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Exposure to drought amongst rural households in India and other countries should, at 

least in principle, be largely diversifiable. This is because rainfall is exogenous to the 

household and not likely to be strongly correlated with the systematic risk factors, such as 

aggregate stock returns, that are relevant for a well-diversified representative investor. 

 

 With this principle in mind, the goal of rainfall index insurance is to allow 

households, groups and governments to reduce their exposure to weather risk by 

purchasing a contract that pays an indemnity during periods of deficient (or excessive) 

rainfall. Advocates argue that index insurance is transparent, inexpensive to administer, 

enables quick payouts, and minimizes moral hazard and adverse selection problems 

associated with other risk-coping mechanisms and insurance programs (see World Bank 

2005; Barnett and Mahul 2007; Giné, Townsend, and Vickery 2007). 
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This article uses historical rainfall data to estimate the distribution of payouts on a 

rainfall index insurance product developed by the general insurer ICICI Lombard and 

offered to rural Indian households since 2003. Our empirical strategy draws on the 

observation that rainfall in the region we study is close to a stationary process. 

Correspondingly we can use historical rainfall data to calculate a putative history of 

insurance payouts for insurance contracts written against the 2006 monsoon. 

We conduct several statistical exercises to better understand the properties of 

estimated insurance payouts. First, we study the probability distribution of indemnities. 

Does the insurance contract pay off regularly, providing income during periods of 

moderately deficient rainfall? Or does it operate more like disaster insurance, 

infrequently paying an indemnity, but providing a very high payout during the most 

extreme rainfall events? Our evidence suggests the truth is closer to the second case. 

Analyzing 14 insurance policies, each linked to a different rainfall gauge, we estimate the 

average probability of receiving a payout on a single phase of insurance coverage is only 

11 percent. The maximum indemnity, paid with a probability of around 1 percent, 

provides a rate of return to the policyholder of 900 percent. We also find that insurance 

premiums are on average around three times as large as expected payouts. 

Second, we study the correlation of payouts in the cross-section and through time. 

Spatially correlated rainfall shocks may be more difficult for households to insure against 

through other means, such as informal risk-sharing arrangements within local kinship 

groups. This in turn implies larger benefits of a formal rainfall insurance contract. On the 

other hand, dependence in payouts may also increase the balance sheet exposure of ICICI 
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Lombard or their reinsurers to rainfall risk, by reducing the diversification benefits of 

holding a pooled portfolio of insurance contracts. Research in corporate finance argues 

that exposure to risk may reduce firm value when there are informational problems or 

other frictions in raising external finance (e.g., Froot, Scharfstein, and Stein 1993). 

We find no evidence of temporal dependence in payouts. However, it is estimated 

that rainfall insurance payouts are significantly positively correlated across contracts at a 

point in time, perhaps unsurprising given that we study policies linked to rainfall within a 

single geographic region of India. Even so, it is estimated that there are still significant 

risk-reduction benefits from holding a diversified portfolio of contracts. The standard 

deviation of payouts on an equally-weighted basket of 11 different insurance policies is 

only half as large as the standard deviation of an average individual contract. 

Third, we find some evidence that insurance payouts are negatively correlated 

with growth in Indian per capita GDP. This suggests that some component of rainfall risk 

is aggregate to the Indian economy as a whole, perhaps reflecting the size and importance 

of the Indian agricultural sector for employment and economic activity. 

Background and Methodology 

We study a rainfall insurance product developed by the general insurer ICICI Lombard, 

which has been offered to rural Indian households since 2003. ICICI Lombard partners 

with local financial institutions to market the insurance to households. Giné, Townsend, 

and Vickery (2007) and Cole and Tufano (2007) provide detailed background about the 

insurance product. Giné, Townsend, and Vickery (2007) also study the determinants of 

household insurance purchase decisions, based on a 2004 household survey. 
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Our analysis focuses on calendar year 2006 insurance contracts linked to rainfall 

in the southern Indian state of Andhra Pradesh. Below, we briefly summarize the design 

of these contracts. Policies cover rainfall during the Kharif (monsoon season), which is 

the prime cropping season running from approximately June to September. The contract 

divides the Kharif into three phases roughly corresponding to sowing, podding/flowering 

and harvest. The first two phases are 35 days in duration, while the third (harvest) phase 

is 40 days long. In 2006, farmers were allowed to purchase different numbers of contracts 

across each of the three phases.  

