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Abstract

This paper proposes a specification test of the mixed logit models, by generalizing Haus-

man and McFadden’s (1984) test. We generalize the test even further by considering a model

developed by Berry, Levinsohn and Pakes (1995).

1 Introduction

Multinomial choice models have become an important model in demand estimation. The model

can parsimoniously characterize the demand system by allowing the number of parameters to be

substantially smaller than the number of products. In this literature, it is a common practice to

adopt a mixed logit specification, probably for the purpose of relaxing the Independence of Irrel-

evant Alternatives (IIA) properties. However, the IIA property still holds at the individual level.

A model specification which relaxes the individual IIA assumption is formulated and estimated

by Burda, Harding and Hausman (2008).

The logit specification, despite such limitations, provides much computational convenience,

which naturally prompts for a specification test. A specification test for the multinomial logit

model was addressed by Hausman andMcFadden (1984), who proposed a variation of the Hausman

(1978) test. We note that the specification test does not exist for mixed logit models.

It has been recognized for many years that an important problem with the multinomial logit

model is the Independence of Irrelevant Alternatives (IIA) property. The IIA property implies that

the ratio of the probabilities of choosing any two alternatives is independent of the attributes of any
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other alternative in the choice set. Debreu (1960) gave an early discussion about the implausibility

of the IIA assumption. Models that have the IIA property do not allow for different degrees of

substitution or complementarity among the choices.1 Indeed, Hausman (1975) demonstrate that

IIA requires all cross-price elasticities for a given product are identical, a seemingly implausible

assumption for differentiated product demand models.

An early justification for use of the multinomial logit model with the IIA property was that

when estimated on individual data, aggregate predictions did not have the IIA property. The

Hausman—McFadden (1984) test allowed for a test of the underlying foundational IIA assumption.

No known property was demonstrated in the literature that if the IIA property did not hold at

the individual level, it “cancelled out”at the aggregate level in terms of estimating the correct

price elasticities. More recently, models which allowed heterogenous preferences have become

widely used. Again, as we demonstrate in this paper and has been recognized, many heterogenous

preference models impose IIA at the individual level. Again, claims have been made that when

used at the aggregate level that the IIA assumption has only limited relevance. We explore those

claims in this paper and provide a specification test that allow for a determination whether use

of the IIA property at the individual level leads to inconsistent estimates at the aggregate level,

when the IIA property does not hold true.

Thus, the purpose of this paper is to fill the gap in the literature by developing a generalization

of the Hausman and McFadden’s (1984) specification test. We consider two variants of the test.

In the first case, we consider the usual mixed logit model where the logit model parameters are

assumed to be random coeffi cients independent of the explanatory variables. As in Hausman and

McFadden (1984), we consider estimating the model coeffi cients after removing an alternative from

the choice set, and comparing the new parameter estimates with the original estimates. Since the

mixed logit model assumes IIA at the individual level, the specification test should have good

power properties. In the second case, we consider the variant of the mixed logit model considered

1In the literature, this property is often called the “red bus-blue bus”problem. The busses should have different

substitution properties between themselves than substitution with say Lyft or the Metro. Hausman often thought

this example was too extreme, but as with black swans discovered in Western Australia, he has discovered that

two taxpayer funded bus operations in Santa Monica, CA, with significant overlap in some of their routes, use blue

and red buses.
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by Berry, Levinsohn and Pakes (1995, BLP hereafter), in which a coeffi cient and its associated

variable may exhibit endogeneity.

2 Mixed Logit Model

In this section, we consider a typical mixed logit choice model, and develop a specification test in

the spirit of Hausman and McFadden (1984). We compare two parameter estimates. The first one

is the maximum likelihood estimator (MLE) for the original model. The second one is the MLE

for the implied model where we remove an alternative from the choice set. The removal of an

alternative produces a sample selection problem, which we control by using Bayes theorem. The

resultant likelihood for the restricted model turns out to be very intuitive. Because the original

MLE is the effi cient estimator, the comparison of the two estimates validates the straightforward

formula as derived in Hausman (1978).

We start with a standard model where the individual utility takes the form

Ui,j = γ′ixj + εi,j, j = 1, . . . , J ; i = 1, . . . , N. (1)

We assume that εi,j are independent and identically distributed extreme value random variables.

The γi is the random coeffi cient which allows for deviation from the textbook logit model. We

assume that the γi are i.i.d. with distribution f (γ| θ) parameterized by some θ. Typically, we

assume that it is drawn from a multivariate normal distribution, although we leave f (γ| θ) as an

arbitrary distribution throughout the theory part of the paper. Some of the components of γi may

be allowed to be nonrandom. Indeed, by allowing f (γ| θ) to be a mixture distribution, a very

flexible distribution can be used as discussed in e.g. Burda, Harding and Hausman (2008).

We can easily see that the model above nests the typical model used in demand estimation

Ui,j = β′ixj − αPj + εi,j, (2)

where Pj is price and xj are non-price product characteristics. For simplicity, we assume that the

xj in (1) is not individual specific, i.e., it does not have the i subscript. This assumption has the

benefit of having a similar notation as in the analysis of the BLP afterwards, but in the context

of a specification test of the mixed logit model with individual data, it is not necessary.
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Before we describe our own test, it may be helpful to review the intuition underlying Hausman

and McFadden’s (1984) test. Assume that γi is fixed at γ in model (1). For simplicity, assume

that J = 3. For the full model, we see that

Pr (dij = 1|C) =
exp (γ′xj)

exp (γ′x1) + exp (γ′x2) + exp (γ′x3)
, (3)

where dij denotes the binary indicator that takes the value 1 if the ith individual chooses the jth

alternative. Here, the notation C denotes the original choice set. Now, if we remove the third

alternative, the IIA implies that

Pr
(
dij = 1|CR

)
=

exp (γ′xj)

exp (γ′x1) + exp (γ′x2)
, (4)

where CR denotes the restricted choice set that removes the third alternative. The Hausman and

McFadden (1984) test compares the MLE for the full sample using the specification (3), and the

MLE for the subsample with yi3 = 0 using the specification (4). The IIA assumption of the logit

model follows from equations (3) and (4), where the ratios of the probabilities for di1 = 1 and

di2 = 1 are the same in both equations.

