt? mt> .

hRtcHRt [ﬁ?’t} \j,f(ﬂ"t mt

Here, (3 naturally extends to the belief about the profile of the history A%* and fictitious
reports and messages (r!, m'). This implies that there exists (rf, m!) with 3, , <rf, m§|ﬁft> >
0 such that

Z B’i,t <ITLR¢> Tt? mt|ﬁ1}'%7t7 T;;’ mf) ’az (5-;a 6—2’) &SV}'RJ’ ,,,,t’ mt>

hRAEHR LR 5 2 ort mt

}: P> TRt .t tizRt t t\ = ([~ JI1LRt .t t
> Bi,t(h 7T7m‘h‘i 7Ti7mi)ui(0'7¢|h' ,r,m),
Rt EgR,t[ﬁf,t] [ 7 k77at7mt

where the summation is taken over (r!, m') whose i-component equals (rf, m!).
Since player ¢ believes that nobody has lied to the mediator, by the same construction

as in the proof of Lemma 1, there exists o) € X¥ such that, for each (hR’t,rt,mt> =
_ - 1 5 (3 TRt
(s 7t rt mt mt at) with 3, (hR’t,rt,mt|hi ,rﬁ,mﬁ) > 0, we have
_ (<1~ ERt .t . t\ _ — (1 t+1 .ttt
ui<0i70——i7¢’h 7T7m)_ui(0iao——ia¢|s 7T7maa>'

Similarly, by construction of (5, &5), we have

U <6,$|BR’t,rt,mt> =1u; (0,9, 1", m!,a") .
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In total, there exist i # 0, ¢, ;"' € J/, (rf, m!) with 3, (rf, mﬂizf“) > 0, and a strategy
o, € ¥f such that

o t+1 .t t t|zRt _t t) ~ / t+1 .t t t
E Bi,t(s >T7m7a|hi 7Ti7mi>ui(0-i70-—i7¢|8 7Tamaa)

st+1 pt mt gt

> Z Bi,t (St+17rt7mt>aq%f’t??ﬁf?m;&) u; <07¢‘8t+17rt7mtuat) )

st+1 pt mt gt

where the summation is take over (s™™! 7!, m! a') whose i-component corresponds to the
counterpart of (ﬁf’t,rf,mﬁ .

Since (7, ¢, J, K, 3) is a quasi-SE in G*, to derive a contradiction, it remains to show
that, for each i # 0, t, A" = (si™, 7, mt, al) € J™', (rt, m!) with B;, <rf,mf]ﬁf’t> > 0, and

t+1

(s"1,r',m', a') whose i-component equals (s;*',rf, m!,al), we have

% tHL ottt Ll sttt =t ) S R N TR S B S
Bi,t(s ,rmtat|siT ri,mi,mi,ai)—6i7t(s Jromtboat|sit mi,ai). (40)

% 29 3 79

By construction, given 3, , <7“Z i

’?,m§|ﬁf’t> > 0, we have (sit1 7t mt, al) € J/M.
To prove (40), note that, for all £ we have
LR A S L S R TR NE R S S
Pr? No) (3 + ,r,me,a |$Z.+ ,ri,ri,mi,mi,ai)
~k Sk
= Pr7% ("t mt, d! sl ml, al)
gk ( t+1 &t t t| . t+1 .t ot &
= P70 (s et mt dl s el ml, al)
where the first equality follows because (i) given ﬁf’t € jl-R’t, we have 7; ; = (a; -1, s;,) for
all 7 < t and (ii) the distribution of 7! is fully determined by (7, 7¢,m!), and the second
equality follows from (39). Therefore,

= T N S TR A R S S SO
ﬁz}t(s ,Thmals; 7ri7ri7mi7miaai)
. 5k gk - -

= lim Pr% ¢ (stH,rt,mt,aﬂsﬁ“,rf,rf,mﬁ,mﬁ,af)
k—o00
. =k

= lim Pr® ¢ (st“,rt,mﬂaﬂsﬁ“,rf,mﬁ,aﬁ)
k—oo

_ N R S TR S R S A

= ﬁi’t(s ,rmtal|s ,ri,mi,ai).

i

H.2 Proof of Claims 2, 3, and 4

—j7¢ .
is vacuous when

Claim 2: Note that the condition supp pj = (U, Ua;ezj supp p, "
N = 1. Hence, the result follows from Claim 1.

Claim 3: The only difference from the proof of Claim 1 is in the verification that the
non-canonical assessment (7, ¢, J, K, ) in G* is sequentially rational at on-path histories
hit e AP and b e H. There, this followed from equations (37) and (38). Here,

note that in game G* player 7 faces sequential rationality constraints only in periods ¢ > t;.
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Sequential rationality at on-path histories in period t; now follows from (37) and the fact
that player ¢’s payoff does not depend on actions taken in periods 7 > t; (other than her
own action a;¢,). The latter fact also implies sequential rationality in periods ¢ > ¢;.

Claim 4: Claim 4 follows from the fact that players’ reports are always canonical in the
equilibrium that will be constructed in the proof of Proposition 5.

I Results for CPPBE

This section contains our analysis of CPPBE, culminating in the proofs of Propositions 7
and 8.

I.1 Quasi-Strategies and Quasi-CPPBE

As in Appendix D.1, we begin by introducing notions of “quasi-strategy,” which is simply
a partially defined strategy, and “quasi-equilibrium,”which is a profile of quasi-strategies
where incentive constraints are satisfied wherever strategies are defined.

Fix a game G = (I, €). A quasi-strategy (x;, J;) for each player i is defined exactly as in
Appendix D.1.