Phase payouts are based on accumulated rainfall between the start and end dates 

of the phase, measured at a nearby reference weather station or rain gauge.1

Insurance payouts in the first two phases are linked to low rainfall. The payout 

structure in these cases is illustrated in figure 1. Contract details in the figure are from the 

phase 1 contract linked to the Mahabubnagar weather station, which is representative of 

the policies studied in our empirical analysis. The policy pays zero if accumulated rainfall 

during the phase exceeds an upper threshold, or ‘strike’, which in this case is 70mm. 

Otherwise, the policy pays Rs. 10 for each mm of rainfall deficiency relative to the strike, 

until the lower threshold, or ‘exit’, is reached. If rainfall is below the exit value, the 

policy pays a fixed, higher indemnity of Rs. 1000. Phase 3 policies have the same 

 The start of 

the first phase is triggered by the monsoon rains. Namely, phase 1 (sowing) begins on the 

first date on which accumulated rain since June 1 exceeds 50mm, or on July 1 if 

accumulated rain since June 1 is below 50mm. 
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structure, but in reverse, they pay out only when rainfall exceeds the strike, meant to 

correspond to unusually heavy rainfall during the harvest that causes damage to crops. 

Depending on the policy, the reference weather station is one of three types: an 

Indian Meteorological Department (IMD) station, mandal rainfall station (a mandal is a 

local geographic area roughly equivalent to a U.S. county) or one of a network of 

automated rain gauges installed by ICICI Lombard. For this article, we focus on IMD 

rainfall data. These are considered to be more reliable than data from mandal stations, 

and include a longer and more complete history of past rainfall to construct a putative 

dataset of insurance payouts. 

Our source data consist of policy terms for contracts indexed to 14 different IMD 

weather stations in Andhra Pradesh (one contract per station), as well as IMD historical 

rainfall data for each station. Rainfall data are measured at a daily frequency. Although 

the earliest rainfall data is from 1970, the starting point of the data varies by weather 

station, and there are also scattered individual months and years where data is missing. 

Across 14 stations, there are 1,089 individual contract phases for which at least some 

rainfall data is available. However, for 135 phases data is missing for at least one day 

during the contract period. We drop these from our analysis, leaving a sample of 954 

phases for which we have complete daily rainfall to calculate payouts.  

The amount of missing data varies significantly across weather stations. At one 

extreme there are 91 phases of complete rainfall data for the Anantapur weather station 

(equivalent to 30.3 monsoon years). At the other extreme, for the Adilabad and Nalgonda 

stations, only a small number of complete phases of rainfall data is available (8 and 18 
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phases respectively). At least 64 phases (21.3 monsoon years) of complete daily historical 

data is available for 11 of the 14 stations; our empirical findings are similar if we restrict 

analysis to these stations only. 

Applying the insurance contract terms to historical rainfall data, we calculate the 

hypothetical payout on the contract for each station, phase and year.  Data on estimated 

payouts and information on contract features are presented in table 1. Strikingly, the 

insurance pays an indemnity in only 10.7 percent of phases, a point we return to below. 

The average estimated payout is Rs. 29.7, compared to an average premium of Rs. 99.9. 

This wedge presumably reflects, at least in part, the administrative and financing costs of 

designing, underwriting and selling insurance policies, especially given the small current 

size of the market and lack of associated economies of scale. Although the insurance is 

not actuarially fair, it may still be valuable to policyholders if it pays an indemnity in 

times when the household’s marginal utility of consumption is particularly high. 

Distribution of payouts 

Evidence on the distribution of payouts is presented in figure 2. The x-axis for the graph 

is ‘payout rank,’ which ranks payouts in increasing order of size, expressed on a scale 

from 0 to 1.  Figure 2 plots payout amount against payout rank. The payout is zero up to 

the 89th percentile, indicating that an indemnity is paid in only 11 percent of phases. The 

95th percentile of payouts is around Rs. 200, double the average premium. In a small 

fraction of cases (around 1 percent), the insurance pays the maximum indemnity of Rs. 