We now consider a generalization of this idea to the mixed logit model. In this context,

developing the likelihood for the subsample requires controlling for selection. For this purpose,

consider removing the “outside good”in the example (2). Individuals who choose the outside good

have preferences that are different from individuals who don’t choose the outside good. In the

current setting, individuals who have weak preferences for the two non-price characteristics (i.e.,

individuals with low or negative β) are most likely to choose the outside good. Therefore, if we

remove the outside good from the choice set and estimate the model using only individuals who

didn’t chose the outside good, the parameter estimates will overstate the individuals’willingness

to pay for non-price characteristics. The selection problem arises from the presence of random

coeffi cients f (γ| θ).

We now consider removing the last alternative in the mixed logit specification (1). For sim-

plicity, we will assume that J = 3. For individuals with γi, the probabilities that the three options

are chosen are given by

pj (γi) ≡ Pr (dij = 1| γi) =
exp (γ′ixj)

exp (γ′ix1) + exp (γ′ix2) + exp (γ′ix3)
, (5)
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and the (unconditional) likelihood is the integrated version with respect to f (γ| θ), i.e.,

P (j; θ) ≡ Pr (dij = 1| θ) =

∫
exp (γ′xj)

exp (γ′x1) + exp (γ′x2) + exp (γ′x3)
f (γ| θ) dγ. (6)

Note that the IIA holds at the individual level in equation (5). We consider removing the last

alternative, with the restricted choice set CR consisting of j = 1, 2. Note that

Pr
(
CR
∣∣ γi) =

exp (γ′ix1) + exp (γ′ix2)

exp (γ′ix1) + exp (γ′ix2) + exp (γ′ix3)
, (7)

where Pr
(
CR
∣∣ γi) denotes the probability that the restrictive choice set CR is chosen. The IIA

implies that

Pr
(
di1 = 1| γi, CR

)
=

exp (γ′ix1)

exp (γ′ix1) + exp (γ′ix2)
.

It follows that

Pr
(
di1 = 1|CR

)
=

∫
Pr
(
yi1 = 1| γ, CR

)
f
(
γ|CR, θ

)
dγ

=

∫
exp (γ′ix1)

exp (γ′ix1) + exp (γ′ix2)
f
(
γ|CR, θ

)
dγ, (8)

where f
(
γ|CR, θ

)
denotes the conditional density of γ for the subsample of individuals that chose

the alternatives in CR. By Bayes rule, we have

f
(
γ|CR

)
=

Pr
(
CR
∣∣ γ) f (γ| θ)∫

Pr (CR| γ) f (γ| θ) dγ

=
1

Γ (CR| θ)
exp (γ′x1) + exp (γ′x2)

exp (γ′x1) + exp (γ′x2) + exp (γ′x3)
f (γ| θ) , (9)

where we write

Γ
(
CR
∣∣ θ) ≡ ∫ Pr

(
CR
∣∣ γ) f (γ| θ) dγ

=

∫
exp (γ′x1) + exp (γ′x2)

exp (γ′x1) + exp (γ′x2) + exp (γ′x3)
f (γ| θ) dγ.

Combining (6), (8) and (9), we obtain

Pr
(
di1 = 1|CR

)
=

1

Γ (CR| θ)

∫
exp (γ′x1)

exp (γ′x1) + exp (γ′x2) + exp (γ′x3)
f (γ| θ) dγ

=
P (1; θ)

Γ (CR| θ) .
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Likewise, we obtain

Pr
(
di2 = 1|CR

)
=

P (2; θ)

Γ (CR| θ) .

It is straightforward to show that the result generalizes in a straightforward manner to the

case with arbitrary J and CR. In order to characterize the likelihoods, it is convenient to define

a random variable yi = 1 if dij = 1. Also, let zi = 1 if the agent i chooses an option in CR, and 0

otherwise. Then the MLE θ̂1 based on the full sample solves

max
θ

N∑
i=1

logP (yi; θ) , (10)

where P (j; θ) is defined in (6). The MLE θ̂2 based on the subsample after certain choices are

removed solves

max
θ

N∑
i=1

zi log
P (yi; θ)

Γ (CR| θ) . (11)

Under correct specification and standard regularity conditions, we can see that both estimator

are consistent and asymptotically normal, and their asymptotic variances can be consistently

estimated by  1

N

N∑
i=1

∂ logP
(
yi; θ̂1

)
∂θ

∂ logP
(
yi; θ̂1

)
∂θ

′

−1

(12)

and  1

N

N∑
i=1

zi

∂ log
P(yi;θ̂2)

Γ(CR|θ̂2)

∂θ


∂ log

P(yi;θ̂2)
Γ(CR|θ̂2)

∂θ


′
−1

. (13)

Because θ̂1 is effi cient relative to θ̂2, the Hausman test statistic takes the usual form.

Comparison of (10) and (11) does indeed make a natural generalization of Hausman and

McFadden (1984), which can be understood by considering a simple case without any random

coeffi cient, i.e., the case where γi = θ. If so, we obtain

P (j| θ) =
exp (θ′xj)

exp (θ′x1) + exp (θ′x2) + exp (θ′x3)

Γ
(
CR
∣∣ θ) =

exp (θ′x1) + exp (θ′x2)

exp (θ′x1) + exp (θ′x2) + exp (θ′x3)

P (j| θ)
Γ (CR| θ) =

exp (θ′xj)

exp (θ′x1) + exp (θ′x2)

Therefore, the counterpart of (11) indeed reflects the IIA (4).
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3 Extension to BLP

In this section, we generalize the idea developed in Section 2 to deal with the complications in

BLP. We develop counterparts of θ̂1 and θ̂2, and discuss how they can be compared. We will call

θ̂1 and θ̂2 the first and second step estimators.

