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Abstract
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is on measurement error which is independent of the covariates, but extensions to
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ployment duration data from the Survey of Income and Program Participation (SIPP).
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1 Introduction

The issue of measurement error has been studied extensively in econometrics but almost

exclusively with respect to the independent variables. The studies that have considered

mismeasurement of the dependent variable have focused on misclassification of responses in

qualitative choice models (e.g., Hausman et. al. (1998) and Poterba and Summers (1995)).

Strangely enough, mismeasurement of continuous dependent variables has received almost

no attention (aside from the passing remark in econometrics textbooks that additive errors

in the classical linear model do not affect the consistency of least squares regression).

This paper provides a treatment of mismeasured dependent variables in a general linear

index model, which includes qualitative choice models, proportional and additive hazard

models, and censored models as special cases. The emphasis is on measurement error which

is independent of the covariates, although extensions to covariate-dependent measurement

error are also considered.

Parametric techniques are discussed first. The general conclusion is that parametric esti-

mation results in inconsistent estimates of the parameters of interest if the mismeasurement

is incorrectly modeled (or ignored altogether). Once one moves away from a simple model

of misclassification (as in the binary choice model), parametric estimation becomes quite

cumbersome; moreover, the likelihood of correctly modeling the mismeasurement is greatly

reduced.

Semiparametric estimation, using the monotone rank estimator of Cavanagh and Sher-

man (1998), is proposed as an alternative to parametric estimation.1 The advantage of the

semiparametric approach is that the mismeasurement need not be modeled at all. The basic

insight is that the monotone rank estimates of the coefficient parameters remain consistent

as long as an intuitive sufficient condition is satisfied.

One way of thinking about the measurement error is that the observed dependent variable
1Other semiparametric estimators of linear index models, like those of Ichimura (1993) and Powell et.

al. (1989), could be used in the presence of mismeasured dependent variables. The rank estimator has been
chosen since estimation of the parameters of interest does not require the use of kernels or the choice of
bandwidth parameters. The maximum rank correlation estimator of Han (1987) could also be used, under
the same sufficient condition presented in this paper. (See Sherman (1993) for the asymptotic distribution
of the maximum rank correlation estimator.) The monotone rank estimator is used due to its quicker
computation speed.
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is a realization from a random variable that depends on the true underlying dependent

variable (the “latent dependent variable”). A sufficient condition for consistency of monotone

rank estimation is that the random variable associated with a larger latent dependent variable

first-order stochastically dominates the random variable associated with a smaller latent

dependent variable.

The paper is organized as follows. Section 2 describes the general model of interest, for-

malizes the mismeasurement process, and introduces three illustrative examples. Section 3

describes maximum likelihood estimation methods in the presence of mismeasurement, fo-

cusing on the examples from Section 2. Section 4 introduces the semiparametric approach,

formalizes the sufficient condition for consistency, and interprets the condition in the con-

text of the examples. Section 5 extends the semiparametric approach to situations in which

the measurement error in the dependent variable is dependent upon covariates. Section 6

considers the proportional hazard model in detail. Existing parametric and semiparamet-

ric estimation techniques are inconsistent when durations are mismeasured, as illustrated by

Monte Carlo simulations. The monotone rank estimator is used to estimate an unemployment

duration model using data from the Survey of Income and Program Participation (SIPP) and

the results are compared to those obtained using traditional techniques. Finally, Section 7

concludes.

2 The Model

Consider the following model, which is an extension of the generalized regression model of

Han (1987). The latent dependent variable is described by

y∗ = g(xβo, ε), ε i.i.d., (1)

where g is an unknown function with strictly positive partial derivatives everywhere.2 The

model given by (1) is quite general. For instance, it includes models with nonlinearity on

the left-hand side,

f(y∗) = xβo + ε, (2)

2Additional disturbances may be included in (1). As an example, such a specification would allow for
unobserved heterogeneity or random right-censoring, as discussed in Section 6.
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and models with nonlinearity on the right-hand side,

y∗ = f(xβo) + ε, (3)

where f is strictly increasing. Both of these models have ε entering additively, though that

is not a restriction made in (1).

If there is no mismeasurement of the dependent variable, the observed dependent vari-

able y would be a deterministic function of y∗. Let d : R → R be the (weakly) increasing

function defining y in terms of y∗. For instance, the binary choice model has d(z) = 1(z > 0),

the traditional censored model has d(z) = z · 1(z > 0), and a model with no censoring

has d(z) = z. This deterministic specification is the one considered by Han (1987).

To introduce the possibility of mismeasurement, one can instead model y as a stochastic

function of the underlying y∗, where the distribution of y has the conditional c.d.f. given by

Fy|y∗(v|t) = Pr(y ≤ v|y∗ = t). (4)

For most of this paper, it is assumed that the mismeasurement is independent of x:

Pr(y ≤ v|y∗ = t, x) = Pr(y ≤ v|y∗ = t). (5)

Extension to covariate-dependent measurement error is considered in a later section.

The case of perfectly measured dependent variables corresponds to a c.d.f. with a single

jump from zero to one. If d denotes the deterministic function described above, then

Fy|y∗(v|t) = 1(v > d(t)). (6)

We consider three simple models of mismeasurement below. In each example, the ob-

served dependent variable takes on a different form. The first and second examples consider

the case of discrete-valued dependent variables, with the first example focusing on the binary-

choice case. The third example considers the case of a continuous dependent variable. The

duration model application considered in Section 6 can be thought of as a hybrid of the

second and third examples. The unemployment durations take on integer values (corre-

sponding to the number of weeks of unemployment), but the range of possible durations is

large enough that viewing the dependent variable as continuous is a good approximation.
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Example 1: Binary Choice with Misclassification

Following Hausman et. al. (1998), assume that there is some probability (independent

of x) that the binary response will be misclassified. The latent dependent variable is y∗ =

xβo + ε, and the misclassification errors are

α0 ≡ Pr(y = 1|y∗ < 0) (7)

α1 ≡ Pr(y = 0|y∗ > 0). (8)

The conditional c.d.f. Fy|y∗ is

Fy|y∗(v|t) =


0 if v < 0
1 − α0 if v ∈ [0, 1) if t < 0
1 if v ≥ 1

(9)

Fy|y∗(v|t) =


0 if v < 0
α1 if v ∈ [0, 1) if t ≥ 0.
1 if v ≥ 1

(10)

No matter how negative y∗ is, there is a positive probability (equal to α0) that the response

will be misclassified as a one. Thus, for negative y∗, Fy|y∗ jumps from 0 to 1 − α0 at 0 and

from 1 − α0 to 1 at 1. The conditional c.d.f. for positive y∗ also has two jumps.

This model is a bit simplistic since one might want to allow the probability of misclassi-

fication to depend on the level of y∗. In addition, the model has a discontinuity at y∗ = 0

for α0 6= α1. The misclassification could instead be modeled with the function α : R → [0, 1],

defined by

α(t) ≡ Pr(y = 1|y∗ = t) for t ∈ R. (11)

Example 2: Mismeasured Discrete Dependent Variable

The binary choice framework can be extended to handle (ordered) discrete dependent

variables with more than two possible values. Without loss of generality, assume that the

dependent variable can take on any integer value between 1 and K. The (continuous) latent

variable y∗ = xβo + ε will belong to one of K subsets S1, S2, . . . , SK of the real line. In

the absence of mismeasurement, the value of y corresponds to the subscript of the subset

containing y∗; i.e., y = t if and only if y∗ ∈ St.
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To introduce mismeasurement, parametrize the misclassification probabilities by αs,t for

each s and t in {1, . . . , K}, where

αs,t = Pr(y = t|y∗ ∈ Ss). (12)

Then, αs,s is the probability that a response is correctly classified, and
∑

t αs,t = 1 by

definition. We can represent this misclassification with a (transition) matrix

A =



α1,1 α1,2 · · · · · · α1,K

α2,1 α2,2 · · · · · · α2,K
... . . . ...
... . . . ...

αK,1 · · · · · · αK,K−1 αK,K

 (13)

with the elements of each row adding up to one.

The conditional c.d.f. Fy|y∗ is

Fy|y∗(v|t) =


0 if v < 1∑bvc

i=1 αs,i if v ∈ [1, K] for t ∈ Ss

1 if v > K

(14)

where bvc denotes the integer part of v.

As in Example 1, a more complicated model could allow the misclassification probabili-

ties to depend on the actual level of y∗ rather than just the subset Ss to which it belongs.

Example 3: Mismeasured Continuous Dependent Variable

Consider a setting in which the dependent variable is continuous and can take on any real

value. Assume that the observed dependent variable is a function of the latent dependent

variable and a random disturbance,

y = h(y∗, η), (15)

where η is i.i.d. (independent of x and ε) and h is an unknown function satisfying hy∗ >

0 and hη > 0. This model is quite general, including additive and multiplicative i.i.d.

measurement errors as special cases.

