
Econometric Theory, 31, 2015, 426–448.
doi:10.1017/S0266466614000383

SECOND ORDER EXPANSION OF THE
T -STATISTIC IN AR(1) MODELS

ANNA MIKUSHEVA
MIT

The purpose of this paper is to differentiate between several asymptotically valid
methods for confidence set construction for the autoregressive coefficient in AR(1)
models. We show that the nonparametric grid bootstrap procedure suggested by
Hansen (1999, Review of Economics and Statistics 81, 594–607) achieves a sec-
ond order refinement in the local-to-unity asymptotic approach when compared
with a modified version of Stock’s (1991, Journal of Monetary Economics 28,
435–459) and Andrews’ (1993, Econometrica 61, 139–165) grid testing proce-
dures. We establish a second order expansion of the t-statistic in an AR(1) model
in the local-to-unity asymptotic approach, which differs drastically from the usual
Edgeworth-type expansions by approximating the statistic around a nonstandard and
nonpivotal limit.

1. INTRODUCTION

The paper examines the issue of inferences on the persistence parameter, the au-
toregressive coefficient ρ, in AR(1) models. The classic Wald confidence inter-
val typically provides low coverage in finite samples, especially if the true value
of ρ is close to unity, as happens for most of macroeconomic time series. The
Wald-type interval is based on classical asymptotic theory, that is, the setup when
|ρ| < 1 is considered to be fixed, and the sample size n converges to infinity. The
classical asymptotic laws (Central Limit Theorem and Law of Large Numbers) do
not hold uniformly over the interval ρ ∈ (0,1); rather, the convergence becomes
slower as ρ approaches 1, and neither law holds for ρ = 1. An alternative asymp-
totic approach, local-to-unity asymptotics, considers sequences of models with
ρn = 1+ c/n as n goes to infinity. According to Mikusheva (2007) and Andrews
and Guggenberger (2009, 2010) local-to-unity asymptotics leads to uniform in-
ferences on ρ, whereas classical asymptotics does not.

There are at least three methods that can be used to construct an asymptotically
correct confidence set for ρ: the method based on the local-to-unity asymptotic
approach (a modification of a procedure suggested in Stock, 1991), the parametric
grid bootstrap (Andrews, 1993) and the nonparametric grid bootstrap (Hansen,
1999). The validity of these methods was proved in Mikusheva (2007).
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This paper compares three methods on the grounds of the accuracy of the
asymptotic approximations they provide. All three methods are asymptotically
first-order correct, that is, the coverage of the confidence sets uniformly con-
verges to the confidence level as the sample size increases. The question we
address here is the speed of the convergence in the local-to-unity asymptotic
approach. We show that the nonparametric grid bootstrap (Hansen’s method)
achieves second-order refinement, that is, the speed of coverage probability con-
vergence is o(n−1/2), whereas the other two methods in general guarantee only
a O(n−1/2) speed of convergence in the local-to-unity asymptotic approach. To
compare the three methods we establish an asymptotic expansion of the t-statistic
around its limit in local-to-unity asymptotics.

A second-order distributional expansion is an approximation of the unknown
distribution function of the statistic of interest (t-statistic in our case) by some
other function up to the order of o(n−1/2). One example of a second-order distri-
butional expansion is the first two terms of the well-known Edgeworth expansion.

There are several differences between the expansion obtained in this paper and
an Edgeworth expansion. First of all, an Edgeworth expansion is an expansion
around normal or χ2 distributions. In our case we expand the t-statistic around
its local-to-unity asymptotic limit, which is a nonnormal and nonpivotal distri-
bution. Secondly, it is known that the first two terms of an Edgeworth expansion
do not constitute a distribution function themselves. In particular, it can be non-
monotonic and nonchanging from 0 to 1. One special feature of our expansion
is that it approximates the distribution function of the t-statistic by a cumulative
distribution function (cdf), which can be simulated easily.

And finally, as opposed to the Edgeworth expansion—which comes from ex-
panding the characteristic function—our expansion comes from stochastic em-
bedding and a strong approximation principle. The expansion we obtain is a
“probabilistic” one. That is, we construct a random variable on the same prob-
ability space as the t-statistic in such a way that the difference between the con-
structed variable and the t-statistic is of the order o(n−1/2) in probability. We also
show that under additional moment assumptions it leads to a second-order “distri-
butional” expansion. The idea of asymptotically expanding the distribution of the
normalized coefficient in the AR(1) with a unit root was first developed in Phillips
(1987b) for a Gaussian model, and in Phillips (1987a) for a nonstationary VAR.
The same idea was used in Park (2003). He obtained a second-order expansion of
the Dickey–Fuller t-statistic for testing a unit root without assuming normality of
error terms.

The distributional expansion allows us to show that Hansen’s grid bootstrap
achieves the second-order improvement in the local-to-unity setting when com-
pared to the modified version of Stock’s (1991) and Andrews’ (1993) methods.
The intuition for the improvement achieved by the nonparametric grid bootstrap
is the classical one—Hansen’s grid bootstrap uses the information about the dis-
tribution of error terms, while the other two methods do not. We should be clear
that the statement of the second-order superiority of Hansen’s bootstrap has been
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established in this paper only in the local-to-unity asymptotic framework, and it
remains unknown whether the derived asymptotic expansion holds uniformly over
all values of ρ. It seems that the full uniformity result cannot be established by
the method used in this paper.

The current paper also discusses that the grid bootstrap does not achieve the
asymptotic refinement in a more general AR(p) case, as in such a case, the statis-
tic becomes asymptotically nonpivotal and depends on the other unknown coeffi-
cients describing short-term dynamics.

The paper contributes to the literature on bootstrapping autoregressive pro-
cesses and closes the discussion on making inferences on persistence in an
AR(1) model. Here are some of the known results on bootstrap of AR mod-
els: Bose (1988) showed in classical asymptotics that the usual bootstrap pro-
vides second-order improvement compared to the OLS asymptotic distribution.
However, Basawa et al. (1991) showed the usual bootstrap fails (is of the wrong
size asymptotically) if the true process has a unit root. Their result can be easily
generalized to local-to-unity sequences. Park (2006) showed that the usual boot-
strap achieves greater accuracy than the asymptotic normal approximation of the
t-statistic for weakly integrated sequences (for sequences with an AR coefficient
converging to the unit root at a speed slower than 1/n). The intuition behind Park’s
result is that the ordinary bootstrap uses the information about the closeness of the
AR coefficient to the unit root. His expansion is nonstandard, and the reason for
bootstrap improvement is also unusual (usually the bootstrap achieves higher ef-
ficiency due to usage information about the distribution of the error term).

The rest of the paper is organized in the following way. Section 2 introduces
notation. Section 3 obtains a probabilistic embedding of error terms and a prob-
abilistic expansion of the t-statistic. Section 4 shows that the probabilistic ex-
pansion from the previous section leads to a distributional expansion. Section 5
establishes a similar expansion for a bootstrapped statistic and obtains the main
result of the paper on the asymptotic refinement achieved by the nonparametric
grid bootstrap. Section 6 discusses the behavior of the grid bootstrap in an AR(p)
case. All proofs are left to the Appendix.

2. NOTATION AND PRELIMINARY RESULTS

Let us have a sample {y1, . . . , yn} from an AR(1) process

yj = ρyj−1 + εj , j = 1, . . . ,n (1)

with y0 = 0 and ρ = ρ0. Let the error terms εj satisfy Assumptions A.

Assumption A. Assume that error terms εj are independent and identically
distributed (i.i.d.) random variables with mean zero, variance σ 2, and E|εj |r < ∞
for some r > 2.