Intuitively, a quasi-strategy (¢, P, F'|p) for the mediator consists of a subset of reports P,
a set of mediation plans F'|p that specify messages only after reports in P, and a probability
distribution ¢ over F'|p. Formally, a quasi-strategy (1, P, F'|p) for the mediator consists of

1. A set of reports P = [[,_; P with P* C R' for each t, such that (i) for every r* € P!
there exists '™ € P?*! that coincides with r* up to period ¢, and (ii) for every
rT+1 ¢ PT+1 and t, the period-t truncation of »7 !, denoted r'*!, satisfies r’*! € P!,

2. A set F|p, where each f = (f;); € F|p consists of, for each t = 1,...,T, a function
ft . Pt+1 — Mt'

3. A probability distribution ¢» € A (F|p).

Let Z|;p be the set of (f,h"™) such that hTT! = (sTF1 p T+ T oTHY) € g1
hl € JIt! for each i, and f;, (r**!) = m,, for each i and t. For each i and h] ™' € JI ! let
Zhi e = {(f,h") € Z|yp : KT € HTH R}, Define 2%, p, Z04F|; p, Z44 1 p
and ZT1 ;b as the projections of Z|;p to F x H® F x HR®' x R, F x HA', and
F x HM x Ay, respectively. Define Z®[h]|; » and Z4*[hM']|; p analogously.

We say a quasi-strategy profile (x, v, J, P, F|p) is valid if

1. JB' = S,. Foreach t > 1, f € F|p, hf*" with (f,h') € Z®|;p, 1 #0, 05, T > t, and
hBT with ProoX-of/ (RET|RRY) > 0, we have hf’T € JJR’T for each j # i and the report-
component 77 of K7 lies in P™.* Similarly, for each r, with Pr7oX-o/ (RR7 r_ |pfY) >
0, we have (r",r,) € P™"' where r7 is the report in h®7; and for each m, with

A81f hf’t*1 4 JjA’t*l for some j # i or rt ¢ P?, then Pro¢X-i-f (7 |Af1) is not well-defined. In this case,
the condition vacuously holds. The same caution applies to the following conditions.

72



ProiX—if (hR’T,rT,mT]hR’t) > 0, we have (hf”,rjﬁ,mjﬁ> € J]A’T for each j # 1.

The same condition holds when we replace h* with (f, ") € Z*|; p by h*' with
( 7, hA’t) € Z4Y;p. That is, no unilateral player-deviation leads to a history where
either the mediator’s or another player’s quasi-strategy is undefined.

2. For each 7 and ¢, if hf’t S JiR’t then there exist f and h}_%;t € Ji?t such that (f, hf’t, hl_%;t) €
ZHR/ ; p. Similarly, for each i and ¢, if hf"t € JiA " then there exist f and hff € Jf{t
such that (f, hiA’t, hé;t) € ZM; p.

The first requirement implies that, for every valid quasi-strategy profile (x, ¥, J, K), every
mediation plan f and terminal history A7 ! with PrX¥ ( f hTH) > 0 liesin Z|; p. The second
requirement implies that the projection of ZJ J.p on H*" includes all histories h] ™' € JI*,

Finally, a quasi-CPPBE (x, %, J, P, F|p,v) is a valid quasi-strategy profile (x, ¢, J, P, F|p)
together with a CPS v on Z|; p such that no player has a profitable deviation at any history
. IRt At .
in J;7" and J;": that is, we have

1. [CPS consistency] For all f, t, h®*, 1, my, a;, and s.41 such that (f, h®, ry, my, az, $041) €
ZR b we have

D(f) = (f), O (r £, 17 =TT\ (Ti7t|h£%,t) 7
IL (mt|f, hR’t7 Tt) - 1{mt:ft(rz’”)}’ IZ) (at|fa hR’t) T, mt) = Hz]\;O X{,‘t (ai,t|hf’ta ri,t7 mi,t> )
D (sealf 17 00) = p (sealia)

2. [Sequential rationality of reports] For all i # 0, t, o, € %;, and h)"" € J'**, we have

S (AR ) a G =S (AR @ (o fIR)
(fRROEZRA N 5 p (f.hRNEZRA R 1 p
(41)

3. [Sequential rationality of actions] For all ¢ # 0, t, o, € ¥;, and hf"t € JiA’t, we have

DO A VU RO ) = SN ) Y A e E A C Ay

(fRAOEZARMY | 5 p (f.RAYEZA R p

(42)

Let pX¥ € A (X) denote the outcome distribution induced by valid quasi-strategy profile
(x,%). The following lemma says that it is without loss to consider quasi-CPPBE rather
than fully specified CPPBE.

Lemma 8 For any game G and outcome p € A(X), p is a CPPBE outcome if and only if
p = pX¥ for some quasi-CPPBE profile (X,w, J, P,F|p,'(L) in G. Moreover, given a quasi-
CPPBE profile (X,¢, J, P,F|p,@7)), for each Q such that J C Z|q, there exists a CPPBE
(0,1, Q, v) such that (o, 1) and (x,) coincide on (J, P).
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Proof. Fixagame G. If (o, 1, Q, ) is a CPPBE, then let .J be the set of histories compatible
with the mediation range: for each ¢, define

Rt R Rt
J: = {hi eH™ mi;€Qir(r],m],ri;) VT < t} ,

JAt = {hf’t e HM :mi, € Qi (rT,ml,riy) V7 <t

—

)
JZ.R’tJr = {(h,f»%’t7 Tiﬂg) . hﬁ’t S JiR’t and ri,t € Ri,t} 9 and

JA’t+ = {(h?’t, Cbiﬂg) : h?’t S JiAi and Qg ¢ c Ai,t} .

)

Let P = R, and let F'|p be the set of mediation plans compatible with the mediation range:

Flp = H {ft : HRT — Q; (v, (fr (ryr ) ,rt)} .

t=1 T=1

Given this definition, we now show that (o, u, J, P, F|p, i) is a quasi-CPPBE. The two
defining conditions for validity holds, since (i) J™! = S! by definition, (ii) histories outside
J; cannot arise as long as the mediator follows p, and (iii) every message history in J can
arise for some mediation plan in F'|p. CPS consistency and sequential rationality follow from
the fact that (o, u, @, i) is a CPPBE.

