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Abstract

We introduce the possibility of coercive punishment by specialized enforcers into a model of

community enforcement. We assume that, just as regular agents need to be given incentives to

cooperate with each other, specialized enforcers need to be given incentives to carry out costly

punishments. We fully characterize optimal equilibria in the model. When the specialized

enforcement technology is suffi ciently effective, cooperation is best sustained by a “one-time

enforcer punishment equilibrium”, where any deviation by a regular agent is punished only

once, and only by enforcers. In contrast, enforcers themselves are disciplined (at least in part)

by community enforcement. The reason why there is no community enforcement following

deviations by regular agents is that such a response, by reducing future cooperation, would

decrease the amount of punishment that enforcers are willing to impose on deviators. Conversely,

when the specialized enforcement technology is less effective, optimal equilibria involve a mix of

specialized enforcement and community enforcement (which might take the form of “ostracism”).

Our results hold both under perfect monitoring of actions and under various types of private

monitoring.
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1 Introduction

Throughout history, human societies have used a variety of means and practices to foster pro-social

behavior among their members. Prominent among these is decentralized community enforcement,

where deviations from cooperative behavior are discouraged by the threat of withholding future

cooperation, or even the threat of the widespread collapse of cooperation throughout society. A

large literature in the social sciences, especially in game theory, provides conceptual foundations

for this type of enforcement. In small groups, where an individual’s behavior can be accurately

observed by other members of the community, the threat of exclusion or punishment is a powerful

means of supporting cooperation (Axelrod, 1984, Fudenberg and Maskin, 1986, Coleman, 1988,

Ostrom, 1990, Greif, 2006). In large groups, where information about past behavior is more limited,

cooperation can be supported by contagion strategies, which trigger the spread of non-cooperative

behavior following a deviation (Kandori, 1992, Ellison, 1994). Furthermore, several prominent

examples, such as the cooperative arrangements among the medieval Maghribi traders and their

overseas agents (Greif, 1993) and the norms of behavior and compensation between ranchers and

landowners in 20th-century Shasta County, California (Ellickson, 1991) demonstrate the practical

feasibility of decentralized community enforcement.

In modern societies, however, the basis of cooperative behavior is rather different. Major

transgressions are not directly punished by neighbors, nor do they trigger a wave of non-cooperative

behavior throughout society. Instead, they are directly punished by specialized law enforcers,

including the police, the courts, and other state and non-state institutions. Indeed, following

Thomas Hobbes and Max Weber, most social scientists view this type of specialized enforcement

as desirable, as well as inevitable both in societies with full-fledged states and in those with less

developed proto-states (Johnson and Earle, 2000, Flannery and Marcus, 2012). Yet, there exists

little formal modeling of the foundations of such specialized enforcement.

The goal of this paper is to develop a model of specialized enforcement, to compare its per-

formance in supporting cooperation with that of community enforcement, and to delineate the

conditions under which specialized enforcement emerges as the optimal arrangement for sustaining

cooperation.

We consider a model of cooperation within a group of agents. In our baseline model, regular

producers randomly match with each other, as well as with specialized enforcers assigned to moni-

tor their relationships. Each producer chooses a level of cooperation (e.g., a contribution to a local

public good or an investment in a joint project), which is costly for her but generates benefits for

her partners (both the other producers with whom she matches and the enforcers who monitor

them). Absent the threat of direct or indirect punishment, a producer would choose zero cooper-

ation. In this model, cooperation can be supported by contagion strategies as in Kandori (1992)
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and Ellison (1994), where a deviation from pro-social behavior triggers the withdrawal of coopera-

tion throughout the entire community. Cooperation can alternatively be supported by specialized

enforcement– in which enforcers coercively punish producers who deviate– provided that enforcers

can be given incentives to behave in this way.1 Cooperation can also be supported by any num-

ber of other strategies, including various combinations of community and specialized enforcement

involving repentance by the deviator, ostracism of the deviator, and so on. Our question then is

not what kinds of strategies can support some cooperation, but rather what strategies support the

maximum possible level of cooperation (at a fixed discount factor).

Our simplest and sharpest results apply under perfect monitoring, where each agent observes

the entire past history of behavior. We consider both a small group version of the model, where all

agents in the group interact directly in every period, and a large group version, where interactions

are determined by random matching. The main results are the same in both cases. The optimal

equilibrium always utilizes the specialized enforcement technology in a specific way– using one-time

enforcer punishment strategies, where enforcers punish a deviant producer as harshly as possible,

but only punish once. Enforcers are incentivized to undertake costly punishments through the

threat of contagion: if they fail to punish the deviator, this triggers a switch to zero cooperation

by all producers.2 When the specialized enforcement technology is suffi ciently effective, following

punishment by the enforcers all agents immediately return to equilibrium play, so there is no

contagion or withholding of future cooperation. When the specialized enforcement technology

is less effective, one-time enforcer punishment must be combined with some form of “community

enforcement,”where producers withhold cooperation to punish the deviator. In our baseline model,

this is optimally achieved via repentance, whereby the deviator cooperates at a higher level than

other producers in the period immediately following a deviation. If in addition we allow the

deviator to be directly excluded from the benefits of cooperation (or “ostracized”), then we show

that one-time enforcer punishment strategies are optimally combined with ostracism rather than

repentance.

The form of our one-time enforcer punishment strategies can be viewed as a stylized representa-

tion of how formal and informal incentives interact in modern legal systems. Enforcers’incentives

come from the fact that they themselves benefit from societal cooperation (either directly or, in

an extension, because the revenues that pay their salaries are generated by such cooperation),

and societal cooperation depends on citizens’trust in the integrity of the law enforcement appa-

ratus. If this trust is damaged because enforcers deviate from their expected course of behavior,

1 In practice, another important problem is ensuring that enforcers do not use their access to violence to expropriate
producers. At the level of abstraction of our model, this is similar to the problem of convincing enforcers to choose
the appropriate level of punishment in response to transgressions, as we discuss below.

2We also show that when enforcers can be directly punished by other enforcers, their deviations trigger both direct
punishment and the temporary withholding of cooperation by producers.
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societal cooperation collapses, and it is the prospect of such a collapse that incentivizes enforcers.3

With this interpretation, our results show that societies with more effective specialized enforcement

technologies should rely solely on enforcers (or “state institutions”) to deter undesirable behavior,

while those with less effi cient technologies should combine enforcer punishments with community

enforcement.

One general implication of our analysis is the optimality of one-time enforcer punishment strate-

gies for supporting cooperation (either by themselves or in combination with repentance or os-

tracism). The possibility that one-time enforcer punishment strategies (without repentance or os-

tracism) can be optimal may appear surprising, as one might have conjectured that it would always

be better to combine specialized enforcer punishments with decentralized community enforcement–

if both coercive punishment and the withdrawal of cooperation are bad for producers, why not use

both to provide incentives? The intuition for this result highlights the economic mechanism at the

heart of our paper. Adding decentralized punishment to a given level of specialized punishment

would indeed improve producers’incentives for cooperation. But, crucially, it would also erode the

incentives of enforcers to undertake coercive punishment. Enforcers are willing to undertake costly

punishments today only because of the future rewards of continued societal cooperation. Hence, if

a deviation by a producer also triggered costly community enforcement, then these implicit rewards

would be diminished, curtailing the extent of enforcer punishments. This reasoning thus identifies

a novel and powerful cost of decentralized punishment: its negative impact on the extent and ef-

ficacy of specialized punishment. The reason why it is optimal to punish deviators only once is

also interesting: as we show, the gain in effi ciency from spreading punishments over time is always

more than offset by the reduced willingness of the deviator to return to cooperation during the

punishment phase.

The role of specialized punishment by enforcers and the tradeoff between community enforce-

ment and specialized enforcement generalize beyond the perfect monitoring case. First, we show

that, for a fairly general class of information structures (including the possibility that each in-

dividual observes play only in her own past matches), one-time enforcer punishment strategies

outperform pure contagion when either the punishment technology is suffi ciently effective or the

discount factor is suffi ciently large. Because pure contagion is optimal in this environment without

the enforcers (Wolitzky, 2013), this result immediately implies that the optimal equilibrium must

rely on enforcers to some extent. Second, we establish that, when individuals observe behavior

in their partners’most recent matches, one-time enforcer punishment strategies form an optimal

equilibrium, provided that the specialized enforcement technology is suffi ciently effective and that

3More realistically, enforcers may be organized in a hierarchy, where low-level enforcers are incentivized by higher-
level enforcers and only the top-level enforcers are incentivized by community enforcement. We discuss such an
extension of our model in Section 5.
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imperfections in the monitoring structure cannot be used to increase the extent to which enforcers

are willing to punish a deviator. This latter requirement can be guaranteed, for example, when

enforcers are better informed than producers.4 We further show that one-time enforcer punishment

strategies are also optimal under an additional stability requirement, which postulates that a single

deviation by any single individual is not suffi cient to start contagion.5

Our paper is related to several different lines of research. First, we build on the literature on

community enforcement in repeated games, pioneered by Kandori (1992) and Ellison (1994), by

introducing costly punishments into this literature. Recent contributions to this literature include

Takahashi (2010), Deb (2012), and Deb and González-Díaz (2014). Most closely related to our pa-

per are Wolitzky (2013) and Ali and Miller (2014), which provide conditions under which contagion

strategies support the maximum level of cooperation at a fixed discount factor in repeated cooper-

ation games without costly punishments. In contrast, we show that introducing the possibility of

costly punishments can radically change the structure of the optimal equilibrium from contagion

(grim trigger) strategies to one-time enforcer punishment strategies. Several other papers in this

literature emphasize various weaknesses of contagious strategies. Jackson, Rodriguez-Barraquer,

and Xu (2012) note that contagion strategies violate a renegotiation-proofness condition and focus

instead on equilibria in which social breakdowns are contained following a deviation. Lippert and

Spagnolo (2010) and Ali and Miller (2016) show that contagion or permanent exclusion discourages

communication about past deviations and argue for equilibria involving temporary exclusion or os-

tracism. These papers do not consider specialized enforcers and more generally do not investigate

optimal equilibria in settings where contagion strategies are suboptimal.6

Second, our paper is also related to the literature on optimal penal codes in general repeated

games (Abreu, 1988), especially the “stick-and-carrot”equilibria of Abreu (1986). In particular, our

one-time enforcer punishment equilibria offer the “stick”of specialized punishment for producers

and the “carrot”of continued cooperation for enforcers. However, while in Abreu (1986) stick-and-

carrot equilibria are optimal only within the class of pure strategy, strongly symmetric equilibria

(i.e., under the restriction that play is symmetric at all histories), we show that one-time enforcer

punishment equilibria are globally optimal in our model under perfect monitoring, and we also

extend this result to certain classes of imperfect private monitoring. Among other works in related

4The superior information of enforcers here might result from communication with producers or from the enforcers’
being organized in some institution, such as a law enforcement agency.

5We find this requirement attractive because it captures another potential cost of decentralized community en-
forcement: the danger of contagion being triggered accidentally by trembles or mistaken observations. Indeed, many
accounts of cooperation in societies with weak or absent states, such as Lewis’s (1994) study of Somalia, emphasize
how small transgressions can start major feuds, or even all-out tribal wars. Such accidental contagion would also be
triggered in our model under community enforcement if producers trembled with small probability. Under enforcer
punishments, however, a similarly costly contagion can occur only if both an individual producer trembles and an
enforcer trembles in response. This makes accidental contagion much less likely under enforcer punishments.

6Hirshleifer and Rasmusen (1989) consider a form of ostracism that resembles direct punishment and show how it
can support cooperation in the finitely repeated prisoner’s dilemma.
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environments, Padro-i-Miquel and Yared (2012) consider stick-and-carrot equilibria in a political

economy model, and Goldlücke and Kranz (2012) show that stick-and-carrot equilibria are generally

optimal in repeated games with transfers.

Third, our work connects to the literature on the economic foundations of the enforcement of

laws and norms. Early contributions to this literature, including Ostrom (1990), Greif (1989, 1993),

Milgrom, North, and Weingast (1990), Greif, Milgrom, and Weingast (1994), Fearon and Laitin

(1996), and Dixit (2003), focused on informal enforcement supported by “reputation”and various

ostracism-like arrangements. Dixit (2007) surveys and extends these early frameworks. A partic-

ularly relevant contribution by Greif (1994) distinguishes between the “private order”institutions

of the Maghribi traders and the “public order” institutions of the rival Genoese traders– which

resemble, respectively, our community enforcement and specialized enforcement equilibria– and

argues that public order institutions proved more effi cient as the scope for trade expanded in the

late medieval period.

Other related recent papers include Acemoglu and Verdier (1998), who study how law enforcers

matched with pairs of producers can be used to incentivize effort, but must also be discouraged

from corruption; Hadfield and Weingast (2012), who model law as a device for coordinating decen-

tralized punishment; Mailath, Morris, and Postlewaite (2017), who develop a model of laws and

authority based on cheap talk; Levine and Modica (2016), who consider the problem of designing a

specialized enforcement system and emphasize the tradeoffbetween providing insuffi cient incentives

for cooperation and expending excessive effort in punishment; and Acemoglu and Jackson (2017),

who study how social norms can constrain the effectiveness of laws. Two recent papers, Masten

and Prüfer (2014) and Aldashev and Zanarone (2017), are especially related because they explore

aspects of the trade-off between different types of enforcement. Masten and Prüfer introduce court

enforcement in a model similar to Dixit (2003) and analyze the transition from merchant law to

court law, while Aldashev and Zanarone compare coercive and non-coercive enforcement in a model

with two producers and a state specialized in enforcement. Beyond the differences in emphasis and

modeling approach, our paper differs from these analyses by focusing on the globally optimal equi-

librium for maximizing cooperation in a repeated game. Finally, in a companion paper (Acemoglu

and Wolitzky, 2018) we use a model where punishments are costless but are carried out by “elites”

who also engage in production to analyze the emergence of “equality before the law”, that is, the

equal application of coercive punishments to both normal agent and elites.7

Lastly, to the extent that enforcer punishment strategies may be viewed as a type of formal

enforcement, our paper relates to the literature on the effi ciency of formal versus informal enforce-

7There is also an enormous literature on the role of punishments in public good games in experimental economics
and evolutionary game theory. Seminal experimental papers include Ostrom, Walker, and Gardner (1992) and Fehr
and Gächter (2000, 2002). Seminal theoretical papers include Boyd and Richerson (1992), Sethi and Somanathan
(1996), and Henrich and Boyd (2001).
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ment of norms and contracts. Theoretical contributions include Kranton (1996) and Kali (1999).

Empirical studies of reputation-based contract enforcement include Fafchamps (1996), Clay (1997),

Woodruff (1998), McMillan and Woodruff (1999), and Johnson, McMillan, and Woodruff (2002).

The rest of the paper is organized as follows. Section 2 and 3 analyze the small-group and

large-group versions of the model, respectively. Section 4 considers private monitoring. Section 5

discusses various modeling issues. Section 6 concludes. Proofs for Sections 2 and 3 are presented

in Appendix A. The Online Appendix contains the proofs for Section 4, as well as an extension of

our model that allows for ostracism of individual players.

2 Small Group Model: Repeated Prisoner’s Dilemma with an Enforcer

We begin with the analysis of a standard repeated game model of cooperation in a small group.

This setting is a special case of the large group model considered in the next section, but we present

it separately for ease of exposition.

2.1 Environment

There is a group consisting of k + 1 players. We compare the prospects for cooperation in this

group in two situations: first, when all k+1 players are producers, who can exert effort in providing

benefits for their partners; and second, when one of the players is an enforcer, who can exert

effort in punishing her partners. In each case, we investigate the optimal strategies for supporting

cooperation and the resulting level of social welfare. The interpretation is that the group can decide

whether to assign one of their number to the role of enforcer– exempting her from production while

requiring her to punish deviators– but this decision is not formally modeled as part of the game.

The players take part the following two-stage game in every period t = 0, 1, 2 . . .. The game is

a version of the prisoner’s dilemma among the producers, with the possibility of costly punishment

by the enforcer (if an enforcer is present).

1. Cooperation Stage: Each producer i chooses a level of cooperation xi ∈ R+. These choices

are perfectly observed. Choosing cooperation level xi costs xi for player i, and benefits every

other player k 6= i by an amount f (xi), where f : R+ → R+ is an increasing, strictly concave,

bounded, and differentiable function satisfying f (0) = 0.8

2. Punishment Stage: If an enforcer is present, he then chooses a level of punishment yi ∈ R+

for each producer i. These choices are also perfectly observed. Choosing punishment level yi

costs the enforcer yi, and hurts producer i by an amount g (yi), where g : R+ → R+ is an

8Boundedness is for simplicity and can be replaced by the Inada condition limx→∞ f ′ (x) = 0.
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increasing, strictly concave, and differentiable function satisfying g (0) = 0. We refer to g as

the specialized enforcement technology.

In summary, if there is no enforcer, each producer i’s stage game payoff is

∑
i′ 6=i

f (xi′)− xi.