We consider testing and confidence set construction procedures based on the
t-statistics. Let
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t (y,ρ0,n) =
∑n

j=1(yj −ρ0 yj−1)yj−1

σ̂
√∑n

j=1 y2
j−1

be the t-statistic for testing the true hypothesis H0 : ρ = ρ0 using the sample
{yj }n

j=1, here σ̂ = 1
n

∑n
j=1(yj − ρ̂yj−1)

2, and ρ̂ is the OLS estimator of ρ. The
classical asymptotic approach states that for every fixed |ρ0| < 1 as the sample
size, n, increases to infinity we have

t (y,ρ0,n) ⇒ N (0,1).

An alternative asymptotic framework, a local-to-unity asymptotic approach,
which is intended to describe the behavior of the statistics when the autoregres-
sive coefficient ρ0 is very close to the unit root, models the true value of ρ0 as
changing with the sample size, namely, ρ = ρn = exp(c/n) ≈ 1+ c

n ,c ≤ 0. Under
such an assumption, one can show (see Phillips, 1987c) that

t (y,ρn,n) ⇒
∫ 1

0 Jc(x)dw(x)√∫ 1
0 J 2

c (x)dx
,

where Jc(x) = ∫ x
0 ec(x−s)dw(s) is an Ornstein–Ulenbeck (OU) process, and w(·)

is a standard Brownian motion.
As was shown in Mikusheva (2007), the classical asymptotic approximation is

not uniform. In particular, if zα is the α-quantile of a standard normal distribu-
tion, then

lim
n→∞ inf|ρ|<1

Pρ{zα/2 < t (y,ρ,n) < z1−α/2} < 1−α.

As a result, the usual OLS confidence set would provide poor coverage in fi-
nite samples if we allow ρ to be arbitrarily close to the unit root. The local-to-
unity asymptotic approach on the contrary is uniform (Mikusheva, 2007, Thm. 2).
Namely,

lim
n→∞ sup

ρ∈[0,1]
sup

x
|Pρ{t (y,ρ,n) ≤ x}− Fc

n,ρ(x)| = 0,

where Fc
n,ρ(x) = P{∫ 1

0 Jc(t)dw(t)/
√∫ 1

0 J 2
c (t)dt ≤ x} with c = n log(ρ).

The use of a local-to-unity asymptotic in order to construct a confidence set
was suggested by Stock (1991). It can be implemented as a “grid” procedure. One
needs to test a set of hypotheses H0 : ρ = ρ0 (in practice the testing could be per-
formed over a fine grid of values of ρ0). A test compares t-statistic t (y,ρ0,n) with
critical values that are quantiles of the distribution of Fc

n,ρ0
(x). The acceptance set

is a uniformly asymptotically valid confidence set. We call this method a modified
Stock’s (1991) method, since the testing procedure stated above slightly differs
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from the test originally suggested in Stock (1991). The paper by Stock (1991)
uses a different statistic, namely, Dickey–Fuller t-statistic for a unit root test. As
discussed in Phillips (2012), Stock’s original procedure is poorly centered and
has asymptotically zero coverage when applied to a stationary process, while the
modified version of it is uniformly asymptotically the correct size. Phillips (2012)
explains the bad properties of Stock’s original method as a failure of tightness and
the escape of probability mass.

Two alternatives to the procedure described above are Andrews’ parametric
grid bootstrap and Hansen’s nonparametric grid bootstrap. The three methods
differ in their choices of critical values. In particular, in Andrews’ grid boot-
strap, critical values are taken as quantiles of a finite-sample distribution of the
t-statistic in a model with normal errors: F N

n,ρ0
(x) = Pρ0{t (z,ρ0,n) ≤ x}. Here,

zt is an AR(1) process with the AR coefficient ρ0 and normal errors. In Hansen’s
grid bootstrap we use quantiles of F∗

n,ρ(x), the finite sample distribution of the
t-statistic for a bootstrapped model with the null imposed. More accurately, let
y∗

j = ρ0 y∗
j−1 + e∗

j , where e∗
j are sampled from the residuals of the initial OLS

regression, then F∗
n,ρ0

(x) = Pρ0{t (y∗,ρ0,n) ≤ x}.
Previously, Mikusheva (2007) proved that all three methods are uniformly

asymptotically correct. The goal of this paper is to explore the second-order prop-
erties of the methods using the local-to-unity asymptotic approach. Below we
show that Hansen’s bootstrap provides second-order improvement in the local-to-
unity asymptotic approach when compared with Andrews’ method and the mod-
ification of Stock’s method. To prove this we establish a second-order expansion
of t (y,ρn,n) in a local-to-unity asymptotic framework.

3. STOCHASTIC EMBEDDING

According to Skorokhod’s embedding scheme (Skorokhod, 1965), the normalized
partial sums of the error terms can be realized as a stopped Brownian motion.
Namely, there exists a Brownian motion w and an increasing sequence of stopping
times Tj,n on an extended probability space such that⎧⎨⎩ 1√

nσ

j∑
i=1

εi

⎫⎬⎭
n

j=1

=d {
w

(
Tn, j

)}n
j=1 , (2)

where Tn, j = 1
nσ 2

∑ j
i=1 τi . It is also known that the random variables τi are

nonnegative, Eτj = σ 2,E|τj |r/2 < KrE|εj |r , where Kr is an absolute constant.
Since we are interested only in finite-sample distributions of statistics gen-
erated from {εj }n

j=1, to simplify the notation we assume from now on that
εj
σ = √

n
(
w

(
Tn, j

)−w
(
Tn, j−1

))
. Let us consider a sequence of random vec-

tors v j =
(

εj
σ ,

τj −σ 2

σ 2 ,
ε2

j −σ 2

σ 2

)
and Bn(t) = 1√

n

∑[nt]
j=1 v j = (wn(t),Vn(t),Un(t)).

Park (2003) proved1 that Bn →d B = (w,V,U ), where B is a Brownian motion
with covariance matrix � given by
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� =
⎛⎝ 1 μ3/3σ 3 μ3/σ

3

μ3/3σ 3 κ/σ 4 (μ4 −3σ 4 +3κ)/6σ 4

μ3/σ
3 (μ4 −3σ 4 +3κ)/6σ 4 (μ4 −σ 4)/σ 4

⎞⎠ . (3)

Here Eε2
j = σ 2,Eε3

j = μ3,Eε4
j = μ4,E(τj −σ 2)2 = κ . Park (2003) also proved

that Bn and B can be defined on the same probability space in such a way that
Bn →a.s. B. Let N (t) = w(1+ t)−w(1), M(t) be a Brownian motion independent
on w. Also denote U = U (1) and V = V (1). We are ready to introduce the second
order probabilistic expansions of the t-statistic.