For the converse, fix a quasi-CPPBE (X, v, J, P, F|p, fb) and a mediation range () with

J C Z|g. We say that a move distribution on Z|;p is a triple (a”, o, a?), where o' €

A(F|p), aff = (aR’t)thl with o : ZR®|;p — A(R;), and ot = (aA’t)tT:l with a?t :
ZA4;p — A(A). A move distribution on Z|;p has full support if we have (i) for each
f € Flp, o(f) > 0, (ii) for each (f,hf") € Z7; p, ot (ry|f, h®') > 0 if and only if
(bt 1) € ZR| ) p, and (iii) for each (f, h*") € Z4|;p, a(as| f, ') > 0 if and only if
(f, hA’t, at) c Zt+1|J7P.

By Theorem 1 of Myerson (1986), every CPS is the limit of conditional probabilities
derived from a sequence of full support move distributions. Thus, there exists a sequence of

move distributions (o', o a4*) with full support on Z|; p such that (i) a*(f) — ¥ (f)
for all f € F|p, (ii) a®*(r|f, h) — Hf\io Xft (ri7t|hf’t) for all (f, hR’t,rt) € Z™ b, and
(iti) a®*(ar| f, B — T, Xft(ai7t|h;4’t) for all (f,h*' a;) € Z™|; p. For each k, let

e = min min{a™Ft (), ofF (| £, B0, oM (ay) £, B 1y, my)} > 0. (43)
t,(f,tht,rt,mt,at)EZH‘l\J’P

Let mf(fu hR’t) = supp aR’k’t(Tt|f7 hR’t) and mf(fu hA7t> = supp &A’k’t<at|f7 hR7t7 T't, mt)‘
Given f € F|p, denote the set of mediation plans that coincide with f after history J*
by
F(f) = { freF|g: fli(r") = fii (r") for all t and 7* }

s.t. there exists At € J* with report component equal to 7

Note that, given J C Z|p, validity implies that the mediator sends messages compatible
with mediation range ) for each r* such that there exists hf* € J®! with report component
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equal to r*. Hence, F'(f) is non-empty.
For each k, define an auxiliary game (Fk, @) as follows:

1. The mediator uses the mixed mediation plan u* € A (F|g) defined as follows: (i) with
probability 1 — %, draw f € F|p according to a* € A(F|p) and then draw [’ € F|g
uniformly at random from F'(f); (ii) with probability <&, draw f’ € F|q uniformly at
random from Fg.

2. Bach player i chooses probability distributions o/5*(-|n"") € A(R;,) and o/%F(-|h) €
A(A;,) for each t, K e H\J and hf” HAt\J;”. At histories hf.“ J and
hAt e J player i is required to choose o it ( |th) = Xft’t (~]hf’t) and aft’k(-|h?’t) =

1

Xz‘,£ <"h?’t>-

3. Given ¢* and f, the distribution of terminal histories H”*! is determined recursively
as follows:

Given f € F|g and hf** € H™' each r, € R, is drawn with probability

(1 — < |RA\RE(f, BTY)|) «f* (| £, RBY) if (f, hBY) € ZBE ) p Ary € RE(Sf, ),
?k if (f> hRﬂt) S ZR’t‘J,P ATy Ql mf(f? hR’t);

[0 (1= [Ridl) o (real b + %) it (f,h) ¢ 27

Given f € F|g and h™' € H, each a; € A; is drawn with probability

(1= % |ANA (S, hA’t)I)aA”“(atlf,h“ if (f h") € Z45p Aay € AL(f, H),
(f hAt) c ZAt|JP/\CLt gg(k(f hAt)
if

IS ((1-% Al) o ) + %) it (f,hA0) ¢ 249,

Given b4t € HtA Tand a, € Ay, each s;1q € Spy1 is drawn with probability p (st+1 |iLA’t, ag

4. Player ©’s payoff at terminal history h7+ is u;(A7).

As in the proof of Lemma 3, (Fk, €) admits a NE (%, u*). Moreover, for any o*, (O‘k, uk)
has full support on F|g X Z|g in (I'*,€). Hence, (6%, 1) induces a CPS ¥ on F|q x Z|q
by Bayes’ rule.

Let (5%, u*, i*); denote a sequence of NE (5%, u¥) and corresponding CPS’s i* in (Fk, QI).
Taking a convergent subsequence if necessary, let (7, u, ji) = limy_.o (6%, u*, i*). Note that
(,p) and (x, 1) coincide on (J, P). We claim that (7, u, @, i) is a CPPBE in (I', €). Since
it is a CPS as the limit of conditional probabilities, it remains to verify sequential rationality.
The proof is exactly parallel to the corresponding part of the proof of Lemma 3. We include
it for completeness.

We consider reporting histories hf '+ the argument for acting histories AT analogous.
There are two cases, depending on whether or not h"* € J/**. If b ¢ J*' then hI*! ¢
JI*L for all hI*! that follow A", so by inspection the outcome distribution (and hence player
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i’s expected payoff) conditional on hf! is continuous in o*, ¥, &4, and k. Since 5?’15 (-lhf’t>
is sequentially rational in (Fk, €) (as (5k, uk) is a NE in (Fk, Qﬁ) where the distribution over
A"+ has full support), it follows that o} <-|hf’t) is sequentially rational in (I, €).

Now consider the case where hf’t € JiR ', 'We show that player i believes that A" €
ZRp| ; p with probability 1. Note that, for each b7 ™ € JI ™ and (f, A7) ¢ Z®¢[1™| ,p,

there exists ( 1 iLT+1> € ZRHR |5 p such that

—k T+1
lim PALR ) (Ji’}} ) =
oo i (FLRT)

This follows because in (Fk , Q:) each “tremble” leading to a history outside J occurs with
probability at most € /k, while every history hz-T+1 € JiT *1 occurs with positive probability
given move distribution (a*, a* o4*) (this is an implication of the third condition in the
definition of a valid quasi-strategy profile), and with this distribution each move occurs with
probability at least e.