3.1 Characterization of θ̂1

Characterization of the first step estimator is relatively straightforward, because it only requires

description of the BLP model. We do need to be a little bit careful in describing the asymptotic

framework. The BLP typically starts with the utility We start with the utility

Ui,j = xjβi − pjα + ξj + εi,j = γ′iwj + ξj + εi,j, (14)

where εi,j is i.i.d. extreme value distribution j = 1, . . . , J . The market share sj is then

sj =

∫
p (yj|w, γ, ξ) f (γ| θ) dγ, (15)

where w denotes the collection of x’s and p’s, and the f (γ| θ) denotes the density of γ = (β, α)

indexed by θ. It is assumed that there is an instrument such that2

E [zξj] = 0, j = 1, . . . , J. (16)

Using the contraction mapping discussed in BLP, we can write

ξj = gj
(
s0, w, f ( ·| θ)

)
, (17)

where s0 denotes the vector of shares in the population. Letting Fθ denote the distribution of γ,

we may write the moment restriction

E
[
zgj
(
s0, w, Fθ

)]
= 0, j = 1, . . . , J (18)

based on which we can estimate θ.3

2In BLP, the instrument is in fact a function Hj (z) of the conditioning variable z, where z is from the conditional

moment restriction E [ξj | z] = 0. We avoid notational complication by working with the instrument zj itself.
3Here, the s0 denotes the true vector of shares, but in practice we use the estimated vector of shares sn instead.

The difference does not result in different asymptotic distribution as long as n, T → ∞ at an appropriate rate,

which can be shown by a textbook-level analysis. See Appendix B.
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In order to understand the moment (18) in a convenient asymptotic framework, we use inter-

market variation and work with

E
[
ztgj

(
s0
t , wt, Fθ

)]
= 0 , j = 1, . . . , J ; t = 1, . . . , T (19)

for ξj,t = gj (s0
t , wt, Fθ). In terms of asymptotics, we assume that J is fixed while T → ∞.4 This

approach leads to the characterization of the first step estimator to be the solution to the sample

counterpart5 of the (18) in the following form:

0 =
1

T

T∑
t=1

∑
j

zj,tgj
(
s0
t , wt, Fθ̂1

)
. (20)

Here, the zj,t denotes an arbitrary transformation of zt.

3.2 Characterization of θ̂2

We now consider implementation of the second step, and consider estimation of θ after removing

an alternative. Roughly speaking, the implementation of the second step consists of the following:

First, we define the restricted choice set CR as before. We note that by Bayes rule, this approach

is equivalent to using
Pr
(
CR
∣∣ γ) fθ (γ)∫

Pr (CR| γ) fθ (γ) dγ
(21)

as the density of γ, instead of fθ (γ). Let FR
θ denote such a distribution. Note that the FR

θ in

fact depends on wt, so it should in principle indexed by t as well, although we suppress it here for

notational simplicity.

With the restricted choice set, we need to redefine the vector of market shares sRt . For simplicity,

we assume that the first J1 alternatives constitute the restricted choice set, and the last J − J1

alternatives are removed. The sRt is then the J1-dimensional vector which is obtained by choosing

the first J1 elements of s0
t and dividing each of them by the sum of the J1 elements. For example,

suppose that there are four choices in the original choice set, i.e., s0
t is a four-dimensional vector.

Suppose that the last choice had a market share equal to 20%. Suppose that CR consists of

the first three choices. Then sRt is a three-dimensional vector obtained by dividing the first three

4Our asymptotics reflects Berry and Haile’s (2014) result. See Appendix A.
5Here zj,t corresponds to Hj (z)T (zj) in BLP (p. 857).
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components of s0
t by 100%−20% = 80%. We then use gj

(
sRt , wt, F

R
θ

)
in (20).6 The rest is identical

to the first step.

We now provide the details of implementation. We recognize two features that distinguishes

the current models of the BLP framework. First, the discussion in the previous section makes

it clear that the second step requires the counterpart of gj in (18) be based on the conditional

the conditional density of γ for the subsample of individuals that chose the alternatives in CR.

Second, we have additional ξ in each market, which is fixed in a given market and plays a role of

a parameter in each market. Therefore, implementation of (21) requires careful re-examination of

our steps in the previous section.

In order not to complicate notations unnecessarily, we proceed as before and only consider the

simple case J = 3, where we remove the third alternative. Writing7

Ui,j,t = γ′iwj,t + ξj,t + εi,j,t,

we obtain the counterparts of (6) and (7)

Pt (j; θ, ξt, wt) ≡ Pr (dijt = 1| θ, ξt, wt)

=

∫
exp (γ′wj,t + ξj,t)

exp (γ′w1,t + ξ1,t) + exp (γ′w2,t + ξ2,t) + exp (γ′w3,t + ξ3,t)
f (γ| θ) dγ, (22)

and

Pr
(
CR
∣∣ γi, ξt, wt) =

exp (γ′w1,t + ξ1,t) + exp (γ′w2,t + ξ2,t)

exp (γ′w1,t + ξ1,t) + exp (γ′w2,t + ξ2,t) + exp (γ′w3,t + ξ3,t)
. (23)

We note that the IIA at the individual level implies that

Pr
(
di1 = 1| γi, ξt, wt, CR

)
=

exp (γ′ix1 + ξ1,t)

exp (γ′ix1 + ξ1,t) + exp (γ′ix2 + ξ2,t)
.