The conditional c.d.f. Fy|y∗ is

Fy|y∗ = Pr(h(t, η) ≤ v). (16)
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Under the further assumptions that hη is continuous and η has positive density everywhere

along the real line, there exists a function h̃ such that

Pr(h(t, η) ≤ v) = Pr(η ≤ h̃(v, t)). (17)

Combining (16) and (17) gives

Fy|y∗ = G(h̃(v, t)), (18)

where G is the c.d.f. of η.

3 Parametric Estimation

In this section, the focus will be on parametrization of the measurement model and max-

imum likelihood estimation of the parametrized model. The basic assumption needed for

this approach is that the mismeasurement can be modeled in terms of a finite-dimensional

parameter. At the true value of the parameter, the underlying conditional c.d.f. Fy|y∗ will

be modeled correctly; for all other values, the c.d.f. will be modeled incorrectly. Technical-

ities concerning identification will be avoided for the most part, though some issues will be

considered in the examples below.

Example 1 continued

Under a parametric assumption on the c.d.f. of ε, Hausman et. al. (1998) discuss maxi-

mum likelihood estimation of (βo, α0, α1) in the simple model of misclassification discussed

in the previous section. If the mismeasurement has been modeled incorrectly (e.g., if the

misclassification probabilities depend on the level of y∗ rather than just its sign), the esti-

mates will be inconsistent; a more complicated likelihood function would need to be specified.

Example 2 continued

The probabilities for the observed dependent variable are given by

Pr(y = t|x) =
K∑

s=1
αs,t Pr(y∗ ∈ Ss), (19)

where y∗ = xβo + ε. Assume the cutoff points for the sets S1, S2, . . . , SK are known by the

researcher (e.g., S1 = {v : v ≤ 10}, S2 = {v : 10 < v ≤ 20}, S3 = {v : v > 20}). Denote the
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cutoff points by −∞ = c0 < c1 < · · · < cK−1 < cK = ∞ so that Ss = (cs−1, cs]. In situations

where the cutoff points are unknown (e.g., an ordered qualitative variable having values

“poor,” “good,” and “excellent”), they can be jointly estimated in the likelihood function.

In order to form a likelihood function, a parametrization of the distribution of ε is

needed, so that Pr(y∗ ∈ Ss) can be written in terms of estimable parameters. We assume

a parametrized distribution for H, the c.d.f. of −ε. For simplicity, assume that H is the

c.d.f. of a normal random variable having a standard deviation of σ.3 Then, the likelihood

function is

ln L(b, σ̂, {as,t}) =
∑

i

K∑
t=1

1(yi = t) ln
{

K∑
s=1

as,t[H(xib − cs, σ̂) − H(xib − cs−1, σ̂)]
}

, (20)

subject to the constraints
∑

t αs,t = 1 for each s. If no other restrictions are placed on the

misclassification probabilities, there are K(K − 1) parameters to be estimated in addition

to βo and σ. For large K, this approach is cumbersome and will result in inefficient estimates.

Depending on prior knowledge about the misclassification, though, one might be willing to

impose further restrictions on the misclassification probabilities. An example would be

that the observable variable is at worst misclassified into an adjacent cell (i.e., as,t = 0

if |s − t| > 1), in which case only 2(K − 1) additional parameters are estimated.

As in the binary choice case, consistency depends on the correct specification of the

misclassification process. If the misclassification depends on the level of y∗ and not just

the subset Ss to which it belongs, maximization of the above likelihood function will yield

inconsistent estimates.

Example 3 continued

Recall that G denotes the c.d.f. of η and define fy∗|x as the conditional density of y∗.

Then, the c.d.f. of the observable dependent variable y can be written as

Pr(y ≤ v|x) =
∫

Fy|y∗(v|t)fy∗|x(t|x) dt

=
∫

G(h̃(v, t))fy∗|x(t|x) dt, (21)

3The standard deviation of the error can be estimated here since the cutoff points are known, identifying βo

and σ. In the binary choice case, only the ratio βo/σ is identified.
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where the second equality follows from (18). To form a parametrized likelihood function,

we need to parametrize both G and fy∗|x, which requires parametric assumptions on the

distributions of η and ε, respectively. The parametrization of fy∗|x also requires knowledge

of the function g from (1). For simplicity, assume that the parametric assumptions are

fully described by the parameters ση and σε. The further assumptions needed are that h

(and therefore h̃) is known (e.g., it is known whether the mismeasurement is additive or

multiplicative), h̃ is differentiable with respect to its second argument, and G is differentiable.

Then, differentiation of (21) yields the likelihood function

ln L(b, σ̂η, σ̂ε) =
∑

i

ln
{∫

h̃2(yi, t)G′(h̃(yi, t), σ̂η)fy∗|x(t|xi, σ̂ε) dt
}

. (22)

Equation (22) is similar to likelihoods used to capture heterogeneity, in which mixing distri-

butions are used to model random effects. Maximization of (22) usually requires numerical

integration. In general, consistency of the estimates of βo requires that h, G, and fy∗|x are

correctly specified.

4 Semiparametric Estimation

In this section, we discuss semiparametric estimation in the presence of mismeasured de-

pendent variables. The approach described is extremely useful when the researcher suspects

mismeasurement but lacks any additional prior information for forming a reliable model of

mismeasurement. Even if the researcher is confident of the underlying mismeasurement pro-

cess, the semiparametric approach can, at the very least, serve as a useful specification check

of the model.

The section is organized as follows. First, we discuss the monotone rank estimator (MRE)

developed by Cavanagh and Sherman (1998). Second, we describe an intuitive sufficient

condition for the consistency of the estimator in the presence of mismeasured dependent

variables. The key insight is that the consistency of the semiparametric estimator does not

require a model of the measurement error. Third, we interpret the sufficient condition in the

context of our examples.
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4.1 The Monotone Rank Estimator

The MRE, as defined by Cavanagh and Sherman (1998), is the vector β̂MRE that maximizes

the objective function

SMRE(b) =
∑

i

M(yi) · Rank(xib), (23)

over the set B ≡ {b ∈ Rd : |bd| = 1}, where M : {y1, . . . , yn} → R is some increasing

function (i.e., yi > yj =⇒ M(yi) > M(yj)). There are d covariates contained in x, which

does not include a constant (since rankings are not affected by location). bd denotes the d-th

component of the vector b. The Rank(·) function is defined as follows:4

xi1b < xi2b < · · · < xinb =⇒ Rank(ximb) = m. (24)

Since the ranking of xib is unaffected by the scale of b (i.e., Rank(xib) = Rank(xi(cb)) for

c > 0), βo is only identified up-to-scale using the MRE and a normalization (|bd| = 1) is

required.

The key condition needed for consistency of β̂MRE is

H(z) = E[M(y)|xβo = z] increasing in z. (25)

By “increasing in z” (here and in the following conditions), we mean that H(z) is a noncon-

stant, increasing function of z (see Assumption (A1) in the appendix). The monotonicity

condition (25) says that, on average, higher xβo are associated with higher y. This “corre-

lation” is maximized by the objective function (23).

4.2 Sufficient Condition for Consistency

The monotonicity condition is satisfied for the latent variable y∗ in the model given by (1).

That is,

(1) =⇒ H∗(z) = E[M(y∗)|xβo = z] increasing in z. (26)

To have the monotonicity condition hold for the observed dependent variable y when there

is mismeasurement, it suffices to have

E[M(y)|y∗ = t] increasing in t. (27)
4It is innocuous to consider strict inequalities here due to a continuity assumption on x needed for

consistency; see the proof of Theorem 1 in the appendix.

9



A sufficient condition for (27), and thus for (25), is that the distribution of y for a higher y∗

first-order stochastically dominates the distribution of y for a lower y∗. This result is analo-

gous to the result in microeconomics that a portfolio having returns which first-order stochas-

tically dominate the returns of another portfolio results in higher expected utility. The “re-

turns” here correspond to the distribution of y (conditional on y∗) and the “utility function”

corresponds to the increasing function M(·).
We now state the basic consistency theorem. The underlying assumptions and proof are

in the appendix.5

Theorem 1 Under suitable assumptions (in appendix), β̂MRE (for any choice of increas-

ing M) is an asymptotically normal,
√

n-consistent estimate of βo in (1) if

(i) t1 > t2 =⇒ Fy|y∗(v|t1) ≤ Fy|y∗(v|t2) ∀v (28)

(ii) ∃t̃ s.t. t1 > t̃ > t2 =⇒ ∃v s.t. Fy|y∗(v|t1) < Fy|y∗(v|t2). (29)

Condition (i) corresponds to first-order stochastic dominance in the weak sense for t1 > t2.

Condition (i) combined with condition (ii) corresponds to first-order stochastic dominance

in the strong sense for t1 > t̃ > t2. The asymptotic distribution for β̂MRE is derived in

Cavanagh and Sherman (1998).

The usefulness of this theorem is that the stochastic-dominance conditions have an intu-

itive interpretation when mismeasurement of the dependent variable is a potential problem.

The question that the researcher needs to ask herself is, “Are observational units with larger

‘true’ values for their dependent variable more likely to report larger values than observa-

tional units with smaller ‘true’ values?” For the application discussed later in this paper,

that of unemployment duration, we expect that the answer to this question is “yes.”