Therefore, for each h[*" € J™ and (f,h%*) € ZB* |, p, we have f(f, AT |h") =
O(f, kB |hf"), and the conditional probability that (f,hftt) e ZRt (17| s.p equals 1. Hence,
the fact that (41) holds with CPS ¢ implies that aft(-|hf%’t) = Xt <-|hZR’t) is sequentially
rational in (I', €). m

1.2 SCE Implies CPPBE

Lemma 9 For any base game T', mediation range Q, and SCE (u,Q, i), there exists a
canonical strategy profile o and CPS i’ such that (o, u,Q, ') is a CPPBE in (I',C*) with
the same outcome distribution.

Proof. In the direct-communication game G* = (I', €*), let J be the set of truthful histories
compatible with the mediation range: for each ¢, define

Rt Rt .
3 - )
! Tir = (ai,T—h Siﬂ') and m; - € Qi,’r (T;;ru mz; Ti,’r) VT <t
At At .
JAE h;” e H :
3 - )
' Tiz = (Giz-1, 8i7) and m; - € Q7 (], m],757) V7 <t

Rt+ Ryt LRt Rt _
J; = {(hz ,n-’t> ch;t e J7 and 1y = (a1, si,t)} , and

J;4,t+ = {(hf’t, am) : hiA’t € JiA’t and a;; € Ai,t} )
Let P = R, and let F'|p be the set of mediation plans compatible with the mediation range:

T

FbZH{#IP%ﬁ@@WﬁW%Mi%%-

t=1
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Consider the quasi-strategy profile (x, i, J, P, F'|p) where, for each i, x; is honest and obe-
dient at each h; € J;. This quasi-strategy profile is valid, since (i) histories outside J; can
arise only if player ¢ is dishonest or the mediator uses a mediation plan outside F'|p, and (ii)
every message history in J can arise for some mediation plan in F'|p. Moreover, by inspec-
tion, (x,p,J, P, F|p, i) is a quasi-CPPBE in G* if (i, Q, i) is a SCE. Hence, the former is
a quasi-CPPBE in G*. Moreover, J; includes all histories at which player ¢ has been honest
and the mediator’s messages lie in the mediation range. Hence, Lemma 8 implies that there
exists a canonical CPPBE (o, u, @, ') in G* with the same mediation range and outcome

as (4, Q,j1). m

1.3 CPPBE and Codominated Actions

We now show that, in any CPPBE, players do not take codominated actions at any history.

Lemma 10 For any game G, mediation range ), and CPPBE (o, i, Q, i), supp af}t(h?’t) N
D.(h™) = 0 for all i, t, and K™ € H*'.

1.3.1 Proof of Lemma 10

Fix a game G, mediation range (, CPPBE (o, i, Q, 1), and sequence of full-support CPS’s
(ﬂk) ., converging to fi. For each ¢ and ¢, the sequential rationality condition at history hf’t
is

Yoo AL (e ) = max YT B AR (o] 0, IR

At 03€% At
(f;hAt)eZAt R | (f;hA)eZAtR g

(44)

We wish to prove the following lemma, which establishes the corresponding sequential
rationality condition in the direct-communication game G*. Let F' be the set of mediation
plans in game G*. For each 4, t, and y; € Y, let M, (y;) = U, a0j4:_, SUpp a;‘}t(h?’t); and,
for each 7t € R let

- My (7Y i fif e v
(P = ¢ T Z Z
Qi (777) { Ay otherwise )

Given Q, let F \Q be the set of mediation plans in game G* with mediation range Q.

Lemma 11 In game G*, for each t, there exists a CPS ji, on F|Q x Y such that, for each
i, yt € Y, i, € Miy (y), and o) € 7,

Z lat(fv yt|yf> mi,t)ﬂ'i (O-*a f|B <f> yt> 7m7ﬁ,t>
(Ft)eFloxY[y!]
Z Z ﬁt(f? yt’yzta mi,t)ai (O-;W O-*—ia f’B (fa yt> 7mi,t> . (46)

(Fyt)eFloxYtyl]
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Before proving Lemma 11, we first show how it implies Lemma 10. Toward a contra-
diction, suppose that there exists a period ¢ such that M@t (yH) N Di4(yf) # O for some
i and y' € Y!. Let t* be the last such period. Note that, for all f € F |5, we have
fir P N D, (7YY = 0 for all ¢ > t*, 4, and 71 such that 71 € Y}': that is, recommen-
dations after period t* exclude codominated actions.

Let E C F|Q x Y denote the set of pairs (f, y”) such that fi;-(y'") € D (y!") for

some 7. Define ji’ (f, yt*> = - (f,y"|E). For each ;s € D;(y!"), the conditioning
event 7, 4+ in (46) implies that the realized pair ( 1, yt*) lies in E. Hence, (46) implies that,
for each i and m; 4 € ]\;[z-,t* (yf) ND;+(y!"), we have

S Gy (e (Fy) = Y By (et fiR (Fy7).
(" )eFlgxy: (Ft")ePloxy®:

J . 2 X
Jipx (Ut )=1m; 4 fi i )= g

This contradicts the hypothesis that m; ;« € D; 4= (yf), which completes the proof of Lemma
10.

We now prove Lemma 11. Let ¢~* denote a collection of functions (¢,)_.,, where ¢, :
R — A (M} x 24| g) (where here Z4|g C F|g x H*" denotes the set of mediation
plans and period-t acting histories in G’ with mediation range @), and for 7 > ¢, ¢, :
ZAT o x R — A (M;k x H A”). Intuitively, ¢=' may be viewed as a continuation strategy
for the mediator in the direct-communication game starting with arbitrary past reports
7l e R**! in period t.