1000, yielding an average return on the premium paid of 900 percent. 
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Figure 2 suggests that the ICICI Lombard policies we study primarily insure 

farmers against extreme tail events of the rainfall distribution. Confirming this graphical 

evidence, we calculate that around one-half of the value of indemnities is generated by 

the highest-paying 2 percent of phases. Without further evidence on the sensitivity of 

household consumption to rainfall shocks of different types, it is difficult to say whether 

this structure approximates the optimal insurance design. For example, Paxson (1992) 

and Jacoby and Skoufias (1998) are generally unable to reject that consumption of rural 

households in Thailand and India respectively is fully insured against rainfall 

fluctuations. However, these two papers do not consider whether the degree of 

consumption insurance is lower for extreme shocks, such as a severe drought, which 

could for example exhaust the household’s stock of precautionary savings. 

From the perspective of ICICI Lombard, the skewed distribution of payouts 

suggests a significant reserve of liquid funds may need to be held against policies whose 

risk is not transferred to reinsurers. This in turn could be costly due to informational 

frictions in raising external finance or tax disadvantages in holding capital (Zanjani 2002; 

Froot 1999; Froot and Stein 1998). Amongst other factors, the insurer’s exposure to risk 

will depend on the value of policies originated, the extent to which reinsurance is used, 

and correlation of insurance payouts across contracts and through time. We present some 

evidence on these correlations in the next section. 

Dependence in insurance payouts 

To calculate the degree of cross-sectional dependence in payouts, we calculate the 

standard deviation of phase payouts for each weather station, restricting analysis to the 11 
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contracts for which we have the most historical rainfall data. The average of these 11 

estimated contract standard deviations is Rs. 112.3. We then calculate the standard 

deviation of the mean insurance payout averaged across the 11 stations at each point in 

time. This standard deviation will in general be smaller than 112.3, reflecting the 

diversification benefits from pooling a portfolio of contracts whose returns are not 

perfectly correlated. If insurance payouts are independent, the standard deviation of the 

mean payout will asymptotically be 1/ 11  times as large as the standard deviation of 

individual contract payouts (i.e.1/ 11 112.3 Rs. 33.9× = , a reduction in the standard 

deviation of 70%). In contrast, if payouts are perfectly correlated across contracts, there 

would be no difference between the standard deviation of the mean payout and those of 

the individual contracts.  

Empirically, we calculate that the standard deviation of the mean payout is Rs. 

60.7, 46% smaller than the average standard deviation of individual contract payouts. 

This reduction in the standard deviation is smaller than 70%, indicating that insurance 

payouts are positively correlated cross-sectionally. However, there are still surprisingly 

large diversification benefits from holding a portfolio of insurance contracts, even though 

all insurance payouts are driven by rainfall in the same Indian state. Diversification 

would be larger still if contracts are pooled over a wider geographic area. 

An alternative approach to estimating the insurer’s exposure to rainfall risk is to 

compute extreme quantiles of portfolio exposures, such as the 95th or 99th percentile of 

losses. This methodology, known as value at risk (VaR), is widely used by financial risk 

managers. See Saunders and Cornett (2006) for a textbook introduction to VaR. For our 
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sample, the 99th percentile of the distribution of mean insurance payouts is Rs. 412. This 

is 13.6 times larger than the mean insurance indemnity, and 4.1 times larger than the 

mean insurance premium. In contrast, the 95th percentile of mean insurance payouts is 

Rs. 130, while the 75th percentile is only Rs. 30.  These results indicate that the 

distribution of mean insurance payouts is highly skewed, in keeping with the distribution 

of individual contract payouts presented in figure 2, and that extreme rainfall events 

produce losses several times in excess of phase insurance premia collected. 

ICICI Lombard could employ a variety of strategies to ensure sufficient funds are 

available to pay claims in case of extreme rainfall events, such as holding a precautionary 

buffer of liquid assets, securing a bank line of credit, or selling part of their risk exposure 

to a reinsurer. In practice, even though only a modest number of policies have been 

written to date, ICICI Lombard has indicated to us that they do use reinsurers to limit 

their exposure to rainfall risk. Costs associated with these risk-mitigation strategies may 

be one explanation for why insurance is priced at a premium to actuarial value. 