THEOREM 1. Let ρn = exp{c/n},c ≤ 0. Assume that the εj satisfy the set of
Assumptions A with r ≥ 8. Then one has the following probabilistic expansions,
that is, there exists a realization of stochastic processes such that:

(a) the following statement holds uniformly over k ∈ {1,2, . . . ,n}
yk

σ
√

n
− Jc(Tn,k) = − c√

n

∫ k/n

0
ec(k/n−s) Jc(s)dV (s)+op(n

−1/2);
(b)

1

nσ 2

n∑
k=1

yk−1εk =
∫ 1

0
Jc(x)dw(x)+n−1/4 Jc(1)M(V )

+ 1√
n

(
−c

∫ 1

0

∫ t

0
ec(t−s) Jc(s)dV (s)dw(t)

+ Jc(1)N (V )+ 1

2
M2(V )− 1

2
U

)
+op

(
1√
n

)
;

(c)

1

n2σ 2

n∑
k=1

y2
k =

∫ 1

0
J 2

c (x)dx − 2c√
n

∫ 1

0
Jc(x)

∫ x

0
ec(x−s) Jc(s)dV (s)dx

− 1√
n

∫ 1

0
J 2

c (x)dV (x)+ 1√
n

J 2
c (1)V

− 2μ3

3
√

nσ 3

∫ 1

0
Jc(t)dt +op

(
1√
n

)
;

(d)

1

n3/2σ

n∑
k=1

yk =
∫ 1

0
Jc(x)dx − c√

n

∫ 1

0

∫ x

0
ec(x−s) Jc(s)dV (s)dx

− 1√
n

∫ 1

0
Jc(x)dV (x)+ 1√

n
Jc(1)V

− μ3

3
√

nσ 3
+op

(
1√
n

)
;
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(e)

t (y,ρn,n) = tc +n−1/4 f +n−1/2g +op(n
−1/2),

here tc = ∫ 1
0 Jc(x)dw(x)/

√∫ 1
0 J 2

c (x)dx, f = Jc(1)M(V )/

√∫ 1
0 J 2

c (x)dx,

g = − tc

2 U + 1√∫ 1
0 J 2

c (x)dx

{(
−c

∫ 1
0

∫ t
0 ec(t−s) Jc(s)dV (s)dw(t)

+ Jc(1)N (V )+ 1
2 M2(V )− 1

2U
)

+ tc

2

(
2c

∫ 1
0 Jc(x)

∫ x
0 ec(x−s) Jc(s)dV (s)dx

+∫ 1
0 Jc(x)dV (x)− Jc(1)V + 2μ3

3σ 3

∫ 1
0 Jc(t)dt

)}
.

The expansions from Theorem 1 are probabilistic. Namely, we approximate a
random variable t (y,ρn,n), whose distribution is unknown, by another random
variable ξn (whose distribution is known or could be simulated) with accuracy
o(n−1/2) in probability: P{|ξn − t (y,ρn,n)| > εn−1/2} → 0. Probabilistic expan-
sions are not of interest by themselves (since they are abstract constructions);
rather, they are building blocks to achieve the distributional expansions described
in the next section.

The random variables on the right-hand side are functionals of several Brow-
nian motions B(t) = (w(t),V (t),U (t)) and M(t). The covariance matrix of
B(t) depends only on some characteristics (σ 2,μ3,μ4,κ) of the distribution
function of εj , namely on the first four moments of εj and some characteriza-
tion of nonnormality κ (parameters are defined above). M(t) is independent of
B(t). As a result the distribution of the approximating variable depends only on
ψ = (σ 2,μ3,μ4,κ,c). The distribution of the approximating variable can be sim-
ulated easily.

Remark 1. If one has an exact unit root (c = 0), then the expansion is exactly
equal to the expansion obtained by Park (2003).

Remark 2. If εj are normally distributed, then V (t) ≡ 0 and w(·) is indepen-
dent of U (·). It implies that t = tc + 1

2
√

n
U√∫

J 2
c (x)dx

− tc

2
√

n
U +op(n−1/2), where

U is independent of w.2 So, according to this probabilistic expansion Andrews’
method and the modification of Stock’s method are the same up to an independent
summand of order Op(n−1/2). I show in the next section that they are the same
distributionally up to the order of o(n−1/2).

Remark 3. The statement of Theorem 1 can be easily generalized to the
model with a constant. The corresponding t-statistic would involve de-meaned
processes and would be expanded around its asymptotic limit tc

μ = ∫ 1
0 Jμ

c (x)

dw(x)/

√∫ 1
0

(
Jμ

c
)2

(x)dx , where Jμ
c (t) = Jc(t) − ∫ 1

0 Jc(s)ds is the de-meaned
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O–U process. The resulting expansion has additional terms which are due to esti-
mation of the mean of the process and are derived in part (d) of Theorem 1.

Remark 4. Theorem 1 can be easily generalized to an AR(1) process with
a nonzero starting point.3 In particular, assume that y0 is some known random
variable. Then yj = ρ j y0 + xj , where process xj satisfies all assumptions of
Theorem 1 and starts from x0 = 0. Probabilistic expansions for process yt have
additional terms. In particular,

1

nσ 2

n∑
k=1

yk−1εk = 1

nσ 2

n∑
k=1

xk−1εk + 1√
n

(
n∑

k=1

eck/n εk

σ
√

n

)
y0

σ

= 1

nσ 2

n∑
k=1

xk−1εk + y0

σ
√

n

∫ 1

0
ecsdw(s)+op

(
n−1/2

)
,

1

n2σ 2

n∑
k=1

y2
k = 1

n2σ 2

n∑
k=1

x2
k + 2√

n

(
1

n

n∑
k=1

eck/n yk

σ
√

n

)
y0

σ
+op

(
n−1/2

)
= 1

n2σ 2

n∑
k=1

x2
k + 2y0

σ
√

n

∫ 1

0
ecs Jc(s)ds +op

(
n−1/2

)
.

4. DISTRIBUTIONAL EXPANSION

For making inferences we need asymptotic theory to approximate the unknown
finite-sample distribution of the t-statistic t (y,n,ρn). In the previous section we
established a probabilistic approximation. In particular, we found a sequence of
random variables ξn with a known distribution that depends on a vector of param-
eters ψ such that t (y,n,ρn) = ξn +op(n−1/2) for ρn = 1+ c/n. That is,

lim
n→∞Pρn

{
|t (y,n,ρn)− ξn| >

ε√
n

}
= 0 for all ε > 0.

The goal of this section is to come up with a distributional expansion. By dis-
tributional expansion of the second order we mean a sequence of real-value func-
tions Gn(·) such that

Pρn {t (y,n,ρn) ≤ x} = Gn(x)+o
(

n−1/2
)
. (4)

In general, Gn(·) is not required to be a cdf of any random variable.
An example of a distributional expansion is the second-order Edgeworth ex-

pansion. Initially, an Edgeworth expansion was stated as an approximation to the
distribution of normalized sums of random variables. Nowadays, Edgeworth-type
expansions have been obtained for many statistics having a normal or chi-squared
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limiting distribution. Traditionally, Edgeworth-type expansions are obtained from
expansions of characteristic functions. It is also known that usually, in Edgeworth
expansions, function Gn is not a cdf of any random variable. In particular, Gn is
not monotonic in many applications.

In our setup an Edgeworth expansion does not exist since the limiting distribu-
tion is not normal or chi-squared. In this section we show that under some moment
conditions our probabilistic expansion corresponds to a distributional expansion.
Namely,

sup
x

∣∣Pρn {t (y,n,ρn) ≤ x}−P{ξn ≤ x}∣∣ = o
(

n−1/2
)
,

where ξn = tc +n−1/4 f +n−1/2g from part (e) of Theorem 1. That is, in our case
Gn(x) = P{ξn ≤ x} is a cdf and depends on the parameter vector ψ .

DEFINITION 1 (Park, 2003). A random variable X has a distributional order
o(n−a) if P{|X | > n−a} < n−a.

THEOREM 2. Let all assumptions of Theorem 1 hold, then all op
(
n−1/2

)
terms

in statements (a)–(e) of Theorem 1 are of distributional order o
(
n−1/2

)
.

COROLLARY 1. If error terms are i.i.d. with mean zero and 8 finite moments,
the following distributional expansion holds:

sup
x

∣∣∣P{t (y,ρn,n) < x}−P{tc +n−1/4 f +n−1/2g < x}
∣∣∣ = o

(
n−1/2

)
.

One can notice there is no “unique” distributional expansion even if we require
that Gn be a cdf. This surprising fact is explained in Remark 5.