Lemma 12 For each t, in game G*, there ezists ((¢§)T>t)k with limit ¢, = limg_o ¢F for

each T >t such that, for each i, y! € Y}, and 1,y € My, (y), we have

> By F (Midly') > 0 for all k, (47)
yteYt[yf]
and, for all o, € 3,
> By i) (07, (6,) s [y {7 = o'} i) (48)
yteYt[yl]
> Z ﬂ(yt|yf7 miﬂf)ai (0‘;7 0-*—2" (¢T)7'Zt |yt7 {fH—l = yt} ami,t) ’
yreYtyl]

where [i 1s defined by

ﬁ(yt\yt m't) — lim ﬁk(yt|yf)¢f(ml,t|yt) '
o ko0 thgyt[yﬂ ﬁk(gt’yf)¢f(mz,t|gt)

Proof. Construction of (gblj)T> ,: This is similar to the proof of Proposition 2. For each
k, first define (¢E)T> , recursively in 7, then define ¢, = limy,_ qﬁf for all 7 > t.

78



For each canonical 71 € R**1 the mediator draws a mediation plan and “fictitious
history” (f, h**) € Z44|g according to i*(f, h*|y") for y* = 7149 Then, he recommends
mit € A;s to player ¢ according to th(hA’t). This defines ¢,’f .

hA,T—l

For each 7 > t, we now define gzﬁk as a function of (f s i1, S T) with (aZ o1, Sir) =

7i-. For each ¢, the mediator draws a “fictitious report” r; ; € R, ; according to o; (hA 71 JTir),
1ndependently across players. Next, given r,, the mediator calculates the vector of “fictitious
messages” m, = f;(r7,r;), where r” is the report component of hA7~1. Finally, the me-
diator draws recommendation m; » € A, ; according to a (hAT ! s Qir—1, Siry Tirs My ) With
(@ir-1,8i+) = i r, independently across players. This then defines hiA’T = (hf’Tﬁl, Qir—1, Sivrs Tiry M)
with (a;r—1,8ir) = Tir

Proof of (47): For each y' € Y, since i*(f, h**|y") has full support over (f,h*) €
Z4 [y | o, we have ¢F(m,|yt) > 0 for each i and 7, € M, (y!). Hence, (47) is satisfied.

Proof of (48): Toward a contradiction, suppose (48) is violated for some i, y! € Y},
i € My (y!), and o} € 57, Denote the conditional probability of (f, ht) € Z4¢|, and
r € X given y', 7 =y and 1, by

Pro @z (f R4 2yt {7 =yt igy)
By construction, for each & € ¥*,
PuF Oz (1A oyt {74 = o) mn)
= lim Prot (f My {7 =y i) Pro O (aly! (7 =y} R )
= lf Pyt ) PO @z (alyt (P =y} R )
= A(f, BNy g e) Pro@oeze (xf £, B mgy)

In the last line, we omit 3 since ~Pr¢f (‘|y*, m; ) assigns probability 1 to hAt = yt, and we also
omit {71 = y'} by defining Pr(#+)r>: (x| f, M, ;) as follows: conditional on A*, define

t+1~)

#+1 = At and calculate the conditional distribution of z given & and (f, B, Mit)-

By definition, for each y* € Y*[y!],
ﬁ(yt’yf’ ml t) (f7 hAt|y ml t) (f7 hA |yz ) mz t)l{hA tfyt}

Hence, the violation of (48) implies

Z :a(fv hA,t‘yfa mi,t)ﬂi (0*7 (¢T)7'2t |fa hA7ta mi,t)
(fhADEZA QA eY* ]
< Z Ia(fa hA’t‘yfa mi,t>ai (0-;7 O’i“ (¢’7’>th ‘f, h,A,t’ ﬁli,t) .

(f.RAN)EZAL Q:h At eyl

49 As in the proof of Proposition 2, (f,h**) can be chosen arbitrarily if #*! is not a feasible payoff-relevant
history. A similar comment applies to r; » and h?’T in the next paragraph.
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Therefore, there must exist hiA’t with (R

> a(f, b

(fhA)eZA R

< > A

(fhA)ezA R

yt,m;,) > 0 such that

A ~ _ ~
h'i 7t7 miyt)ui (U*a (QST)TZt |f> hA’ta miﬂf)

vt i ) (05,05 (D)5 | S WY ) (49)

Note that (¢,),-, is constructed so that the conditional distribution of z given ( fs hA’t)
and m;; under (0*, (¢T)T>t) in game G* is the same as the conditional distribution of = given

(f,h*") and a;; = i, € supp oft(hf’t) in game G with mediation range @) under (o, f):

>, S i W )T (0%, (6,) s [ M 04
(frAH 24 R g
= Z a(f, k™M, mt|h?’t7mi,t)ai (U|f, hA’t,’ﬁli,t) .

(fRAHEZA R g

To derive a contradiction, it suffices to find a strategy ¢ in G’ with mediation range Q that
attains the expected payoff in the second line of (49),

Yo AR )T (07,07 (60) 5 L R )
(thA,t)ezA,t[h?thQ
= Z ﬁ<f7 hA,t’h;‘Lt’ mi,t)ﬂi (&;’ U*i‘f? hA’tv mi,t) )

(fRAEZAL RS g

since the existence of such a strategy contradicts (44). The same construction as in the proof
of Lemma 1 defines such a strategy 6. m
Proof of Lemma 11. We now prove (46). For each k, by Kuhn’s theorem, there exists a

collection of mixed mediation plan (ﬁ’;m);t L, in G, with ik, € A (F ) for each 771, that
satisfies the following condition: for each y* € Y, 71 € R**! strategy o’ € 3*, and vector

(Mg, gy (Sry Tory Ty aT)f:tH), we have

’ k
P ) (i a0, (57, 000 1y 7Y

- Z ﬁ§t+1(f~) PI.U/ (mty ag, (577 77;T7 mr; aT)Z:t+1 ‘f, yt, 7:t+1> .

