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Abstract

In this paper we introduce a new Poisson mixture model for count panel data where the underlying

Poisson process intensity is determined endogenously by consumer latent utility maximization over

a set of choice alternatives. This formulation accommodates the choice and count in a single ran-

dom utility framework with desirable theoretical properties. Individual heterogeneity is introduced

through a random coefficient scheme with a flexible semiparametric distribution. We deal with the

analytical intractability of the resulting mixture by recasting the model as an embedding of infinite

sequences of scaled moments of the mixing distribution, and newly derive their cumulant represen-

tations along with bounds on their rate of numerical convergence. We further develop an efficient

recursive algorithm for fast evaluation of the model likelihood within a Bayesian Gibbs sampling

scheme, and show posterior consistency. We apply our model to a recent household panel of su-

permarket visit counts. We estimate the nonparametric density of three key variables of interest

– price, driving distance, and their interaction – while controlling for a range of consumer demo-

graphic characteristics. We use this econometric framework to assess the opportunity cost of time

and analyze the interaction between store choice, trip frequency, search intensity, and household

and store characteristics. We also conduct a counterfactual welfare experiment and compute the

compensating variation for a 10% to 30% increase in Walmart prices.
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1. Introduction

Count data arise naturally in a wide range of economic applications. Frequently, the observed event

counts are realized in connection with an underlying individual choice from a number of various event

alternatives. Examples include household patronization of a set of alternative shopping destinations,

utilization rates for various recreational sites, transportation mode frequencies, household urban

alternative trip frequencies, or patent counts obtained by different groups within a company, among

others. Despite their broad applicability, count data models remain relatively scarce in applications

compared to binary or multinomial choice models. For example, in consumer choice analysis of

ready-to-eat cereals, instead of assuming independent choices of one product unit that yields highest

utility (Nevo, 2001), it is more realistic to allow for multiple purchases over time taking into account

the choices among a number of various alternatives that consumers enjoy. In this spirit, a parametric

three-level model of demand in the cereal industry addressing variation in quantities and brand choice

was analyzed in Hausman (1997).

However, specification and estimation of utility-consistent joint count and multinomial choice mod-

els remains a challenge if one wishes to abstain from imposing a number of potentially restrictive

simplifying assumptions that may be violated in practice. In this paper we introduce a new flexible

random coefficient mixed Poisson model for panel data that seamlessly merges the event count pro-

cess with the alternative choice selection process under a very weak set of assumptions. Specifically:

(i) both count and choice processes are embedded in a single random utility framework establish-

ing a direct mapping between the Poisson count intensity λ and the selected choice utility; (ii)

both processes are influenced by unobserved individual heterogeneity; (iii) the model framework

allows for identification and estimation of coefficients on characteristics that are individual-specific,

individual-alternative-specific, and alternative-specific.

The first feature is novel in the literature. Previous studies that link count intensity with choice

utility (e.g. Mannering and Hamed, 1990) leave a simplifying dichotomy between these two quantities

by specifying the Poisson count intensity parameter λ as a function of expected utility given by an

index function of the observables. A key element of the actual choice utility – the idiosyncratic error

term ε – never maps into λ. We believe that this link should be preserved since the event of making

a trip is intrinsically endogenous to where the trip is being taken which in turn is influenced by the

numerous factors included in the idiosyncratic term. Indeed, trips are taken because they are taken

to their destinations; not to their expected destinations or due to other processes unrelated to choice

utility maximization, as implied in the previous literature lacking the first feature. In principle, ε

can be included in λ using Bayesian data augmentation. However, such an approach suffers from

the curse of dimensionality with increasing number of choices and growing sample size – for example

in our application this initial approach proved unfeasible, resulting in failure of convergence of the

parameters of interest. As a remedy, we propose an analytical approach that does not rely on data

augmentation.
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The second feature of individual heterogeneity that enters the model via random coefficients on

covariates is rare in the literature on count data. Random effects for count panel data models were

introduced by Hausman, Hall, and Griliches (1984) (HHG) in the form of an additive individual-

specific stochastic term whose exponential transformation follows the gamma distribution. Further

generalizations of HHG regarding the distribution of the additive term are put forward in Greene