Remark 5. Let Gn(x) = P{ξn < x} be a cdf and assume that η has a normal
distribution and is independent of σ -algebraA. Let ξn and F be random variables
measurable with respect toA. If Gn satisfies the distributional approximation (4),
then G̃n(x) = P{ξn + F 1√

n
η < x} would also satisfy it. That is, the additional term(

which is of probabilistic order of Op
(
n−1/2

))
has a distributional impact of order

o(n−1/2). This point was made by Park (2003). The idea is that the characteristic
function for ξn + F 1√

n
η conditional onA is equal to eitξn up to the order O

(
n−1

)
.

It might seem strange that the probabilistic expansion of
∑

yj−1εj includes a
term of order Op

(
n−1/4

)
. This term has a distributional impact of order O

(
n−1/2

)
.

The idea of the statement is totally parallel to the remark above. Indeed, M(V ) is
distributionally M(1) ·√|V |, where M(1) ∼ N (0,1) and is independent of B(·) =
(w,V,U ).

Remark 6. Combining Remarks 2 and 5 one comes up with the following. If
the error terms are normally distributed, then we have a distributional equivalence

P{t (z,n,ρ) < x} = P{tc < x}+o
(

n−1/2
)
.
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That is, the difference between quantiles constructed in Andrews’ (1993) method
and the modification of Stock’s (1991) method is of the order o

(
n−1/2

)
. The two

methods achieve the same accuracy up to the second order.

5. BOOTSTRAPPED EXPANSION

5.1. Embedding for Bootstrapped Statistic

In Section 4 we assert that the distribution of t-statistic t (y,n,ρn) can be ap-
proximated by a sequence of functions Gn(x) = P{tc + 1

n1/4 f + 1√
n

g ≤ x}, where

f and g are functionals of Brownian motions B(·) and M . The covariance struc-
ture of B is described in (3), it depends on ψ = (σ 2,μ3,μ4,κ), while M is inde-
pendent of B.

The grid bootstrapped statistic (as in Hansen, 1999) has the same form, since it
uses the true value (not estimator) of ρ0 (or c). The only difference between the
initial distribution of the t-statistic and the grid bootstrapped distribution of the
t-statistic is a difference in the distribution of the error term. We will show that

P
∗
n{t (y∗,n,ρ) ≤ x} = G∗

n(x)+o
(

n−1/2
)
P−a.s.,

here P∗
n is the bootstrapped distribution with error terms drawn from n recen-

tered residuals, it is conditional on the realization of the initial sample. Function
G∗

n(x) = P{tc + 1
n1/4 f ∗ + 1√

n
g∗ ≤ x} is the approximating distribution function,

here f ∗ and g∗ are functionals of Brownian motions B∗
n and M∗

n , where M∗
n is

independent of B∗
n . The only difference with the initial statistic is that the covari-

ance structure of B∗ depends on the sample moments ψ̂n = (
σ̂ 2

n , μ̂3,n, μ̂4,n, κ̂n
)

rather than true moments ψ .
The next subsection states that the parameter vector ψ̂n converges almost surely

(a.s.) to ψ at a speed of Op(n−1/2), which would be enough to say that the second-
order terms in the expansions of the initial and the grid bootstrapped statistics
coincide up to the order of o(n−1/2) almost surely.

THEOREM 3. Let us have an AR(1) process (1) with y0 = 0 and error terms
satisfying Assumptions A with r ≥ 8. Assume that ρn = 1 + c/n,c ≤ 0. Let us
consider for every n a process y∗

j = ρn y∗
j−1 + e∗

j , y∗
0 = 0, where e∗

j are an i.i.d.
sample from centered and normalized residuals from the initial regression. Then

sup
x

∣∣P{t (y,n,ρn) ≤ x}−P∗
n{t (y∗,n,ρn) ≤ x}∣∣ = o

(
n−1/2)

P−a.s.

Theorem 3 states that Hansen’s grid bootstrap provides second-order improve-
ment when compared with Andrews’ method and the modification of Stock’s
method in the local-to-unity asymptotic approach. The intuition for that improve-
ment is typical for the bootstrap. The second-order term depends on the param-
eters of the distribution of error terms. Those parameters are well approximated
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by the sampled analogs. The nonparametric grid bootstrap uses sampled residu-
als, the parameters of which are very close to the population values. As a result,
the refinement is achieved. The only parameter (on which the limiting expansion
depends) that could not be well estimated is the local-to-unity parameter c. The
grid bootstrap procedure uses the “true” value of c.

Theorem 3 is a statement obtained using the local-to-unity asymptotic ap-
proach. The statement that Hansen’s grid bootstrap achieves second-order re-
finement in the classical asymptotics is easy to make. It could be obtained from
an Edgeworth expansion along the lines suggested in Bose (1988). As a result,
we should advise applied researchers to choose Hansen’s grid bootstrap over
Andrews’ method and the modification of Stock’s method.

5.2. Convergence of Parameters

This subsection is a part of the proof of Theorem 3 from the previous subsection.
Here we show that the parameter vector ψ = (

σ 2,μ3,μ4,κ
)

can be well approx-
imated by a sample analog (moments of residuals) ψ̂n = (

σ̂ 2
n , μ̂3,n, μ̂4,n, κ̂n

)
. The

part of the statement pertaining to the moments of error terms, namely, that vector(
σ̂ 2

n , μ̂3,n, μ̂4,n
)

converges to vector
(
σ 2,μ3,μ4

)
is the standard one and holds if

error term εj has enough moments.
However, one parameter, κ , may potentially depend on the way the Skorokhod

embedding has been realized. There are numerous methods to construct a
Brownian motion w and a stopping time τ in such a way that the stopped pro-
cess w(τ) has the same distribution as a given mean-zero random variable ε
and Eτ = Eε2. The paper by Obloj (2004) provides a comprehensive survey
of different approaches to realize the Skorokhod embedding. Since we are free
to choose any construction, from now on I assume that we use the construc-
tion stated in Skorokhod (1965). In the proof of Lemma 1, I show that the
initial Skorokhod construction published in Skorokhod’s book (1965) leads to
κ = Eτ 2 = 5

3Eε4. This expression ties κ to the fourth moment of the random
variable ε, as a result, as long as μ̂4,n converges to μ4, the same holds for κ̂n

and κ .

LEMMA 1. Let error terms εj satisfy the set of Assumptions A. Then there is a
Skorokhod’s embedding for which

ψ − ψ̂n = Op

(
n−1/2

)
.

6. SOME NOTES ABOUT AR(p) PROCESSES

A natural question is whether the results about the second order asymptotic re-
finement of the grid bootstrap can be generalized to the AR(p) models. While
asymptotic expansions analogous to those obtained in Theorems 1 and 2 can be
established in the more general case of AR(p) models,4 the result on the second
order asymptotic refinement achieved by the grid bootstrap does not hold.
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Assume that we have a process written here in the augmented Dickey–Fuller
form:

yj = ρyj−1 +β1�yj−1 +·· ·+βp−1�yj−p+1 + εj . (5)

Denote |μ1| ≤ |μ2| ≤ · · · ≤ |μp| to be the autoregressive roots of process (5). A
typical way of modeling a near-unit-root process is to assume that μp = 1 + c

n
while the other roots μ1, . . . ,μp−1 are held fixed and strictly separated from the
unit circle (|μp−1| < δ < 1).