4.3 The Examples Revisited

In this section, we discuss the stochastic-dominance conditions of Theorem 1 in the context

of the examples that were introduced in Section 2.
5One of the assumptions, common in the semiparametric literature, is that one of the covariates is

continuous (conditional on the others). The MRE can still be used when all covariates are discrete (unlike
the estimator of Powell et. al. (1989)); see Cavanagh and Sherman (1998) for the properties of β̂MRE in this
situation.
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Example 1 continued

From the conditional c.d.f.’s in (9) and (10), the stochastic-dominance conditions require

(1 − α0) > α1 or, equivalently, (α0 + α1) < 1. If (α0 + α1) > 1, the responses are so badly

misreported that the MRE would actually estimate −βo rather than βo.

Unlike the parametric approach of Section 3, the MRE remains consistent if the misclas-

sification probabilities are functions of the level of y∗. With the function α(t) given by (11),

the stochastic-dominance conditions are satisfied if α(t) is weakly increasing everywhere and

strictly increasing along some region having positive probability.

Example 2 continued

In this setting, the stochastic-dominance conditions have discretized representations.

Condition (i) is equivalent to

s1 > s2 =⇒
K∑

i=k

αs1,i ≥
K∑

i=k

αs2,i ∀k ∈ {1, . . . , K} (30)

and condition (ii) is equivalent to

∃s1 > s2 s.t.
K∑

i=k

αs1,i >
K∑

i=k

αs2,i for some k ∈ {1, . . . , K}. (31)

Looking at the transition matrix A defined in (13), the first condition means that the elements

of the first column must be weakly decreasing as you go down row-by-row, the sum of the

elements of the first two columns must be weakly decreasing as you go down row-by-row, and

so on. Alternatively, the elements of the K-th column must be weakly increasing as you go

down row-by-row, the sum of the elements of the last two columns must be weakly increasing

as you go down row-by-row, and so on. The second condition has a similar interpretation.

As in Example 1, the MRE will be robust to situations in which the misclassification

probabilities are functions of the level of y∗. Conditions analogous to those above can be

derived rather easily.
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Example 3 continued

The model of mismeasurement given by (15) satisfies the stochastic-dominance condi-

tions. To see this, write the conditional c.d.f. as

Fy|y∗(v|t) = Pr(h(t, η) ≤ v)

= Pr(η ≤ h̃(v, t))

=
∫ h̃(v,t)

−∞
dG(u),

where G is the c.d.f. of η. Differentiating with respect to t yields

∂Fy|y∗(v|t)/∂t = g(h̃(v, t))
∂h̃(v, t)

∂t

= −g(h̃(v, t))
h1(t, h̃(v, t))
h2(t, h̃(v, t))

< 0,

where g(s) = dG(s)/ds and hj is the derivative of h with respect to the j-th argument.

Thus, conditions (i) and (ii) hold.

Unlike the parametric approach, there is no need to specify the function h or the dis-

tribution G. As long as h has positive partial derivatives and η is i.i.d., the MRE will be

consistent. This result is rather strong considering the wide range of mismeasurement models

described by (15).

5 Covariate-Dependent Measurement Error

In this section, we modify the MRE to handle measurement error in the dependent variable

that is not independent of the covariates. We limit our attention to dependence upon a

single covariate, x1.6 We consider two cases below.

The first case covers discrete x1, where the stochastic-dominance conditions of Theorem 1

hold for each subgroup of observations having the same value for x1 but not necessarily across

different values of x1. For instance, if measurement error differs systematically for union

workers and non-union workers, then the conditions may not hold for the whole sample but

will hold for the subsample of union workers and the subsample of non-union workers.
6Extension to more covariates is straightforward, but there is a large loss in efficiency if the measurement

error is allowed to be a function of too many covariates. If the measurement error truly is a function of
nearly all the covariates, there’s little hope of identifying β semiparametrically.
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The second case covers continuous x1, where some cutoff S exists such that those obser-

vations having x1 < S and those having x1 > S satisfy the stochastic model, but the whole

sample doesn’t necessarily satisfy it.

5.1 Dependence upon a Discrete Covariate

Let the range of x1 be {1, . . . , K}. Then, the basic idea is to use the MRE on each subgroup

for which the stochastic-dominance conditions apply. Since all the observations in a subgroup

have the same value for x1, we lose identification of β1. Note that xβo = x1β1 + x−1β−1,

where “−1” indicates all components but the first. Within a subgroup, x1β1 is the same

for all the observations and has no effect on the rankings of xβo within the subgroup. The

focus, then, is to estimate β−1 up to scale.

The MRE can be used to estimate β−1 consistently within each subgroup. For each

j ∈ {1, . . . , K}, let β̂j
−1 maximize the objective function

Tj(b−1) =
∑

i

1(xi1 = j)Mj(yi)Rankj(xi,−1b−1), (32)

over the set B−1 ≡ {b−1 ∈ Rd−1 : |b−1,d−1| = 1}, where the subscript j indicates that the

function applies to the observations within the subgroup defined by x1 = j. Then, we can

take a linear combination of the subgroup estimates to yield a consistent estimate β̂−1 for

the whole sample. For instance,

β̂−1 =
1
n

K∑
j=1

njβ̂
j
−1. (33)

Since the asymptotic distribution of each β̂j
−1 is known, the asymptotic distribution of β̂−1

follows simply.7

Having estimated β−1, one can do a specification test of this model for measurement

error against the alternative of covariate-independent measurement error. The latter allows

for consistent estimation of βo using MRE on the whole sample. The covariance of these

estimators can be derived using results from Abrevaya (1999), allowing for a χ2-test of their

difference.8

7The key for the asymptotic argument is that each nj → ∞ as n → ∞.
8Rejection based on the χ2-test statistic may be caused by something other than the behavior of the

measurement error. For instance, the same estimators and specification test apply when x1-dependent
heteroskedasticity is suspected (violation of equation (1)). That is, the observations within the subgroups
partitioned by x1 are homoskedastic but possibly heteroskedastic across subgroups.
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5.2 Dependence upon a Continuous Covariate with Cutoff

The basic idea here is the same as for the discrete case. The difference is that continuity of x1

retains the identification of β1, since even within subgroups x1β1 will differ across observations

due to the continuity. We consider a single cutoff point S, so that the observations are split

into two subgroups, defined by x1 < S and x1 > S. Then, let the estimators β̂1 and β̂2

maximize (over the set B) the objective functions

T1(b) =
∑

i

[1(xi1 < S)M1(yi)Rank1(xib)] (34)

T2(b) =
∑

i

[1(xi1 > S)M2(yi)Rank2(xib)] (35)

respectively, where the subscript indicates the subgroup to which the function applies. Then,

a consistent estimate β̂ is

β̂ =
1
n

(
n1β̂1 + (n − n1)β̂2

)
, (36)

where n1 is the number of observations having x1 < S.

A specification test can be constructed here in the same manner as above. Also, multiple

cutoff points can be handled by defining additional subgroups appropriately.

6 Application to Duration Models

In this section, we consider dependent variable mismeasurement in the context of duration

models. Beginning with a brief review of the proportional hazard model, we discuss the

potential problem of unspecified heterogeneity and its equivalence to mismeasured durations

for a certain class of models. We consider several parametric and semiparametric estimation

techniques, including the Cox partial likelihood and the Han-Hausman-Meyer flexible MLE.

We demonstrate inconsistency of these estimators when durations are mismeasured. The

MRE remains consistent when the mismeasurement follows the form discussed in the previous

section. Our results are illustrated in Monte Carlo simulations under different specifications.

Finally, we estimate an unemployment duration model using data from the Survey of Income

and Program Participation (SIPP) to see the effects of mismeasured durations. Few studies

have taken into account mismeasurement of unemployment spells in estimating a duration

model. One exception is Romeo (1995), which explicitly models the measurement error (using
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cross-validation data) and forms a parametric likelihood incorporating the errors-in-variables

and a flexible hazard specification. Since the MRE doesn’t require an explicit model of the

measurement error, the consistency of the coefficient parameters using our approach does not

depend on correct specification of the errors-in-variables. Also, the likelihood approach of

Romeo (1995) is quite cumbersome since the likelihood is complicated and requires numerical

integration.

6.1 The Proportional Hazard Model

We briefly review the proportional hazard model, which has been used extensively in empir-

ical analysis of duration data in economics; for a more complete treatment, see Kalbfleisch

and Prentice (1980) or Lancaster (1990, pp. 245ff).

We consider a standard proportional hazard model with exponential index, where the

hazard function is h(τ) = ho(τ)exβo , with ho(·) called the “baseline hazard function.” The

“integrated baseline hazard function” is Ho(τ) =
∫ t
−∞ ho(s)ds. The spell duration t satisfies

− ln Ho(t) = xβo + ε, (37)

where −ε follows an extreme value distribution (with density function f(u) = eu exp(−eu)).