(2007) and references therein. We take HHG as our natural point of departure. In our model, we

specify two types of random coefficient distributions: a flexible nonparametric one on a subset of

key coefficients of interest and a parametric one on other control variables, as introduced in Burda,

Harding, and Hausman (2008). This feature allows us to uncover clustering structures and other

features such as multimodalities in the joint distribution of select variables while preserving model

parsimony in controlling for a potentially large number of other relevant variables. At the same time,

the number of parameters to be estimated increases much slower in our random coefficient framework

than in a possible alternative fixed coefficient framework as N and T grow large. Moreover, the use

of choice specific coefficients drawn from a multivariate distribution eliminates the independence of

irrelevant alternatives (IIA) at the individual level. Due to its flexibility, our model generalizes a

number of popular models such as the Negative Binomial regression model which is obtained as a

special case under restrictive parametric assumptions.

Finally, the Poisson panel count level of our model framework allows also the inclusion and iden-

tification of individual-specific variables that are constant across choice alternatives and are not

identified from the multinomial choice level alone, such as demographic characteristics. However,

for identification purposes the coefficients on these variables are restricted to be drawn from the

same population across individuals as the Bayesian counterpart of fixed effects5.

To our knowledge this is the first paper to allow for the nonparametric estimation of preferences in a

combined discrete choice and count model. It provides a very natural extension of the discrete choice

literature by allowing us to capture the intensity of the choice in addition to the choices made and

relate both of these to the same underlying preference structures. At the same time it eliminates

undesirable features of older modeling strategies such as the independence of irrelevant alternatives.

This approach provides a very intuitive modeling framework within the context of our empirical

application where consumers make repeated grocery purchases over several shopping cycles. In this

paper we do not aim to capture strategic inter-temporal decision making through the use of dynamic

programming techniques which would be relevant in a context with durable goods or strategic

interactions between agents. Our focus is on the use of panel data from repeated choice occasions to

estimate heterogeneous multimodal preferences. It is our aim to show that real life economic agents

5In the Bayesian framework adopted here both fixed and random effects are treated as random param-

eters. While the Bayesian counterpart of fixed effects estimation updates the posterior distribution of the

parameters, the Bayesian counterpart of random effects estimation also updates the posterior distribution of

hyperparameters at higher levels of the model hierarchy. For an in-depth discussion on the fixed vs random

effects distinction in the Bayesian setting see Rendon (2002).
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have complex multimodal preference structures reflecting the underlying heterogeneity of consumer

preferences. It is important to account for these irregular features of consumer preferences in policy

analysis as they drive different responses at the margin. The resulting enhanced degree of realism

is highlighted in our empirical application.

A large body of literature on count data models focus specifically on excess zero counts. Hurdle

models and zero-inflated models are two leading examples (Winkelmann, 2008). In hurdle models,

the process determining zeros is generally different from the process determining positive counts. In

zero-inflated models, there are in general two different types of regimes yielding two different types of

zeros. Neither of these features apply to our situation where zero counts are conceptually treated the

same way as positive counts; both are assumed to be realizations of the same underlying stochastic

process based on the magnitude of the individual-specific Poisson process intensity. Moreover, our

model does not fall into the sample selection category since all consumer choices are observed.

Instead, we treat such choices as endogenous to the underlying utility maximization process.

Our link of Poisson count intensity to the random utility of choice is driven by flexible individual

heterogeneity and the idiosyncratic logit-type error term. As a result, our model formulation leads

to a new Poisson mixture model that has not been analyzed in the economic or statistical literature.

Various special cases of mixed Poisson distributions have been studied previously, with the leading

example of the parametric Negative Binomial model (for a comprehensive literature overview on

Poisson mixtures see Karlis and Xekalaki (2005), Table 1). Flexible economic models based on the

Poisson probability mass function were analyzed in Terza (1998), Gurmu, Rilstone, and Stern (1999),

Munkin and Trivedi (2003), Romeu and Vera-Hernández (2005), and Jochmann and León-González

(2004), among others.