Next, we estimate a simple autoregressive model to examine the time-series 

correlation in insurance payouts. These estimates are of interest because persistent 

rainfall shocks may be more difficult for households to smooth. (For example, under a 

permanent income model, the sensitivity of consumption to current income shocks is 

increasing in the persistence of the shock.) In addition, temporal dependence in rainfall 

and payouts may allow insurance purchasers to take advantage of a kind of ‘stale pricing’ 

opportunity. If weather patterns are persistent, rainfall shocks after insurance premia are 

fixed by ICICI Lombard would shift the actuarial value of the contract relative to the 
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premium. A household could take advantage of this lack of price updating by delaying its 

purchase decision until just before the start of the phase, and adjusting their insurance 

demand in light of updated weather information. Zitzewitz (2006) provides empirical 

evidence of a related kind of ‘late trading’ behavior amongst U.S. mutual fund investors.  

We estimate two simple autoregressive models. The dependent variable in both 

models is the phase insurance payout. In the first model this variable is simply regressed 

on lagged phase payouts. In the second model we include two additional rainfall variables 

that may be useful predictors of insurance payouts: a dummy variable indicating whether 

lagged payouts are greater than zero, and cumulative rainfall in the previous phase. 

(Since we regress phase payouts on variables lagged one phase, we estimate these two 

regressions for payouts on the second and third phases of the monsoon only.) 

Results are presented in table 2. In both regressions, the degree of persistence in 

payouts is economically small and not statistically significant. Furthermore, neither of the 

additional lagged variables included in the second model are significantly correlated with 

insurance payouts. For our sample, the fact that variables based on current rainfall have 

little predictive power for future insurance payouts perhaps suggests that the ‘stale 

pricing’ issue discussed above is not a significant concern in practice. 

Correlation with Aggregate Variables 

Finally, we estimate correlations between insurance indemnity payouts and several 

aggregate variables, including GDP growth, inflation and stock returns. Such correlations 

could plausibly be non-zero, because rainfall shocks are spatially correlated within India, 

and the agricultural sector represents a significant fraction of Indian output and 
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employment. Therefore, extreme rainfall events may represent a non-trivial productivity 

shock for the overall Indian economy. 

Our estimates of these correlations are presented in table 3. The first part of the 

table estimates bivariate and multivariate correlations between insurance payouts and 

several Indian macroeconomic variables measured at an annual frequency: growth in 

Indian GDP per capita, the inflation rate, and the change in the short-term and long-term 

Indian Treasury yield. Depending on the variable, either 30 or 38 years of data is 

available for this exercise. Regression standard errors are clustered by year. 

Insurance payouts are found to be negatively correlated with growth in Indian 

GDP per capita, significant at the 10 percent level in the bivariate regression and the 5 

percent level in the multivariate model. Economically, a 1 percentage point fall in GDP 

growth is associated with an increase in payouts of Rs. 4-5, around 15 percent of 

expected insurance payouts. Insurance payouts reflect only the tail of rainfall realizations; 

in unreported regressions we also find that GDP growth is negatively correlated with 

phase rainfall, significant at the 1 per cent level. None of the other macroeconomic 

variables are significantly correlated with rainfall insurance payouts, however. 

Results in table 3 provide some evidence that measured payouts, beyond being 

spatially correlated within Andhra Pradesh, are also correlated with aggregate Indian 

economic activity. This suggests that remittances to drought-stricken areas from family 

members in other parts of India may provide only incomplete sharing of risk associated 

with extreme rainfall events, since transfers within risk-sharing groups cannot smooth 

shocks that are aggregate to the group (Townsend 1994). The finding also potentially 
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strengthens the case for ICICI Lombard to to hedge its exposure to weather risk arising 

from rainfall insurance. The balance sheet of a foreign reinsurer is likely to be less 

exposed than ICICI Lombard to Indian macroeconomic risk. 

The last part of table 3 displays the correlation of insurance payouts with Indian 

SENSEX stockmarket returns. For each year and station we calculate stock returns 

between the start and end dates of each insurance phase, then convert them to an 

annualized rate. Thus, returns match up exactly to the period covered by the contract, 

rather than just the year of the contract, as for the macroeconomic data. Payouts are not 

significantly correlated with Indian stock returns, however, perhaps reflecting that most 

Indian agricultural output is produced by small farms, rather than large traded firms. 

Conclusions 

We use historical rainfall data to estimate a putative history of payouts on Indian rainfall 

insurance policies. We find that indemnities are concentrated in the extreme tail of 

adverse rainfall events. This insures households against severe shocks, but also creates a 

highly skewed distribution of losses for an insurer writing rainfall insurance policies. 