There are several ways to characterize the persistence of an AR(p) process.
The two most often used characteristics are the largest autoregressive root μp and
the sum of the autoregressive coefficients ρ. In the case of the unit root testing they
coincide: testing for the presence of a unit root μp = 1 is equivalent to testing that
the sum of autoregressive coefficients is equal to unity (ρ = 1). However, in the
case of near unit roots the two characteristics diverge, in particular:

ρ = 1−(1−μp)(1−μp−1) · · · (1−μ1) = 1+ c

n
(1−μp−1) · · · (1−μ1) = 1+ c∗

n
,

where c∗ = c(1−μp−1) · · · (1−μ1).
There are two very insightful discussions by Phillips (1991) and Andrews and

Chen (1994) that provide arguments in favor of using the sum of the autoregres-
sive coefficients, ρ, as the measure of persistence. In particular, Phillips (1991)

points out that the spectrum at zero is equal to σ 2

(1−ρ)2 , while Andrews and
Chen (1994) notice that the cumulative impulse response, that is, the sum of all
impulse responses, is equal to 1

1−ρ , that is, both these measures of long-run be-
havior of a process are directly linked to the sum of coefficients. Below I mention
three additional arguments as to why one may prefer to use the sum of coefficients
ρ rather than the largest root μp as the characteristic of persistence. First, while
an estimator of ρ can be obtained by the usual OLS regression, an estimator of
μp is a very complicated function of the OLS coefficients; this function cannot
be written explicitly analytically for cases with p ≥ 5. Second, the largest root is
not always well defined and potentially may be a complex number, as with posi-
tive probability the two largest (in absolute value) roots are complex conjugates.
Finally, if the order of the autoregression p is not known and one estimates the
OLS regressions of an increasing order (pn → ∞ as n → ∞), so called sieve
regression, then the roots are not consistently estimated (while the OLS estima-
tor for ρ is still consistent). In particular, Onatski and Uhlig (2012) showed that
even if the data are generated from the white noise one will find an asymptotically
infinite number of roots concentrated around the unit circle (spurious unit roots).

For the rest of this section we assume that the sum of the AR coefficients, ρ,
is the parameter of interest. The grid bootstrap procedure in such a case was
introduced by Hansen (1999) and was proved to be uniformly asymptotically
correct by Mikusheva (2007). Below is a brief description of the grid bootstrap
for AR(p).
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Assume that we test the hypothesis H0 : ρ = ρ0 using the corresponding
t-statistic in the regression (5). The finite-sample distribution of the t-statistic de-
pends on ρ0 and n, as well as on the unknown nuisance parameters β1, . . . ,βp−1.
Let us estimate the following OLS regression:

yj −ρ0 yj−1 = β1�yj−1 +·· ·+βp−1�yt−p+1 + εj ,

that is, we regress the quasi-difference yj − ρ0 yj−1 on �yt−1, . . . ,�yt−p+1.
Assume that β̂1(ρ0), . . . , β̂p−1(ρ0) are the OLS coefficients from such a regres-
sion. The bootstrapped samples are generated in the following way:

y∗
j = ρ0 y∗

j−1 + β̂1(ρ0)�y∗
j−1 +·· ·+ β̂p−1(ρ0)�y∗

t−p+1 + ε∗
j ,

where ε∗
j are simulated from the re-centered residuals. The bootstrapped t-statistic

is obtained by running a regression (5) on the simulated data y∗. By repeat-
ing the simulations many times, one obtains the distribution of the bootstrapped
t-statistic, which she can use to get the critical values for the initial test. These
critical values depend on the value ρ0 tested. To construct a confidence set one
has to repeat the procedure for different values of ρ0, and choose those for which
the corresponding hypothesis is accepted.

Assume that μp = 1 + c/n while μ1, . . . ,μp−1 are fixed and separated from
the unit circle, and the hypothesis of interest H0 : ρ = ρ0 holds true, that is,
ρ0 = 1 − (1 − μp)(1 − μp−1) · · · (1 − μ1). Then according to Phillips (1987c),
t (y,ρ0,n) ⇒ tc, where tc is defined in Theorem 1(e). Notice that the null
hypothesis H0 : ρ = ρ0 pins down the value of c∗ = n(ρ0 −1), while the limit dis-
tribution depends on the value of c. Obviously, the values of c and c∗ are closely
related, but the relation between them depends on the other coefficients of the AR
process, β1, . . . ,βp−1, which are nuisance parameters, that is, unknown parame-
ters not specified by the null hypothesis. From this perspective the t-statistic for
ρ is not asymptotically pivotal, and thus, it is difficult to expect the bootstrap to
provide asymptotic refinement. Notice also that the two cases when the grid boot-
strap achieves asymptotic refinement, namely the AR(1) and testing for the unit
root, correspond to the situation when ρ = μp (or c = c∗) and thus the t-statistic
is asymptotically pivotal.

NOTES

1. We use slightly different notation: our third component
ε2

j −σ2

σ2 equals to δi + 2ηi in Park’s
notation. This changes the definition of process U (t), which now corresponds to a process, which in
Park’s notation is referred to as V +2U .

2. Peter C.B. Phillips reported (via private communication) a similar expansion for the normalized
OLS estimator of ρ in a Gaussian mode.

3. I am grateful to Peter C.B. Phillips for pointing this out.
4. This derivation is beyond the scope of the current paper.
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APPENDIX. Proofs of Results

We use the following results from Park (2003):

LEMMA 2 (Park, 2003, Lem. 3.5(a)). If Assumptions A are satisfied with r ≥ 8, then

1√
nσ

n∑
j=1

εj = w(1)+n−1/4 M(V )+n−1/2 N (V )+op

(
n−1/2

)
,

where V = V (1).



440 ANNA MIKUSHEVA

LEMMA 3 (Park, 2003). If Assumptions A are satisfied with r > 4, then we might choose
Bn and B such that

P

{
sup

0≤t≤1
|Bn(t)− B(t)| > c

}
≤ n1−r/4C−r/2(1+σ−r )K

(
1+E|εj |r

)
for any C ≥ n−1/2+2/r .

About convergence of stochastic integrals:

LEMMA 4 (Kurtz and Protter, 1991). For each n, let (Xn,Yn) be an Fn
t -adapted pro-

cess with sample paths in Skorokhod space D and let Yn be an Fn
t semimartingale. Sup-

pose that Yn = Mn + An + Zn, where Mn is a local Fn
t martingale, An is Fn

t -adapted
finite variation process, and Zn is constant except for finitely many discontinuities. Let
Nn(t) denote the number of discontinuities of process Zn on interval [0, t]. Suppose that
Nn is stochastically bounded for each t > 0. Suppose that for each α > 0 there exist stop-
ping times {τα

n } such that P{τα
n ≤ α} ≤ 1/α and supn E[[Mn]t∧τα

n
+ Tt∧τα

n
(An)] < ∞.

If (Xn,Yn, Zn) →d (X,Y, Z) in the Skorokhod topology, then Y is a semimartingale
with respect to a filtration to which X and Y are adapted and (Xn,Yn,

∫
XndYn) →d

(X,Y,
∫

XdY ) in the Skorokhod topology. If (Xn,Yn, Zn) → (X,Y, Z) in probability, then
convergence in probability holds in the conclusion.

Proof of Theorem 1. (a) From our stochastic embedding,
εj
σ = √

n
(
w

(
Tn, j

) −
w

(
Tn, j−1

))
, and the definition of the O–U process, Jc(t) = ∫ t

0 ec(t−s)dw(s), we have
that

yk

σ
√

n
− Jc(Tn,k) =

k∑
j=1

ec k− j
n

(
w

(
Tn, j

)−w
(
Tn, j−1

))−
k∑

j=1

∫ Tn, j

Tn, j−1

ec(Tn,k−s)dw(s)

=
k∑

j=1

(
ec k− j

n − ec(Tn,k−Tn, j )
)(

w
(
Tn, j

)−w
(
Tn, j−1

))

+
k∑

j=1

∫ Tn, j

Tn, j−1

(
ec(Tn,k−Tn, j ) − ec(Tn,k−s)

)
dw(s).