and

Pr
(
di1 = 1| θ, ξt, wt, CR

)
=

∫
Pr
(
di1 = 1| γi, ξt, wt, CR

)
f
(
γ| θ, ξt, wt, CR

)
dγ

=

∫
exp (γ′ix1 + ξ1,t)

exp (γ′ix1 + ξ1,t) + exp (γ′ix2 + ξ2,t)
f
(
γ| θ, ξt, wt, CR

)
dγ, (24)

6Note that this is based on a separate contraction mapping. In the above example, the original contraction

mapping was based on the 1-1 correspondence between the four-dimensional vectors. Now, the contraction mapping

is a new one based on the 1-1 correspondence between the three-dimensional vectors corresponding to the first three

choices.
7Note that there is a textbook-level identification problem, and we impose a normalization ξJ,t = 0. For

notational simplicity, we do not make the normalization explicit.
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and likewise

Pr
(
di2 = 1| θ, ξt, wt, CR

)
=

∫
exp (γ′ix2 + ξ2,t)

exp (γ′ix1 + ξ1,t) + exp (γ′ix2 + ξ2,t)
f
(
γ| θ, ξt, wt, CR

)
dγ,

where f
(
γ| θ, ξt, wt, CR

)
denotes the conditional density of γ for the subsample of individuals that

chose the alternatives in CR. By Bayes rule, we have

f
(
γ| θ, ξt, wt, CR

)
=

Pr
(
CR
∣∣ γ, ξt, wt)∫

Pr (CR| γ, ξt, wt) f (γ| θ) dγ f (γ| θ) , (25)

where

Pr
(
CR
∣∣ γ, ξt, wt) =

exp (γ′w1,t + ξ1,t) + exp (γ′w2,t + ξ2,t)

exp (γ′w1,t + ξ1,t) + exp (γ′w2,t + ξ2,t) + exp (γ′w3,t + ξ3,t)
,

Γ
(
CR
∣∣ θ, ξt, wt) ≡ ∫ Pr

(
CR
∣∣ γ, ξt, wt) f (γ| θ) dγ. (26)

Comparison of (15) with (24) reveals a potential complication for the second step. In (15), the

distribution of γ only depends on θ, whereas it depends on (θ, ξt, wt) in (24). This implies that

we need to fix the value of (ξt, wt) in addition to θ when the inversion (“contraction mapping”)

between sRt and (ξ1,t, ξ2,t) is performed for the subsample after the third alternative is removed.

The second step in the specification test needs to address such a dual role played by the ξ’s. For

this purpose, we will emphasize the dual role of the ξ’s and rewrite8 (24)

Pr
(
di1 = 1| θ, ξ(1)

t , ξ
(2)
t , wt, C

R
)

=

∫ exp
(
γ′ix1 + ξ

(2)
1,t

)
exp

(
γ′ix1 + ξ

(2)
1,t

)
+ exp

(
γ′ix2 + ξ

(2)
2,t

)f (γ| θ, ξ(1)
t , wt, C

R
)
dγ.

(27)

An intuitive idea to overcome the potential complication due to the dual role of the ξ’s is to

use the ξ’s computed from the full set of alternatives (i.e., before removing any alternative) as ξ(1)
t .

This approach implies that the second step estimator θ̂2 may need to be based on the following

complicated steps:

1. For a given candidate value of θ, use the inversion (17) for the full set of alternatives, and

compute ξt (θ, s0
t , wt) ≡ g (s0

t , wt, Fθ) and let ξ
(1)
t = ξt (θ, s0, wt) in (27).

8We adopted the normalization ξJ,t = 0 earlier, i.e., ξ
(1)
J,t = 0. We note that there are only J1 choices left after

J − J1 alternatives are removed. This implies that in the second step, there are J1 such ξj,t’s. Therefore, the

normalization should now take the form that ξJ1,t = 0 in the second step. The two different normalization can be

written ξ(1)J,t = 0 and ξ
(2)
J1,t

= 0. For notational simplicity, we do not make the normalization explicit.
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2. We then view the mapping from
(

Pr
(
di1 = 1| θ, ξ(1)

t , ξ
(2)
t , wt, C

R
)
,Pr

(
di2 = 1| θ, ξ(1)

t , ξ
(2)
t , wt, C

R
))

into sRt as a function in ξ
(2)
t only, and apply the inversion (“contraction mapping”) there.

Note that ξ(1)
t = ξt (θ, s0, wt) is a function of θ.

3. Letting

g̃
(
sRt , wt, f

(
·| θ, ξ(1)

t , wt, C
R
))

denote the result of the inversion applied to the restricted set of choices, we may then proceed

with GMM adopting the moment restriction (16).

Although this idea is intuitive, it may appear to be complicated for practical implementation.

We argue that the algorithm in fact simplifies quite a bit, and the specification test requires only

one “contraction mapping”. It turns out that in the second step, we can work with the moment

equation

E [z (ξj − ξJ1)] = 0, for all j ∈ CR

or

E
[
z
(
gj
(
s0, w, Fθ

)
− gJ1

(
s0, w, Fθ

))]
= 0, j ∈ CR (28)

where ξJ1 denotes the last alternative in the restricted choice set C
R. See Section 3.3 for details.

Remark 1 We also note that the number of moment equations is smaller than when the full set

of choices were considered. For example, when J = 3 (and impose the normalization that ξt,3 = 0),

the full choice set gives us two moments E [ztξt,1] = 0 and E [ztξt,2] = 0, whereas the restricted

choice set after removing the third alternative gives us one moment E [zt (ξt,1 − ξt,2)] = 0.

This implies that we can use a GMM estimator that solves

0 =
1

T

T∑
t=1

∑
j∈CR

z̃j,t
(
gj
(
s0
t , wt, Fθ̂2

)
− gJ1

(
s0
t , wt, Fθ̂2

))
, (29)

where z̃j,t denotes an arbitrary transformation of zt, which is in general different from zj,t in (20).