When the baseline hazard is strictly positive, the integrated baseline hazard is strictly in-

creasing with well-defined inverse. We can then write the duration t as a closed-form function

of xβo:

t = H−1
o (exp(−xβo − ε)). (38)

Negating (38) puts the proportional hazard model into the latent variable context of equa-

tion (1):

y∗ ≡ −t = −H−1
o (exp(−xβo − ε)), (39)

so that

g(xβo, ε) = −H−1
o (exp(−xβo − ε)) (40)

has g1 > 0 ∀ε.
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6.1.1 Unobserved Heterogeneity

We can introduce unobserved heterogeneity into the proportional hazard model by specifying

the hazard function as

h(τ) = ho(τ)exβo+u, (41)

where the heterogeneity term u is independent of x. This model satisfies (1) with

g

(
xβo,

(
ε
u

))
= −H−1

o (exp(−xβo − u − ε)). (42)

6.1.2 Parametric Estimation: Weibull model

The most often used parametrization of the proportional hazard model is the Weibull model

where the baseline hazard is specified as

ho(τ) = ατα−1. (43)

For the Weibull model, the integrated baseline hazard is Ho(τ) = τα, so that equation (38)

simplifies to

−α ln t = xβo + ε. (44)

This simple model can be estimated using either OLS or MLE. The latter is generally used if

there is right-censoring (the censoring point is observed rather than a completed duration),

with the likelihood function modified appropriately.

When unobserved heterogeneity is included, the Weibull model becomes

−α ln t = xβo + u + ε. (45)

Lancaster (1985) notes that this heterogeneity can arise from multiplicative measurement

error in the dependent variable. If t̃ = eηt is the observed (mismeasured) duration and the

true duration t satisfies (44), then

−α ln t̃ = −α ln(eηt)

= −α ln t − αη

= xβ + (ε − αη),
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so that the observed duration t̃ can be thought of as arising from a Weibull model with

heterogeneity, as in equation (45). Without censoring, least-squares regression of − ln t on x

yields consistent estimates of (βo/α) if η is independent of x. The mean of η can be non-zero

since it will be absorbed in the constant term of the regression. If the value of α is assumed

(e.g., α = 1 is the “unit exponential model”) and the assumed value is correct, then the

OLS estimate of βo is consistent. Usually, though, we are interested in estimating α. In the

model without heterogeneity, one can estimate the variance of (ε/α) using the residuals from

the regression of − ln t on x. An estimate of α can be imputed since ε is known to have an

extreme-value distribution. Using the same method when durations are mismeasured but

the mismeasurement is ignored, the residuals are used to estimate the variance of (ε/α − η).

Since the variance of (ε/α − η) is larger than the variance of (ε/α), the imputed estimate

of α will be too low.9 The resulting estimate of βo, then, will be biased toward zero even

though the estimates of the ratios of the coefficients are consistent.

Lancaster (1985) reaches the same conclusions looking at MLE estimation of βo for the

Weibull model without censoring. The results for consistency of the parameter ratios using

OLS or MLE are specific to the Weibull model with uncensored data and i.i.d. measure-

ment errors across observations. This point is important since most applied duration work

has moved away from Weibull-type specifications (which restrict the baseline hazard to be

monotonic) in order to allow for more flexible hazard specifications. Unlike the MLE, the

MRE will yield consistent ratios for βo in the presence of censoring and more general mea-

surement error (as in Example 3 of the previous sections) in a proportional hazard model

with arbitrary baseline hazard.

6.1.3 Semiparametric Estimation

We discuss two approaches, the Cox partial likelihood and the Han-Hausman-Meyer flexible

MLE, that estimate proportional hazard models without parametrizing the baseline hazard.

Both approaches have the virtue of flexibility, but both are inconsistent in the presence of

mismeasured durations.

The Cox (1972) partial-likelihood approach estimates βo without specifying the baseline

9We assume η is also independent of ε.
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hazard. The estimation uses only information about the ordering of the durations and

maximizes the partial likelihood function

ln L(b) =
∑

i

xib − ln
∑

j∈R(i)

exjb

 , (46)

where R(i), the “risk set” of observation i, contains all observations that survive at least

until time ti:

R(i) = {j|tj ≥ ti}. (47)

The estimator works in the presence of right censoring but does not handle ties (equal

durations) in a natural way.

In a Monte Carlo study, Ridder and Verbakel (1983) show that neglected heterogeneity

results in inconsistent partial likelihood estimates that are attenuated toward zero. Our

results for mismeasured durations are similar, and the intuitive reason for inconsistency is

straightforward: mismeasurement causes durations to be ordered incorrectly. As a result,

the risk sets used in the partial likelihood function are wrong. We can write the first-order

conditions resulting from (46):

1
n

∑
i

xi =
1
n

∑
i

[∑
j∈R(i) xje

xjb∑
j∈R(i) exjb

]
. (48)

Letting n → ∞ and evaluating at the true parameter β yields

E[xi] = E
[∑

j∈R(i) xje
xjβ∑

j∈R(i) exjβ

]
. (49)

The problem is that we observe incorrect risk sets R̃(i) rather than R(i), and in general,

we’ll have

E
[∑

j∈R(i) xje
xjβ∑

j∈R(i) exjβ

]
6= E

∑j∈R̃(i) xje
xjβ∑

j∈R̃(i) exjβ

 (50)

so that the MLE estimate does not correspond to the first-order condition given by (49).

Another approach, developed by Han and Hausman (1990) and Meyer (1990), has similar

difficulties when durations are mismeasured. Unlike partial likelihood estimation, the Han-

Hausman-Meyer (HHM hereafter) approach handles ties in a natural way and also extends

easily to unobserved heterogeneity. The basic idea of the HHM estimator is to group the
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observed durations into K intervals {(−∞, c1], (c1, c2], . . . , (cK−1, ∞)}, so that we observe

dik =
{

1 ti ∈ [ck−1, ck)
0 otherwise (51)

and maximize the likelihood function

ln L(b, {δk}) =
∑

i

∑
k

dik ln [F (δk + xib) − F (δk−1 + xib)] , (52)

where F is the extreme value c.d.f. The δk’s are jointly estimated, with their true value

being ln Ho(ck) for each k. The result is a step function estimate of the baseline hazard

along with the estimates of βo. For the extension to unobserved gamma heterogeneity, see

Han and Hausman (1990).

Mismeasurement in the HHM framework causes durations to be classified in incorrect

intervals. This misclassification results in misspecification of the likelihood function and

inconsistent estimation. The extent of the problem will depend on the form of the mismea-

surement (i.e., how often the observed durations fall into the wrong interval).

6.1.4 MRE Estimation

Since the proportional hazard model with unobserved heterogeneity is a special case of the

general model in (1), the MRE will consistently estimate βo up-to-scale when the mismea-

surement satisfies the conditions of Theorem 1. It is important to note that “random”

right-censoring (i.e., the distribution of the censoring time is independent of the covariates)

will also not affect the consistency of the MRE. With right-censoring, (39) becomes

y∗ = min(−H−1
o (exp(−xβo − ε)), C∗), (53)

where the censoring time C∗ is independent of x. This specification still satisfies (1), with

g

xβo,

 ε
u
C∗


 = min(−H−1

o (exp(−xβo − u − ε)), C∗). (54)

6.2 Monte Carlo results

For the Monte Carlo experiments in this section, we sample covariate values from the

unemployment-spell dataset used in the following section. The “observed” dependent vari-
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ables are created from specifications of the underlying hazard function and the mismeasure-

ment process. Three covariates are considered:10

x1 = kids

x2 = married

x3 = ln(benefit/wage),

corresponding to the number of children, an indicator variable for marriage status, and the

natural log of the replacement ratio (benefit divided by wage). The three chosen covariates

are discrete, binary, and continuous, respectively. See Table 5 for descriptive statistics on

these variables.

In our Monte Carlo designs, we consider two different baseline hazard specifications for

the proportional hazard model. The first is the exponential baseline hazard, which is constant

(equivalent to a Weibull hazard with α = 1). The second is a log-logistic baseline hazard,

which takes the general form

ho(τ) =
γατα−1

1 + ταγ
, (55)

and has integrated hazard function Ho(τ) = ln(1 + γτα). Our simulations consider the log-

logistic hazard with α = 3 and γ = 2, which is non-monotonic (first increasing and then

decreasing); see Kiefer (1988) for more details.

For each simulation, a given number of observations (either 500 or 1000) are drawn at

random from the SIPP extract in order to yield the three covariates x1, x2, and x3. Then,

a “true” duration (denoted t) is generated according to (38), using one of the two baseline

hazards specified above. The true value of βo is 0.25 for the coefficient of x1, 1.00 for the

coefficient of x2, and -0.50 for the coefficient of x3.11 The true exponential durations have

mean 22.4 and standard deviation 31.4, and the true log-logistic durations have mean 7.2

and standard deviation 3.2.

For the observed duration (denoted t̃), we consider four different models of measurement

error:

10Only three covariates were used so that many simulations for the various estimators could be conducted.
11The location parameter was set to 4 for the exponential hazard and 8 for the log-logistic hazard.
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Model 1: t̃ = t (no measurement error)

Model 2: t̃ = eηt, where η ∼ N(−0.5, 1)

Model 3: t̃ = ηt, where η =


1 with probability 1/2
1.25 with probability 1/4
0.75 with probability 1/4

Model 4: t̃ = t + |η|, where η ∼ N(0, 4)

In each of the models, the resulting observed duration t̃ is positive. Models 2 and 3 are

multiplicative measurement-error models; in both models, the expected value of the scaling

factor is equal to one. Model 4 is an additive measurement-error model.