We show below that the first term in the last sum is asymptotically equal to

− c√
n

∫ k/n
0 ec(k/n−s) Jc(s)dV (s) + op(n−1/2), while the second term is op(n−1/2). We

start with the first term and notice that |ex −1− x − x2| ≤ x3 for all |x | < 1. According to
Breiman (1992, Chap. 13.4), we also have

P

{
max

1≤ j≤k≤n

∣∣∣∣(Tn,k − Tn, j )− k − j

n

∣∣∣∣ > 1

}
→ 0.

These two statements imply that

k∑
j=1

(
ec k− j

n − ec(Tn,k−Tn, j )
)(

w
(
Tn, j

)−w
(
Tn, j−1

))
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= c
k∑

j=1

ec k− j
n

(
k − j

n
− (Tn,k − Tn, j )

)(
w

(
Tn, j

)−w
(
Tn, j−1

))

+ c2
k∑

j=1

ec k− j
n

(
k − j

n
− (Tn,k − Tn, j )

)2 (
w

(
Tn, j

)−w
(
Tn, j−1

))+ R1,n,k ,

where

|R̃1,n,k | ≤
k∑

j=1

c3ec k− j
n

∣∣∣∣k − j

n
− (

Tn,k − Tn, j
)∣∣∣∣3 ∣∣w (

Tn, j
)−w

(
Tn, j−1

)∣∣
=

k∑
j=1

c3ec k− j
n

∣∣∣∣ 1√
n

V

(
k

n

)
− 1√

n
V

(
j

n

)∣∣∣∣3 ∣∣∣∣ εj

σ
√

n

∣∣∣∣
≤ 1

n3/2

⎛⎝ k∑
j=1

c3ec k− j
n

∣∣∣∣ εj

σ
√

n

∣∣∣∣
⎞⎠ · sup

0≤t,s≤1
|Vn(t)− Vn(s)|3 = Op

(
n−1

)
.

The last statement holds uniformly over k.

c
k∑

j=1

ec k− j
n

(
k − j

n
− (Tn,k − Tn, j )

)(
w

(
Tn, j

)−w
(
Tn, j−1

))

= c√
n

k∑
j=1

ec k− j
n (Vn(k/n)− Vn( j/n))

(
w

(
Tn, j

)−w
(
Tn, j−1

))

= c√
n

k∑
j=1

ec k− j
n

k∑
i= j+1

(Vn(i/n)− Vn((i −1)/n))
(
w

(
Tn, j

)−w
(
Tn, j−1

))

= c√
n

k∑
i=1

i−1∑
j=1

ec k− j
n (Vn(i/n)− Vn((i −1)/n))

(
w

(
Tn, j

)−w
(
Tn, j−1

))

= c√
n

k∑
i=1

ec k−i
n (Vn(i/n)− Vn((i −1)/n))

yi√
n

= c√
n

∫ k/n

0
ec(k/n−s) Jc,n(s)dVn(s)

= c√
n

∫ k/n

0
ec(k/n−s) Jc(s)dV (s)+op

(
n−1/2

)
.

The last line in the long equality is due to Lemma 4. Here we used that Vn is the second

component of Bn , Jc,n(i/n) = yi√
n

= ∫ i/n
0 ec( i

n −s)dwn(s), and Bn → B a.s.

The next asymptotic statement can be obtained by analogous considerations:

c2
k∑

j=1

ec k− j
n

(
k − j

n
− (Tn,k − Tn, j )

)2 (
w

(
Tn, j

)−w
(
Tn, j−1

))

= c2

n

k∑
j=1

ec k− j
n (Vn(k/n)− Vn( j/n))2 (

w
(
Tn, j

)−w
(
Tn, j−1

)) = Op

(
n−1

)
.
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The only statement we are left to prove is

k∑
j=1

∫ Tn, j

Tn, j−1

(
ec(Tn,k−Tn, j−1) − ec(Tn,k−s)

)
dw(s) = op

(
n−1/2

)
.

Notice that random variables ξn, j = ∫ Tn, j
Tn, j−1

(
ec(1−Tn, j−1) − ec(1−s)

)
dw(s) are not corre-

lated across j , Eξn, j = 0 and Eξ2
n, j ≤ const · n−3. As a result,

∑k
j=1 ξn, j is op

(
n−1/2)

both probabilistically and distributionally uniform over k.

(b) Let An(k/n) = √
n

(
yk−1
σ
√

n
− Jc(Tn,k−1)

)
. According to Lemma 4 and statement (a)

proved above, we have

√
n

n∑
k=1

(
yk−1

σ
√

n
− Jc(Tn,k−1)

)
εk

σ
√

n
=

∫ 1

0
An(t)dwn(t) →p

−c
∫ 1

0

∫ t

0
ec(t−s) Jc(s)dV (s)dw(t).

Next consider the following equality:

n∑
k=1

Jc(Tn,k−1)
εk

σ
√

n
−

∫ 1

0
J (s)dw(s) =

∫ Tn,n

1
Jc(s)dw(s)

−
n∑

k=1

∫ Tn,k

Tn,k−1

(Jc(s)− Jc(Tn,k−1))dw(s). (6)

Here and below we write
∫ Tn,n

1 Jc(s)dw(s) as a short-cut for

∫ Tn,n

0
Jc(s)dw(s)−

∫ 1

0
Jc(s)dw(s) =

{ ∫ Tn,n
1 Jc(s)dw(s), if Tn,n > 1;

−∫ 1
Tn,n

Jc(s)dw(s), if Tn,n < 1.

Consider the second term on the right-hand side of equation (6). By definition of the
O–U process J (s) = w(s)+ c

∫ s
0 J (t)dt , as a result, we have

n∑
k=1

∫ Tn,k

Tn,k−1

(Jc(s)− Jc(Tn,k−1))dw(s) =
n∑

k=1

∫ Tn,k

Tn,k−1

(w(s)−w(Tn,k−1))dw(s)

+ c
n∑

k=1

∫ Tn,k

Tn,k−1

(D(s)− D(Tn,k−1))dw(s),

where D(s) = ∫ s
0 Jc(t)dt . According to Ito’s lemma and Lemma 3, we obtain the following

statement:∫ Tn,k

Tn,k−1

(w(s)−w(Tn,k−1))dw(s) = ε2
k

2n
− Tn,k − Tn,k−1

2

= 1

2
√

n
(U (1)− V (1))+op

(
n−1/2

)
.
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Term
∑n

k=1
∫ Tn,k

Tn,k−1
(D(s)− D(Tn,k−1))dw(s) is the sum of uncorrelated identically dis-

tributed random variables with mean zero and variance of asymptotic order Op
(
n−3)

. As

a result, this term is of order o
(
n−1/2)

in probability and distribution.
Now, consider the first term on the right-hand side of equation (6). From Ito’s lemma we

know that d
(
J 2

c (x)
) = 2Jcdw +2cJ 2

c dx +dx , as a result,

∫ Tn,n

1
Jc(s)dw(s) = 1

2

(
J 2

c (Tn,n)− J 2
c (1)

)
−

∫ T n,n

1

(
cJ 2

c (x)+ 1

2

)
dx (7)

= Jc(1)
(
Jc(Tn,n)− Jc(1)

)+ 1

2

(
Jc(Tn,n)− Jc(1)

)2

− 1√
n

V ·
(

cJ 2
c (1)+ 1

2

)
+op

(
n−1/2

)
(8)

= Jc(1)

(
w(Tn,n)−w(1)+ c√

n
Jc(1)V

)
+

(
w(Tn,n)−w(1)

)2

2

− V√
n

(
cJ 2

c (1)+ 1

2

)
+op

(
n−1/2

)
(9)