Remark 2 Suppose that the zj,t in (20) was chosen to minimize the asymptotic variance of the

GMM estimator for the moment restriction (19). In other words, suppose that θ̂1 is an optimal

GMM estimator. If so, we can easily see that the asymptotic variance of θ̂2 − θ̂1 is equal to the

difference of asymptotic variances of θ̂1 and θ̂2, as is usually the case with Hausman specification

test. It is because (28) is implied by (18), and hence contains less information.
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3.3 Some Details behind (28)

We explain that the J1 components of ξ
(2)
j,t is equal to the first J1 components of ξ

(1)
j,t subtracted

by ξ(1)
J1,t
, i.e.,

ξ
(2)
j,t = ξ

(1)
j,t − ξ

(1)
J1,t
, j = 1, . . . , J1. (30)

The subtraction is just for the purpose of normalization, so we prove this property by establishing

that the second contraction mapping problem can be solved by choosing ξ(2)
t = ξ̃

(1)
t , where ξ̃

(1)
t

consists of the first J1 components of ξ
(1)
t . As in the previous section, we simplify notations by

assuming that J = 3 and that the last alternative is removed, although the analysis can be easily

extended to the case with arbitrary J and J1.

For a given value of θ, we have ξt,j = gj (s0
t , wt, f ( ·| θ)) in (17), i.e., the ξ’s in the full sample,

are computed such that if we let ξt,j = gj (s0
t , wt, f ( ·| θ)) in (22), it would exactly coincide with

the jth component of s0
t,j:

s0
t,j = Pt

(
j; θ, gj

(
s0
t , wt, f ( ·| θ)

)
, wt
)
. (31)

This implies that if we let ξt,j = gj (s0
t , wt, f ( ·| θ)) in (26), it would be exactly equal to the

population share of CR in the sample, i.e.,

Γ
(
CR
∣∣ θ, g (s0

t , wt, f ( ·| θ)
)
, wt
)

=
∑
j∈CR

s0
t,j. (32)

Using (24), and (25), we can write

Pr
(
di1 = 1| θ, ξ(1)

t , ξ
(2)
t , wt, C

R
)

=

∫ exp
(
γ′ix1+ξ

(2)
1,t

)
exp
(
γ′ix1+ξ

(2)
1,t

)
+exp

(
γ′ix2+ξ

(2)
2,t

) exp
(
γ′w1,t+ξ

(1)
1,t

)
+exp

(
γ′w2,t+ξ

(1)
2,t

)
exp
(
γ′w1,t+ξ

(1)
1,t

)
+exp

(
γ′w2,t+ξ

(1)
2,t

)
+exp

(
γ′w3,t+ξ

(1)
3,t

)f (γ| θ) dγ

Γ
(
CR| θ, ξ(1)

t , wt

) . (33)

Letting ξ(2)
t = ξ̃

(1)
t in (33), we obtain

Pr
(
di1 = 1| θ, ξ(1)

t , ξ̃
(1)
t , wt, C

R
)

=

∫ exp
(
γ′w1,t+ξ

(1)
1,t

)
exp
(
γ′w1,t+ξ

(1)
1,t

)
+exp

(
γ′w2,t+ξ

(1)
2,t

)
+exp

(
γ′w3,t+ξ

(1)
3,t

)f (γ| θ) dγ

Γ
(
CR| θ, ξ(1)

t , wt

) . (34)
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We also note that (31) and (32) imply that

s0
t,1 =

∫ exp
(
γ′w1,t + ξ

(1)
1,t

)
exp

(
γ′w1,t + ξ

(1)
1,t

)
+ exp

(
γ′w2,t + ξ

(1)
2,t

)
+ exp

(
γ′w3,t + ξ

(1)
3,t

)f (γ| θ) dγ (35)

s0
t,1 + s0

t,2 = Γ
(
CR
∣∣ θ, ξ(1)

t , wt

)
(36)

Combination of (34)-(36) reveals that ξ(2)
t

Pr
(
di1 = 1| θ, ξ(1)

t , ξ̃
(1)
t , wt, C

R
)

=
s0
t,1

s0
t,1 + s0

t,2

= sRt,1.

We can similarly derive

Pr
(
di2 = 1| θ, ξ(1)

t , ξ̃
(1)
t , wt, C

R
)

=
s0
t,2

s0
t,1 + s0

t,2

= sRt,2.

Because the mapping between sRt and ξ
(2)
t (for given value of

(
θ, ξ

(1)
t , wt

)
) is one-to-one9, and we

conclude that the ξ(2)
t = ξ̃

(1)
t is the only value (up to normalization) such that

Pr
(
di1 = 1| θ, ξ(1)

t , ξ̃
(1)
t , wt, C

R
)

= sRt,1 (37)

Pr
(
di2 = 1| θ, ξ(1)

t , ξ̃
(1)
t , wt, C

R
)

= sRt,2 (38)

Therefore, we conclude that ξ(2)
t = ξ̃

(1)
t up to normalization. Imposing the normalization ξ(2)

J1,t
= 0,

we obtain (30).

4 Monte Carlo Simulations

We now present Monte Carlo simulation results of our specification tests. Our Monte Carlo

design is motivated by the concern that logit specification has the well-known IIA property. See

Hausman and Wise (1978), e.g., for detailed analyses of the limitations of the IIA Property as well

as discussion of the alternative probit specification that overcomes the problem. See also Burda,

Harding, and Hausman (2008) for further development of the alternative specification.

These simulations confirm our mixed logit specification tests have attractive size and power

properties. The tests reliably identify misspecification in the mixed logit model when it exists.