Tables 1 and 2 report the exponential simulation results for sample sizes of 500 and 1000.

Tables 3 and 4 report the log-logistic simulation results for sample sizes of 500 and 1000. For

each estimator and design, the mean and standard deviation of the estimates from 100 simu-

lations are reported. Results are reported for the three estimators discussed in Section 6.1.3

(the Cox partial likelihood estimator, the HHM estimator, and the HHM estimator that

allows for gamma heterogeneity).12 The MRE estimation results (using M(·) = Rank(·))
are in the final column of each table. Since the MRE estimates βo up-to-scale, the esti-

mates from each simulation were normalized so that the estimate vector had length one (i.e.,

β̂2
1 + β̂2

2 + β̂2
3 = 1). Normalized estimation results are also reported for the Cox and HHM

estimators to allow comparison. The true value for βo is {0.25, 1.00, −0.50}, and the true

value for the normalized βo is {0.2182, 0.8729, −0.4364}.

For Model 1 (no measurement error) in each table, each of the estimators performs quite

well. The Cox and HHM estimators estimate both the scale and ratios of βo appropriately. As

expected, the standard deviations of the estimators increases from left to right (Cox having

the smallest, MRE having the largest). When mismeasurement is introduced, the Cox and

HHM estimates of βo become biased as expected. For the exponential hazard, Model 4

does not represent serious mismeasurement since the additive error is small compared to
12Five bins were used for both HHM estimators.
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Table 1: Exponential Hazard Simulations (n = 500)

(βo = {0.25, 1.00, −0.50}, normalized βo = {0.2182, 0.8729, −0.4364})

Cox HHM HHM (gamma) MRE
Estimates Normalized Estimates Normalized Estimates Normalized Normalized

Model 1 x1 0.2488 0.2155 0.2471 0.2129 0.2569 0.2120 0.2129
(0.0474) (0.0497) (0.0560) (0.0575) (0.0613) (0.0570) (0.0790)

x2 1.0150 0.8683 1.0278 0.8710 1.0730 0.8705 0.8671
(0.1122) (0.0482) (0.1318) (0.0538) (0.1643) (0.0542) (0.0667)

x3 -0.5043 -0.4337 -0.4992 -0.4259 -0.5229 -0.4274 -0.4206
(0.0958) (0.0831) (0.1083) (0.0929) (0.1225) (0.0931) (0.1138)

Model 2 x1 0.1778 0.2484 0.1794 0.2330 0.2319 0.2320 0.2010
(0.0501) (0.0831) (0.0532) (0.0808) (0.0745) (0.0771) (0.1143)

x2 0.6153 0.8355 0.6711 0.8467 0.8733 0.8500 0.8630
(0.1170) (0.0885) (0.1212) (0.0847) (0.1980) (0.0813) (0.1090)

x3 -0.3339 -0.4539 -0.3485 -0.4407 -0.4469 -0.4361 -0.4413
(0.1149) (0.1407) (0.1217) (0.1457) (0.1698) (0.1458) (0.1718)

Model 3 x1 0.2626 0.2448 0.2634 0.2430 0.2833 0.2422 0.2037
(0.0468) (0.0543) (0.0494) (0.0558) (0.0599) (0.0565) (0.0819)

x2 0.9477 0.8653 0.9536 0.8599 1.0362 0.8609 0.8669
(0.1019) (0.0439) (0.1111) (0.0545) (0.1566) (0.0548) (0.0740)

x3 -0.4576 -0.4144 -0.4726 -0.4212 -0.5023 -0.4192 -0.4296
(0.1119) (0.0845) (0.1352) (0.1011) (0.1529) (0.1024) (0.1231)

Model 4 x1 0.2250 0.2522 0.2528 0.2240 0.2668 0.2223 0.2199
(0.0441) (0.0480) (0.0461) (0.0523) (0.0553) (0.0533) (0.0762)

x2 1.0045 0.8726 1.0010 0.8707 1.0522 0.8725 0.8699
(0.1280) (0.0469) (0.1385) (0.0540) (0.1545) (0.0527) (0.0690)

x3 -0.4822 -0.4202 -0.4790 -0.4182 -0.4982 -0.4142 -0.4188
(0.1144) (0.0907) (0.1307) (0.1062) (0.1403) (0.1054) (0.1241)
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Table 2: Exponential Hazard Simulations (n = 1000)

(βo = {0.25, 1.00, −0.50}, normalized βo = {0.2182, 0.8729, −0.4364})

Cox HHM HHM (gamma) MRE
Estimates Normalized Estimates Normalized Estimates Normalized Normalized

Model 1 x1 0.2581 0.2277 0.2547 0.2237 0.2649 0.2260 0.2231
(0.0321) (0.0333) (0.0378) (0.0379) (0.0425) (0.0376) (0.0528)

x2 0.9962 0.8738 0.9991 0.8722 1.0269 0.8703 0.8713
(0.0885) (0.0397) (0.0983) (0.0446) (0.1241) (0.0435) (0.0509)

x3 -0.4789 -0.4214 -0.4852 -0.4248 -0.5017 -0.4279 -0.4314
(0.0774) (0.0686) (0.0885) (0.0765) (0.0835) (0.0733) (0.0919)

Model 2 x1 0.1739 0.2437 0.1847 0.2434 0.2446 0.2383 0.2145
(0.0409) (0.0718) (0.0424) (0.0702) (0.0526) (0.0568) (0.0735)

x2 0.6059 0.8295 0.6542 0.8444 0.8838 0.8461 0.8815
(0.0907) (0.0613) (0.0854) (0.0471) (0.1513) (0.0476) (0.0652)

x3 -0.3514 -0.4865 -0.3568 -0.4639 -0.4792 -0.4644 -0.4300
(0.0558) (0.0875) (0.0575) (0.0764) (0.0876) (0.0812) (0.1155)

Model 3 x1 0.2578 0.2431 0.2587 0.2403 0.2749 0.2405 0.2067
(0.0335) (0.0382) (0.0320) (0.0357) (0.0410) (0.0361) (0.0566)

x2 0.9373 0.8726 0.9534 0.8736 1.0146 0.8731 0.8702
(0.0837) (0.0348) (0.0834) (0.0350) (0.0976) (0.0362) (0.0555)

x3 -0.4364 -0.4064 -0.4432 -0.4058 -0.4759 -0.4065 -0.4267
(0.0712) (0.0673) (0.0755) (0.0689) (0.0968) (0.0701) (0.0934)

Model 4 x1 0.2440 0.2106 0.2429 0.2070 0.2533 0.2067 0.2150
(0.0233) (0.0281) (0.0309) (0.0336) (0.0374) (0.0343) (0.0664)

x2 1.0193 0.8736 1.0399 0.8794 1.0858 0.8798 0.8794
(0.0836) (0.0278) (0.0965) (0.0350) (0.1126) (0.0341) (0.0511)

x3 -0.5051 -0.4337 -0.4971 -0.4211 -0.5193 -0.4208 -0.4334
(0.0690) (0.0549) (0.0819) (0.0658) (0.0942) (0.0644) (0.0876)

23



Table 3: Log-Logistic Hazard Simulations (n = 500)

(βo = {0.25, 1.00, −0.50}, normalized βo = {0.2182, 0.8729, −0.4364})

Cox HHM HHM (gamma) MRE
Estimates Normalized Estimates Normalized Estimates Normalized Normalized

Model 1 x1 0.2576 0.2267 0.2584 0.2296 0.2706 0.2290 0.2241
(0.0545) (0.0542) (0.0568) (0.0573) (0.0637) (0.0572) (0.0728)

x2 0.9938 0.8654 0.9836 0.8630 1.0302 0.8628 0.8647
(0.1031) (0.0468) (0.1202) (0.0556) (0.1401) (0.0560) (0.0637)

x3 -0.4978 -0.4325 -0.4917 -0.4313 -0.5147 -0.4317 -0.4278
(0.1163) (0.0879) (0.1279) (0.1014) (0.1342) (0.1029) (0.1293)

Model 2 x1 0.0901 0.2375 0.0874 0.2147 0.1256 0.2141 0.2153
(0.0440) (0.1554) (0.0460) (0.1427) (0.0861) (0.1384) (0.1557)

x2 0.3010 0.8433 0.3339 0.8545 0.6011 0.8650 0.8543
(0.0980) (0.1884) (0.1062) (0.1865) (0.2371) (0.1901) (0.1779)

x3 -0.1368 -0.4056 -0.1456 -0.3845 -0.2827 -0.4420 -0.4176
(0.1092) (0.2745) (0.1135) (0.2634) (0.2231) (0.2652) (0.2479)