fear)

(That is, (0’ , (¢k)7> t) and (0' ) ,&ffm) give rise to the same distribution of histories in G*

T
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~t+1

conditional on ' and 7 pitl

.) In particular, if 71 = 4' we have

/ k
P’ (95) (ﬁlt, ag, (Sry Py My, am')f:t—l—l |yt>
= > NP (s an, (57 i a) L o)

feAa(r)
Define _ -
A Fome) = B X Qi () X Ly

Let ji = limy_ ji*. Since each f € supp ji satisfies f; (7 +!) € Q;,(F:t1) for all T > ¢, (48)
implies

Z ﬁt(fu yt|y§7mi,t)ai (0*7 f'yt7 {ft+1 = yt} 7mi,t)

(Fyt)eFloxYtyl]
Z Z ﬁt(f’ yt|yf7 mi,t)ﬂi (0-;'7 O-iia f|yt7 {fH—l = yt} ami,t> . (50)
(Ft)ePlgxyiy]

For each f, we can write f = (<!, f2!) with f<* = (f,)!Z} and f>* = (f,)7_,. Since

=1
the past recommendations mt do not affect the continuation strategy, there exists ji, such
that f1,(f) = p~(f<Y) x p7'(f2*) and (50) holds with fi, in place of fi,. Since under j,
recommendations prior to period ¢ are independent of those after period ¢, this yields (46).

I.4 Proof of Propositions 7 and 8

Proposition 7: By Lemma 9, for each SCE (i, @, 1), there exists a canonical CPPBE
(o, 1,Q, ji') in G* with po# = p°#. Conversely, take a CPPBE (o, u,Q, i) in G* with
canonical ¢ and outcome p. As in the proof of Lemma 9, let J be the set of histories such
that players are honest and messages are compatible with mediation range @, let P = R,
and let F|p be the set of mediation plans compatible with mediation range (). Since o is
canonical, the quasi-CPPBE (o, i, J, P, F'|p) is SCE.

Proposition 8: By Lemma 10, players do not take codominated actions at any history
for any €. Since every CPPBE (o, 1, @, i) is a NE, there exists a NE with outcome p where
players do not take codominated actions at any history. Hence, by Proposition 1, there exists
a SCE (¢/, @', ') with p = p”"* and Qi (ri™",mt) = A;; \ D4 (ri"). Hence, by Lemma 9,

there exists a canonical CPPBE (o, i/, @', ") with outcome p.

J Proof of Claim 5 of Proposition 4
We first establish a preliminary result. Fix a game G, mediation range ), and CPPBE

(o, 1,Q, n). Foreach i, let 3; (o0_;, u, i) C X; denote the set of sequentially rational strategies
for player i against (0_;, 1) under CPS fi: that is, the set of strategies ¢; such that, for each
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t and A",

Z a(f, R Ya (64,04, fIRT) = max Z a(f,

oley;
R R
(f. R 2R R g (f.Rf) 2R R g

K3

At
and, for each h; ",

N (o, i, fIR™)

S AR (o SR = max YD AR (o oo, fIRY).

olex;
(fhA0)eZAt g (fhADEZA Mg
Let M;, (y}) = Uh?,t:fb?,t:yf U&iezg(o,i,p,p) supp &ft(hf’t). The following lemma shows that
codominated actions are never taken by any sequentially rational strategy ¢; € 3; (o_;, , [t)-
Lemma 13 For any game G, mediation range Q, and CPPBE (o, u, i), M, (y))ND;, (y}) =
0 for alli, t, and y! € Y}

Proof. Suppose otherwise that there exists ¢ such that M, (y!) N Dy, (y!) # 0 for some i
and y! € Y. Let t* be the last such period, and fix i, 6; € ¥; (04, i1, i), y¢ , and action
i such that m; 4+ € UhA ¢ jAtt e SUPD O t*(hA )N D (yl).

For each t, y! € Y}, and rt“ ¢ R*tJrl let

ety M) i <y
LEV Ay otherwise

and let Q~: (@1, Q_i), where Qj is defined in (45) for j # i. By Lemma 10, for each t the
range of ()_;; excludes all codominated actions; and by definition of ¢*, for each ¢ > ¢*, the

range of int excludes all codominated actions as well.
Applying the same construction as in the proof of Lemma 10 with &; in place of o; yields
a CPS [i,. on F|s x Y such that, for each o} € ¥,

Z i (F y |yt ) (@y o_i, fIh (fa Z/t> ,ﬁ%',t>

(Fyt)eF|oxYty]

= > ) (0 o, fIh <fyt>mt>

(Fut)eFlgx ]
Let E C F!Q x Yt denote the set of pairs <f, yt*) such that f;.(y"") = 7. Letting

IatE* (fa yt*> = ﬁt*(f’ yt*|E>7 we have

S wEGy (e TR (Fe)) = Y A (ko fIh
(7 )erlgar () ePlgnr

Fie (yt*):ﬁ%‘,t* Fie (yt*):ﬁ%,t*
This contradicts the hypothesis that 1m; « € D; 4« (y! ). =
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Turning to the proof of the claim, note that in games of pure moral hazard, for each ¢
and t, the set of codominated actions for player i in period ¢t does not depend on the realized
payoff-relevant history y!: that is, there exists a set D,, C A;; such that D, (yh) = D, for
all y! € Y. Let Y} be the set of payoff-relevant histories that can be reached without any
player taking a codominated action:

{yf € Yf : Elyii s.t. (yf, yii) €Y' and anr € Apnr \ Dyr for each n and 7 <t — 1} .

Define L and 7% as in the proof of Proposition 5, where now each 7r£l] € A(F=txY?)
depends only on its first component.