9Note that the density of γ remains positive everywhere even after application of Bayes rule in (25), so Berry’s

(1994) suffi cient condition for the existence of the inverse mapping is satisfied.
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When there is no misspecification, type I errors occur infrequently. Below, we first describe

simulations of the mixed logit specification test in section 2. Then, we describe simulation results

based on the generalization of the test in section 3.

4.1 Monte Carlo Simulations of Mixed Logit Model

The Mixed Logit model described in section 2 estimates demand using individual consumers’

observed choices. Our Monte Carlo simulations of this model are set up as follows. Each simulated

consumer i makes choices from three choice sets that each have three options. One of the three

options is an outside good for which utility is normalized to zero. Each remaining option j has

an associated price (Pj) and two non-price characteristics (xj1 and xj2).10 We simulate choices for

500, 1000, 1500, or 2000 consumers.11

Consumers’simulated choices maximize their utility, which takes the same form as in equation

(2) above. Preferences for non-price characteristics are drawn from a normal distribution and

preferences for price are assumed equal for all simulated consumers. The first column of Table

1 below reports the parameter values used to simulate choices. For example, we assume all

consumers’preferences for the first non-price characteristic are drawn from a normal distribution

with a mean of 2 and a variance of 2.

Simulated choices also reflect an error term εij. When we test a properly specified mixed logit

model, εij are drawn from an extreme value logit distribution. When we use the specification

test to test a misspecified mixed logit model, εij also includes an omitted characteristic that is

correlated with price.12

Table 1 reports the parameter estimates we obtain when we estimate the mixed logit using

100 sets of simulated data, each with 2000 consumers. Column (1) reports the parameter values

used to generate the data. Column (2) reports the mean maximum likelihood estimates when we

estimate the original mixed logit model and there is no misspecification (θ̂1). Column (3) reports

10In practice, price is a randomly drawn integer between $1 and $10. Non-price characteristics are randomly

drawn from a uniform distribution.
11Choice sets are allowed to vary across individuals. With 2000 consumers, for example, one simulated dataset

is comprised of 6000 independently drawn choice sets (three for each consumer) that include three options each.
12Specifically, the omitted characteristic affecting utility takes the form ωij ·Pj , where ωij is drawn from a uniform

distribution.
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the mean maximum likelihood estimates when we use the same simulated data as in column (2)

but remove the outside good from the model and base estimation only on those consumers never

choosing the outside option. If the model is properly specified, the estimated coeffi cients should be

very similar under these two scenarios. Columns (4) and (5) are analogous to columns (2) and (3)

except these sets of parameter estimates are based on misspecified data with endogenous prices.

The results presented in Table 1 are consistent with the intuition underlying a Hausman test.

When the model is properly specified, the parameter coeffi cients estimated by the two versions of

the mixed logit model are very similar. For example, the mean price coeffi cient estimated by the

original model is -.499 (relative to a true coeffi cient of -.5). After removing the outside option from

the choice set and restricting the estimation routine to those consumers never choosing the outside

option, the mean estimated price coeffi cient is still -.499. When there is misspecification, however,

the original mixed logit model generates estimates that are different than the estimates generated

after removing the outside good. Under the original model the estimated price coeffi cient is -

.184. The upward bias can be attributed to the positive correlation between price and the error

term that is present under misspecification. When the outside good is removed from the model,

this upward bias becomes more severe as the mean price coeffi cient increases to -.160. The price

endogeneity differentially affects estimates of the remaining parameters as well. For example,

across the 100 simulations the means of the parameters that determine the mean and variance of

simulated consumers’preferences for x1 are 1.691 and 1.498 under the full model. These estimates

decrease to 1.549 and 1.096 after the outside good is removed.13

Table 2 reports on the size and power properties of the mixed logit specification test. The

table reports results from testing two null hypotheses. First, we test the null hypothesis that all

parameters (3 parameters determine mean preferences and 2 determine heterogeneity) are equal

across the original model and the modified model without an outside good. Second, we test the

null hypothesis that only the 3 mean parameters are equal across the two models.14 Columns

(1) and (2) report how frequently the properly specified model is rejected at the 5% level across

13In other words, after restricting the choice set under misspecification, the estimated preferences for x1 change

from N (1.691, 1.498) to N (1.549, 1.096).
14We include this test as an option for practitioners since it is often a challenge to precisely estimate the parameters

that determine preference heterogeneity.
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the 100 simulated data sets. Columns (3) and (4) report how frequently the misspecified model

is rejected at the 5% level. We calculate our test statistics using three different estimates of the

variance matrix. The top panel of table 2 reports test statistics that use the outer product of

gradients (i.e., BHHH) as in equation (12) above.

Table 2 confirms the mixed logit specification test has desirable power properties. When

the mixed logit model is properly specified, we observe type I errors infrequently. When the

simulated data includes 1000 consumers and we base our test statistics on the BHHH variance

matrix, we reject the null hypothesis that all of the parameter estimates (the means only) are

the same across the two models in 10% (8%) of simulations. When the sample size increases to

2000 consumers, these rejection rates are 8% and 8%. When there is misspecification, the null

hypothesis is frequently rejected, especially with large samples. With the BHHH variance matrix

and simulated data with 1000 consumers, we reject the null hypothesis that all of the parameter

estimates (the means only) are the same across the two models in 82% (89%) of simulations. With

2000 consumers, the null hypotheses are rejected in nearly 100% of simulations.

Table 2 also reports the test’s power properties using alternative estimators of the covariance

matrices used in the specification tests. The middle panel reports test statistics using the Hessian.

The bottom panel of table 2 reports test statistics that are based on a non-parametric estimator

of the variance matrix.15 The size and power of the specification test are very similar when using

BHHH or Hessians to calculate the variance matrix. The specification test has a slightly smaller

size and slightly more power using non-parametric estimates of the variance matrix.