Model 3 x1 0.1880 0.2205 0.1907 0.2281 0.2425 0.2252 0.2268
(0.0494) (0.0652) (0.0506) (0.0706) (0.0687) (0.0742) (0.0966)

x2 0.7375 0.8530 0.7221 0.8479 0.9540 0.8527 0.8562
(0.0973) (0.0676) (0.1055) (0.0718) (0.2212) (0.0684) (0.0890)

x3 -0.3870 -0.4473 -0.3835 -0.4496 -0.4954 -0.4442 -0.4338
(0.1174) (0.1225) (0.1259) (0.1310) (0.1679) (0.1227) (0.1478)

Model 4 x1 0.1987 0.1962 0.1987 0.1929 0.2173 0.1938 0.2183
(0.0538) (0.0567) (0.0558) (0.0599) (0.0701) (0.0596) (0.0757)

x2 0.8902 0.8686 0.9165 0.8754 1.0327 0.8747 0.8632
(0.1096) (0.0582) (0.1280) (0.0643) (0.1630) (0.0633) (0.0705)

x3 -0.4615 -0.4520 -0.4519 -0.4352 -0.5002 -0.4565 -0.4267
(0.1066) (0.0999) (0.1189) (0.1124) (0.1447) (0.1117) (0.1295)
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Table 4: Log-Logistic Hazard Simulations (n = 1000)

(βo = {0.25, 1.00, −0.50}, normalized βo = {0.2182, 0.8729, −0.4364})

Cox HHM HHM (gamma) MRE
Estimates Normalized Estimates Normalized Estimates Normalized Normalized

Model 1 x1 0.2514 0.2218 0.2534 0.2234 0.2610 0.2232 0.2196
(0.0316) (0.0332) (0.0336) (0.0350) (0.0362) (0.0353) (0.0502)

x2 0.9905 0.8683 0.9979 0.8740 1.0298 0.8740 0.8749
(0.0889) (0.0439) (0.0837) (0.0394) (0.1153) (0.0397) (0.0474)

x3 -0.4917 -0.4324 -0.4789 -0.4205 -0.4926 -0.4205 -0.4229
(0.0951) (0.0853) (0.0935) (0.0837) (0.0940) (0.0844) (0.1021)

Model 2 x1 0.0811 0.2488 0.0839 0.2251 0.1384 0.2196 0.2308
(0.0318) (0.1222) (0.0326) (0.1025) (0.0646) (0.1040) (0.1283)

x2 0.2923 0.8328 0.3389 0.8579 0.5981 0.8606 0.8700
(0.0860) (0.1403) (0.0942) (0.1345) (0.2276) (0.1334) (0.1507)

x3 -0.1323 -0.3999 -0.1407 -0.3745 -0.2395 -0.3693 -0.4229
(0.0738) (0.2315) (0.0735) (0.2179) (0.1496) (0.2218) (0.2281)

Model 3 x1 0.1940 0.2306 0.1991 0.2374 0.2575 0.2323 0.2239
(0.0375) (0.0566) (0.0384) (0.0595) (0.0568) (0.0554) (0.0663)

x2 0.7396 0.8641 0.7340 0.8598 0.9654 0.8628 0.8740
(0.0848) (0.0420) (0.0907) (0.0560) (0.1210) (0.0521) (0.0643)

x3 -0.3727 -0.4349 -0.3713 -0.4329 -0.4853 -0.4316 -0.4289
(0.0833) (0.0809) (0.1050) (0.1048) (0.1399) (0.1007) (0.1242)

Model 4 x1 0.2258 0.2248 0.2282 0.2216 0.2491 0.2198 0.2192
(0.0348) (0.0370) (0.0408) (0.0461) (0.0477) (0.0454) (0.0554)

x2 0.8829 0.8754 0.9141 0.8808 1.0076 0.8816 0.8713
(0.0652) (0.0347) (0.0775) (0.0359) (0.1153) (0.0357) (0.0488)

x3 -0.4225 -0.4192 -0.4224 -0.4077 -0.4670 -0.4069 -0.4284
(0.0761) (0.0713) (0.0841) (0.0770) (0.1116) (0.0771) (0.1122)
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the magnitude of the spells. For Models 2 and 3, the exponential estimates are attenuated

toward zero. The HHM gamma estimator is less biased toward zero since it allows for

heterogeneity, but since the mismeasurement is not a gamma distribution the HHM gamma

estimator remains biased (especially for Model 2). For the log-logistic simulations, the Cox

and HHM estimators are biased for Models 2–4 with the HHM gamma estimator being the

least biased.

The MRE seems to be relatively insensitive to the form of mismeasurement. Across the

four tables, the MRE estimates for the normalized parameter vector seem unbiased. As

expected, the standard deviations for the MRE estimates increase with the severity of the

measurement error. The other three estimators are biased for the normalized parameter in

certain instances. In Table 2, the Cox and HHM estimators for Model 2 yield coefficient

estimates on x3 which are too negative and coefficient estimates on x2 which are too small;

the bias on these estimates are around 5–10%. The bias actually seems to have gotten worse

(in comparison to Table 1) with more observations. For Model 3 with exponential hazard,

the estimates on x1 and x3 are biased upwards. For Model 4 with exponential hazard, the

estimators do well since the mismeasurement is not too severe. In Table 4, the log-logistic

Cox and HHM estimates in Model 2 for the normalized parameter are quite biased (especially

the coefficient on x3). There are also slight biases evident in Models 3 and 4.

These simulations suggest that the Cox and HHM estimates of βo will be biased in the

presence of mismeasurement and that the Cox and HHM estimates of βo up-to-scale can also

be biased. In the next section, we consider an empirical example with a much larger sample

size than the simulations considered here. Since the bias of the Cox and HHM estimators will

not disappear with an increase in sample size, the MRE seems appropriate for estimation of

the parameter vector up-to-scale.

6.3 Mismeasured Duration Data in the SIPP

Several studies have examined the extent of measurement error in reporting of unemploy-

ment durations, particularly in the Current Population Survey (CPS) and the Panel Study

of Income Dynamics (PSID). While we use the Survey of Income and Program Participa-

tion (SIPP), the same stylized facts should apply. We highlight a few of the regularities that
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have been found:

Reporting errors are widespread. Poterba and Summers (1984), using Reinterview Surveys

for the CPS, compare month-to-month questionnaires and find that 37% of unemployed

workers overstated unemployment duration (i.e., their estimate in a given month was more

than five weeks larger than their estimate in the preceding month). This percentage counts

only those responses which are inconsistent, which is a lower bound on the percentage of

responses which are incorrect. Mathiowetz and Duncan (1988), using a validation study of

the PSID, find that the average absolute difference between interview response and com-

pany records for reporting of unemployment hours was 45 hours (per year) in 1981 and 52

hours (per year) in 1982. A more disturbing finding by Mathiowetz and Duncan (1988) is

that many unemployment spells, particularly those lasting less than three months, are not

reported at all in the PSID.

Longer spells have more reporting errors. The evidence supports the conventional wisdom

that people have trouble accurately recalling events which occurred long ago. Bowers and

Horvath (1984) find that only 8–20% of workers who are unemployed for over a year give

consistent responses in the CPS. Poterba and Summers (1984) have a similar finding.

Responses tend to be focal. Since people don’t always keep detailed records of their unem-

ployment spells, they tend to give “focal responses” when questioned about their unemploy-

ment duration. For instance, people are more likely to say that they were unemployed for two

months rather than seven weeks or nine weeks. Sider (1985) finds that modes in the PSID

data occur at durations corresponding to monthly, quarterly, half-yearly, and yearly points.

One explanation that has been given to account for certain spikes is that unemployment

benefits usually run out after 26 weeks (half a year) or 39 weeks (three-quarters of a year)

so that many people go back to work at these times. This explanation can only account for

a fraction of the focal responses since spikes appear at other regular intervals and the same

26-week and 39-week spikes are also seen among workers who have not yet completed their

unemployment spells.
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Demographic variables do not explain the mismeasurement. There has been no evidence

that individual characteristics have an effect on the likelihood of reporting error. Three of the

previously discussed studies (Bowers and Horvath (1984), Mathiowetz and Duncan (1988),

and Poterba and Summers (1984)) regress some function of reporting error on demographic

variables including age, education, race, and sex. In each instance, the coefficients on the

demographic variables are insignificant.13 Factors which are significant in explaining report-

ing errors include the length of the unemployment spell, the time between the spell and the

interview, and the reason for unemployment (layoff, temporary layoff, voluntary leave, etc.).

Studies of measurement error in the SIPP have focused on whether or not people cor-

rectly report participation in government transfer programs. The SIPP is a longitudinal

panel study that interviews people eight times at four-month intervals and collects monthly

data on earnings, participation in government transfer programs, assets and liabilities, and

employment history. Marquis and Moore (1990) match responses in the SIPP against fed-

eral and state administrative records to determine the extent of reporting errors. They find

that reporting error for participation is quite small (about 1.5% for unemployment insurance

participation). The reporting error for change in participation is also small (about 0.6% for

unemployment insurance participation). An interesting finding is that people are twice as

likely to report change in participation “on seam” as they are to report change in participa-

tion “off seam.” (“On seam” means that the change in participation occurs in two adjacent

months that fall in different interview periods.) This “seam bias” is akin to the focal response

errors discussed above. People tend to over-report participation change “on seam” since it

is a focal response to say that the change has occurred just recently rather than recalling

when in the last four months it actually occurred.