Fix a canonical NE (¢*, u*) in G* where players never take codominated actions at any
history.”® We first construct a (possibly non-canonical) SE (&, i) in G* with outcome p° #"

~ ok ~k

and then construct a canonical SE (¢*, i*) with the same outcome.

Construction of (6’“ , /lk) We first construct a sequence of profiles (6’“, [ﬁ) indexed by k
that limits to a (quasi) SE in G*.
Mediator’s Strategy: At the beginning of the game, the mediator draws (, € {0,1} for

each t = 0,...,T such that ¢, = 1 with probability (%)2(L+1)T
Given ((,){_,, the mediator draws (w;),_, as follows: For t = 0, wy = (0, f), where f is
distributed according to p*(f). For each ¢ > 1, given (wt_l,Ct,l), w; is determined as
follows:

, independently across periods.

1. If ¢,_; =0, then w; = w;_; with probability 1 — %, and wy = (t, fzt) with probability
i (1)

2. If ¢,y = 1, then w, = (¢, f=") with probability 7 (f=).

Given ((;,w;), the mediator’s recommendation is determined as follows: If {, = 0, then
my = f(r'") if wy = wo and my = f=7 (r'*Y) if w, = (7, f=7). If ¢, = 1, then the mediator
draws each m;; € A;+ \ D;; with equal probability 1/ (|A;¢| — |D;+|), independently across
7 and t.

Each realization of the mediator’s randomization defines the realization of the first ele-
ment of wy, for each ¢. Let t*(¢) be the corresponding random variable, which takes values
in {0, ..., t}.

Player i’s Strategy: We say that player 7 is honest and obedient at history hf’t it r,, =
(ajr—1,8ir) and a;, = m,;, for all 7 < t, and is honest and obedient at history hf’t if
rir = (air—1,8.) for all 7 <t and a;, = m,;, for all 7 < ¢. Let jiR’t (resp., jiA’t) be the set
of histories h/"" (resp., h:"") such that player i has been honest and obedient and lolf’t e Yl

For each k, let (Fk, C*) denote the following auxiliary game:

1. The mediator follows ji".

2. Each player i chooses probability distributions af{k(-|hf’t) € A(R;;) and afgk(~|h;4’t) €
A(A; \ Dyy) for each t, b1t € HPN\J* and B e HM\J'. Note that player 7 is

50 As in footnote 45, it is without loss to consider here the fully canonical strategy profile o*.
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required not to take a codominated action. At histories ™ e J* and h™' € jZA i
player i is required to report r;; = (a;4—1, S;) and take a;; = m;,, respectively.

3. Given (o*, "), the distribution of terminal nodes H”*! is determined recursively as
follows:

Given hf** € H®' each r;; € R;; is drawn independently across players with proba-
bility o (ri,t\hfvt).

Given ht* € HA' each a;; € R;; is drawn independently across players with proba-

bility
1 3(L+1)T? ) N 1 3(L+1)T?
<1 — ‘A@t‘ <E) > O-iﬂf,k( ; hz ’t) + (E>

Given ht € Hf *and a; € Ay, each s;41 € Syyq is drawn with probability p (st+1 |fOLA’t, a;

4. Player i’s payoff at terminal history ht*t € HTH is (;LH_I).

As in the proof of Lemma 2, (Fk C*) admits a NE ( 5 /]k)

Now define strategy 6% by UR k= 6B and

(2

1\ 3T 1\ 3LADT?
~ Ak At ~ Ak At
i i) = (1—\14“\ (7) >a i+ (7)

Note that the distribution over terminal histories under ( ) ) in game (Fk, Qﬁ*) is the same
as that under (6%, ") in game (', €*). Let (G, ) = limy_o (6%, i*). Note that (5, i) is a
profile in (I", €*).

We next claim that, for each i and o} € 3% such that supp( 'At(hAt)) ND;; =0

for all ¢ and hiA’t, we have u(d, 1) > u(0}, 64, f1): that is, no player i has a profitable
deviation that avoid codominated actions. To see this, let ¢ denote the behavioral mediation
plan induced by fi, and let ¢* denote the behavioral mediation plan induced by p*. Then

o, (-|r mb) = ¢ (+|r*, m?) for all (r'*, m?) satisfying Pr7¢ (r**1 m!) > 0 for some player
strategy o. Slnrul:aurly7 for each i, 67, ( |th> = oif ( \th> for all hf"" where player i has

been honest and obedlent and th € Y}, and similarly for acting histories h; 4! Hence, for

any on-path history hl under (0, i), the continuation play of i’s opponents differs from that
under (o*, u*) only following a deviation by player i to a codominated action. Therefore, for

any o, € ¥f such that supp (0'At(hAt)) N D, = 0 for all t and A", the fact that (o*, )
is a NE implies that u(é, i) > u(ol, 6, ft).

Construction of Quasi-SE (7, fi, J, K 6) We now define subsets of histories J and K

along with beliefs 3 and a mediation range Q such that (o, [, J, K B) is a quasi-SE in game
G-
Q
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Define Q; (i, mt) = Ay, \ Diy for each i, t, and (r'*1 m?). For each i, let J*7T equal
the set of histories h] ' such that Pr’ st (hth) > 0. Let KT+ equal the set of mediator
7T mTth) such that there exists o’ € X satisfying pr i (r™,m™*1) > 0. Let
the other elements of J and K include all truncations of histories in J4T+ and K7. Since
J; includes all histories where player i has not lied to the mediator or received a message
outside the mediation range Q, (o, [, J, K ) is valid. Define belief system A by

histories (

o Rt
B (n™In) = ,}‘i&%

for each hf** € H™'[h{""]|; z. Since prot (hf’t> > 0 for each h™ € J/', this is well-

defined. Since /3 is consistent by construction, it remains to verify sequential rationality of
(5-7/]7 JaKaﬁ)

As in the proof of Claim 1 of Proposition 4, sequential rationality at histories outside
JI or jZA * follows from a standard upper hemi-continuity argument.