If instead there is an enforcer (label him player 1), each producer i’s stage game payoff is

∑
i′ 6=1,i

f (xi′)− xi − g (yi) ,

and the enforcer’s payoff is ∑
i 6=1

(f (xi)− yi) .

Observe that playing xi = 0 (“shirking”) is myopically optimal for producer i, and playing

yi = 0 for all i 6= 1 (“failing to punish”) is myopically optimal for the enforcer. Thus, only the

shadow of future interactions can incentivize producers to cooperate or incentivize the enforcer to

punish.

Note also that the assumptions that f and g are concave imply that there is a technological

advantage to spreading out cooperation or punishments over time. Nevertheless, we will show that,

while optimal equilibria do spread cooperation over time, they do not spread punishments over

time. Instead, if an enforcer is present, optimal equilibria always concentrate punishments in a

single period.

Players maximize expected discounted payoffs with common discount factor δ. The solution

concept is subgame perfect equilibrium (SPE).

2.2 One-Time Enforcer Punishment Strategies and Repentance Strategies

Given a path of play of the repeated game, let xti denote producer i’s level of cooperation in period

t, and let

Xt
i = (1− δ)

∞∑
τ=0

δτxt+τi

denote producer i’s present discounted level of cooperation starting in period t. From the perspec-

tive of a given equilibrium of the game, xti and X
t
i are (possibly degenerate) random variables. We

refer to the quantity E
[
X0
i

]
as player i’s average level of cooperation in a given equilibrium. We

say that an equilibrium is the most cooperative one if it simultaneously achieves the highest value

of E
[
X0
i

]
for every player i among all SPE (as we will see, such an equilibrium exists); and we call

the corresponding value of E
[
X0
i

]
the maximum level of cooperation. Note that, by concavity of

7



f , the most cooperative equilibrium is also the optimal equilibrium in terms of utilitarian social

welfare– provided that producers choose constant levels of cooperation on path, punishments are

not used on path, and the maximum level of cooperation is below the first-best level, xFB, given by

kf ′
(
xFB

)
= 1. This last requirement represents the main case of economic interest, as in most set-

tings the challenge is providing suffi cient incentives for cooperation rather than avoiding excessive

cooperation.

Our main concern is whether optimal equilibria are based on punishment by enforcers (special-

ized enforcement) or the withdrawal of future cooperation by producers (community enforcement).

We first observe that the problem of maximizing cooperation when all k + 1 players are producers

is a trivial one: in this case, cooperation is maximized by grim trigger strategies, where producers

always play some xi = x̂ on path and switch to xi = 0 following a deviation. The maximum level

of cooperation x̂ that can be sustained with grim trigger strategies is given by the unique non-zero

solution to the equation

x̂ = δkf (x̂) .

This equation simply equates the benefit of a deviation to xi = 0 (the cost-saving of x̂) with its

cost (the lost benefit of others’future cooperation, which equals δkf (x̂)).

Proposition 1 In the absence of enforcers, grim trigger strategies are optimal, and the maximum

level of cooperation is x̂.

Grim trigger strategies constitute an extreme form of community enforcement, since cooperation

is incentivized entirely by the threat of the group withdrawing cooperation in the future.

On the other hand, when an enforcer is present, the group can instead rely on various strategies

that involve specialized enforcement. An extreme form of specialized enforcement, where following

a deviation there is no withdrawal of future cooperation at all, is given by what we call one-

time enforcer punishment strategies. With these strategies, a producer who deviates is immediately

punished by the enforcer. Following this one-time punishment, everyone returns to her normal

behavior in the next period. If however the enforcer fails to punish a producer deviation, this

triggers the breakdown of cooperation.

Definition 1 A one-time enforcer punishment strategy profile is characterized by a cooperation

level x and a punishment level y, and can be represented by the following automaton:

There are two states, normal and punishment. Play in each state is as follows:

Normal state: Each producer i plays xi = x. If all producers i play xi = x, then the enforcer

plays yi = 0 for all producers i. If instead some producer i plays xi 6= x, then the enforcer plays

yi = y and plays yi′ = 0 for all producers i′ 6= i.9

9As is standard in repeated games with perfect monitoring, we ignore simultaneous deviations throughout.
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Punishment state: Players always take action 0 (producers never cooperate; the enforcer never

punishes).

Players start in the normal state and permanently transition to the punishment state if in any

period some producer i plays xi 6= x and the enforcer then plays yi 6= y.

The component-wise maximum levels of cooperation and punishment (x∗, y∗) that can be sus-

tained with one-time enforcer punishment strategies are given by the system of equations

x∗ = g (y∗)

y∗ =
δ

1− δ kf (x∗) . (1)

The intuition is that a producer who deviates gains at most x∗ (her cost of effort) and loses g (y∗)

(the cost of being punished at level y∗), while an enforcer who deviates gains at most y∗ and loses
δ

1−δkf (x∗) (the future benefit of cooperation at level x∗ from k producers). Note that the 1
1−δ

term in the formula for y∗ reflects the fact that, with one-time enforcer punishment strategies,

an enforcer trades off the one-time cost of punishing a deviant producer against the benefit of

cooperation in every future period. In contrast, there is no such term in the formula for x̂, as under

grim trigger strategies a producer trades off the cost of cooperating in every period against the

benefit of cooperation in every period.

An alternative form of enforcement, which combines elements of community and specialized

enforcement, is given by (one-time) enforcer punishment plus repentance strategies. Under these

strategies, a producer who deviates is immediately punished by the enforcer, but in addition all

other producers reduce their level of cooperation for one period while the deviator “repents” by

cooperating at the pre-deviation equilibrium level.

Definition 2 A ( one-time) enforcer punishment plus repentance strategy profile is characterized

by cooperation levels x and x and a punishment level y, and can be represented by the following

automaton:

There are k + 2 states: normal, punishment, and i-repenting, for each i 6= 1. Play in these

states is as follows:

Normal state: Each producer i plays xi = x. If all producers i play xi = x, then the enforcer

plays yi = 0 for all producers i. If instead some producer i plays xi 6= x, then the enforcer plays

yi = y and plays yi′ = 0 for all producers i′ 6= i.

Punishment state: Players always take action 0.

i-repenting state: Producer i plays xi = x. Producers i′ 6= i play xi′ = x. If producer i plays

xi = x and all producers i′ 6= i play xi′ = x, then the enforcer plays yi′ = 0 for all producers

(including i). If producer i plays xi 6= x, then the enforcer plays yi = y and plays yi′ = 0 for all
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producers i′ 6= i. If producer i′ 6= i plays xi′ 6= x, then the enforcer plays yi′ = y and plays yi′′ = 0

for all producers i′′ 6= i′.

Players start in the normal state. In the normal state, if some producer i plays xi 6= x and

the enforcer then plays yi = y, players transition to the i-repenting state. If some producer i plays

xi 6= x and the enforcer plays yi 6= y, then players transition to the punishment state.

In the i-repenting state, players transition to the normal state if producer i plays xi = x and

all producers i′ 6= i play xi = x. If producer i plays xi 6= x and the enforcer plays yi = y, then

players stay in the i-repenting state. If some producer i′ 6= i plays xi′ 6= x and the enforcer then

plays yi′ = y, players transition to the i′-repenting state. If producer i plays xi 6= x (resp., some

producer i′ 6= i plays xi′ 6= x) and the enforcer plays yi 6= y (resp., yi′ 6= y), then players transition

to the punishment state.

The punishment state is absorbing.

We refer to the special case of enforcer punishment plus repentance strategies with x = 0

as enforcer punishment plus full repentance, and we refer to the case where x > 0 as enforcer

punishment plus partial repentance. The maximum levels of cooperation and punishment (x̌, y̌) that

can be sustained with enforcer punishment plus full repentance are straightforward to characterize

as

x̌ = g (y̌) + δ (k − 1) f (x̌)

y̌ =

(
δ

1− δ k − δ (k − 1)

)
f (x̌) . (2)

Intuitively, a producer who deviates gains x̌ and loses g (y̌) + δ (k − 1) f (x̌) (the cost of being

punished at level y̌ plus the lost benefit of others’cooperation in the next period), while an enforcer

who deviates gains y̌ and loses
(

δ
1−δk − δ (k − 1)

)
f (x̌) (the benefit of others’future cooperation,

taking into account that only the deviant producer cooperates in the very next period).

Note that, under (one-time) enforcer punishment strategies– or enforcer punishment plus re-

pentance strategies– punishments are not used on path and producers choose constant levels of

cooperation. This implies that, whenever such a strategy profile sustains the maximum level of

cooperation, it is also the optimal equilibrium in terms of utilitarian social welfare, provided the

maximum level of cooperation is below the first-best level. If instead such strategies sustain a level

of cooperation above the first best, the concavity of the functions f and g makes it possible to

reduce cooperation in an incentive compatible manner and exactly achieve the first best.10

10For example, in the case of one-time enforcer punishments, the utilitarian optimal equilibrium would be charac-
terized by x = xFB and y = δ

1−δkf
(
xFB

)
. Concavity of f and g then imply that x ≤ g (y) whenever xFB ≤ x∗.
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2.3 Optimal Equilibrium in the Presence of an Enforcer

Our first main result characterizes the most cooperative equilibrium in the presence of an enforcer.

The result states that either a one-time enforcer punishment equilibrium or a one-time enforcer

punishment plus repentance equilibrium is always optimal.

Define the “effi cient”level of punishment, yE , as follows:11

yE =


∞ if limy→∞ g′ (y) ≥ 1

(g′)−1 (1) if g′ (0) > 1 > limy→∞ g′ (y)

0 if g′ (0) ≤ 1

.

With this notation, we can also determine the level of cooperation that can be sustained by enforcer

punishment plus partial repentance strategies. In particular, if yE < ∞, define the levels of
cooperation (x̃, x) under such a strategy profile by the system of equations

x̃ = g
(
yE
)

+ δ (k − 1) [f (x̃)− f (x)]

yE =

(
δ

1− δ k − δ (k − 1)

)
f (x̃) + δ (k − 1) f (x) . (3)

The following theorem characterizes the most cooperative equilibrium.

Theorem 1 If yE ≥ y∗, one-time enforcer punishment strategies are optimal, and the maximum

level of cooperation is x∗.

If yE ≤ y̌, one-time enforcer punishment plus full repentance strategies are optimal, and the

maximum level of cooperation is x̌.

If yE ∈ (y̌, y∗), one-time enforcer punishment plus partial repentance strategies are optimal, and

the maximum level of cooperation is x̃.

One special case of Theorem 1 bears particular emphasis: if g′ (y) ≥ 1 for all y ∈ R+ (so that one

unit of disutility of effort in punishment incurred by the enforcer always inflicts at least one unit of

disutility on a producer), then yE =∞, so Theorem 1 says that one-time enforcer punishments are

optimal. Thus, under this condition, it is optimal for producers’incentives to be provided purely

through specialized enforcement.

It is useful to break the intuition for this result into two parts, relating to why the optimal

equilibrium can involve only specialized enforcement and why specialized enforcement takes the

form of one-time punishment.

Why only specialized enforcement? To give a producer the strongest possible incentive to co-

operate, her continuation payoff after a deviation must be made as low as possible. Ideally, her

11 Intuitively, the “effi cient” level of punishment is the one that equates the marginal cost of punishment to its
marginal “benefit,”which is the disutility imposed on a deviant producer.
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continuation payoffwould be reduced in two ways: the enforcer would punish her, and other produc-

ers would refuse to cooperate with her. However, the enforcer is willing to exert effort in punishing

the deviator only if he is subsequently rewarded with cooperation from the producers. Since co-

operation benefits both producers and the enforcer, there is no way for producers to reward the

enforcer for punishing the deviant producer without also benefiting the deviator herself.12 Society

must then choose between incentivizing the enforcer to punish deviators by immediately restor-

ing cooperation (enforcer punishment strategies), or by reducing enforcer punishments and instead

providing incentives by withdrawing cooperation following a deviation (enforcer punishment plus

repentance strategies).

We can quantify the tradeoff between incentivizing the enforcer to punish and incentivizing

producers by withdrawing cooperation as follows. Consider a history following a producer deviation.

The direct effect of reducing another producer’s level of cooperation at such a history by one unit

is to reduce the deviator’s payoff by f ′ (x) units. This effect increases on-path incentives for

cooperation. This direct effect is countered by the indirect effect of reducing the maximum level of

punishment the enforcer is willing to impose on the deviator. In particular, reducing the producer’s

level of cooperation by one unit decreases the amount of punishment the enforcer can be induced to

provide by f ′ (x) units, and each unit of reduced punishment increases the deviator’s payoffby g′ (y).

Thus, the indirect effect reduces on-path incentives for cooperation by f ′(x)g′ (y). Consequently,

the overall impact of withdrawing producer cooperation following a deviation on on-path producer

incentives is negative if and only if g′ (y) ≥ 1– that is, if and only if y ≤ yE . Therefore, if y∗ ≤ yE

then, after a producer deviation, it is better to rely solely on enforcer punishments rather than

reducing other producers’cooperation levels. Conversely, if y̌ ≥ yE then reducing other producers’
cooperation levels as far as possible is optimal. Finally, if yE ∈ (y̌, y∗) then it is optimal to reduce

other producers’ cooperation levels to the point where the effi cient punishment level yE is just

incentive-compatible for the enforcer.

It is possible to give a short, heuristic proof of Theorem 1, under the assumption that strategies

take the form of enforcer punishment plus full, partial, or no repentance. (However, most of

the substance of Theorem 1 is showing that this assumption is without loss.) The problem of

choosing an on-path cooperation level x, an off-path cooperation level x, and a punishment level y

to maximize on-path cooperation is

max
x,x,y

x

12 In Appendix C, we study how the structure of the optimal equilibrium changes if we allow for ostracism– the
practice of excluding only deviators from the benefits of cooperation.
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subject to

x ≤ g (y) + δ (k − 1) [f (x)− f (x)] and (4)

y ≤
(

δ

1− δ k − δ (k − 1)

)
f (x) + δ (k − 1) f (x) , (5)

where (4) and (5) are the incentive-compatibility constraints for producers and enforcers, respec-

tively. Using the constraints to substitute for x and y, a necessary condition for optimality is that

x solves the unconstrained problem

max
x

g


(

δ

1− δ k − δ (k − 1)

)
f (x) + δ (k − 1) f (x)︸ ︷︷ ︸

=y

+ δ (k − 1) [f (x)− f (x)] .

The derivative with respect to x equals

δ (k − 1) f ′ (x)
[
g′ (y)− 1

]
.

Hence, if g′ (y) ≥ 1 for all incentive-compatible y (i.e., if yE ≥ y∗), then off-path cooperation should
be maximized, yielding one-time enforcer punishment. If g′ (y) ≤ 1 when y is chosen to bind (5)

with x = 0 (i.e., yE ≤ y̌), then off-path cooperation should be minimized, yielding one-time enforcer
punishment plus full repentance. Finally, if g′ (y) < 1 when x = 0 but g′ (y) > 1 when x = x (i.e.,

yE ∈ (y̌, y∗)), then x should be chosen so that y = yE , yielding one-time enforcer punishment plus

partial repentance.

We also emphasize that the result that one-time enforcer punishment strategies are optimal

whenever g′ (y) ≥ 1 for all y ∈ R+ holds independently of the production technology f . Intuitively,

improvements in the production technology increase the greatest level of cooperation that can be

sustained with both specialized enforcement and community enforcement, and such improvements

cancel out when comparing the two kinds of equilibria. An interesting implication is that, provided

the effi ciency of the production and punishment technologies are positively related across different

societies, Theorem 1 predicts that societies with more effective technologies should rely purely

on specialized enforcement, while societies with less effective technologies should rely on a mix of

community enforcement and specialized enforcement.

Why are deviators punished only once? One might have conjectured that, to provide the harsh-

est deterrent against a deviation, the enforcer should punish a deviator several times for the same

transgression. The reason why this does not occur in the optimal equilibrium is that, with multiple

rounds of punishment, the deviator would not be willing to exert as much effort in cooperation

during her punishment phase, and the deviator’s continuation payoff from being punished once and
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then returning to full cooperation is weakly lower than her continuation payoff from being punished

repeatedly while shirking. (In fact, it is strictly lower, as the deviator’s own future cooperation can

be used to give the enforcer additional incentives to punish her).

Another way of seeing the intuition is to observe that, in the most cooperative equilibrium,

a producer is indifferent between following her equilibrium strategy and following the policy of

always shirking. If the enforcer were asked to spread the punishment for each individual instance

of shirking over multiple periods, this would reduce the total punishment faced by a producer who

always shirks, and would therefore reduce the maximum sustainable level of cooperation.

Our results so far show that one-time enforcer punishments are always part of the optimal

equilibrium. In particular, society should deploy all available enforcers. However, we also note that

enforcer punishments provide very little benefit when the specialized enforcement technology is

suffi ciently ineffective, so in this case pure community enforcement becomes approximately optimal.