= Jc(1)
(
w(Tn,n)−w(1)

)+ 1

2

(
w(Tn,n)−w(1)

)2

− 1

2
√

n
V +op

(
n−1/2

)
(10)

= n−1/4 Jc(1)M(V )+n−1/2
(

Jc(1)N (V )+ 1

2
M2(V )− 1

2
V

)
+op

(
n−1/2

)
. (11)

Going from equation (7) to equation (8) and from (8) to (9) results in remainder terms
−c

∫ T n,n
1

(
J 2

c (x)− J 2
c (1)

)
dx and cJc(1)

∫ T n,n
1 (Jc(x)− Jc(1))dx . Here we used the same

convention regarding integrals of the form
∫ Tn,n

1 as described right after equation (6). It

is easy to see that the both remainder terms are of order o
(

n−1/2
)

in probability and

distributionally. Expansion (11) follows from (10) and the statement of Lemma 2.
Putting everything together we arrive at expansion (b) of Theorem 1.
(c) Using the statement of part (a) we have

1

n

∑(
y2

k

nσ 2
− J 2

c (Tn,k)

)
= 1

n

∑(
yk

σ
√

n
− Jc(Tn,k)

)(
2Jc(Tn,k)+ yk

σ
√

n
− Jc(Tn,k)

)

= 1

n

∑(
− c√

n

∫ k/n

0
ec(k/n−s) Jc(s)dV (s)+op

(
1√
n

))
×

(
2Jc(Tn,k)+op

(
1√
n

))
= − 2c√

n

∫ 1

0
Jc(x)

∫ x

0
ec(x−s) Jc(s)dV (s)dx + Rn +op

(
n−1/2

)
,
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where Rn = 1√
n

(
1
n

∑n
k=1 g(k/n)−∫ 1

0 g(x)dx
)

and g(x) = −cJc(x)
∫ x

0 ec(x−s)

Jc(s)dV (s). It is easy to see that Rn = op(n−1/2). As a result,

1

n

∑ y2
k

σ 2n
= 1

n

∑
J 2

c (Tn,k)− 2c√
n

∫ 1

0
Jc(x)

∫ x

0
ec(x−s) Jc(s)dV (s)dx +op

(
n−1/2

)
.

1

n

∑
J 2

c (Tn,k−1)−
∫ 1

0
J 2

c (x)dx =
∑

J 2
c (Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
−

∑∫ Tn,k

Tn,k−1

(
J 2

c (t)− J 2
c (Tn,k−1)

)
dt

+
∫ Tn,n

1
J 2

c (t)dt, (12)

here we use the same convention as when we write
∫ Tn,n

1 as described after equation (6).
Let us consider each term in (12) separately. Due to Lemma 4 we have:∑

J 2
c (Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
= − 1√

n

∫ 1

0
J 2

c,n(x)dVn(x)

= − 1√
n

∫ 1

0
J 2

c (x)dV (x)+op

(
n1/2

)
.

Consider the second summand in equation (12):∑∫ Tn,k

Tn,k−1

(J 2
c (t)− J 2

c (Tn,k−1))dt

= 2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt

+
∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))2dt

= 2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt +op

(
n−1/2

)
.

The last asymptotic statement holds because
∑∫ Tn,k

Tn,k−1
(Jc(t)− Jc(Tn,k−1))2dt is a sum

of random variables with mean of order O
(
n−2)

and variances of order O
(
n−3)

.

∑
Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt =
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(w(t)

−w(Tn,k−1))dt +op

(
n−1/2

)
.

Lemma A1 part (b) in Park (2003) implies that

E

(∫ Tn,k

Tn,k−1

(w(t)−w(Tn,k−1))dt

)
= μ3

3σ 3
n−3/2.
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and E
(∫ Tn,k

Tn,k−1
(w(t)−w(Tn,k−1))dt

)2 = O
(
n−2)

. As a result,

2
∑

Jc(Tn,k−1)

∫ Tn,k

Tn,k−1

(w(t)−w(Tn,k−1))dt = 2μ3

3σ 3
n−3/2

∑
Jc(Tn,k−1)+op

(
n−1/2

)
= 2μ3√

n3σ 3

∫ 1

0
Jc(t)dt +op

(
n−1/2

)
.

Now consider the final term in (12). Using the reasoning analogous to that used in the proof
of statement (b) and the convention described after equation (6), we obtain∫ Tn,n

1
J 2

c (t)dt = 1√
n

J 2
c (1)V +op

(
n−1/2

)
.

Putting all terms together leads us to statement (c).
(d) Using the statement of part (a)

1

n

∑(
yk

σ
√

n
− Jc(Tn,k)

)
= − c√

n

1

n

∑∫ k/n

0
ec(k/n−s) Jc(s)dV (s)+op

(
n−1/2

)
.

Lemma 4 implies that

1

n3/2σ

∑
yk = 1

n

∑
Jc(Tn,k)− c√

n

∫ 1

0

∫ x

0
ec(x−s) Jc(s)dV (s)dx +op

(
n−1/2

)
.

We know that the asymptotic limit of 1
n

∑
Jc(Tn,k−1) is

∫ 1
0 Jc(x)dx . Consider the higher

order terms in this expansion:

1

n

∑
Jc(Tn,k−1)−

∫ 1

0
Jc(x)dx =

∑
Jc(Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
−

∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt

+
∫ Tn,n

1
Jc(t)dt. (13)

According to Lemma 4, the first summand on the right-hand side in equation (13) equals to

∑
Jc(Tn,k−1)

(
1

n
− (Tn,k − Tn,k−1)

)
= − 1√

n

∫ 1

0
Jc(x)dV (x)+op

(
n−1/2

)
.

Consider the second summand in expansion (13):

∑∫ Tn,k

Tn,k−1

(Jc(t)− Jc(Tn,k−1))dt =
∑∫ Tn,k

Tn,k−1

(w(t)−w(Tn,k−1))dt

+ c
∑∫ Tn,k

Tn,k−1

∫ t

Tn,k−1

Jc(s)dsdt

=
∑∫ Tn,k

Tn,k−1

(w(t)−w(Tn,k−1))dt +op

(
n−1/2

)
.
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According to Park (2003, Lem. A1), we have that

E

(∫ Tn,k

Tn,k−1

(w(t)−w(Tn,k−1))dt

)
= μ3

3σ 3
n−3/2,

and the variance of
∫ Tn,k

Tn,k−1
(w(t) − w(Tn,k−1))dt is of order Op

(
n−2)

. So, we have∑∫ Tn,k
Tn,k−1

(w(t)−w(Tn,k−1))dt = μ3
3
√

nσ 3 + Op
(
n−1)

. Finally, the last term in (13) is

∫ Tn,n

1
Jc(t)dt = Jc(1)V +op

(
n−1/2

)
.

This finishes the proof of statement (d).
Part (e) follows from (a) to (d), a Taylor expansion, and from the observation proved in

Park (2003) that

σ̂ 2 = 1

n

∑
ε2

t + Op(1/n) = σ 2 + 1√
n

σ 2U +op

(
n−1/2

)
. n

Proof of Theorem 2. In the proof of Theorem 1 we showed that many remainder
terms in our expansions are distributionally of order o(n−1/2). We are only left to show
that the terms that are probabilistically small due to Lemma 4 (convergence of stochas-
tic integrals) are also distributionally of order o(n−1/2), are those terms for which we
previously appealed to the convergence of stochastic integrals (Lemma 4). Here is the
comprehensive list of them:

R2,n,k = c√
n

k∑
i=1

ec k−i
n (Vn(i/n)− Vn((i −1)/n)) yi−1 − c√

n

∫ k/n

0
ec(k/n−s) Jc(s)dV (s);

R3,n = − c√
n

n∑
k=1

∫ k/n

0
ec(k/n−s) Jc(s)dV (s)

εk√
n

+ c√
n

∫ 1

0

∫ t

0
ec(t−s) Jc(s)dV (s)dw(t);

R4,n = − 1√
n

(∑
J 2

c (Tn,k−1)(Vn(k/n)− Vn(k −1/n))−
∫ 1

0
J 2

c (x)dV (x)

)
;

R5,n = − 1√
n

(∑
Jc(Tn,k−1)(Vn(k/n)− Vn(k −1/n))−

∫ 1

0
Jc(x)dV (x)

)
.