Fix any hf’t € jZ-R’t. By Lemma 13, it suffices to show that player ¢ never has a profitable
deviation to a strategy that avoids codominated actions. By definition of le ' there exists

(w',¢") = (Wi, wi1,Cyy s Gy y) such that Pro™7" (hf’t

denotes the fully canonical strategy profile. Since under ji* any sequence (wt,Ct) occurs

2
with probability at least (%)2(L+1)T+2(L+1)T

those under 6* with probability at most , player 7 assesses that other players are
honest and obedient with probability 1. Hence, it suffices to verify that, for each i, t, 7 < t,
and hZR te jZR ' &, is sequentially rational conditional on the event that all players are honest
and obedient and t*(t) = 7. There are three mutually exclusive events to which player i
assigns positive probability:

t) > 0, where as usual o*

, while under &* players’ actions differ from
(1)3(L+1)T2
i

1. If t*(t) = 0 then Pr# <hf’t> > 0. Sequential rationality follows since @(d, 1) >

u(ol,6_;, i) for any strategy o that avoids codominated actions.

2. If t*(t) = 7 < t then w;, = (7, f=7). Since the mediator draws f=" from 7, by the
same argument as in the & (hf’t) = (t*, Ci*) case of the proof of Proposition 5 (i.e.,

the discussion immediately following Lemma 6), honesty is optimal.

3. If t*(t) = t then with probability 1 future recommendations are independent of the
current report. Hence, honesty is optimal.

Next fix any hf’t € jZA ' Again, player i assesses that other players are honest and
obedient with probability 1. She also assesses that ¢, = 1 with probability 0, since (i) for

any (hR T t) each m;; € A;; \ D;; occurs with positive probability conditional on ¢, = 0

and t*(t) = t, (ii) ¢, = 0 and t*(t) = ¢ occur with probability at least (1 — (%)2(L+1)T> (1)L,

k
while ¢, = 1 occurs with probability at most (%)2(L+1)T. Hence, we again consider three
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mutually exclusive events: t*(t) = 0, t*(¢) = 7 < t, and t*(¢) = ¢ and (, = 0. The proof
of sequential rationality in the first two events is the same as for reporting histories. In the
last event, sequential rationality follows from the same argument as in the & (hf7t> = (t, Cf)

case of the proof of Proposition 5.
Construction of (5*”‘“, [L*k) We first construct a sequence of profiles (5*’k , ﬁ*’k) indexed
by k that limits to a quasi-SE profile in G*.

Definition of the Mediator’s Strategy [i**. As in Proposition 2, in each period t, given
player ¢’s canonical report ff“ € Y/, the mediator draws a fictitious report r;; according

SRk Rt Rt . . . e
to &;5" (h;""), where h;"" = (y!,rf,m!) with y* = 7#*'.*! Given fictitious reports '*! and

~k ~k
fictitious messages m?, the mediator draws fictitious message m; from ¢, (r'™!, mt), where ¢
is the behavioral strategy induced by ji*. He then draws the recommendation m;; according
~Ak/ ~ ~
to 6;; (1|7 P ml ).

Definition of Player i’s Strategy 67". We define 67" to specify that player 4 is honest

2
and obedient, but trembles uniformly over actions with probability |A; | (%)3(L+1)T

At At
Qg ¢ € Ai,t and hi7 S H,L ”,

A 1) 3@+D7? 1\ 3ELADT?

Construction of Quasi-SE (6%, i*, J, K, 3) Define 6* = lim_o, 6% and [i* = limy,_ o *".
We will construct J, K, and  such that (6%, i*, J, K, 3) is a quasi-SE in G*. By the first
sentence of Lemma 2, this implies that there exists a SE in G* that implements the same
outcome. We will also construct a mediation range () such that J includes all histories com-
patible with the mediation range where players have been honest. By the second sentence
of Lemma 2, this implies that the SE is canonical.

Definition of Q. For each i and ¢, if 717 € Y;! we define

: for each

~xAk
Oit (o

Qi) =U (51 i) supp &7 ([yf, i+, mi*)

s.t. 7; r Esupp &?;k(y;f,r;",m[) with y;':F;—J’l for each 7<t
m; EA; 7 \D;, » for each 7<t

where yf = 711 and if 71T ¢ V! we define Q;(F1T) = A; .

Definition of (J, K, ). Define K™+ = Hi ™ and define JiA T as the set of all histories
compatible with the mediation range where players have been honest. Let the other elements
of J and K include all truncations of histories in J4T*+ and K7*. Since Q;+(7:™") contains
all messages ever sent under ji** when the history of communications between the mediator
and player i is 71, (6%, 1%, J, K) is valid.

SLIf f?‘l € R} s \ Y/, then the mediator draws r;; uniformly at random, and similarly for 7, ; in what
follows.
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Next, for each h/"" € J* and h®t € HR'[h1')|; k, define

~x. k ~x,k
Pro R (RR
(RBHREY) = lim () .
1,t 7 k—00 5%k ﬂ*’k R.t
Pyt (hi )

To see that the denominator of this expression is positive (so the quotient is well-defined),
note that, since (i) under ji* every sequence ¢’ occurs with positive probability and, given
¢, = 1, for each i the mediator sends each m;; € A;;\ D;: with positive probability at

every history, and (ii) players tremble uniformly over actions under &;"k, it follows that
it (hf’t> > 0 for all /"' € J*'. Define Bis (hA’t

Py

consistent by construction.
Sequential Rationality: Since the construction of (&*’k , ﬂ*’k) from (61“ , ﬁk) is the same as

hZA ’t) analogously. These beliefs are

~k
the construction of (&k, [0) ) from (5’“, <b) in the proof of Claim 1 of Proposition 4, sequential

rationality of (6%, 1%, J, K, ) follows from sequential rationality of (6, i, J, K, B)

87