Proposition 2 For ε > 0, there exists η > 0 such that if g′ (y) < η for all y ∈ R+ then the grim

trigger strategy profile with cooperation level x̂ attains within ε of the maximum level of cooperation.

2.4 The Tradeoff Between Production and Enforcement

We have characterized the optimal equilibrium both in a group consisting of only k + 1 producers

(Proposition 1) and in a group consisting of k producers and a single enforcer (Theorem 1). Given

these results, it is straightforward to compare the resulting level of social welfare in the two cases.

This answers the question of when a group of producers would gain from designating one of their

number as an enforcer.

Theorem 2 Assume the maximum level of cooperation is below the first-best level, with or without

an enforcer. If

g′ (0) ≤ 1− δ
1 + δk

,

then utilitarian social welfare in an optimal equilibrium is higher without an enforcer (i.e., with

k + 1 producers, rather than with k producers and one enforcer). Conversely, fixing the values of

the other parameters of the model and assuming g′ is bounded away from 0, there exists δ̄ < 1

(resp., α <∞ or k̄ <∞) such that the maximum level of cooperation is higher with an enforcer if

δ > δ̄ (resp., g′ (y) > α for all y ∈ R+ or k > k̄.)

Consequently, if the players are patient, the group is large, or the specialized enforcement

technology is effective, then it is optimal to designate an individual as an enforcer. Conversely,

if the players are impatient, the group is small, and the specialized enforcement technology is

ineffective, it is optimal for all agents to remain producers. The comparative static with respect
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to δ– wherein higher δ favors specialized enforcement– is the most subtle of these results. It is a

consequence of the 1
1−δ term in the formula for y∗, which was explained earlier.

3 Large Group Model: Random Matching

The small group model considered above has the advantage of bringing out as simply as possible the

tradeoff between community and specialized enforcement and the possible optimality of one-time

enforcer punishment equilibria. However, in large groups it is more realistic to assume that only

smaller subsets of the population interact directly in each period, and in general there is also no

reason to suppose that each producer is monitored by only a single enforcer. In addition, in large

groups it is also more realistic to assume that players can only observe the actions of individuals

with whom they interact directly. In this section, we show that exactly the same insights– in fact,

essentially the same mathematical results– generalize from small groups to large groups under the

assumption of perfect monitoring. Imperfect private monitoring is studied in Section 4.

Specifically, we generalize the small group model of Section 2 as follows. The group now consists

of (k + l)n players, with k, l, n ≥ 1. Out of the (k + l)n players, kn of them are producers and ln

of them are enforcers. The small group model is thus the special case with n = 1 and l = 1.

Denote the set of producers by P , the set of enforcers by E, and the set of all players by I.

In every period t = 0, 1, 2 . . ., the players break into n matches uniformly at random, where each

match consists of k producers and l enforcers. Denote the match containing player i by Mi.

The following two-stage game is played simultaneously in each match M .

1. Cooperation Stage: Each producer i in matchM chooses a level of cooperation xi ∈ R+ before

observing the identities of the other players in M .13 The vector (i, xi)i∈M∩P is perfectly

observed by all players in M . Choosing cooperation level xi costs xi for player i, and benefits

every other player k 6= i in M by f (xi).

2. Punishment Stage: Each enforcer j ∈M then chooses a level of punishment yji ∈ R+ for each

producer i ∈M ∩ P . The vector (j, i, yji)j∈M∩E,i∈M∩P is perfectly observed by all players in

M . Choosing punishment level yji costs yji for player j, and hurts player i by g (yji).

Producer i’s stage payoff is thus

∑
i′∈Mi∩P\i

f (xi′)− xi −
∑

j∈Mi∩E
g (yji) ,

13We refer to the feature that producers act without knowing their partners’identities as partial anonymity. This
assumption– which naturally does not arise in the small group model– plays an important role in the large group
model, as we discuss in Section 5.
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and enforcer j’s stage payoff is ∑
i∈Mj∩P

(f (xi)− yji) .

We refer to the pair
(

(i, xi)i∈M∩P , (j, i, yji)j∈M∩E,i∈M∩P

)
as the outcome of match M .

Throughout the paper, we maintain the assumption that players perfectly observe the outcomes of

their own matches, while varying players’information about the outcomes of other matches. With

perfect monitoring, players observe the outcomes of all matches at the end of each period. We will

also consider two different versions of private monitoring– detailed below– where players have less

information about what goes on outside their own matches. In all versions of the model, we let

hti denote a generic history for player i at the beginning of period t, and we omit the subscript in

the perfect monitoring case. The trivial initial history is denoted by h0. We also denote a generic

strategy for player i by σi. For example, if player i is a producer then σi
(
hti
)
∈ ∆ (R+) denotes

player i’s mixed action at history hti.

Players maximize expected discounted payoffs with common discount factor δ. The solution

concept is weak perfect Bayesian equilibrium (PBE), with the additional requirement that the

equilibrium assessment is derived from a common conditional probability system (Myerson, 1991).14

Our goal is again to characterize the most cooperative equilibrium in this game. (The definition

of the most cooperative equilibrium is the same as in Section 2, and once again the most cooperative

equilibrium is also utilitarian effi cient, so long as the maximum level of cooperation is below the

first-best level xFB, which is now given by (k + l − 1) f ′
(
xFB

)
= 1). As in the small group model,

contagion strategies, one-time enforcer punishment strategies, and one-time enforcer punishment

plus repentance strategies will play a key role. The definitions of all of these strategy profiles

are exactly the same as in Section 2. However, the resulting formulas for the maximum level of

cooperation sustainable with these strategy profiles must be adjusted to account for the presence of

l enforcers in each match and the fact that, following a producer deviation, each enforcer matches

with the deviator in the following period with probability 1
n . The resulting formulas are as follows.

• One-time enforcer punishment strategies:

x∗ = lg (y∗)

y∗ =
δ

1− δ kf (x∗) . (6)

14This requirement implies that PBE are subgame perfect. We use PBE even for the perfect monitoring version of
the model because enforcers’information sets are not roots of proper subgames. Another approach would have been
to discretize the action space and use sequential equilibrium. This would lead to the same results, except that with
discrete actions the equilibria we characterize would be only approximately rather than exactly optimal.
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• One-time enforcer punishment plus full repentance strategies:

x̌ = lg (y̌) + δ (k − 1) f (x̌)

y̌ =

(
δ

1− δ k − δ
(
k − 1

n

))
f (x̌) . (7)

• One-time enforcer punishment plus partial repentance strategies

x̃ = lg
(
yE
)

+ δ (k − 1) [f (x̃)− f (x)]

yE =

(
δ

1− δ k − δ
(
k − 1

n

))
f (x̃) + δ

(
k − 1

n

)
f (x) . (8)

In addition, in this section the definition of the effi cient level of punishment yE is given by

yE =


∞ if limy→∞ g′ (y) ≥ m

(g′)−1 (m) if g′ (0) > m > limy→∞ g′ (y)

0 if g′ (0) ≤ m

 ,

where m :=
(

k−1
k−1/n

)
1
l . Note that m ∈

[(
k−1
k

)
1
l ,

1
l

]
for all k, l, n.

With these modified definitions, Theorem 1 generalizes verbatim. Recall that all results in the

current section concern perfect monitoring.

Theorem 3 If yE ≥ y∗, one-time enforcer punishment strategies are optimal, and the maximum

level of cooperation is x∗.

If yE ≤ y̌, one-time enforcer punishment plus full repentance strategies are optimal, and the

maximum level of cooperation is x̌.

If yE ∈ (y̌, y∗), one-time enforcer punishment plus partial repentance strategies are optimal, and

the maximum level of cooperation is x̃.

Recalling that m ≤ 1
l for all k, l, n, Theorem 3 implies that, if g′ (y) ≥ 1

l for all y ∈ R+ (so that

one unit of disutility of effort in punishment incurred in total by the enforcers in a given match

always inflicts at least one unit of disutility on a producer), then one-time enforcer punishments

are optimal. Thus, as in the small group model, under a mild condition it is optimal for producers’

incentives to provided purely through specialized enforcement.

The intuition for Theorem 3 is essentially the same as in the small group model. To understand

the precise formula for the constant m, note that the direct effect of reducing another producer’s

level of cooperation on a deviant producer’s payoff is now k−1
kn−1f

′ (x) (as k−1
kn−1 is the probability

that the deviator matches with a given producer in any period), while the indirect effect coming

through a reduction in the maximum incentive-compatible enforcer punishment is l
nf
′ (x) g′ (y) (as
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1
n is the probability that a given enforcer matches with a given producer, and there are l enforcers

per match). The indirect effect therefore dominates if and only if g′ (y) ≥ m, or y ≤ yE .
We also have the following generalization of Theorem 2. This result captures the intuition

that, if a social planner has the option to allocate some of the enforcers back to production and

the specialized enforcement technology is not very effective, she may prefer to forgo the limited

increase in the level of cooperation that these enforcers afford, and also consequently rely on grim

trigger strategies strategies.

Theorem 4 Suppose a social planner can reallocate some of the enforcers back to production, or

equivalently chooses k and l (as well as selecting an equilibrium) subject to k ≥ k̄ and k + l = s

to maximize utilitarian social welfare. Suppose also that the maximum level of cooperation is below

the first-best level. If

g′ (0) ≤ min

{(
k̄ − 1

k̄ − 1
n

)
1

s− k̄
,

1
1
n + δ

1−δs

}
(9)

then the social planner would prefer to have all agents become producers (i.e., set k = s) and support

cooperation using grim trigger strategies. Conversely, fixing the values of the other parameters of

the model and assuming g′ is bounded away from 0, there exists δ̄ < 1 (resp., α < ∞ or s̄ < ∞)
such that the maximum level of cooperation is higher with one enforcer per group than with no

enforcers if δ > δ̄ (resp., g′ (y) > α for all y ∈ R+ or s > k̄.)

Finally, we note that Proposition 2 also applies identically to the large group model. The proof

of this result in the appendix thus allows for general l and n.

4 Large Group Model: Private Monitoring

One traditional motivation for studying community enforcement in large groups is the desire to

understand how groups can sustain cooperation when individuals have limited information about

each other’s past behavior. In this more general setting with private monitoring, fully characterizing

optimal equilibria at a fixed discount factor (as we have done under perfect monitoring) appears

intractable. Nevertheless, we establish two useful results highlighting the robustness of the economic

forces we have emphasized so far. First, under general network monitoring, where players observe

the outcomes of their own matches, as well as possibly the outcomes of some other random matches

in the population, we provide conditions under which one-time enforcer punishment strategies

outperform pure contagion strategies. Second, we consider a setting with observable last matches,

where a player observes the outcomes of her own matches and the outcome of each of her current

partner’s most recent matches. With this information structure, enforcer punishment strategies

continue to sustain the same level of cooperation as with perfect monitoring, which implies that
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they must remain globally optimal (if yE ≥ y∗) unless it is possible to sustainmore cooperation with
observable last matches than with perfect monitoring. While this can be possible, we also establish

that enforcer punishment equilibria continue to be optimal if enforcers are perfectly informed (which

may be a consequence of their organization in an information-sharing institution, such as a police

force), or if we impose a requirement of stability in the face of individual trembles.

4.1 General Network Monitoring

The setting considered here is one of general network monitoring (e.g., Wolitzky, 2013). At the

end of each period t, a monitoring network Lt = (li,j,t)i,j∈I×I , li,j,t ∈ {0, 1} is drawn indepen-
dently from a fixed probability distribution µ on {0, 1}|I|

2

. We assume that Prµ
(

(li,j,t)i,j∈I×I

)
=

Prµ
((
lφ(i),φ(j),t

)
i,j∈I×I

)
for any permutation φ : I → I, so the distribution over networks is invari-

ant to relabeling the players. Player i perfectly observes the outcome of match M0 if and only if

li,j,t = 1 for some j ∈ M0. Otherwise, player i observes nothing about the outcome of match M0.

Assume that li,i,t = 1 with probability one, so players always observe the outcome of their own

matches. We compare the performance of contagion strategies and one-time enforcer punishment

strategies in this setting.

With contagion strategies, let dt be the expected number of producers who become infected

(i.e., enter the punishment state) within t periods of a producer deviation (see the appendix for a

formal definition). Intuitively, dt is the expected number of producers who have observed a producer

who has observed a producer who. . . has observed the deviator within t periods. It follows from

standard arguments that the greatest level of cooperation that can be sustained with contagion

strategies is given by

x̂ = (1− δ)
∞∑
t=0

δt
k − 1

kn− 1
(dt − 1) f (x̂) .

With one-time enforcer punishment strategies, let qt be the expected number of producers who

become infected within t periods of an unpunished producer deviation (once again the details are in

the appendix). Note that a player now becomes infected only if both a producer and an enforcer in a

match she observes are already infected, as only then does she see a producer’s failure to cooperate

go unpunished. Infection therefore spreads more slowly with enforcer punishment strategies than

with contagion strategies, and in particular, qt is always less than dt. We will show that an upper

bound on the greatest level of cooperation and punishment that can be sustained with enforcer

punishment strategies is given by

x∗ = lg (y∗) ,

y∗ =
∞∑
t=0

δt
qt
n
f (x∗) .
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We also show that the resulting strategy profile is indeed part of a PBE whenever x∗ is suffi ciently

high (which holds, for example, if δ is suffi ciently high).15

We can now inspect the formulas for x̂ and x∗ and make some basic observations about the

relative performance of contagion and enforcer punishment strategies. First, when the specialized

enforcement technology is more effective (i.e., g is steeper), enforcer punishment strategies have

an advantage over contagion strategies. Second, to the extent that dt is strictly greater than qt,

contagion strategies have an advantage. Third, as both dt and qt converge to kn as t → ∞,
this advantage of contagion strategies vanishes when δ is close to 1. Indeed, enforcer punishment

strategies have a clear advantage when δ is close to 1, owing to the (1− δ) term in the definition

of x̂; the interpretation of this term is the same as in Section 2.16

The next theorem formalizes this comparison. The first part shows that, when the specialized

enforcement technology is suffi ciently effective, enforcer punishment strategies support more co-

operation than contagion strategies. The second part establishes the same conclusion when the

discount factor δ is suffi ciently high.

Theorem 5 With general network monitoring,

1. There exists α such that, if g′(y) > α for all y ∈ R+, then one-time enforcer punishment

strategies form a PBE strategy profile and support greater cooperation than contagion strate-

gies.

2. Assume limy→∞ g (y) = ∞.17 Then there exists δ̄ such that, if δ > δ̄, then one-time en-

forcer punishment strategies form a PBE strategy profile and support greater cooperation than

contagion strategies.

We note as well that comparing one-time enforcer punishment strategies and contagion strategies

is not as ad hoc at it might seem, as there is a sense in which contagion strategies are optimal

among all equilibria in which enforcers never punish. Wolitzky (2013) shows that, under general

15To see why such a condition is required, consider the incentives of a producer in the infected state who finds
herself with the belief that all of the other producers in her match are in the normal state, while exactly one of
the enforcers in her match is in the infected state. If this producer works, she avoids being punished at level y∗

by each one of the l − 1 enforcers in her match in the normal state, but also avoids triggering contagion (because,
if she shirked, the infected enforcer’s failure to punish her would trigger contagion). When x∗ is suffi ciently high,
this new incentive for cooperation coming from the desire to avoid triggering contagion is necessarily less than the
incentive coming from being punished at level y∗ by the lth enforcer. In this case (but not otherwise), the fact that
the producer is indifferent between working and shirking on path implies that she prefers to shirk when any enforcer
is infected.
16Presumably, optimal equilibria in this setting would take advantage of enforcers’ ability to punish while also

providing incentives for spreading information faster than one-time enforcer punishment strategies. As providing
incentives for strategic communication of this kind is beyond the scope of this paper, we content ourselves with
comparing the performance of one-time enforcer punishment strategies and contagion strategies.
17The resulting asymmetry between the functions f and g is not essential for this result. If the assumption that f

is bounded is relaxed, as discussed in Section 5, the result still holds as long as limx→∞ f ′ (x) < 1/l (k − 1), which is
consistent with f = g and limy→∞ g (y) =∞.
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network monitoring without enforcers, contagion strategies attain the maximum level of cooperation

(provided the realized monitoring network is observable). Thus, whenever enforcer punishment

strategies outperform contagion strategies, they outperform any equilibrium that does not rely on

the enforcers.18

4.2 Observable Last Matches

We now turn to the second of the two private monitoring environments we consider: observable last

matches. This setting, where players observe only the outcomes of their own matches and their

current partners’most recent matches, is a natural benchmark and is also tractable enough for us

to fully generalize the perfect monitoring results.

One-Time Enforcer Punishment Strategies and Contagion Strategies

We first establish that both enforcer punishment strategies and contagion strategies do exactly as

well with observable last matches as they do with perfect monitoring. In particular, any comparison

between enforcer punishment strategies and contagion strategies with observable last matches is

exactly the same as in the perfect monitoring case.