All these terms have a form of stochastic integrals 1√
n

∫ 1
0 ξ(t)d(V (t) − Vn(t)) or

1√
n

∫ 1
0 ξ(t)d(w(t)−wn(t)). Their distributional order would depend on the quadratic vari-

ations which have forms of sup0≤t≤1 |Vn(t)− V (t)|2 and sup0≤t≤1 |wn(t)−w(t)|2. The
order of the last expressions is determined by Lemma 3. n

Proof of Lemma 1. Let ε be a random variable with Eε = 0 and Eε4 < ∞. Then ac-
cording to Skorokhod’s construction as presented in his 1965 book, there exists a Brownian
motion w and a stopping time τ such that the stopped Brownian motion w(τ) has the same
distribution as ε and Eτ = Eε2. In order to prove Lemma 1 we show that for this specific
construction (Skorokhod, 1965) we have Eτ2 = 5

3Eε4.
The first step in Skorokhod’s construction is the embedding of a random variable ξ

which takes only two values a and b with probabilities b
b−a and − a

b−a correspondingly,
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here values a and b have opposite signs, and the probabilities are constructed in such a
way that Eξ = 0. Let τa,b be the smallest root of the equation (w(t)− a)(w(t)− b) = 0.
Then, as shown in Skorokhod (1965, p. 166), w(τa,b) has the same distribution as ξ and
the characteristic function for τa,b is

Ee−λτa,b = sinhb
√

2λ− sinha
√

2λ

sinh(b −a)
√

2λ
. (14)

As a result, one can calculate moments of τa,b as

(−1)k dk

dλk
Ee−λτa,b

∣∣∣
λ=0

= Eτ k
a,b. (15)

Let F(x) = P{ε ≤ x} be the distribution of variable ε. Let us define function G(x) as∫ x
G(x) yd F(y) = 0. Assume also that a Brownian motion w is independent of ε, then the

Skorokhod’s construction defines τ as

τ = inf{t : (w(t)− ε)(w(t)− G(ε)) = 0} = τε,G(ε).

Skorokhod proves that w(τ) has the same distribution as ε and Eτ = Eε2.
By using formulas (14) and (15), through double differentiation of function (14), one

can obtain the following expression

Eτ2
a,b = 1

3

(
−b3a +3b2a2 −ba3

)
= r(a,b).

We can notice that

Eτ2 = E
(
E

(
τ2|ε

))
= E [r(ε,G(ε))] = 1

3
E

(
−G3(ε)ε +3G2(ε)ε2 − G(ε)ε3

)
.

Then we make use of the following two facts: G(G(x)) = x and G(x)d F(G(x)) = xd F(x)
to show that all terms in the last expression result in Eε4. For example, we can show that
E

[
G3(ε)ε

] = −Eε4. Indeed,

E

[
G3(ε)ε

]
=

∫
G3(x)xd F(x) =

∫
G(x)3G(x)d F(G(x)) = −

∫
u4d F(u) = −Eε4,

the sign has changed due to change of limits of integration, since u = F(x) is a decreasing
function of x . The other terms are done in a similar way. Finally, we arrive to the formula
Eτ2 = 5

3Eε4.

Since Eε8 < ∞, by using Chebyshev’s inequality one can arrive at the statement of
the lemma. n

Proof of Theorem 3. Corollary 1 to Theorem 2 states the distributional expansions for
the t-statistic:

sup
x

|P{t (y,n,ρn) ≤ x}− Gn(x)| = o
(

n−1/2
)
, (16)

here Gn(x) = P
{
tc + 1

n1/4 f + 1√
n

g ≤ x
}
, where f and g are functionals of Brow-

nian motions B(·). The covariance structure of B is described in (3), it depends on
ψ = (

σ 2,μ3,μ4,κ
)
.
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Examine now the bootstrapped distribution. All statements about them are conditional
on realizations of the process y and formulated as P−a.s.

First, let us establish the notation. Assume that we have a realization of a sample of
size n of the initial process (y1, . . . , yn). Bootstrapped errors are generated as i.i.d. from
the recentered residuals {e1, . . . ,en}, that is, from the distribution that has moments ψ̂n =(
σ̂ 2

n , μ̂3,n, μ̂4,n, κ̂n
)
. Here subindex n signifies that the sample moments are estimated

from a sample of size n. Let this distribution be described by probability P∗
n . Assume

we draw a sample ε∗
1 , . . . ,ε∗

m of size m from P
∗
n and produced the bootstrapped sample

y∗ = (
y∗

1 , . . . , y∗
m

)
. Then Corollary 1 to Theorem 2 establishes the following asymptotic

approximation:

sup
x

∣∣P∗
n
{
t
(
y∗,m,ρm

) ≤ x
}− G∗

n,m(x)
∣∣ = o

(
m−1/2

)
, P−a.s., (17)

here G∗
n,m(x) =P{

tc + 1
m1/4 f ∗+ 1√

m
g∗ ≤ x

}
, where f ∗ and g∗ are functionals of Brown-

ian motions B∗
n and M∗

n as described in Theorem 2. The covariance structure of B∗
n depends

on ψ̂n and M∗
n is independent of B∗

n .
In order to prove Theorem 3 we will obtain and use the following two statements:

sup
x

∣∣P∗
n
{
t
(
y∗,n,ρn

) ≤ x
}− G∗

n,n(x)
∣∣ = o

(
n−1/2

)
, P−a.s., (18)

and

sup
x

∣∣Gn(x)− G∗
n,n(x)

∣∣ = o
(

n−1/2
)
, P−a.s. (19)

The latter statement is due to Lemma 1 and the continuity argument. Statements (16), (18),
and (19) imply the validity of Theorem 3.

To prove (18) we refine the statement of Corollary 1. Namely, we claim that for any
process with error terms satisfying Assumption A with r ≥ 8 there exists δ > 0 such that

sup
x

|P{t (y,n,ρn) ≤ x}− Gn(x)| ≤ Const (μ8) ·n−1/2−δ, (20)

where Const (μ8) is the constant that depends only on the eights moment of the error term
μ8 = Eε8. Indeed, all remainder terms described in proofs of Theorems 1 and 2 fall into
two categories: sums of independent random variables or the remainders in the convergence
of stochastic integrals (such as R2,n,k , R3,n, R4,n , and R5,n). The refinement of the order
of the former comes from a Chebyshev-type inequality. The distributional order of the latter
depends on the distributional order of the quadratic variations sup0≤t≤1 |Vn(t) − V (t)|2
and sup0≤t≤1 |wn(t)−w(t)|2, which is established in Lemma 3 with r = 8.

Refinement (20) of Corollary 1 applied to the bootstrapped distributions gives the fol-
lowing refinement of statement (17):

sup
x

∣∣P∗
n
{
t (y∗,m,ρm) ≤ x

}− G∗
n,m(x)

∣∣ = Const
(
μ̂8,n

) ·m−1/2−δ, P−a.s.

Given that μ̂8,n → μ8 a.s. the last statement evaluated at m = n leads to (18). This finishes
the proof of Theorem 3. n