Due to the origin of our mixing distribution arising from a latent utility maximization problem of an

economic agent, our mixing distribution is a novel convolution of a stochastic count of order statistics

of extreme value type 1 distributions. Convolutions of order statistics take a very complicated form

and are in general analytically intractable, except for very few special cases. We deal with this com-

plication by recasting the Poisson mixed model as an embedding of infinite convergent sequences

of scaled moments of the conditional mixing distribution. We newly derive their form via their

cumulant representations and determine the bounds on their rates of numerical convergence. The

subsequent analysis is based on Bayesian Markov chain Monte Carlo methodology that partitions

the complicated joint model likelihood into a sequence of simple conditional ones with analytically

appealing properties utilized in a Gibbs sampling scheme. The nonparametric component of indi-

vidual heterogeneity is modeled via a Dirichlet process prior specified for a subset of key parameters

of interest.

We apply our model to the supermarket trip count data for groceries in a panel of Houston households

whose shopping behavior was observed over a 24-month period in years 2004-2005. The detailed

AC Nielsen scanner dataset that we utilize contains nearly one million individual entries. In the
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application, we estimate the nonparametric density of three key variables of interest – price, driving

distance, and their interaction – while controlling for a range of consumer demographic characteristics

such as age, income, household size, marital and employment status.

The remainder of the paper is organized as follows. Section 2 introduces the mixed Poisson model

with its analyzed properties and Section 3 presents an efficient recursive estimation procedure.

Section 4 elaborates on the tools of Bayesian analysis used in model implementation, and Section 5

on the issues on identification and posterior consistency. Section 6 discusses the application results

and Section 7 concludes.

2. Model

2.1. Poisson Mixtures

In this Section we establish notation and briefly review several relevant concepts and definitions that

will serve as the basis for subsequent analysis. In the Poisson regression model the probability of a

non-negative integer-valued random variable Y is given by the probability mass function (p.m.f.)

(2.1) P (Y = y) =
exp(−λ)λy

y!

where y ∈ N0 and λ ∈ R+. For count data models this p.m.f. can be derived from an underlying

continuous-time stochastic count process {Y (τ), τ ≥ 0} where Y (τ) represents the total number

of events that have occurred before the time τ. The Poisson assumption stipulates stationary and

independent increments for Y (τ) whereby the occurrence of a random event at a particular instant

is independent of time and the number of events that have already taken place. The probability of

a unit addition to the count process Y (τ) within the interval Δ is given by

P{Y (τ +Δ)− Y (τ) = 1} = λΔ+ o(Δ)

Hence the probability of an event occurring in an infinitesimal time interval dτ is λdτ and the

parameter λ is thus interpreted as the intensity of the count process per unit of time, with the

property E[Y ] = λ.

In the temporal context a useful generalization of the base-case Poisson model is to allow for evolution

of λ over time by replacing the constant λ with a time-dependent variable λ̃(τ). Then the probability

of a unit addition to the count process Y (τ) within the interval Δ is given by

P{Y (τ +Δ)− Y (τ) = 1} = λ̃(τ)Δ + o(Δ)

Due to the Poisson independence assumption on the evolution of counts, for the integrated intensity

(2.2) λt =

∫ t

t

λ̃(τ)dτ

it holds that the p.m.f. of the resulting Y on the time interval t = [t, t) is given again by the base-

case P (Y = y) in (2.1). In our model λ̃(τ) will be assumed constant over small discrete equal-length
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time increments ts ≡ [ts, ts) ⊂ t, ts < ts, ∪Ss=1ts = t, with λ̃(τ) = λ̃ta for τ ∈ ts, which will allow us

to obtain a convenient form for the integral (2.2) in terms of a summation.

The base-case model further generalizes to a Poisson mixture model by turning the parameter λ

into a stochastic variable. Thus, a random variable Y follows a mixed Poisson distribution, with the

mixing density function g(λ), if its probability mass function is given by

(2.3) P (Y = y) =

∫ ∞

0

exp (−λ)λy

y!
g(λ)dλ

for y ∈ N0. Mixing over λ with g(λ) provides the model with the flexibility to account for overdis-

persion typically present in count data. Parametrizing g(λ) in (2.3) as the gamma density yields

the Negative Binomial model as a special case of (2.3). For a number of existing mixed Poisson

specifications applied in other model contexts, see Karlis and Xekalaki (2005), Table 1.