However, as in the previous section, existence of a enforcer punishment equilibrium requires an

additional condition. In what follows, let x∗, y∗, and x̂ be defined as in Section 3, and let ẋ be the

positive solution to ẋ = lδ (k − 1) f (ẋ).

Theorem 6 With observable last matches,

1. If x∗ ≥ ẋ, then the one-time enforcer punishment strategy profile with cooperation level x∗

and punishment level y∗ is a PBE strategy profile. Furthermore, x∗ is an upper bound on the

level of cooperation in any one-time enforcer punishment equilibrium.

2. The contagion strategy profile with cooperation level x̂ is a PBE strategy profile. Furthermore,

x̂ is an upper bound on the level of cooperation in a contagion equilibrium.

The intuition for this result is simple. Contagion following a producer deviation with contagion

strategies, or following an enforcer deviation with enforcer punishment strategies, spreads more

18However, recall that our notion of optimality is in terms of supporting a higher level of cooperation. As we
have emphasized, this notion corresponds to optimality in terms of utilitarian social welfare if this maximum level
of cooperation is below the first-best level, but not necessarily otherwise. This caveat is especially important for high
discount factor results like part 2 of Theorem 5, as for very high discount factors both the most cooperative one-time
enforcer punishment equilibrium and the most cooperative contagion equilibrium are sure to involve an ineffi ciently
high level of cooperation, so the one that supports the higher level of cooperation will actually be worse in terms of
welfare. Thus, the main point of Theorem 5 is not that one-time enforcer punishment strategies outperform contagion
strategies in the δ → 1 limit per se, but rather that they outperform contagion strategies for moderately high discount
factors where the maximum level of cooperation may still be below the first-best level.
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slowly under private monitoring than under perfect monitoring. Nevertheless, the implications for

the deviating agent’s payoffs are the same as with perfect monitoring, because, when all agents

observe the behavior in their partners’last match, the deviator herself always starts suffering the

consequences of contagion immediately.

Informed Enforcers

Theorem 6 shows that enforcer punishment strategies can sustain as much cooperation with observ-

able last matches as with perfect monitoring. The question remains whether it is possible to sustain

more cooperation with observable last matches than with perfect monitoring, or alternatively if en-

forcer punishment strategies remain globally optimal with observable last matches (when yE > y∗).

In the next subsection, we will see that the former possibility can sometimes arise. That result

notwithstanding, we show that, when enforcers have superior information relative to producers,

enforcer punishment strategies are indeed globally optimal, under a simple equilibrium refinement

in the spirit of partial anonymity. Specifically, we consider the situation with informed enforcers,

where enforcers perfectly observe all past actions, while producers continue to observe only their

partners’most recent matches.

The following condition is in the spirit of the partial anonymity assumption of Section 3.

Non-Discrimination For every producer i, complete history of play ht, and pair of players j, k

such that M t
j = M t

k, we have

Eht+1i

[
σi
(
ht+1
i

)
|ht, i ∈M t+1

j

]
= Eht+1i

[
σi
(
ht+1
i

)
|ht, i ∈M t+1

k

]
.

That is, the distribution over producer i’s period-t + 1 actions is independent of whether i

matches with j or k in period t + 1. This requirement is only imposed for players j and k who

are themselves matched at period t, so that producer i’s behavior can depend on the outcomes of

the period-t matches she observes, but not on which members of those matches she finds herself

matched with in period t + 1. Non-discrimination thus says that a producer’s behavior cannot

depend on her partners’ identities, except insofar as this is informative about past play. Both

one-time enforcer punishment strategies and contagion strategies are clearly non-discriminatory.

Theorem 7 Suppose producers observe their partners’ last matches while enforcers are perfectly

informed. If g′ (y) ≥ m for all y, then one-time enforcer punishment strategies with cooperation level

x∗ and punishment level y∗ sustain the maximum level of cooperation among all non-discriminatory

equilibria.19

19Wth informed enforcers, one-time enforcer punishment strategies constitute a PBE strategy profile even if x∗ < ẋ.
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To provide intuition for this result, let us first revisit the case of perfect monitoring. An

explanation for why one-time enforcer punishment strategies are optimal with perfect monitoring

is that reducing producer j’s level of cooperation at a history ht+1
j , after producer i deviates

at history hti and is punished by enforcer k, has a direct positive effect on producer i’s on-path

incentives for cooperation at history hti of

k − 1

kn− 1
Pr
(
ht+1
j |h

t
i

)
E
[
f ′
(
xt+1
j |h

t+1
j

)]
,

and has a indirect negative effect of

l

n
E
[
Pr
(
ht+1
j |h

t
k

)
|hti
]
E
[
f ′
(
xt+1
j |h

t+1
j

)]
E
[
g′ (ỹ)

]
,

for some random variable ỹ. If monitoring is perfect, or if enforcers always have finer information

than producers, then we have

Pr
(
ht+1
j |h

t
i

)
= E

[
Pr
(
ht+1
j |h

t
k

)
|hti
]
, (10)

so the indirect effect outweighs the direct effect whenever g′ (y) ≥ m for all y. This explains why

enforcer punishment strategies are optimal with perfect monitoring (Theorem 3) or with private

monitoring with informed enforcers (Theorem 7). However, if monitoring is private and enforcers

do not necessarily have finer information than producers, then (10) may fail, and the differing

beliefs of enforcers and producers may be exploited to provide stronger on-path incentives than are

possible in enforcer punishment strategies. We now construct an example with these features.

A Counterexample: Departures from One-Time Enforcer Punishments

In this subsection, we show by example that, when (10) is not satisfied, it may be possible to support

greater cooperation under private monitoring than public monitoring, and this may involve multiple

rounds of punishments of a deviator.20

Let n = k = 2 and l = 1. Thus, there are two enforcers and four producers, and every period

they randomly split into two groups, each consisting of one enforcer and two producers. Assume

that players observe the outcome of their own matches, and that producers– but not enforcers– in

addition observe the outcome of each of their partner’s most recent matches. This informational

edge for the producers is for simplicity; in Appendix B, we sketch a more complicated example

without this feature. To complete the description of the physical environment of the example,

20Moreover, punishments in this counterexample also take a graduated form, similar to a pattern identified by
Ostrom (1990) as an important tool for sustaining cooperation under imperfect information. The intuition here is
different from Ostrom’s, however: the advantage of graduated punishments in the current setting is that it takes
time to build up differences in beliefs among individuals, and these differing beliefs can then be exploited to provide
harsher punishments than are possible with perfect monitoring.
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assume that f (x) = 100
√
x, g (y) = y, and δ = .1. These parameters satisfy our condition for

one-time enforcer punishment strategies to be optimal under perfect monitoring (yE ≥ y∗).
As we have seen, the highest level of cooperation that can be sustained with one-time enforcer

punishment strategies, x∗, is given by x∗ = g
(

δ
1−δ2f (x∗)

)
= .1

1−.12
(
100
√
x∗
)
, or x∗ ≈ 493.8272.

In contrast, we now describe an equilibrium that sustains a cooperation level of (exactly)

493.830. We call it the three strikes and you’re out (3SYO) equilibrium. In what follows, let

x1 = 493.830, x2 = 494.102, x3 = 502.058, and y = 493.828.

Producers’strategies:

• On path: play x1.

• If you play x < x1: play x2 for one period, then go back to x1.

• If (i) you play x′ < x2 in the period after playing x < x1, and (ii) you matched with the

same producer in both of these periods but matched with different enforcers: play x3 for one

period, then go back to x1. If (i) holds but not (ii): go back to x1 immediately.

• If you see the same producer play x < x1, then x′ < x2, and then x′′ < x3, or if you are seen

following such a sequence by the same producer, or if you see a producer play x < x1 and see

the corresponding enforcer fail to punish her: play 0 forever.

Enforcers’strategies:

• If you see a unique producer play x < x1, punish her at level y. Do not punish anyone if you

see two producers deviate.

• If you fail to punish a producer who plays x < x1, or if you see the same producer take actions

below x1 three times in a row, stop punishing forever.

Intuitively, the key difference between the one-time enforcer punishment equilibrium and the

3SYO equilibrium is that, with the latter, if a producer shirks three times in a row and is monitored

by the same producer but different enforcers, then after the third time she shirks she is “punished”

both by the enforcer (who punishes at level y, as usual), and by the other producer (who shirks

forever, as in a contagion equilibrium). The reason why the enforcer is willing to punish at level

y even though the other producer is about to start shirking is that he does not realize that this is

what is happening: he has seen the deviator shirk at most once before, so when he sees her shirk

again, he thinks this is at most the second straight time she has shirked. He is then certain that

the deviator (and the other producer) will return to cooperation in the next period if he punishes,
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while contagion will start if he does not punish, so he has an incentive to punish. Thus, the 3SYO

equilibrium exploits the difference in beliefs between enforcer and producer at such a history to

punish the deviator with both coercive punishment and contagion.21

Proposition 3 Under the parameter values presented above, the 3SYO strategy profile is an equi-

librium, and therefore one-time enforcer punishment strategies are not optimal.

Stability

We conclude our analysis by providing another reason why one-time enforcer punishment strategies

may be optimal under private monitoring, even when (10) is not satisfied: they are optimal among

all equilibria satisfying a simple 1-period stability refinement. While the argument is simple, we

believe it is potentially important in light of empirical accounts of how small transgressions can

lead to large societal breakdowns in the absence of centralized law enforcement (e.g., Lewis, 1994).

To define this notion of stability, we restrict attention to deterministic strategy profiles, defined

as profiles where xti and y
t
ji are degenerate random variables for all i, j, t.22

Definition 3 A deterministic equilibrium satisfies Stability if, whenever a single player i deviates

at an on-path history in period t, play returns to the equilibrium path
(
xτi , y

τ
ji

)τ∈{t+1,...}

i∈P,j∈E
in period

t+ 1.

Note that if all players “tremble”with probability ε when choosing their actions, then an equilib-

rium that fails to satisfy Stability is knocked off its equilibrium path in each period with probability

of order ε, while an equilibrium that satisfies Stability is knocked off path with probability of order

at most ε2. In this sense, equilibria that satisfy Stability are more robust to trembles than are

equilibria that fail to satisfy this condition.

Theorem 8 With observable last matches, the one-time enforcer punishment strategy profile with

cooperation level x∗ and punishment level y∗ is the most cooperative deterministic equilibrium sat-

isfying Stability.

5 Discussion of Model Assumptions

We briefly discuss the role of several key assumptions, indicating how they impact our results and

their interpretation, focusing for brevity on the results from Section 3.
21The reason why this “extra punishment”at an off-path history allows us to sustain more cooperation on path is

as follows: If a producer can be punished “extra hard” after she shirks three times, then she can be asked to work
extra hard after she shirks twice. Similarly, if she has to work extra hard after she shirks twice, then she can also be
asked to work harder after she shirks once. Finally, if she has to work harder after she shirks once, then she can also
be induced to work harder on path.
22Equivalently, a determinstic strategy profile is a profile of pure strategies that do not condition on the match

realizations.
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5.1 Assumptions about the Role of Enforcers

Enforcers can only punish producers: When allowing for multiple enforcers in each match (l ≥ 2),

we have assumed that enforcers can punish only producers and not other enforcers. Changing

this assumption by also letting enforcers punish each other would change very little about our

results. Specifically, one would redefine one-time enforcer punishment strategies to specify that,

if an enforcer fails to punish a deviant producer in period t, then in period t + 1 there is no

production and the deviant enforcer is punished, while cooperation resumes in period t + 2. This

changes the formula for y∗ from δ
1−δkf (x∗) to δ

1−δ (kf (x∗) + (l − 1) g (y∗)). (The formula for x∗

as a function of y∗ stays the same.) With this change, one-time enforcer punishment strategies

remain optimal whenever g′ (y) ≥ m for all y ∈ R+. The other parts of Theorem 3 require similar

small modifications. As this is a substantive result, we state and prove this modified theorem in

Appendix A.

Thus, all that changes when we allow enforcers to punish each other is that they themselves

are now incentivized by a mix of withdrawn cooperation and coercive punishment, rather than by

the breakdown of cooperation alone. In particular, whether enforcers can punish each other or not

does not affect the optimal mode of enforcement for producers, which is our main focus.

An alternative way of extending both the small group and large group models along these lines

would be to introduce a hierarchy of enforcers with K levels, where “level 1”enforcers can punish

producers, “level 2” enforcers can punish level 1 enforcers, and so on. The structure of one-time

enforcer punishment equilibria also extends to this setting in a natural way, where each enforcer is

incentivized by the threat of punishment from enforcers one level up, and the top-level enforcers are

incentivized by the threat of contagion among producers. This variant gives a more realistic model

of modern law enforcement: cooperation throughout society does not break down the moment a

low-level policeman fails to do his job, but only if this is followed by a breakdown of enforcement

at all higher levels.

Partial anonymity: In our large group model, producers choose how much to cooperate before

observing their partners’identities, while identities are revealed before enforcers act. Our results

also apply exactly if, alternatively, players are completely anonymous and their identities are never

revealed. We prefer our baseline assumptions because they emphasize that, even though enforcers

have the ability to identify and punish a deviator repeatedly, the optimal equilibrium involves only

a single round of punishment.

On the other hand, the assumption that players are anonymous at the cooperation stage plays

an important role in our analysis of the large group model. (Of course, this assumption is trivially

satisfied in the small group model, as without random matching there is no uncertainty as to one’s

partners’identities). Without this assumption, it may be possible to partially exclude a deviator
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from future cooperation by reducing the cooperation level in future matches she is a part of, without

simultaneously excluding the enforcers who punished her. This would then allow deviators to be

punished more harshly.

We note that all our perfect monitoring results can alternatively be derived by replacing partial

anonymity with the requirement that strategies are non-discriminatory (in the section of Section

4.2). Moreover, strongly symmetric strategies (which impose symmetric play at all histories, as in

Abreu (1986)) are necessarily non-discriminatory, so without anonymity one-time enforcer punish-

ment equilibria remain optimal in the class of strongly symmetric equilibria.

Separate roles for producers and enforcers: We have assumed that only some agents have the

ability to cooperate, and that other, distinct agents have the ability to punish. This implies that the

worst continuation play for enforcers is the withdrawal of cooperation, while the best continuation

play for enforcers is the most cooperative equilibrium path itself. Both of these features are needed

for stick-and-carrot equilibria to be optimal and to take the simple form of one-time enforcer

punishment equilibria. If all agents could both cooperate and punish, then the mechanics of the

model would be closer to those of Abreu (1986). As in Abreu, stick-and-carrot equilibria would

remain optimal in the class of strongly symmetric pure strategy equilibria, while globally optimal

equilibria would be more complex. Thus, our assumption that some agents specialize in production

or cooperation while others specialize in punishment is a deviation from standard models in a

direction that contributes to both realism and tractability.

5.2 Assumptions about Payoffs

Public goods versus bilateral cooperation: We have assumed that the benefits of cooperation are

“non-excludable”within a match, and thus have the flavor of a public good. An alternative version

of the large group model without this flavor is the following: players match in pairs and do not

observe whether their partner is a producer or an enforcer until the end of the period. Thus,

cooperation benefits only one’s (unique) partner, and at the time she chooses her level of cooperation

a producer does not know whether she is matched with another producer (whom she could profitably

cheat) or an enforcer (who would punish her if she cheated). All of our results directly translate to

this slightly modified setting.

Enforcer payoffs: Yet another interpretation of enforcer payoffs in our model is that enforcers

can impose a tax on producers’output,
∑
f (xi), either within their own match or throughout the

entire society. If an enforcer’s failure to punish a deviant producer leads to reduced cooperation,

this then reduces his future payoffs.

Ostracism: In practice, a major tool for sustaining cooperation in small groups is ostracism, or

the exclusion of deviators alone from the benefits of societal cooperation (Coleman, 1988, Ostrom,

1990, Ellickson, 1991, Greif, 1993, 2006). The model analyzed so far does not allow for ostracism,
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because it is not technologically feasible to exclude some players from the benefits of cooperation

without excluding everyone. When cooperation corresponds to directed actions (such as simple

favors or investments in a bilateral project) rather than undirected actions or the provision of

public goods from which all agents benefit, such exclusion becomes a possibility. In Appendix C,

we analyze a variant of both the small and large group models where producers have the option to

ostracize particular players. We show that all results from these sections apply directly, with the

modification that ostracism replaces repentance.

Enforcer misbehavior: In our model enforcer misbehavior takes the form of enforcers’not un-

dertaking costly punishments following a deviation by a producer. Though this is an important

consideration in some settings (e.g., motivating law enforcement to pursue powerful individuals, or

ensuring that they punish law-breakers who might offer them bribes to avoid such punishment),

an equally salient concern is the possibility that enforcers may misuse their positions to expropri-

ate citizens. Introducing this type of misbehavior would not complicate our analysis because our

equilibrium construction is already based on giving enforcers the strongest possible incentives to

carry out costly punishments. Therefore, if expropriating citizens is as observable as is failing to

punish, then the same construction that maximizes enforcers’ incentives to punish will minimize

their incentives to expropriate.