Unlike Marquis and Moore (1990), our primary concern is with the mismeasurement of

unemployment durations and not the mismeasurement of participation in the UI program.

Our sample consists of 15,103 males between the ages of 21 and 55 who experience an
13The sole exception is that Poterba and Summers (1984) find that teenage women tend to underreport

their duration increment. Our analysis of the SIPP does not include teenage workers.
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unemployment spell between 1986 and 1992 and are eligible for UI benefits.14 In our sample,

4,205 (27.8%) receive UI benefits at some point during their spell. There are 2,237 (14.8%)

people whose unemployment spell is right-censored, meaning that the spell was ongoing when

the interviewee left the SIPP.

Table 5 reports summary statistics for the full sample and subsample of UI recipients and

non-recipients. Standard deviations for the non-indicator variables are given in parentheses.

The uncensored spells of UI recipients last an average of 6.61 weeks longer than the uncen-

sored spells of non-recipients. A higher percentage of UI recipients are married (67%) than

are non-recipients (57%). Previous weekly wage and, in turn, benefit eligibility is higher for

those receiving UI. Many of the other characteristics are similar across UI recipients and

non-recipients.

To highlight the focal response phenomenon in the data, we show several histograms of

unemployment duration. Figures 1 and 2 graph durations for all right-censored spells and all

uncensored spells, respectively. The x-axis is labeled at four-month intervals, corresponding

to the time between successive interviews. The spikes for the right-censored sample are

quite noticeable. The spikes for the uncensored sample are also present, but they are less

noticeable due to the large number of spells that last fewer than four months.

Figures 3 and 4 give more detailed histograms for the uncensored spells, focusing on the

subsample unemployed between 25 and 75 weeks. Figure 3 graphs durations for UI recipients,

and Figure 4 graphs durations for non-recipients. The four-month spikes (at 35, 52, and 69

weeks) are evident. In Figure 3, there are also spikes at 26 and 39 weeks since benefits

generally elapse at those times. The histograms unfortunately don’t tell us much about the

overall mismeasurement of unemployment durations; they just serve to highlight the extent

of focal responses. The MRE, though, handles mismeasurement beyond focal responses as

long as the mismeasurement satisfies the stochastic-dominance condition of Section 4.

We estimate a proportional hazard model using the previously discussed estimation tech-

niques. In Table 6, we report coefficient estimates obtained from Weibull MLE, Cox partial

likelihood, HHM MLE, and HHM MLE with gamma heterogeneity.15

14For those with multiple spells, we consider only the first spell.
15For the HHM estimates, monthly bins were used for estimation of the underlying baseline hazard function.

The estimates were not very sensitive to alternative bin sizes.
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Table 5: Summary Statistics for SIPP Sample

(means and standard deviations (in parentheses))

All UI Non-UI

Number of spells 15,103 4,205 10,898

Censored spells 2,237 667 1,570

Uncensored spell 10.92 15.71 9.10
length (in weeks) (13.28) (15.89) (11.65)

Censored spell 37.05 40.19 35.72
length (in weeks) (31.15) (29.42) (31.77)

Age 34.30 35.76 33.74
(9.67) (9.34) (9.74)

HS grad/no college 0.37 0.40 0.36

Some college 0.25 0.24 0.26

College grad 0.18 0.17 0.18

# children 0.66 0.72 0.64
(1.04) (1.06) (1.03)

White 0.86 0.88 0.85

Married 0.60 0.67 0.57

Prev. weekly wage 389.4 441.2 369.4
(264.8) (269.5) (260.2)

Weekly benefit (eligible) 164.3 183.0 157.1
(65.8) (63.9) (65.1)
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The variable names are fairly self-explanatory. The demographic variables are all dummy

variables with the exception of kids, which is the number of children. The age dummies

(age31to40, age41to50, age51up) are all zero for men between the ages of 21 and 30.

The education dummies (hsdgrad, somecoll, collgrad) are all zero for high school

dropouts. As a result, the coefficient estimates on these dummies should be interpreted as

comparisons to the excluded groups. The variables wage and benefit correspond to the

pre-unemployment weekly wage and weekly unemployment benefit eligibility, respectively.16

We allow for the possibility that UI recipients and non-recipients behave differently by hav-

ing separate coefficients on ln(wage) and ln(benefit) for the two groups. In the table, the

variable UI indicates that the worker received UI benefits at some point during his unem-

ployment spell. One would expect UI recipients to be more sensitive to benefit levels than

non-recipients. We have also allowed the coefficients on ln(wage) and ln(benefit) to differ

from each other. Many empirical studies have focused on the effect of the “replacement rate”

(the ratio of benefits to earnings) on unemployment spells, implicitly constraining the two

coefficients to be of equal magnitude and opposite sign.17 The approach taken here allows

for a test of the replacement-rate approach (for both recipients and non-recipients).

A positive (negative) coefficient indicates that the associated variable causes longer

(shorter) unemployment spells. The results are quite similar across the columns of Table 6.

None of the signs on the coefficients are too surprising. The estimates indicate that the fol-

lowing groups (all other things being equal) have longer unemployment spells: older workers,

workers with fewer children, single workers, high school dropouts, and non-white workers.

The effects of previous wage and level of unemployment benefits also have the predicted

signs. Those with higher previous wage (and, thus, higher opportunity cost of remaining

unemployed) have shorter spells. Those with higher UI benefits have longer spells.

The Weibull estimate of α (the variable parametrizing the hazard in (44)) is 0.5979 (with

a standard error of 0.0068), indicating a decreasing baseline hazard. There is evidence of

16Eligibility rather than actual receipt is used to deal with selection issues and possible misreporting. The
benefit eligibility was calculated using a UI simulator created by Jon Gruber which takes into account the
regional UI laws pertaining to the given worker and the reported quarterly wages before unemployment. See
Gruber (1997) for details.

17See Atkinson and Micklewright (1991) for a survey.
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Table 6: Duration Results for SIPP Sample

(standard errors in parentheses)

Weibull Cox HHM HHM het

age31to40 0.1761 0.1406 0.1968 0.1781
(0.0226) (0.0226) (0.0222) (0.0405)

age41to50 0.2711 0.2234 0.3208 0.3306
(0.0267) (0.0268) (0.0260) (0.0475)

age51up 0.5978 0.4879 0.6456 0.6462
(0.0381) (0.0379) (0.0347) (0.0617)

hsgrad -0.0892 -0.0694 -0.0809 -0.1222
(0.0237) (0.0252) (0.0252) (0.0438)

somecoll -0.0909 -0.0736 -0.1184 -0.1157
(0.0289) (0.0271) (0.0271) (0.0475)

collgrad -0.0320 -0.0126 -0.0106 0.0807
(0.0262) (0.0303) (0.0309) (0.0536)

kids -0.0294 -0.0277 -0.0416 -0.0566
(0.0086) (0.0094) (0.0089) (0.0174)

white -0.3523 -0.3112 -0.4606 -0.5817
(0.0272) (0.0264) (0.0288) (0.0441)

married -0.2725 -0.2458 -0.3105 -0.4352
(0.0219) (0.0218) (0.0217) (0.0385)

ln(wage)×UI -0.1573 -0.1383 -0.3967 -0.1657
(0.0330) (0.0423) (0.0413) (0.0771)

ln(benefit)×UI 0.1318 0.1396 0.1330 0.1700
(0.0413) (0.0519) (0.0516) (0.0943)

ln(wage)×(1-UI) -0.2200 -0.2100 -0.3585 -0.4108
(0.0251) (0.0257) (0.0237) (0.0468)

ln(benefit)×(1-UI) 0.1134 0.1406 0.0104 0.2573
(0.0355) (0.0363) (0.0351) (0.0660)

constant 3.1034
(0.0993)

α 0.5979
(0.0068)

θ 0.8703
(0.0123)
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heterogeneity from the HHM estimates in the final column of Table 6. The unobserved

heterogeneity is assumed to be a gamma distribution with mean 1 and variance 1/θ. Using

the delta method, the estimate of θ yields a variance estimate of 1.1490 (with standard error

of 0.0187) which is significantly different from zero.

Due to the presence of mismeasured durations and the evidence of heterogeneity, the

MRE seems like an appropriate estimator for this data. In Table 7, we report the results

from estimation of the proportional hazard model using the MRE with M(y) = y, the

identity function.18 As a comparison, we also list the results from the Weibull, Cox, HHM,

and HHM with gamma heterogeneity. Since the MRE only identifies the parameters up to

scale, all of the coefficient estimates have been rescaled so that each estimate vector has

length one. The standard errors and 95% confidence intervals for the MRE were constructed

using bootstrap estimates.19 The standard errors for the other estimates were derived using

the delta method.

The first important point about the MRE results concerns their precision. Semipara-

metric estimation always involves a tradeoff between precision and flexibility. Oftentimes,

allowing for too much flexibility of the model results in estimates which are too imprecise

to be meaningful in practice. In our application, though, the estimates remain statistically

significant. Almost all of the demographic variables retain the predicted signs, and the 95%

confidence intervals imply statistical significance since they do not contain zero (except for

collgrad).