4.2 Monte Carlo Simulations of BLP

The Monte Carlo simulations of the BLP specification test described in section 3 are set up like

those for the mixed logit specification test except the simulated data sets are market shares (instead

of individuals’simulated choices) that reflect product level error terms (e.g., ξj).16

15We construct this estimate using the observed distribution of estimated parameters across the 100 simulations.
16Although the BLP model is estimated using aggregated market shares, the BLP specification still relies on

a model of individual choice that exhibits the IIA property. Therefore, any counter-factual policy analysis based

on BLP is predicated on the behavior of individual consumers who are constrained by the IIA property. Such an

implicit constraint may lead to an incorrect analysis of a hypothetical merger that may result in disappearance
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As before, simulated consumers make choices from choice sets that have three options. Con-

sumers in market m in period t choose between an outside good whose utility is normalized to

zero and two inside goods. Each inside option j in mt has an associated price (Pmtj), two non-

price characteristics (xmtj1 and xmtj2) that are observable to the econometrician and one non-price

characteristic (ξmtj) that we do not observe. Products’observable characteristics (x and P ) are

drawn from the same distributions as described above and the product level error terms (ξ) are

drawn from a normal distribution.17

We assume that within each market and time period, mt, all consumers face the same choice

sets but we allow P and x to vary across time periods t within the same market m. While we do

allow ξ to vary across time within the same market,18 the estimation algorithm assumes that ξjm

does not vary across time periods. This restriction facilitates estimation and also introduces an

error into the estimation routine that is the source of variation across simulations.19

Within each market and time period, a continuum of consumers maximize their utility, which

takes the same form as the utility function in equation (14).20 When we apply the specification

test to a properly specified model, the error terms in consumers’utility (ε) are drawn from an

extreme value logit distribution. When we apply the specification test to a misspecified model,

these errors are correlated across products within the same choice set (i.e., under misspecification,

the IIA property is violated at the individual level).21

We simulate data for 20, 30, 40, or 50 markets, and assume that consumers within each

of certain products from the market, for example. Our specification test is developed to detect such a potential

problem in the data that may distort the counter-factual analysis. In particular, our Monte Carlo design reflects

the spirit of the alternative probit specification in Hausman and Wise (1978).
17Price (Pmtj) is a randomly drawn integer between $1 and $10. Non-price characteristics (xmtj1 and xmtj2) are

randomly drawn from a uniform distribution.
18Specifically, we assume ξjmt = ξjm+ϕjmt, where ϕjmt is a “shock”to product j’s ξjm that varies across time.
19This restriction facilitates estimation because after we control for ξjm using the Berry contraction mapping,

the only remaining source of variation in shares in market m across time periods is variation in Xmt and Pmt. Since

the estimation routine controls for ξjm but not ϕjmt, draws of ϕjmt will affect the resulting parameter estimates.
20As above, preferences for non-price characteristics (x) are drawn from a normal distribution. All consumers

are assumed to have the same preferences over price and ξ.
21Specifically, the error term that consumer i receives for product j in mt is the sum of an extreme value logit

error and normally distributed error term. These latter errors are positively correlated for the outside good and

the least expensive inside good.
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market make choices in 10 distinct time periods. When there are 50 markets, for example, one

simulated dataset includes 500 market shares (50 markets × 10 periods) for the outside good and

each of the two inside goods. After simulating each dataset, we use the full choice set and the

unconditional simulated markets shares (smt1, smt2, smt3) to estimate θ1 using weighted nonlinear

least squares.22 We then compare these estimated parameters to the estimates we obtain (i.e.,θ1)

using a restricted choice set and the conditional market shares
(

smt2
1−smt1 ,

smt3
1−smt1

)
, where smt1 is the

share of the outside good) and nonlinear least squares.23 We perform this exercise 1000 times.

Across the 1000 simulations, variation in the parameter estimates is driven by variation in the

portion of ξmj that varies with time.

Table 3 reports the mean parameter estimates across 1000 Monte Carlo simulations when we

simulate data for 50 markets and estimate BLP on properly specified and misspecified data. The

results confirm that the logic of the BLP specification test is valid. When we apply BLP to

properly specified data, the mean parameter estimates in columns 2 and 3 are close to the true

parameter values in column 1, regardless of whether we estimate BLP using the full choice set (i.e.,

θ1) or a choice set that excludes the outside good (θ2). However, when BLP is misspecified, the

parameter estimates are biased and depend on whether the model was applied to the full choice

set or restricted choice set.

Table 4 confirms that the BLP mixed logit specification test has desirable power properties.

First, type I errors occur infrequently. Column 1 reports the fraction of simulations when we

test the null hypothesis that all of the coeffi cients (i.e., the mean preference parameters and the

parameters that determine heterogeneity) are equal using a properly specified BLP model. The

22When estimating the model on the full choice set (i.e.,we estimate θ1), we minimize the objective function∑
mjt

[smtj−smtj(θ,ξ(θ))]
2

wmtj
, where smtj is the simulated market share for product j in mt and smtj (θ, ξ (θ)) are the

predicted market shares using θ and ξ (θ), where ξ (θ) is obtained using the Berry contraction mapping at the

market level. Observations are weighted effi ciently using wmtj = [smtj (θ−1, ξ (θ−1)) · (1− smtj (θ−1, ξ (θ−1)))]1/2.
23The restricted choice set excludes the outside good. So, letting s̃mtj denote j’s share of the inside

good in mt (i.e., s̃mtj =
s̃mtj

1−smt1
) where smt1 denotes the share of the outside good in mt), we minimize∑

mt

[
s̃mt2 − s̃mt2

(
θ, ξ2 (θ)| ξ3

(
θ̂1

))]2
. Within this objective function, s̃mt2

(
θ, ξ2 (θ)| ξ3

(
θ̂1

))
represents prod-

uct 2’s predicted share of the inside good after controlling for selection into the inside good using equation (21).