The specialized enforcement technology: The specialized enforcement technology g measures

how much disutility an enforcer must incur to impose a given level of disutility on a producer. This

is not to be interpreted as, say, the level of sophistication of a society’s instruments of torture, which

after all were remarkably advanced even in primitive societies. Rather, it should be interpreted as

the cost– and the risk– to enforcers of undertaking the entire process of investigating, pursuing,

apprehending, and punishing deviators. To the extent that this cost is less in modern societies than

in pre-modern societies, this interpretation suggests a reason why modern societies might tend to

rely more on specialized enforcement than community enforcement.

Furthermore, in a natural extension of the large group model where enforcers can monitor

multiple matches at the same time, increasing the number of matches monitored by each enforcer

would simply scale up the function g. Thus, another reason why specialized enforcement may be

more likely in modern societies is that modern technology allows each enforcer to monitor a greater

number of interactions at once.23

The possibility of transfers and fines: Our results are robust to allowing voluntary monetary

transfers from producers, for instance by having deviant producers pay fines to enforcers in lieu

of being punished. Indeed, as long as f ′ (x) ≥ 1 for all x, it can be checked that our results hold

without modification when transfers from producers are allowed. Intuitively, it is ineffi cient to ask

23Other types of monitoring improvements would have more complicated effects, which are beyond the scope of
our analysis.
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a producer to pay a fine rather than cooperating at a higher level. For example, if producers can

pay fines in a separate stage in between the cooperation stage and the punishment stage, they can

be asked to do so in equilibrium in lieu of being punished, but this does not increase the maximum

level of cooperation, and indeed simply pushes the threat of punishment by enforcers one more

step off the equilibrium path. (On the other hand, allowing monetary transfers from enforcers to

producers would give enforcers a “cooperative”role, undercutting the separation of roles between

producers and enforcers).

6 Conclusion

This paper has introduced a framework for comparing community (private-order) and specialized

(public-order) enforcement of pro-social behavior. The key feature of our approach is that we

endogenize specialized enforcement by requiring that enforcers have an incentive to carry out the

punishment of deviators. We thus require that both community and specialized enforcement are

ultimately based on “reputation.”

Our main results turn on a novel tradeoff: the withdrawal of future cooperation following a

transgression has a positive direct effect on producers’incentives to cooperate, but also a negative

indirect effect coming through the erosion of enforcers’incentives to punish. When the specialized

enforcement technology is relatively effective, this tradeoff is optimally resolved by going to the

extreme of pure enforcer punishments, where the future path of cooperation is completely unaf-

fected by producers’transgressions. All the same, the threat of contagion does play a critical role

even under pure enforcer punishments, as in our baseline model it is precisely this threat that gives

enforcers the necessary incentives to carry out punishments. A further implication of our analysis

is that community enforcement is more likely to emerge in groups with less effective enforcement

technologies, while groups with more effective technologies should rely on specialized enforcement.

We also illustrate that these results are unchanged when agents have the ability to ostracize (selec-

tively exclude) each other from the benefits of cooperation, and that partial versions of our results

remain valid under private monitoring.

The framework introduced in this paper could be developed in several promising directions.

First, we have considered the problem of endogenizing the number of specialized enforcers from the

perspective of a benevolent social planner (Theorems 2 and 4). One could alternatively analyze

the labor market equilibrium of this “occupational choice”problem. Such an exercise would bear

some resemblance to the “guns versus butter” tradeoff present in classic models of anarchy, such

as Skaperdas (1992), Grossman and Kim (1995), Hirshleifer (1995), and Bates, Greif, and Singh

(2002). One could also further extend the model in that direction by allowing “guns”to be used

for expropriating others as well as enforcing cooperation.
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Second, in a specialized enforcement equilibrium, the enforcers in our model can be interpreted

as either a proto-state institution or a non-state institution, such as a mafia. Several scholars,

notably Tilly (1985), have argued that states evolve from– or are in fact a form of– private provision

of law enforcement. An important question here is when we should expect specialized enforcers

to organize in a single institution rather than multiple collectives. While some of our results bear

on this question (for example, the results of Section 4.2 on optimal equilibria when enforcers share

information with each other), many other interesting questions could be addressed in future work.

These include the costs of mafia-like organizations as opposed to states, as well as the dynamics of

the process by which proto-states may be transformed into state institutions.

Third, another reason why specialized enforcement may be preferable to community enforcement

is the presence of noisy observations, whereby cooperative actions may appear as noncooperative.

As briefly discussed in Section 4.2, such noise may make contagion-like strategies prohibitively

costly. An analysis of the framework presented here under such richer information structures is an

interesting and important area for future work.

Finally, we have only briefly touched on the role of communication and other private actions

in supporting specialized enforcement. It would be interesting to analyze more systematically

how specialized enforcement (more generally, the legal system) affects the incentives of citizens to

cooperate not only with each other but also with state institutions.
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Appendix A: Proofs for Sections 2 and 3

Proof of Proposition 1

In the absence of enforcers, a producer’s minmax payoff is 0, so grim trigger strategies are an

optimal penal code (Abreu, 1988). That the level of cooperation is maximized by a constant path

of play then follows from concavity of f . This result is also the special case of Theorem 3 with

l = 0 and n = 1, replacing k with k + 1. �

Proof of Theorem 1

The theorem is the special case of Theorem 3 with l = 1 and n = 1. �

Proof of Theorem 2

The theorem is the special case of Theorem 4 with s = k + 1, k̄ = k, and n = 1. �

Proof of Theorem 3

Before proving the theorem, we observe that an enforcer punishment plus partial repentance equi-

librium with y = yE can exist only if yE ≤ y∗.

Lemma A1 If yE > y∗ then the system of equations (8) does not have a solution. That is, an

enforcer punishment plus partial repentance equilibrium with y = yE does not exist.

Proof. We wish to show that if yE > y∗, then for every x ∈ [0, x] the system of equations

x = lg (y) + δ (k − 1) [f (x)− f (x)]

y =
δ

1− δ kf (x)− δ
(
k − 1

n

)
[f (x)− f (x)]

does not have a solution with y = yE . Letting w = 1− f(x)
f(x) , this is equivalent to showing that, for

every w ∈ [0, 1], the system of equations

x = lg (y) + δ (k − 1)wf (x)

y =
δ

1− δ kf (x)− δ
(
k − 1

n

)
wf (x) (A1)

does not have a solution with y = yE . We will show that if yE > y∗, then for every w ∈ [0, 1] the

solution to this system has y ≤ y∗.
To see this, substitute for y to obtain the following equation for x as an implicit function of w:

lg

([
δ

1− δ k − δ
(
k − 1

n

)
w

]
f (x)

)
+ δ (k − 1)wf (x)− x = 0. (A2)
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Denote the left-hand side of (A2) by F (x,w). Note that F (x,w) is concave in x and satisfies

F (0, w) = 0 for all w ∈ [0, 1], so if F (x0, w) = 0 for x0 > 0 then ∂F
∂x |(x0,w) < 0. Hence, by the

implicit function theorem, the solution x to (A2) is differentiable as a function of w, and the sign

of dxdw equals the sign of
∂F
∂w . Next, note that

∂F

∂w
= δ (k − 1) f (x)

(
1− g′ (y)

m

)
,

where y is given by (A1). Therefore, dx
dw ≥ 0 if and only if y ≥ yE , and hence dy

dw ≤ 0 whenever

yE > y (noting that ∂y
∂x ≥ 0 and ∂y

∂w ≤ 0). Note also that (A1) coincides with the system defining

(x∗, y∗) when w = 0. Hence, if yE > y∗ then for every w ≥ 0 the solution to (A1) has y ≤ y∗.
Turning to the proof of the theorem, it is straightforward to check that the three strategy

profiles referenced in the theorem are equilibria. It remains to prove that x∗ (resp., x̌, x̃) is an

upper bound on each producer’s level of cooperation in any PBE when yFB ≥ y∗ (resp., yFB ≤ y̌,
yFB ∈ (y̌, y∗)). We break the proof into several steps.

Definitions and Preliminary Observations:

Fixing a PBE profile σ = (σi)i∈I , let u be the infimum continuation payoff of any producer

starting from the punishment stage at any history. In addition, let suppσi
(
ht
)
denote the support

of producer i’s action at history ht, and let

X̄ = sup
i,ht,xti∈suppσi(ht)

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
be the supremum expected present discounted level of cooperation ever taken by any producer at

any history.

A preliminary observation is that u > −∞ and X̄ < ∞. To see this, note that, as f is

bounded and an enforcer’s minmax payoff is 0, there is a finite upper bound ȳ ∈ R+ on the level

of punishment that an enforcer is ever willing to use in equilibrium.24 Since a producer always has

the option of taking action 0 at cost 0, this implies that u ≥ −lg (ȳ) > −∞. Given that there is
a finite lower bound on u, it follows that there is a finite upper bound on the level of cooperation

that a producer is ever willing to choose in equilibrium, so X̄ <∞.
Producer Incentive Compatibility:

24By the same argument leading to (A4) below, one such upper bound is limx→∞ δ
1−δkf (x).
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A necessary condition for producer i not to deviate to playing xi = 0 at history ht is that, for

all xti ∈ suppσi
(
ht
)
,

(1− δ)
∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩P\i

f
(
xt+τj

)
|ht, xti

− (1− δ)xti − δE
[
Xt+1
i |ht, xti

]

≥ (1− δ)E

 ∑
j∈Mt

i∩P\i

f
(
xtj
)
|ht
+ u,

whereM t+τ
i denotes player i’s period-t+ τ match (which is a random variable from the perspective

of period t). This is a necessary condition because the left-hand side is an upper bound on player

i’s equilibrium continuation payoff (as it assumes she is never punished in equilibrium), while the

right-hand side is a lower bound on player i’s continuation payoff if she deviates (as it assumes she

gets her lowest possible continuation payoff).25 Note that the distribution of xtj does not depend on

xti, so E
[∑

j∈Mt
i∩P\i

f
(
xtj

)
|ht, xti

]
= E

[∑
j∈Mt

i∩P\i
f
(
xtj

)
|ht
]
, and we can rewrite this necessary

condition as

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ δ (1− δ)

∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti

− u. (A3)

Using Enforcer Incentive Compatibility to Bound u:

Letting ytki denote enforcer k’s punishment action toward player i in period t (which, like x
t
i, is

a random variable), a necessary condition for enforcer k not to deviate to playing yki = 0 at history

ht is

ytki ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩P

f
(
xt+1+τ
j

)
|ht

 . (A4)

This is a necessary condition because an enforcer’s minmax payoff is 0, while her equilibrium

continuation payoff is at most (1− δ)
(
δ
∑∞

τ=0 δ
τE
[∑

j∈Mt+1+τ
k ∩P f

(
xt+1+τ
j

)
|ht
]
− ytki

)
, as this is

her continuation payoff if she does not punish anyone other than player i in period t and never

punishes anyone after period t.

Now, producer i’s continuation payoff at the punishment stage at history ht is at least

− (1− δ)E

 ∑
k∈Mt

i∩E

g
(
ytki
)
|ht
+ δ (1− δ)E

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht
+ δu,

25Technically, both expectations in this expression should also be conditioned on the event j ∈ M t+τ
i ∩ C\i.

However, because identities are concealed at the point where producers choose their actions, the distribution of xt+τj

conditional on this event equals its unconditional distribution. We therefore omit this conditioning throughout the
proof.
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as a producer always has the option of playing xi = 0 in period t + 1. Therefore, there exists a

producer i and a history ht such that

u ≥ − (1− δ)E

 ∑
k∈Mt

i∩E

g
(
ytki
)
|ht
+ δ (1− δ)E

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht
+ δu,

or equivalently u ≥ −E
[∑

k∈Mt
i∩E

g
(
ytki
)
|ht
]

+ δE
[∑

j∈Mt+1
i ∩P\i f

(
xt+1
j

)
|ht
]
. In particular, by

(A4) and the observation that the quantity E
[∑

j∈Mt+1+τ
k ∩P f

(
xt+1+τ
j

)
|ht
]
is the same for all

k ∈ E, we have

u ≥ −lg

δ ∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩P

f
(
xt+1+τ
j

)
|ht


+ δE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht
 . (A5)

Bounding u in terms of X̄:

By the definition of X̄, for every producer j, history ht+1, and level of cooperation xt+1
j ∈

suppσj
(
ht+1

)
, we have

xt+1
j ≤ 1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

]
. (A6)

We now consider three cases:

Case 1: This case applies if, after replacing xt+1
j on the right-hand side of (A5) with its upper

bound in (A6) for all j, the resulting argument of g is less than yE .

Case 2: This case applies if, after replacing xt+1
i on the right-hand side of (A5) with its upper

bound in (A6) and replacing xt+1
j with 0 for all j ∈ P\i, the resulting argument of g is greater than

yE .

Case 3: This case applies when Cases 1 and 2 do not apply. Note that, in this case, there exists

a unique value for the term E
[∑

j∈Mt+1
i ∩P\i f

(
xt+1
j

)
|ht
]
such that

δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+ δ2
∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]

+ δE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht
+ δ2

∞∑
τ=0

δτE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+2+τ
j

)
|ht
 = yE .

Call this value fE .

We now argue that, in Case 1, the bound (A5) can be relaxed to

u ≥ −lg
(

δ

1− δ kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
. (A7)
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Similarly, we argue that in Case 2, (A5) can be relaxed to

u ≥ −lg
((

δ

1− δ k − δ
(
k − 1

n

))
f
(
X̄
))

, (A8)

and in Case 3, (A5) can be relaxed to

u ≥ −lg
(
yE
)

+ δ (k − 1) f
(
X̄
)
− δ

1− δ kf
(
X̄
)

+ yE . (A9)

Start with Case 1. For every j ∈ P\i and k ∈ E, we have Pr
(
j ∈M t+1

k

)
= 1

n and

Pr
(
j ∈M t+1

i

)
= k−1

kn−1 , so the derivative of the right-hand side of (A5) with respect to x
t+1
j equals

−δl 1
ng
′ (y) f ′

(
xt+1
j

)
+ δ k−1

kn−1f
′
(
xt+1
j

)
for some number y. In Case 1, we have y ≤ yE whenever

xt+1
j′ is below its its upper bound in (A6) for all j′, so this derivative is non-positive. Thus, by

the fundamental theorem of calculus, replacing xt+1
j with its upper bound in (A6) for all j relaxes

(A5). The resulting lower bound equals

−lg

 δE
[∑

j∈Mt+1
k ∩P f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩P f

(
xt+2+τ
j

)
|ht
] 

+δE

 ∑
j∈Mt+1

i ∩P\i

f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
 . (A10)

We next derive an upper bound on the argument of g in (A10). Letting

Xj

(
ht+1

)
= (1− δ)

∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1

]
,

by the concavity of f and Jensen’s inequality we have

δE
[∑

j∈Mt+1
k ∩P f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩P f

(
xt+2+τ
j

)
|ht
]

≤ δE
[∑

j∈Mt+1
k ∩P f

(
1

1−δ
(
X̄ − δXj

(
ht+1

)))
|ht
]

+ δ2

1−δE
[∑

j∈Mt+2
k ∩P f

(
Xj

(
ht+1

))
|ht
]
.

Next, again by the concavity of f , the maximum of δf
(

1
1−δ

(
X̄ − δXj

(
ht+1

)))
+ δ2

1−δEf
(
Xj

(
ht+1

))
over Xj

(
ht+1

)
≤ X̄ is attained at Xj

(
ht+1

)
= X̄ for all j and ht+1. This gives an upper bound

on the argument of g in (A10) of δkf
(

1
1−δ

(
X̄ − δX̄

))
+ δ2

1−δkf
(
X̄
)

= δ
1−δkf

(
X̄
)
. On the other
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hand,

E

 ∑
j∈Mt+1

i ∩P\i

f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht


≥ E

 ∑
j∈Mt+1

i ∩P\i

f

(
1

1− δ X̄ −
δ

1− δ X̄
) = (k − 1) f

(
X̄
)
.

Combining these observations, we see that (A10) is lower-bounded by −lg
(

δ
1−δkf

(
X̄
))

+

δ (k − 1) f
(
X̄
)
. This yields (A7).

Next, consider Case 2. In this case, replacing xt+1
i with its upper bound in (A6) and replacing

xt+1
j with 0 for all j ∈ P\i relaxes (A5). The resulting lower bound equals

−lg

 1
n

[
δE
[
f
(

1
1−δ X̄ − δ

∑∞
τ=0 δ

τE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+ δ2∑∞
τ=0 δ

τE
[
f
(
xt+2+τ
i

)
|ht
]]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩P\i f

(
xt+2+τ
j

)
|ht
]  .

(A11)

As we have seen,

δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+ δ2
∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]
≤ δ

1− δ f
(
X̄
)
.

In addition, by concavity of f , Jensen’s inequality, and the definition of X̄,

δ2
∞∑
τ=0

δτE

 ∑
j∈Mt+2+τ

k ∩P\i

f
(
xt+2+τ
j

)
|ht

 ≤ δ2

1− δ

(
k − 1

n

)
f
(
X̄
)
.