This balance sheet exposure can be partially ameliorated by holding a portfolio of 

geographically segmented insurance contracts, or by using reinsurance markets. 

 We emphasize that much more research is needed to evaluate the promise of 

weather index insurance. For example, to shed further light on welfare benefits and to 

inform optimal contract design, theoretical and empirical work is needed to improve our 

understanding of the types of weather shocks against which rural household consumption 

is not well insured. 
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Figure 1. Structure of insurance contract 
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Figure 2. Distribution of insurance payout amounts
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Table 1. Summary Statistics of Rainfall Insurance Payouts 

 

Note: Table relates to rainfall insurance contracts written against 14 IMD rainfall stations 

in Andhra Pradesh, India, in 2006. Estimates of average payouts are based on historical 

IMD rainfall data from 1963-2000 and 2004-2006. Note that in all cases, insurance 

contracts pay out Rs. 10 per mm of rainfall deficiency relative to the ‘strike’, until the 

‘exit’ is reached. Beyond the exit (i.e., below the exit in the case of Phases 1 and 2, and 

above the exit for Phase 3), the insurance pays out a fixed indemnity of Rs. 1000. 

 

  

average 

payout  

percent 

positive 

payouts 

average 

premium 

mean 

rainfall 

index 

Average  

triggers 

Number of 

obs. 

(phases) strike exit 

Phase One 20.9 13.7% 98.3 176.0 78 15 322 

Phase Two 46.4 13.0% 102.8 192.9 72 12 316 

Phase Three 22.0 5.4% 98.5 211.6 499 580 316 

All phases 29.7 10.7% 99.9 193.4 n/a n/a 954 
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Table 2. Time Series Dependence in Insurance Phase Payouts 

Lagged variables bivariate multivariate 

Intercept 34.4*** 46.5** 

 (9.4) (19.0) 

Insurance Payout (Rs.) 0.017 0.004 

 (0.04) (0.05) 

Dummy for positive payout [0,1]  -3.214 

  (17.25) 

Phase rainfall (mm)  -0.061 

  (0.07) 

R2 0.000 0.002 

N 603 603 

   

Note: Dependent variable is insurance phase payout. The regression sample consists of 

estimated putative insurance payouts relating to phases 2 and 3. These are regressed on 

explanatory variables which are lagged by one phase. Numbers in parentheses are 

standard errors, which are clustered by time period (i.e., phase interacted with year). ***, 

**, and * indicate two-sided statistical significance at the 1%, 5% and 10% level 

respectively. 
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Table 3:  Correlation of Insurance Payouts with Aggregate Variables 

Variable name macroeconomic variables 

stock 

returns 

GDP growth (% change, real GDP 

per capita) 

-4.19*    -5.41**  

(2.21)    (2.54)  

Inflation (% change, GDP deflator) 

 

 0.26   -1.65  

 (1.02)   (1.16)  

Change in Treasury bond yield (1-5 

year maturity) 

  0.24  -0.02  

  (2.49)  (2.08)  

Change in Treasury bond yield (> 15 

year maturity) 

   3.77 3.48  

   (8.66) (9.04)  

India SENSEX index      -0.02 

      (0.05) 

R2 0.011 0.000 0.000 0.000 0.015 0.000 

Number of observations 922 922 871 871 871 657 

Years of data, RHS variable 38 38 30 30 30 23 

 

Note: Dependent variable is insurance phase payout. Numbers in parentheses are standard 

errors, which are clustered by year, except for stock returns, which are clustered by time 

period (i.e., phase interacted with year). ***, **, and * indicate two-sided statistical 

significance at the 1%, 5% and 10% level respectively. All regressions also include a 

constant term. 
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1 Some adjustments are made to accumulated rainfall when constructing the rainfall index 

used to calculate payouts. If daily rainfall exceeds 60mm, only 60mm is counted towards 

the cumulative rainfall index. Also, rainfall <2mm is ignored. These adjustments reflect 

that heavy rain may generate water runoff, resulting in a less than proportionate increase 

in soil moisture, while very light rain is likely to evaporate before it soaks into the soil. 

We take these adjustments into account when constructing putative insurance payouts. 