We condition on the estimates of ξ for product 3 using θ̂1 because the model no longer includes an outside good.

Therefore, we must normalize ξ for product 3 to the value estimated when using the full choice set.
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frequency of Type 1 errors ranges from 6 percent to 8 percent depending on the number of markets

we simulate data for.24 For example, when the simulate data includes 60 markets, we reject the null

hypothesis in only 8 percent of simulations. When the BLP model is misspecified, the specification

test frequently rejects the null hypothesis of no misspecification. Column 3 displays these failure

rates when all of the coeffi cients are tested. When we simulate data using only 20 markets, the

misspecified BLP model fails the specification test in 59 percent of simulations. When we use 50

or 60 markets, these failure rates increase to 82 percent and 92 percent.

Table 4, we also report specification test results when we test the null hypothesis that pa-

rameters determining mean preferences do not change after re-estimating BLP after restricting

the choice set (i.e., we do not test for changes in the preference heterogeneity parameters after

restricting the choice set). These test results are reported in columns 2 and 4. We obtain similar

failure rates as before. When BLP is properly specified and we only test the mean coeffi cients, the

null hypothesis is rejected in fewer than 5 percent of simulations. When BLP is misspecified, we

reject the null hypothesis in 54 percent of simulations that include 20 markets. This failure rate

increases to 77 or 74 percent when the number of markets is increased to 50 or 60.

24To perform these tests, we estimate the parameters’covariance matrices non-parametrically using the distrib-

ution of estimates across the 1000 Monte Carlo simulations.
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Appendix

A Our Asymptotics and Berry-Haile

We argue that Berry and Haile’s (2014) identification result, if it is to be the basis of consistent

estimation, implicitly requires a large-T asymptotics.

We will simplify notations by writing J instead of Jt as in Berry and Haile (2014). In their

notation, the indirect utilities (υi0t, . . . , υiJt) of agent i in market t are i.i.d. and they depend on

δjt = x
(1)
jt + ξjt, j = 1, . . . , J

as well as x(2)
t and pt. (They drop the (1) superscript afterwards.) Individual choice is used only

for the purpose of identifying the market share sjt in market t. After that, the data on individual

choices are not used.

Imposing primitive assumptions that justifies the contraction mapping, they obtain equation

(6) on page 1760:

xjt + ξjt = σ−1
j (st, pt) .

They then go ahead and impose Assumption 3, which justifies z as the IV

E [ξjt| zt, xt] = 0.

Assumption 4 is a completeness condition, so it is just a regularity condition. Most importantly,

they identify the market share/choice probability function σ−1
j (st, pt) by solving

E
[
σ−1
j (st, pt)

∣∣ zt, xt] = xjt.

Solution requires working with the joint distribution of (st, pt, zt, xt). In other words, it requires

large number of t’s in practice.
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B s0 vs. sn

Consider first the infeasible estimator θ̃ which is available under the assumption that we work

with the true market share s0
t . The usual mean-value theorem applied to (20) gives us

√
T
(
θ̃ − θ

)
=

(
− 1

T

T∑
t=1

∑
j

zj,t∇θgj
(
s0
t , wt, Fθ

))−1(
1√
T

T∑
t=1

∑
j

zj,tgj
(
s0
t , wt, Fθ

))
+ op (1)

= A−1

(
1√
T

T∑
t=1

∑
j

zj,tgj
(
s0
t , wt, Fθ

))
+ op (1) ,

which implies that
√
T
(
θ̃ − θ

)
is asymptotically normal with the asymptotic variance equal to

A−1B (A′)−1, where

A = −E
[∑

j

zj,t∇θgj
(
s0
t , wt, Fθ

)]
, B = Var

(∑
j

zj,tgj
(
s0
t , wt, Fθ

))
.

Now, consider the feasible estimator θ̂ based on the estimated market share snt . Assuming that

1

T

T∑
t=1

∑
j

zj,t
(
∇θgj (snt , wt, Fθ)−∇θgj

(
s0
t , wt, Fθ

))
= op (1) , (39)

we obtain

√
T
(
θ̂ − θ

)
= A−1

(
1√
T

T∑
t=1

∑
j

zj,tgj
(
s0
t , wt, Fθ

))

+ A−1

(
1√
T

T∑
t=1

∑
j

zj,t
(
gj (snt , wt, Fθ)− gj

(
s0
t , wt, Fθ

)))

+ op (1) (40)

Therefore, as long as

1√
T

T∑
t=1

∑
j

zj,t
(
gj (snt , wt, Fθ)− gj

(
s0
t , wt, Fθ

))
= op (1) , (41)

we would obtain

√
T
(
θ̂ − θ

)
=
√
T
(
θ̃ − θ

)
+ op (1) = A−1

(
1√
T

T∑
t=1

∑
j

zj,tgj
(
s0
t , wt, Fθ

))
+ op (1) ,
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i.e., the feasible estimator has the same asymptotic distribution as the infeasible one if the two

high level assumptions (39) and (41) are satisfied.

We can use a textbook level discussion to develop further primitive conditions to support the

two high level assumptions. For example, one can assume that (i) ∇θgj and gj are differentiable

with respect to the first argument such that the derivatives are bounded in absolute value by

G (wt, Fθ); (ii) E
[
|zj,t|G (wt, Fθ)

]
<∞; and (iii) T = o (n), where n = minnt and nt denotes the

number of individuals in each market t.25 In other words, under some mild regularity conditions,

we get the same asymptotic distribution as when we use the true market share s0
t .

25The third assumption is useful because we have snt = s0t + Op
(
n−1/2

)
, and the second term on the right side

of (40) is of order O
(
T 1/2/n1/2

)
.
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