As 1
n

δ
1−δ + δ2

1−δ
(
k − 1

n

)
= δ

1−δk − δ
(
k − 1

n

)
, this yields (A8).

Finally, consider Case 3. Here, replacing xt+1
i with its upper bound in (A6) and replacing

E
[∑

j∈Mt+1
i ∩P\i f

(
xt+1
j

)
|ht
]
with fE relaxes (A5). The resulting lower bound equals

−lg
(
yE
)

+ δfE

= −lg
(
yE
)
− δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]
− δ2

∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]

−δ2
∞∑
τ=0

δτE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+2+τ
j

)
|ht
+ yE .

As above, this bound can be relaxed to

−lg
(
yE
)
− δ

1− δ f
(
X̄
)
− δ2

1− δ (k − 1) f
(
X̄
)

+ yE ,
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which equals the right-hand side of (A9).

Finishing the Proof:

To finish the proof, we show that the maximum level of cooperation is always either x∗, x̌, or x̃,

and that if the maximum level of cooperation is x∗ (resp., x̌, x̃), then yE must be weakly greater

than y∗ (resp., weakly less than y̌, in between y̌ and y∗). This implies the desired result.

To begin, fix a sequence of equilibria converging to the maximum level of cooperation for

producer 1 (say).

Suppose that, for all ε > 0, there exists an equilibrium along the sequence yielding within ε

of the maximum level of cooperation for which Case 1 applies for some producer i and history ht.

Combining (A3) and (A7), it follows that, in this equilibrium for every player i, history ht, and

level of cooperation xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
δ

1− δ kf
(
X̄
))
− δ (k − 1) f

(
X̄
)

+ δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

(
δ

1− δ kf
(
X̄
))
− δ (k − 1) f

(
X̄
)

+ δ (k − 1) f
(
X̄
)

= lg

(
δ

1− δ kf
(
X̄
))

.

As X̄ = supi,ht,xti∈suppσi(ht) (1− δ)xti + δE
[
Xt+1
i |ht, xti

]
, we have X̄ ≤ lg

(
δ

1−δkf
(
X̄
))
. By the

definition of x∗, this implies that X̄ ≤ x∗. Furthermore, as E
[
X0
i |h0

]
≤ X̄, we have E

[
X0
i |h0

]
≤ x∗.

Thus, in this case x∗ is an upper bound on each player’s maximum equilibrium level of cooperation.

As we have seen that x∗ is supportable with one-time enforcer punishment strategies, this means

that x∗ equals each player’s maximum level of cooperation. Finally, if one-time enforcer punishment

strategies are optimal then yE ≥ y∗, as otherwise we could support more cooperation in enforcer

punishment plus partial repentance strategies with x = x− η for suffi ciently small η > 0 (recalling

from the proof of Lemma A1 that dx
dw > 0 if y > yE).

Next, suppose that, for all ε > 0, there exists an equilibrium along the sequence yielding

within ε of the maximum level of cooperation for which Case 2 applies for some producer and

history. Combining (A3) and (A8), we have, for every player i, history ht, and level of cooperation

xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

((
δ

1− δ k − δ
(
k − 1

n

))
f
(
X̄
))

+ δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

((
δ

1− δ k − δ
(
k − 1

n

))
f
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.
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As above, this gives X̄ ≤ lg
((

δ
1−δk − δ

(
k − 1

n

))
f
(
X̄
))

+ δ (k − 1) f
(
X̄
)
. By the definition of

x̌, this implies that X̄ ≤ x̌, and hence E
[
X0
i |h0

]
≤ x̌. Thus, in this case x̌ is an upper bound

on each player’s maximum equilibrium level of cooperation, and hence enforcer punishment plus

repentance is optimal. And, if these strategies are optimal, then yE ≤ y̌ as otherwise we could

support more cooperation in one-time enforcer punishment plus partial repentance strategies with

x = η for suffi ciently small η > 0 (recalling from the proof of Lemma A1 that dx
dw < 0 if y < yE).

Finally, suppose that, for all ε > 0, there exists an equilibrium along the sequence yielding

within ε of the maximum level of cooperation for which Case 3 applies for some producer and

history. Combining (A3) and (A9), we have, for every player i, history ht, and level of cooperation

xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
yE
)
− δ (k − 1) f

(
X̄
)

+
δ

1− δ kf
(
X̄
)
− yE + δ (1− δ)

∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

(
yE
)

+
δ

1− δ kf
(
X̄
)
− yE .

This gives X̄ ≤ lg
(
yE
)

+ δ
1−δkf

(
X̄
)
− yE . By the definition of x̃, this implies that X̄ ≤ x̃, and

hence E
[
X0
i |h0

]
≤ x̃. Thus, now x̃ is an upper bound on each player’s maximum equilibrium level

of cooperation, and one-time enforcer punishment plus partial repentance is optimal. By Lemma

A1, such an equilibrium exists only if yE ≤ y∗. Finally, these strategies can be optimal only if

yE ≥ y̌, as since x̃ ≥ x̌ we have

yE =

(
δ

1− δ k − δ
(
k − 1

n

))
f (x̃) + δ

(
k − 1

n

)
f (x) ≥

(
δ

1− δ k − δ
(
k − 1

n

))
f (x̃)

≥
(

δ

1− δ k − δ
(
k − 1

n

))
f (x̌) = y̌.

�

Proof of Theorem 4

Per-match social welfare with k producers per match and on-path cooperation x is

k ((s− 1) f (x)− x). Thus, assuming that the maximum level of cooperation is below the first-

best level, a suffi cient condition for setting k = s to maximize social welfare is that the maximum

(per producer) level of cooperation is maximized at k = s. The maximum level of cooperation

when k = s is given by the solution to x̂ = δ (s− 1) f (x̂). On the other hand, if k < s and

g′ (y) ≤
(
k−1
k− 1

n

)
1
s−k for all y (which is guaranteed by the assumptions that g

′ (y) ≤
(
k̄−1
k̄− 1

n

)
1
s−k̄ for
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all y and k ≥ k̄), then by Theorem 3 the maximum level of cooperation is given by the solution to

x = (s− k) g

(
δ

n
f (x) +

δ2

1− δ kf (x)

)
+ δ (k − 1) f (x) . (A12)

Thus, the planner prefers that all agents become producers if (A12) is maximized at k = s. In

turn, a suffi cient condition for this to hold is that the derivative of the right-hand side of (A12)

with respect to k is non-negative for all x. This derivative equals

(s− k) g′
(
δ

n
f (x) +

δ2

1− δ kf (x)

)
δ2

1− δ f (x)− g
(
δ

n
f (x) +

δ2

1− δ kf (x)

)
+ δf (x) .

As the first term is positive, a suffi cient condition for the whole derivative to be positive is δf (x) ≥
g
(
δ
nf (x) + δ2

1−δkf (x)
)
for all x, or, letting z = δf (x), z ≥ g

((
1
n + δ

1−δk
)
z
)
for all z. Since k ≤ s,

a suffi cient condition for this is z ≥ g
((

1
n + δ

1−δs
)
z
)
for all z. Finally, since g is concave with

g (0) = 0, a suffi cient condition is g′ (0) ≤ 1
1
n

+ δ
1−δ s

. Hence, if (9) holds, then the planner prefers

that all agents become producers.

For the second part of the theorem, it suffi ces to show that x̌ (with k = s − 1 and l = 1)

is greater than x̂. By the same argument as above, a suffi cient condition for this to hold is z <

g
((

1
n + δ

1−δk
)
z
)
for all z. Finally, this condition is satisfied if g′ (y) is suffi ciently large for all

y ∈ R+, or if g′ is bounded away from 0 and either δ is suffi ciently close to 1 or k is suffi ciently

large. �

Proof of Proposition 2

We prove the proposition for arbitrary l and n, so that it covers the large group setting as well.

Formally, we show that, for all ε > 0, there exists η > 0 such that x̂+ ε is an upper bound on

the maximum level of cooperation whenever g′ (y) < η for all y.

By (A5), the definition of X̄ (from the proof of Theorem 3), and Jensen’s inequality,

u ≥ −lg
(

δ

1− δ kf
(
X̄
))

. (A13)

Combining (A3) and (A13) yields that, for every player i, history ht, and level of cooperation

xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
δ

1− δ kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.

Again by the definition of X̄, whenever g′ (y) < η for all y we have

X̄ ≤
(

δ

1− δ klη + δ (k − 1)

)
f
(
X̄
)
.
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Recall that x̂ = δ (k − 1) f (x̂). In addition, since δ (k − 1) f (x)− x is concave and crosses 0 from

above at x = x̂, there exists ρ > 0 such that δ (k − 1) f ′ (x̂) < 1− ρ. Hence, as f is concave, for all
ε > 0 we have(

δ

1− δ klη + δ (k − 1)

)
f (x̂+ ε) ≤

(
δ

1− δ klη + δ (k − 1)

)(
f (x̂) + εf ′ (x̂)

)
≤

(
δ

1− δ klη + δ (k − 1)

)(
f (x̂) + ε

1− ρ
δ (k − 1)

)
= x̂+ ε (1− ρ) +

δ

1− δ klη
(
f (x̂) + ε

1− ρ
δ (k − 1)

)
.

For suffi ciently small η > 0, this is less than x̂+ ε. Thus,
(

δ
1−δklη + δ (k − 1)

)
f (x)− x crosses 0

to the left of x̂+ε, so X̄ ≤ x̂+ε. Finally, as E
[
X0
i |h0

]
≤ X̄, we have E

[
X0
i |h0

]
≤ x̂+ε. Therefore,

x̂+ ε is an upper bound on the maximum equilibrium level of cooperation. �

Theorem 3 when Enforcers Can Punish Each Other

Suppose the enforcers can punish each other. The modified definition of one-time enforcer punish-

ment strategies is as follows: On path, producers cooperate at level x∗. If a producer deviates, all

enforcers in her match punish her at level y∗, and play returns to the equilibrium path next period.

If an enforcer j deviates, then in the next period all producers shirk, all enforcers matched with

j next period punish him at level y∗, and j himself randomly punishes another enforcer at level
δ

1−δ (kf (x∗) + (l − 1) g (y∗)). Finally, define (x∗, y∗) by the system of the equations

x∗ = lg (y∗) ,

y∗ =
δ

1− δ (kf (x∗) + (l − 1) g (y∗)) .

Theorem 9 Suppose enforcers can punish other enforcers in addition to producers. If g′ (y) ≥ m

for all y ∈ R+, then one-time enforcer punishment strategies are optimal and the maximum level

of cooperation is x∗.

Proof (sketch). The argument is similar to the proof of Theorem 3. In particular, fixing a

PBE σ = (σi)i∈I , let ȳ be the greatest action in the support of any enforcer’s equilibrium strategy

at any history. As an enforcer can always take action 0, −δ (l − 1) g (ȳ) is now a lower bound on

each enforcer’s equilibrium continuation payoff at any history. Equation (A4) (“enforcer incentive

compatibility”) then becomes

ȳ ≤ δ
∞∑
τ=0

δtE

 ∑
j∈Mt+1+τ

k ∩P

f
(
xt+1+τ
j

)
|ht

+
δ

1− δ (l − 1) g (ȳ) .
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Carrying the new δ
1−δ (l − 1) g (ȳ) term throughout the proof of Theorem 3, we obtain the bounds

X̄ ≤ lg (ȳ) ,

ȳ ≤ δ

1− δ
(
kf
(
X̄
)

+ (l − 1) g (ȳ)
)

in Case 1 of the proof (which always applies when g′ (y) ≥ m for all y ∈ R+). With the modified

definition of (x∗, y∗), this implies that X̄ ≤ x∗. Thus, x∗ is an upper bound on each player’s

maximum level of cooperation.
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Appendix B (Not-For-Publication): Proofs for Section 4

Proof of Theorem 5

There are two steps. First, we derive a suffi cient condition for one-time enforcer punishment

strategies with cooperation level x∗ and punishment level y∗ to form a PBE strategy profile (Lemma

B1). We then show that, under the conditions of the theorem, this suffi cient condition is satisfied,

and one-time enforcer punishment strategies support greater cooperation than contagion strategies.

To state the suffi cient condition for existence, we require some notation. Define the set D (τ , t, i)

recursively by

D (τ , t, i) = ∅ if τ ≤ t,

D (t+ 1, t, i) = P ∩ {j : ∃k ∈ I such that lj,k,t = 1 and k ∈Mi} ,

D (τ + 1, t, i) = P ∩
{

j : ∃k, k′ ∈ P such that
lj,k,τ = 1 and k′ ∈Mk ∩D (τ , t, i)

}
if τ ≥ t+ 1.

Under contagion strategies, if producer i deviates in period t, then D (τ , t, i) is the set of producers

in the infected phase in period τ . Note that the probability distribution of D (τ , t, i) is the same as

the probability distribution of D (τ − t) ≡ D (τ − t, 0, 1) for all i ∈ P and τ ≥ t. Let dt ≡ E [|D (t)|].
Similarly, define the set Q (τ , t, i) recursively by

Q (τ , t, i) = ∅ if τ ≤ t,

Q (t+ 1, t, i) = {j : ∃k ∈ I such that lj,k,t = 1 and k ∈Mi} ,

Q (τ + 1, t, i) =

{
j : ∃k, k′, k′′ ∈ I such that

lj,k,τ = 1, k′ ∈Mk ∩ P ∩Q (τ , t, i) , k′′ ∈Mk ∩ E ∩Q (τ , t, i)

}
if τ ≥ t+ 1.

Under one-time enforcer punishment strategies, if producer i deviates in period t and the corre-

sponding enforcer j ∈ Mi fails to punish her, then Q (τ , t, i) is the set of players in the infected

phase in period τ . Note that the probability distribution of Q (τ , t, i) is the same as the probability

distribution of Q (τ − t) ≡ Q (τ − t, 0, 1) for all i and τ ≥ t. Let qt ≡ E [|Q (t) ∩ P |].
Finally, define the set Z (τ , t, i) by

Z (τ , t, i) = ∅ if τ ≤ t,

Z (t+ 1, t, i) = {j : ∃k ∈ I such that lj,k,t = 1 and k ∈Mi} ,

Z (τ + 1, t, i) =

{
j : ∃k, k′ ∈ I such that

lj,k,τ = 1 and k′ ∈Mk ∩ Z (τ , t, i)

}
if τ ≥ t+ 1.

The set Z (τ , t, i) is the set of “infected”players in period τ if an infection process starts in period t

in matchMi and spreads through both producers and enforcers (rather than only through producers,

as is the case with contagion strategies). Let Z (t) ≡ Z (t, 0, i) and zt ≡ E [Z (t) ∩ P ].

B-1



Note that the distribution of |D (t)| first-order stochastically dominates the distribution of
|Q (t) ∩ P |, as for every realization of the monitoring technology there are more infected producers
with contagion strategies than with one-time enforcer punishment strategies. Similarly, the distri-

bution of |Z (t) ∩ P | first-order stochastically dominates the distribution of |D (t)|. In particular,
zt ≥ dt ≥ qt for all t.

The formulas for x̂ and x∗ as functions of dt and qt are given in the text. In addition, let

ẋ = l (1− δ)
∞∑
t=0

δt
k − 1

kn− 1
(zt − 1) f (ẋ) .

Thus, if l = 1, then ẋ is the greatest level of cooperation that could be sustained with contagion

strategies if contagion spread through the process Z (t) rather than D (t). Otherwise, ẋ is the level

of cooperation that could be sustained when the benefits of cooperation lost through contagion are

scaled up by a factor of l.

Our suffi cient condition for existence is as follows:

Lemma B1 If x∗ ≥ ẋ, then the one-time enforcer punishment strategy profile with cooperation

level x∗ and punishment level y∗ is a PBE strategy profile.

Proof. Let the off-path beliefs be that any zero-probability action is viewed as a deviation, rather

than a response to an earlier deviation. We check sequential rationality first in the normal state

and then in the infected state.

Given our specification of off-path beliefs, whenever a player is in the normal state, she believes

that all of her opponents are also in the normal state. Hence, playing xi = x∗ is optimal for

producers, as deviating can save a cost of at most x∗ but incurs a punishment of lg (y∗) = x∗. In

addition, if an enforcer deviates when he is supposed to play yji = 0, this incurs an instantaneous

cost but yields no future benefit. Finally, if an enforcer deviates when he is supposed to play

yji = y∗, this saves a cost of at most y∗ and leads to lost future benefits of
∑∞

t=0 δ
t qt
n f (x∗) ≥ y∗.

It remains to consider players’incentives in the infected state. For enforcers, note that whenever

an enforcer is in the infected state, he believes that at least k producers are also in the infected state

(namely, the producers with whom he was matched in the period when he became infected). As

these producers will never cooperate, deviating from yji = 0 to yji = y∗ (which is the only tempting

deviation) incurs a cost of y∗ and yields future benefits worth strictly less than
∑∞

t=0 δ
t qt
n f (x∗) < x∗.