The MRE coefficient estimates of the demographic variables are generally in agreement

with the estimates of the other techniques. The striking difference between the MRE results

and the other estimates is the effect of UI benefit levels on unemployment duration. The

benefit coefficients for both UI recipients and non-recipients are not significantly different

from zero. For a given wage, the variation in benefit levels seems to have little effect on the
18The results are very similar using other choices for M(·), such as Rank(·) and ln(·).
19Cavanagh and Sherman (1998) provide formulas which can be used in conjunction with kernel techniques

to compute consistent estimates of the standard errors. In this application, however, these estimates were
sensitive to the choice of kernel windows. As a result, 200 bootstrap replications were used to construct
standard errors and confidence intervals. Cavanagh and Sherman (1998) find that the bootstrap is quite
accurate for estimating standard errors in a large sample. There have been no definitive studies on its use
in small samples.
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Table 7: Normalized Results for SIPP Sample

Weibull Cox HHM HHM het MRE

age31to40 0.1991 0.1849 0.1801 0.1497 0.1741
(0.0280) (0.0381) (0.0179) (0.0278) (0.0285)

[0.1099, 0.2245]
age41to50 0.3066 0.2937 0.2937 0.2779 0.2974

(0.0307) (0.0425) (0.0192) (0.0299) (0.0305)
[0.2395, 0.3480]

age51up 0.6762 0.6413 0.5911 0.5431 0.7394
(0.0272) (0.0427) (0.0166) (0.0262) (0.0319)

[0.6740, 0.7914]
hsgrad -0.1008 -0.0913 -0.0741 -0.1027 -0.1167

(0.0305) (0.0437) (0.0213) (0.0312) (0.0329)
[-0.1860, -0.0458]

somecoll -0.1028 -0.0967 -0.1084 -0.0973 -0.0930
(0.0369) (0.0468) (0.0227) (0.0336) (0.0309)

[-0.1511, -0.0269]
collgrad -0.0362 -0.0166 -0.0097 0.0678 -0.0603

(0.0334) (0.0524) (0.0259) (0.0378) (0.0374)
[-0.1346, 0.0102]

kids -0.0332 -0.0364 -0.0381 -0.0476 -0.0207
(0.0112) (0.0165) (0.0076) (0.0126) (0.0095)

[-0.0363, -0.0003]
white -0.3985 -0.4092 -0.4216 -0.4889 -0.3658

(0.0339) (0.0435) (0.0223) (0.0288) (0.0388)
[-0.4448, -0.2995]

married -0.3082 -0.3231 -0.2843 -0.3658 -0.2813
(0.0247) (0.0334) (0.0164) (0.0233) (0.0332)

[-0.3593, -0.2239]
ln(wage)×UI -0.1779 -0.1818 -0.3632 -0.1392 -0.1947

(0.0415) (0.0713) (0.0309) (0.0533) (0.0564)
[-0.2441, -0.0245]

ln(benefit)×UI 0.1491 0.1836 0.1217 0.1428 0.0894
(0.0515) (0.0859) (0.0411) (0.0640) (0.0666)

[-0.1276, 0.1436]
ln(wage)×(1-UI) -0.2489 -0.2761 -0.3282 -0.3452 -0.2220

(0.0308) (0.0426) (0.0197) (0.0317) (0.0361)
[-0.2993, -0.1617]

ln(benefit)×(1-UI) 0.1282 0.1848 0.0095 0.2162 0.0044
(0.0440) (0.0597) (0.0294) (0.0420) (0.0454)

[-0.0929, 0.0909]

Standard errors are in parentheses. The MRE s.e.’s are standard errors
of the bootstrap estimates. The 95% confidence intervals for the MRE
estimates are shown in brackets.
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length of unemployment. This is not to say that benefits have no effect on unemployment

duration; benefit eligibility, after all, is a function of previous wage. The HHM estimates

for the benefit coefficients are the only ones that fall within the 95% confidence interval of

the MRE estimates. The only other estimator that allows for heterogeneity (HHM allowing

for gamma heterogeneity) has significantly positive estimates for both the recipients’ ben-

efit coefficient and the non-recipients’ benefit coefficient, which is quite different from the

conclusion from the MRE estimates.

The estimates can also be used to test the applicability of the replacement-rate model.

To simplify matters, we introduce notation for the four parameters of interest:

βw,UI = coefficient on ln(WAGE) × UI

βb,UI = coefficient on ln(BENEFIT ) × UI

βw,no UI = coefficient on ln(WAGE) × (1 − UI)

βb,no UI = coefficient on ln(BENEFIT ) × (1 − UI)

The hypothesis underlying the replacement-rate model for recipients is

H1 : βw,UI = −βb,UI . (56)

The hypothesis underlying the replacement-rate model for non-recipients is

H2 : βw,no UI = −βb,no UI . (57)

The p-values associated with tests of these two hypotheses using the non-MRE estimates is

shown in Table 8. All four techniques reject the replacement-rate model for non-recipients.

Only the HHM estimates provide evidence against the replacement-rate model for recipients.

The HHM estimates accounting for heterogeneity have a p-value of 0.928, which provides

support for the replacement-rate model. As for the MRE estimates, confidence intervals were

constructed using the 200 bootstrap replications. The 95% confidence interval for βw,UI/βb,UI

was (−0.68, 2.26), and the 95% confidence interval for βw,no UI/βb,no UI was (−0.35, 0.54).

Only two of the 200 values for βw,UI/βb,UI were below -1, and none of the 200 values for

βw,no UI/βb,no UI were below -1. This finding calls into question the applicability of the

replacement-rate model for both recipients and non-recipients, in contrast to the results

from HHM with heterogeneity.
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Table 8: p-values for Replacement-Rate Tests

Weibull Cox HHM HHM het

H1 : βw,UI = −βb,UI 0.203 0.946 0.000 0.928

H2 : βw,no UI = −βb,no UI 0.000 0.001 0.000 0.000

7 Conclusion

This paper has proposed semiparametric estimation in the presence of mismeasured de-

pendent variables in a general linear index model. The stochastic-dominance condition of

Section 4 is a strong result in that it applies to many forms of mismeasurement and is easy

for the researcher to interpret. In addition, use of the MRE doesn’t require any prior model

of the mismeasurement.

This work was motivated by the fact that unemployment duration data is known to be

poorly measured. The proportional hazard model used to analyze such data fits nicely into

the general framework in which semiparametric estimation remains consistent. The results

of Section 6 show that the semiparametric approach has different implications for the effect

of previous wages and unemployment benefits on the length of unemployment spells.

Though the MRE is quite robust to mismeasurement of the dependent variable in the

proportional hazard model, it does have the drawback of only estimating βo up-to-scale.

The MRE estimates indicate the relative impact of covariates on y∗. In order to say any-

thing about either the conditional expectation of y∗ given x or the baseline hazard function,

the researcher would need to explicitly model the mismeasurement process. In the binary-

choice model, Hausman et. al. (1998) use the MRE to estimate βo up-to-scale and then

derive conditional expectations and marginal effects from the mismeasurement model de-

scribed in Section 2. Future research might consider specific mismeasurement models for

unemployment-spell data and determine which quantities of interest can be estimated in

conjunction with the semiparametric approach discussed in this paper.
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Appendix

Proof of Theorem 1: The assumptions from Cavanagh and Sherman (1998) are:

(A0) E[M(y)|x] depends on x only through xβo.

(A1) E[M(y)|x] is a nonconstant, increasing function of xβo.

(A2) The support of x is not contained in any proper linear subspace of Rd.

(A3) The d’th component of x has an everywhere positive Lebesgue density, conditional

on the other components.

(A4) The parameter space B is a compact subset of {b ∈ Rd : |bd| = 1}.

(A5) E[M(y)2] < ∞.

We make one additional technical assumption:

(iii) limz→∞ g(z, ε) = ∞ and limz→−∞ g(z, ε) = −∞ ∀ε.

We assume (A2)–(A5) and show that conditions (i), (ii), and (iii) imply (A0) and (A1).

(A0) is trivial since the model for the latent variable depends on x only through xβo and the

mismeasurement is independent of x.

Let H(·) be the c.d.f. of −ε. Write E[M(y)|xβo = z] as

E[M(y)|xβo = z] =
∫

E[M(y)|xβo = z, ε = −u]dH(u)

=
∫

E[M(y)|y∗ = g(z,−u)]dH(u)

=
∫ ∫

M(y)dFy|y∗(y|g(z,−u))dH(u).

Since M is an increasing function, first-order stochastic dominance implies that∫
M(y)dFy|y∗(y|t)

is increasing in t; then, ∫
M(y)dFy|y∗(y|g(z,−u))

is increasing in z for any u, and so the integral with respect to dH(u) is an increasing function

of z. Assumption (A3) and conditions (ii)–(iii) ensure that the function is nonconstant. Thus,

(A1) holds and the MRE is consistent.

Additional assumptions are needed for asymptotic normality; see Cavanagh and Sher-

man (1998).
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