So enforcers’off-path play is optimal.

Finally, for a producer i in period t, the only tempting deviation is to xi,t = x∗. If every enforcer

in M t
i is in the normal state, then every player enters period t + 1 in the same state regardless of

producer i’s choice of xi,t. Hence, in this case, producer i is indifferent between playing xi,t = 0

(and incurring a punishment of lg (y∗) = x∗) and playing xi,t = x∗. On the other hand, suppose

B-2



at least one enforcer in M t
i is in the infected state. If there is also at least one other producer

j ∈ M t
i \ {i} in the infected state, then again every player enters period t + 1 in the same state

regardless of xi,t, and in this case producer i strictly prefers playing xi,t = 0 to playing xi,t = x∗

(as now playing xi,t = 0 incurs a punishment of at most (l − 1) g (y∗)). The remaining case is when

at least one enforcer in M t
i is in the infected state, but all other producers j ∈ M t

i \ {i} are in the
normal state. In this case, producer i can slow the spread of contagion by playing xi,t = x∗, and

we must verify that she does not have an incentive to do so.

To see this, let rτ denote the number of producers who do enter the infected state by period τ

when producer i plays xi,τ = 0 for all τ ∈ {t, . . . , τ}, but do not enter the infected state by period
τ when producer i plays xi,t = x∗ and xi,τ = 0 for all τ ∈ {t+ 1, . . . , τ}. The difference between
producer i’s continuation payoff from playing xi,t = x∗ as opposed to xi,t = 0 (and subsequently

playing xi,τ = 0) is then equal to (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1E [rτ ] f (x∗). As producer i may be punished

for playing xi,t = 0 by at most l− 1 enforcers (as we are assuming that at least one of her enforcers

is infected), to show that playing xi,t = 0 is optimal, it suffi ces to show that

x∗ ≥ (l − 1) g (y∗) + (1− δ)
∞∑
τ=0

δτ
k − 1

kn− 1
E [rτ ] f (x∗) . (B1)

We will show below that E [rτ ] ≤ zτ for all τ . This will imply (B1) because, recalling

that ẋ = l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1zτf (ẋ) by definition, the fact that x∗ ≥ ẋ implies that x∗ ≥

l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1zτf (x∗), and then E [rτ ] ≤ zτ for all τ implies that this lower bound exceeds

l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1E [rτ ] f (x∗). Combining this bound with x∗ = lg (y∗) yields (B1).

We now show that E [rτ ] ≤ zτ for all τ . For any subset of players S ⊆ I, define Q (τ , t, S) by

Q (τ , t, S) = ∅ if τ < t

Q (t, t, S) = S

Q (τ + 1, t, S) =

{
j : ∃k, k′, k′′ ∈ I such that

lj,k,τ = 1, k′ ∈Mk ∩ P ∩Q (τ , t, S) , k′′ ∈Mk ∩ E ∩Q (τ , t, S)

}
if τ ≥ t.

Note that if Q̃ 3 i is the set of infected players at the beginning of period t, then when i plays

xi,t′ = 0 for all t′ ∈ {t, . . . , τ} the set of infected players at the beginning of period τ is Q
(
τ , t, Q̃

)
,

while when i plays xi,t = x∗ and xi,t′ = 0 for all t′ ∈ {t+ 1, . . . , τ} the set of infected players at the
beginning of period τ is Q

(
τ , t+ 1, Q

(
t+ 1, t, Q̃\ {i}

)
∪ {i}

)
. Hence,

rτ =
∣∣∣(Q(τ , t, Q̃) \Q(τ , t+ 1, Q

(
t+ 1, t, Q̃\ {i}

)
∪ {i}

))
∩ P

∣∣∣ .
We show that, for all τ > t and for every subset of players S 3 i,

Q (τ , t, S) \Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ⊆ Z (τ , t, {i}) . (B2)
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This implies that E [rτ ] ≤ E [|Z (τ , t, i)| ∩ P ] = zτ , completing the proof.

The proof of (B2) is by induction on τ . For the τ = t+ 1 case, we have

Q (t+ 1, t, S) \Q (t+ 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) = Q (t+ 1, t, S) \ (Q (t+ 1, t, S\ {i}) ∪ {i}) ,

which is clearly contained in Z (t+ 1, t, {i}). Suppose now that (B2) holds for some τ > t. We

then have

Q (τ , t, S) ⊆ Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, {i}) ,

so

Q (τ + 1, t, S) = Q (τ + 1, τ ,Q (τ , t, S))

⊆ Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, i)) .

On the other hand,

Q (τ + 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) = Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i})) .

Hence,

Q (τ + 1, t, S) \Q (τ + 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i})

⊆ Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, i))

\Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i})) ,

and this set is clearly contained in Z (τ + 1, τ , Z (τ , t, {i})) = Z (τ + 1, t, {i}). Thus, (B2) holds for
τ + 1, so by induction it holds for all τ > t.

We now complete the proof of Theorem 5. Recall that ẋ ≥ x̂. Thus, by Lemma B1, to show

that one-time enforcer punishment strategies form a PBE strategy profile and support greater

cooperation than contagion strategies, it suffi ces to show that x∗ ≥ ẋ.
For the first part of the theorem, note that lg

(∑∞
t=0 δ

t qt
n f (x)

)
− x crosses 0 from above at

x = x∗. Therefore,

lg′

( ∞∑
t=0

δt
qt
n
f (x∗)

) ∞∑
t=0

δt
qt
n
f ′ (x∗) < 1.

Thus, if g′ (y) ≥ ḡ for all y then f ′ (x∗) < n
lḡ
∑∞
t=0 δ

tqt
. As f is increasing, concave, and bounded,

f ′ (x∗) is positive, non-increasing, and goes to 0 as x∗ → ∞. Hence, x∗ → ∞ as ḡ → ∞. On the
other hand, ẋ is finite and independent of ḡ, so if ḡ is suffi ciently high then x∗ > ẋ.

For the second part, as zt can never exceed kn, ẋ is bounded from above by the greatest solution

to x = l (k − 1) f (x), which is finite as f is bounded. On the other hand, limt→∞ qt = kn, so if

limy→∞ g (y) = ∞ then limδ→1 lg
(∑∞

t=0 δ
t qt
n f (x)

)
− x = ∞ for all x > 0. Hence, x∗, the greatest
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root of lg
(∑∞

t=0 δ
t qt
n f (x)

)
− x, goes to infinity as δ → 1. �

Proof of Theorem 6

For one-time enforcer punishment strategies, the proof is similar to the proof of Lemma B1, with

the following differences:

First, the reason why punishments of up to δ
1−δkf (x∗) = y∗ are incentive-compatible for en-

forcers is that, if an enforcer in the normal state deviates when he is supposed to play yji = y∗, he

then loses all future benefits of cooperation (recall that a player in the normal state believes that

all of her opponents are also in the normal state). To see this, note that his partners in the next

period will observe his deviation and will therefore play xi = 0, and– since the enforcer will then

be in the infected state– he will play yji = 0. Hence, his partners in the period after next will also

play xi = 0, and so on.

Second, for a producer in the infected state, the only tempting deviation is to xi = x∗. This is

clearly unprofitable if all of her enforcers are in the normal state, as it incurs a cost of lg (y∗) = x∗

and does not affect her continuation payoff. If, instead, at least one of her enforcers is in the infected

state, then it is unprofitable because the fact that x∗ ≥ ẋ implies that x∗ ≥ lδ (k − 1) f (x∗), and

therefore x∗ ≥ (l − 1) g (y∗) + δ (k − 1) f (x∗).

The proof for contagion strategies is simpler and is omitted. �

Proof of Theorem 7

For existence, the only difference from the proof of Theorem 6 is that, with informed enforcers,

whenever a producer is in the infected state she believes that every enforcer in her match is also in

the infected state. The condition that x∗ ≥ ẋ is thus no longer required.
The proof that x∗ is an upper bound on each producer’s level of cooperation with informed

enforcers follows the proof of Theorem 3, with one key additional step. In particular, if we follow

the proof of Theorem 3 while conditioning on private rather than public histories where appropriate,

as well as conditioning on the realizations of the matching technology, we arrive at the following

analogue of inequality (A5):

u ≥ −lE

g
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩P

E
[
f
(
xt+1+τ
j

)
|htk, j ∈M t+1+τ

k

] |hti


+δE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|hti, j ∈M t+1

i

 .
(Here, htk is the private history of the enforcer k in match M

t
i , which equals h

t as enforcers are per-

fectly informed.) As enforcers are perfectly informed, and thus in particular have finer information
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than producers, we have

Eht+1j

[
σt+1
j

(
ht+1
j

)
|hti, j ∈M t+1

i

]
= Eht

[
Eht+1j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

i

]
|hti
]
.

By non-discrimination,

Eht+1j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

i

]
= Eht+1j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

k

]
.

Hence, we have

u ≥ −lE

g
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩P

E
[
f
(
xt+1+τ
j

)
|ht, j ∈M t+1+τ

k

] |hti


+δE

E
 ∑
j∈Mt+1

k ∩P\i

f
(
xt+1
j

)
|ht, j ∈M t+1

k

 |hti
 . (B3)

For any producer j∗ 6= i and any history ht+1
j∗ , replacing σj∗

(
ht+1
j∗

)
with σj∗

(
ht+1
j∗

)
+ ε in the

right-hand side of (B3) and differentiating with respect to ε yields

−δ l
n
E
[
f ′
(
xt+1
j∗ |h

t+1
j∗

)]
Pr
(
ht+1
j∗ |h

t
i

)
E

g′
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩P

E
[
f
(
xt+1+τ
j

)
|ht, j ∈M t+1+τ

k

] |hti


+δ
k − 1

kn− 1
E
[
f ′
(
xt+1
j∗ |h

t+1
j∗

)]
Pr
(
ht+1
j∗ |h

t
i

)
.

The assumption that g′ (y) ≥ m for all y implies that the derivative is non-positive for all ht+1
j∗ .

Thus, a lower bound on (B3) is obtained by setting xt+1
j equal to its upper bound in (A6) for all

j, as in Case 1 of the proof of Theorem 3. The remainder of the argument is identical to the proof

of Theorem 3. �

Proof of Proposition 3

Start with incentive compatibility for the enforcers. Whenever an enforcer is asked to punish, he

believes that cooperation will return to x1 forever if he punishes, while contagion will start if he

fails to punish. Thus, his incentive compatibility condition is

y ≤ δ

1− δ2f (x1) =
.1

1− .12
(

100
√

493.830
)
≈ 493.8286.

So he is willing to punish at level y = 493.828 whenever he sees a producer deviation.

Now turn to incentive compatibility for the producers. We start with incentives to exert effort

x1, x2, and x3, rather than deviating and choosing effort 0.

If a producer shirks when she is supposed to play x3, she is punished at level y and starts
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contagion with probability 1
3 (while returning to her equilibrium payoffof f (x1)−x1 with probability

2
3). Her contagion payoff is at most

2
3f (x1), as this would be her payoff if the contagion never

reached the other two producers and she was never punished in the future. Thus, a suffi cient

condition for incentive compatibility here is

x3 ≤ y +
δ

3

(
f (x1)− x1 −

2

3
f (x1)

)
= 493.828 +

.1

3

(
100
√

493.830

3
− 493.830

)
≈ 502.0584.

So x3 = 502.058 is incentive-compatible.

If a producer shirks when she is supposed to play x2, she is punished at level y and faces the

additional “punishment”of having to play x3 rather than x1 when matched with the same producer

partner tomorrow. Thus, her incentive compatibility condition is

x2 ≤ y +
δ

3
(x3 − x1) = 493.828 +

.1

3
(502.058− 493.830) ≈ 494.1023.

So x2 = 494.102 is incentive-compatible.

Finally, if a producer shirks when she is supposed to play x1, she is punished at level y and

also has to play x2 rather than x1 tomorrow with probability 1
3 . Thus, her incentive compatibility

condition is

x1 ≤ y +
δ

3
(x2 − x1) = 493.828 +

.1

3
(494.102− 493.830) ≈ 493.8371.

So x1 = 493.830 is incentive-compatible.

We also have to check a couple more incentive compatibility conditions. In particular, we have

to show that a producer does not want to deviate to playing x1 rather than x2 or x3 (which avoids

direct punishment but still risks starting contagion); and we have to show that a producer is willing

to go through with contagion (play x = 0) when she is supposed to.

A suffi cient condition for playing x3 rather than x1 when x3 is called for is:

x3 − x1 ≤
δ

3

(
f (x1)

3
− x1

)
≈ 8.2304.

As x3 − x1 = 8.228, this is satisfied.

A suffi cient condition for playing x2 rather than x1 when x2 is called for is:

x2 − x1 ≤
δ

3
(x3 − x1) ≈ 0.2743

As x2 − x1 = 0.272, this is also satisfied.

As for the incentives to carry out contagion, note that the only reasons to work today are to

avoid punishment and to encourage others to work in the future. Working today makes enforcers

less likely to enter the contagion phase (i.e., stop punishing), which is bad for producers. So an
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upper bound on the present value of reduced punishments from working is the value of reducing

punishments in the current period only. As at least one other producer is also in the contagion

phase, this value of reduced punishments is at most 2
3y (as enforcers do not punish when both

producers shirk). Finally, working can prevent another producer from entering the contagion phase

only if this is the third straight time that the same matches have realized, and the two infected

producers are in difference matches. In this case, the other producer in the other match will get

infected no matter what in the current period, so working keeps at most one other producer out of

the contagion phase. An upper bound on the value of this is 1
3δf (x1). Hence, a suffi cient condition

for carrying out contagion is

x1 ≥ δ
f (x1)

3
+

2

3
y ≈ 403.2930.

Since x1 = 493.830, carrying out contagion is incentive-compatible.

We now describe how the example would have to be modified if enforcers also observed the

outcomes of their partners’most recent matches. The reason why some modification is needed is

that the counterexample rests on there being some history where, if a producer shirks, the other

producer in her match knows that this is the third straight time she has shirked, while the enforcer

does not. If enforcers observe the outcomes of their partners’last histories, then a “three strikes

and you’re out”strategy profile is not enough to generate such a history. For example, if we label

the two enforcers A and B, if a producer’s match history is ABA then enforcer A will see that she

shirked three times in a row.

To restore the counterexample, consider a “five strikes and you’re out”strategy profile, where

contagion starts only if a producers shirks five times in a row and her match history for the first

four matches is either AABB or BBAA. With such a match history, the fifth enforcer the producer

meets surely will not know that she shirked five times in row. �

Proof of Theorem 8

One-time enforcer punishment strategies are clearly deterministic and satisfy Stability. It remains

only to show that x∗ is an upper bound on each player’s maximum level of cooperation in any

deterministic equilibrium satisfying Stability.

Under Stability, a necessary condition for producer i not to have a profitable one-shot deviation

in period t in a deterministic equilibrium with equilibrium path
(
xτi , y

τ
ji

)τ∈{0,1,...}
i∈P,j∈E

is

∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩P\i

f
(
xt+τj

)− ∞∑
τ=0

δτxt+τi

≥ −E

 ∑
k∈Mt

i∩E

g
(
ytki
)
|xti = 0

+
∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩P\i

f
(
xt+τj

)− δ ∞∑
τ=0

δτxt+1+τ
i ,
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or equivalently

xti ≤ E

 ∑
k∈Mt

i∩E

g
(
ytki
)
|xti = 0

 . (B4)

Next, under Stability, (A4) becomes

ytki ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩P

f
(
xt+1+τ
j

) . (B5)

Let x̄ = supi,t x
t
i, and note that x̄ < ∞ as in the proof of Theorem 3. Combining (B4) and (B5)

then yields x̄ ≤ lg
(

δ
1−δkf (x̄)

)
. By definition of x∗, this implies that x̄ ≤ x∗. Hence, x∗ is an upper

bound on each player’s maximum equilibrium level of cooperation. �

B-9



Appendix C (Not-For-Publication): Ostracism

We now show how ostracism can be introduced into the small and large group models of Sections

2 and 3. We demonstrate that this does not affect our main results on the role of specialized

enforcement and the optimality of one-time enforcer punishment strategies, which are now combined

with ostracism.

C1 Small Group Model

In the small group model of Section 2, suppose that, when producer i chooses her period t cooper-

ation level xti, she also chooses an ostracism level wti ∈ [0, 1], as well as a set of players to ostracize.

Players ostracized by producer i receive benefit only

(
1− wti

)
f
(
xti
)

from producer i’s cooperation in period t, while players not ostracized by producer i receive benefit

(
1− γwti

)
f
(
xti
)
,

where γ ∈ [0, 1] is a parameter measuring the effi ciency cost of ostracism. Thus, if γ = 1 then, as

in the main model, producer i must always provide the same benefit to every other player; while

if γ = 0 then producer i can completely exclude player j from the benefits of her actions without

reducing the benefit to player k.

When ostracism is available, there is a simple way of improving on the performance of enforcer

punishment plus repentance strategies: in the period following a producer deviation, rather than

having all other producers stop cooperating, have them continue to cooperate while fully ostracizing

the deviator. This leads to the following definition of enforcer punishment plus ostracism strategies.

Definition 4 A one-time enforcer punishment plus ostracism strategy profile is characterized by

cooperation level x, a punishment level y, and an ostracism level w, and can be represented by the

following automaton:

There are k + 2 states: normal, punishment, and i-ostracizing, for each i 6= 1. Play in these

states is as follows:

Normal state: Each producer i plays xi = x. If all producers i play xi = x, then the enforcer

plays yi = 0 for all producers i. If, instead, some producer i plays xi 6= x, then the enforcer plays

yi = y and plays yi′ = 0 for all producers i′ 6= i.

Punishment state: Players always take action 0.

i-ostracizing state: Producer i plays xi = x. Producers i′ 6= i play xi′ = x and ostracize player
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i at level w. If all producers play x, then the enforcer plays yi′ = 0 for all producers i′. If producer

i′ plays xi′ 6= x, then the enforcer plays yi′ = y and plays yi′′ = 0 for all producers i′′ 6= i′.

Players start in the normal state. In the normal state, if some producer i plays xi 6= x and the

enforcer then plays yi = y, players transition to the i-ostracizing state. If some producer i plays

xi 6= x and the enforcer plays yi 6= y, then players transition to the punishment state.

In the i-ostracizing state, players transition to the normal state if all producers play x. If some

producer i′ plays xi′ 6= x and the enforcer plays yi′ = y, then players transition to the i′-ostracizing

state. If some producer i′ plays xi′ 6= x and the enforcer plays yi′ 6= y, then players transition to

the punishment state.

The punishment state is absorbing.

In analogy to repentance strategies, full ostracism will refer to the special case where w = 1,

and partial ostracism to the case where w ∈ (0, 1). The maximum levels of cooperation and

punishment that can be sustained with enforcer punishment plus full ostracism strategies can now

be characterized as

x̌ = g (y̌) + δ (k − 1) f (x̌)

y̌ =

(
δ

1− δ k − δ (k − 1) γ

)
f (x̌) .

Notice that the difference between this system of equations and the system (2) is the presence

of the γ term, reflecting the fact that the future benefits from cooperation lost to the enforcer

when he fails to punish a deviant producer are now equal to
(

δ
1−δk − δ (k − 1) γ

)
f (x̌) rather than(

δ
1−δk − δ (k − 1)

)
f (x̌).

When ostracism is unavailable, withdrawing a unit of benefit from future cooperation for a

deviant producer also withdraws one unit of benefit for the enforcer. With ostracism, it is now

possible to withdraw a unit of benefit for the deviator while withdrawing only γ units of benefit

for the enforcer. The relevant notion of the “effi cient”level of punishment is thus given by

yE (γ) =


∞ if limy→∞ g′ (y) ≥ 1

γ

(g′)−1
(

1
γ

)
if g′ (0) > 1

γ > limy→∞ g′ (y)

0 if g′ (0) ≤ 1
γ

 .

This suggests that the system of equations analogous to (3) now becomes

x̃ = g
(
yE (γ)

)
+ δ (k − 1)wf (x̃)

yE (γ) =

(
δ

1− δ k − δ (k − 1) γw

)
f (x̃) . (C1)

The generalization of Theorem 1 when ostracism is available is as follows.
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Theorem C1 Suppose the players can employ ostracism with effi ciency cost γ.

If yE (γ) ≥ y∗, one-time enforcer punishment strategies are optimal, and the maximum level of

cooperation is x∗.

If yE (γ) ≤ y̌, one-time enforcer punishment plus full ostracism strategies are optimal, and the

maximum level of cooperation is x̌.

If yE (γ) ∈ (y̌, y∗), one-time enforcer punishment plus partial ostracism strategies are optimal,

and the maximum level of cooperation is x̃.

Proof. The theorem is the special case of Theorem C2 with l = 1 and n = 1.

In particular, if g′ (y) ≥ 1
γ for all y ∈ R+ then it is optimal to rely on one-time enforcer

punishment strategies and avoid using ostracism altogether. If, instead, g′ (y) ≤ 1
γ for all y ∈ R+,

then it is optimal to combine enforcer punishments with ostracism.

C2 Large Group Model

Consider now a version of the large group model of Section 3 where players can employ ostracism

with an effi ciency cost of γ. Differently from the small group setting where the deviator could be

ostracized directly, in the large group model this type of ostracism is not feasible because producers

choose their level of cooperation without knowing their partners’identities (“partial anonymity”).

As a result, ostracism will now take the form of all producers (except the deviator) ostracizing all

other producers following a deviation. Put differently, ostracism in the large group setting will take

the form of “group ostracism,”rather than the “individual ostracism”in the small group setting.

In what follows, let

x̌ = lg (y̌) + δ (k − 1) f (x̌)

y̌ =

(
δ

1− δ k − δ
(
k − 1

n

)
γ

)
f (x̌) .

Also, let

yE (γ) =


∞ if limy→∞ g′ (y) ≥ m/γ

(g′)−1 (m/γ) if g′ (0) > m/γ > limy→∞ g′ (y)
0 if g′ (0) ≤ m/γ

 ,

and let

x̃ = lg
(
yE (γ)

)
+ δ (k − 1)wf (x̃)

yE (γ) =

(
δ

1− δ k − δ
(
k − 1

n

)
γw

)
f (x̃) .

The definition of (x∗, y∗) is unchanged. In addition, for the reasons we have just explained, we

modify the definition of one-time enforcer punishment plus ostracism strategies to specify that,

in the period following a producer deviation, all producers except the deviator ostracize all other
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producers, rather than only the deviator.

With these modifications (and the modified interpretation of ostracism), Theorem C1 generalizes

verbatim to large groups.

Theorem C2 Suppose the players can employ ostracism with effi ciency cost γ.

If yE (γ) ≥ y∗, one-time enforcer punishment strategies are optimal, and the maximum level of

cooperation is x∗.

If yE (γ) ≤ y̌, one-time enforcer punishment plus ostracism strategies are optimal, and the

maximum level of cooperation is x̌.

If yE (γ) ∈ (y̌, y∗), one-time enforcer punishment plus partial ostracism strategies are optimal,

and the maximum level of cooperation is x̃.

Proof. It is straightforward to see that the strategy profiles described in the theorem are equilibria.

We prove that x∗ (resp., x̌) is an upper bound on the maximum level of cooperation when yE ≥
y∗ (γ) (resp., yE ≤ y̌ (γ)). The argument closely parallels the proof of Theorem 3, so we omit some

details.

We first observe that a one-time enforcer punishment plus partial ostracism equilibrium with

y = yE can exist only if yE ≤ y∗.

Lemma C1 If yE > y∗ then the system of equations (C1) does not have a solution. That is, an

enforcer punishment plus partial ostracism equilibrium with y = yE does not exist.

Proof. Analogous to the proof of Lemma 3.

Turning to the proof of the theorem, the substance of the result is again that x∗ (resp., x̌, x̃)

is an upper bound on each producer’s level of cooperation in any PBE when yFB ≥ y∗ (resp.,

yFB ≤ y̌, yFB ∈ (y̌, y∗)). We break the proof into steps analogous to the proof of Theorem 3.

Using Incentive Compatibility to Bound u:

For each producer i and player j, let

f̃ji
(
xti, w

t
i

)
=


f
(
xti
)
if i does not ostracize anyone in period t(

1− wtiγ
)
f
(
xti
)
if i ostracizes someone other than j in period t(

1− wti
)
f
(
xti
)
if i ostracizes j in period t

 .

As in the proof of Theorem 3, a necessary condition for producer i not to deviate to playing xi = 0

at history ht is that, for all xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ δ (1− δ)

∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

i ∩P\i

f̃ij

(
xt+1+τ
j , wt+1+τ

j

)
|ht, xti

− u.
(C2)
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Similarly, a necessary condition for enforcer k not to deviate to playing yki = 0 at history ht is

ytki ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩P

f̃kj

(
xt+1+τ
j , wt+1+τ

j

)
|ht

 . (C3)

Combining these conditions as in the proof of Theorem 3, there must exist a producer i and a

history ht such that

u ≥ −lg

δ ∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩P

f̃kj

(
xt+1+τ
j , wt+1+τ

j

)
|ht


+δE

 ∑
j∈Mt+1

i ∩P\i

f̃ij

(
xt+1
j , wt+1

j

)
|ht
 .

(C4)

Bounding u in terms of X̄:

By the definition of X̄, for every producer j, history ht+1, and level of cooperation xt+1
j ∈

suppσj
(
ht+1

)
, we have

xt+1
j ≤ 1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

]
. (C5)

Now, in order to reduce the right-hand side of (C4) as much as possible, it is optimal to replace

xt+1
j with its upper bound in (C5) for all j. This follows because the right-hand side of (C4) is

decreasing in the f̃kj terms and increasing in the f̃ij terms, so it is minimized when, for a given set

of values of the f̃kj terms, the f̃ij terms are reduced as far as possible. This is achieved when only

the producers (and not the enforcers) are ostracized in period t, in which case

f̃kj

(
xt+1
j , wt+1

j

)
=

(
1− γwt+1

j

)
f
(
xt+1
j

)
,

f̃ij

(
xt+1
j , wt+1

j

)
=

(
1− wt+1

j

)
f
(
xt+1
j

)
=

1− wt+1
j

1− γwt+1
j

f̃kj

(
xt+1
j

)
.

It is now clear that, for a fixed value of f̃kj
(
xt+1
j

)
≤ f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
,

f̃ij

(
xt+1
j

)
is minimized by setting xt+1

j = 1
1−δ X̄ − δ

∑∞
τ=0 δ

τE
[
xt+2+τ
j |ht+1, xt+1

j

]
and setting wt+1

j

to attain the given value of f̃kj
(
xt+1
j

)
.

After replacing xt+1
j with its upper bound in (C5) for all j, we consider three cases analogous

to those in the proof of Theorem 3.

Case 1: This case applies if, after setting wt+1
j = 0 for all j in (C4), the resulting argument of

g is less than yE .

Case 2: This case applies if, after setting wt+1
i = 0 and setting wt+1

j = 1 for all j ∈ P\i in (C4),
the resulting argument of g is greater than yE .

Case 3: This case applies when Cases 1 and 2 do not apply. Note that, in this case, there exists
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a unique value of w such that

δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+ δ2
∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]

+ δwE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht
+ δ2

∞∑
τ=0

δτE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+2+τ
j

)
|ht
 = yE .

Call this value w∗.

We now argue that, in Case 1, the bound (C4) can be relaxed to

u ≥ −lg
(

δ

1− δ kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
. (C6)

Similarly, we argue that in Case 2 (C4) can be relaxed to

u ≥ −lg
((

δ

1− δ k − δ
(
k − 1

n

)
γ

)
f
(
X̄
))

, (C7)

and in Case 3 (C4) can be relaxed to

u ≥ −lg
(
yE
)

+ δ (k − 1) f
(
X̄
)
− k − 1

k − 1
n

1

γ

(
δ

1− δ kf
(
X̄
)
− yE

)
. (C8)

The argument for Case 1 is exactly as in the proof of Theorem 3.

For Case 2, replacing xt+1
j with its upper bound in (C5) for all j and setting wt+1

j = 1 for all

j ∈ P\i relaxes (C4). The resulting lower bound equals

−lg


1
n

[
δE
[
f
(

1
1−δ X̄ − δ

∑∞
τ=0 δ

τE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[
f
(
xt+2+τ
i

)
|ht
] ]

+δ (1− γ)E
[∑

j∈Mt+1
k ∩P\i f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩P\i f

(
xt+2+τ
j

)
|ht
]

 . (C9)

As we have seen,

δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]

+ δ2
∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]
≤ δ

1− δ f
(
X̄
)
.

C-6



By the same argument, for any j ∈ P\i,

δ (1− γ)E

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+ δ2
∞∑
τ=0

δτE
[
f
(
xt+2+τ
j

)
|ht
]
≤
(
δ (1− γ) +

δ2

1− δ

)
f
(
X̄
)
,

and therefore

δ (1− γ)E

 ∑
j∈Mt+1

k ∩P\i

f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht


+ δ2

∞∑
τ=0

δτE

 ∑
j∈Mt+2+τ

k ∩P\i

f
(
xt+2+τ
j

)
|ht

 ≤ (k − 1

n

)(
δ (1− γ) +

δ2

1− δ

)
f
(
X̄
)
.

Combining these inequalities, and noting that 1
n

δ
1−δ +

(
k − 1

n

) (
δ (1− γ) + δ2

1−δ

)
= δ

1−δk −
δ
(
k − 1

n

)
γ, this yields (C7).

Finally, consider Case 3. Here, (C4) equals

−lg
(
yE
)

+ δw∗E

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+1
j

)
|ht


= −lg
(
yE
)
− δE

[
f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
i |ht+1, xt+1

i

])
|ht
]
− δ2

∞∑
τ=0

δτE
[
f
(
xt+2+τ
i

)
|ht
]

−δ2
∞∑
τ=0

δτE

 ∑
j∈Mt+1

i ∩P\i

f
(
xt+2+τ
j

)
|ht
+ yE .

As above, this bound can be relaxed to

−lg
(
yE
)
− δ

1− δ f
(
X̄
)
− δ2

1− δ (k − 1) f
(
X̄
)

+ yE ,

which equals the right-hand side of (C8).

Finishing the Proof:

As in the proof of Theorem 3, we finally show that the maximum level of cooperation is always

either x∗, x̌, or x̃, and that if the maximum level of cooperation is x∗ (resp., x̌, x̃) then yE must

be weakly greater than y∗ (resp., weakly less than y̌, in between y̌ and y∗).

Fix a sequence of equilibria converging to the maximum level of cooperation for producer 1.Sup-

pose that, for all ε > 0, there exists an equilibrium along the sequence yielding within ε of the

maximum level of cooperation for which Case 1 applies for some producer i and history ht. As in the

proof of Theorem 3, it follows that one-time enforcer punishment strategies are optimal. Finally,
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this implies that yE ≥ y∗, as otherwise we could support more cooperation in enforcer punishment
plus partial ostracism strategies for small w > 0. (This follows because dx

dw > 0 if y > yE , which

follows by the same argument that shows dx
dη > 0 if y > yE in Lemma A1.)

Next, suppose that, for all ε > 0, there exists an equilibrium along the sequence yielding

within ε of the maximum level of cooperation for which Case 2 applies for some producer and

history. Combining (C2) and (C7), we have, for every player i, history ht, and level of cooperation

xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

((
δ

1− δ k − δ
(
k − 1

n

)
γ

)
f
(
X̄
))

+ δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

((
δ

1− δ k − δ
(
k − 1

n

)
γ

)
f
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.

As above, this gives X̄ ≤ lg
((

δ
1−δk − δ

(
k − 1

n

)
γ
)
f
(
X̄
))

+ δ (k − 1) f
(
X̄
)
. By the definition of

x̌, this implies that X̄ ≤ x̌, and hence E
[
X0
i |h0

]
≤ x̌. Thus, in this case x̌ is an upper bound

on each player’s maximum equilibrium level of cooperation, and hence enforcer punishment plus

ostracism is optimal. And, if these strategies are optimal, then yE ≤ y̌, as otherwise we could

support more cooperation in enforcer punishment plus partial ostracism strategies with w less than

but suffi ciently close to 1. (This follows because dx
dw < 0 if y < yE , which follows by the same

argument that establisheddxdη < 0 if y < yE in Lemma A1.)

Finally, suppose that, for all ε > 0, exists an equilibrium along the sequence yielding within

ε of the maximum level of cooperation for which Case 3 applies for some producer and history.

Combining (C2) and (C8), we have, for every player i, history ht, and level of cooperation xti ∈
suppσi

(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
yE
)
− δ (k − 1) f

(
X̄
)

+
k − 1

k − 1
n

1

γ

(
δ

1− δ kf
(
X̄
)
− yE

)

+δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩P\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

(
yE
)

+
k − 1

k − 1
n

1

γ

(
δ

1− δ kf
(
X̄
)
− yE

)
.

This gives X̄ ≤ lg
(
yE
)

+ k−1
k− 1

n

1
γ

(
δ

1−δkf
(
X̄
)
− yE

)
. By the definition of x̃, this implies that X̄ ≤ x̃,

and hence E
[
X0
i |h0

]
≤ x̃. Thus, now x̃ is an upper bound on each player’s maximum equilibrium

level of cooperation, and enforcer punishment plus partial repentance is optimal. By Lemma C1,
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such an equilibrium exists only if yE ≤ y∗. Finally, these strategies can be optimal only if yE ≥ y̌,
as since x̃ ≥ x̌ we have

yE =

(
δ

1− δ k − δ
(
k − 1

n

)
wEγ

)
f (x̃) ≥

(
δ

1− δ k − δ
(
k − 1

n

)
γ

)
f (x̃)

≥
(

δ

1− δ k − δ
(
k − 1

n

)
γ

)
f (x̌) = y̌.
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