An additional convenient feature of the Poisson process is proportional divisibility of its p.m.f. with

respect to subintervals over the interval of observation: the p.m.f. of a count variable Y arising

from a Poisson process whose counts ys are observed on time intervals [as, bs) for s = 1, . . . , T with

as < bs ≤ as+1 < bs+1 is given by

(2.4) P ({Ys = ys}
T
s=1) =

T∏

s=1

exp (−λ(bs − as)) [λ(bs − as)]
ys

ys!

2.2. Model Structure

We develop our model as a two-level mixture. Throughout, we will motivate the model features by

referring to our application on grocery store choice and monthly trip count of a panel of households

even though the model is quite general. We conceptualize the observed shopping behavior as real-

izations of a continuous joint decision process on store selection and trip count intensity made by a

household representative individual. We will first describe the structure of the model and then lay

out the specific technical assumptions on its various components.

An individual i faces various time constraints on the number of trips they can devote for the pur-

pose of shopping. We do not attempt to model such constraints explicitly as households’ shopping

patterns can be highly irregular – people can make unplanned spontaneous visits of grocery stores

or cancel pre-planned trips on a moment’s notice due to external factors. Instead, we treat the ac-

tual occurrences of shopping trips as realizations of an underlying continuous-time non-homogenous

Poisson process whereby the probability of taking the trip to store j in the next instant dτ is a func-

tion of the continuous-time shopping intensity λ̃itj(τ) which in turn is a function of the maximum

of the underlying alternative-specific utility maxj∈J Ũitj(τ), including its idiosyncratic component.

We believe this structure is well suited for our application where each time period t of one month

spans a number of potential shopping cycles. The individual is then viewed as making a joint de-

cision on the store choice and the shopping intensity, both driven by the same alternative-specific
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utility Ũitj(τ). Certain technical aspects of our analysis are simplified by assuming that Ũitj(τ)

stays constant within small discrete time intervals, which we make precise further below.

The bottom level of the individual decision process is formed by the utility-maximizing choice among

the various store alternatives or the outside option of no shopping at any given instant τ . Here the

economic agent i continuously forms their preference ranking of the choice alternatives j in terms

of the latent continuous-time potential utility Ũitj(τ) at the time instant τ ∈ [t, t). At any given τ ,

Ũitj(τ) ≥ 0 may or may not result in an actual trip; the maximum Ũitj(τ) determines the probability

of the next trip incidence. The outside option of no trip is always taken if Ũitj(τ) < 0 in which case

λitc ≡ 0.

The top level of the individual decision process then models the trip count during the time period

t ≡ [t, t) as a realization of a non-homogenous Poisson process with intensity parameter λitc that is

a function of

Ũitc(τ) ≡ max
j∈J

Ũitj(τ)

formed at the bottom level. The index c denotes the alternative j that maximizes Ũitj(τ). The

Poisson intensity parameter λitc is in our model governed by Ũitc(τ) and hence the trip counts

are endogenous to all utility components, including the idiosyncratic part of the utility. Following

the model description, we will now lay out the mathematical model structure and impose explicit

assumptions on all stochastic terms.

2.3. Utility

Let Ũitj(τ) denote individual i’s latent potential utility of alternatives j = 1, . . . , J at time τ ∈ t,

given by the following assumption:

ASSUMPTION 1. Ũitj(τ) takes the linear additively separable form

Ũitj(τ) = β̃
′
iXitj(τ) + θ̃

′
iDitj(τ) + ε̃itj(τ)

where Xitj are key variables of interest, Ditj are other relevant (individual-)alternative-specific vari-

ables, and ε̃itj is the idiosyncratic term.

In our application of supermarket trip choice and count, Xitck is composed of price, driving dis-

tance, and their interaction, while the Ditck are formed by store indicator variables. The Ũitj(τ) is

rationalized as providing the individual’s subjective utility evaluation of the choice alternatives at

the instant τ as a function of individual-choice characteristics, choice attributes and an idiosyncratic

component. As in the logit model, the parameters β̃i and θ̃i are only identified up to a common

scale.

We impose the following assumptions on the utility components in the model:
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ASSUMPTION 2. The values of the variables Xitj(τ) and Ditj(τ) are constant on small equal-

length time intervals ts ≡ [ts, ts) 3 τ, with ts < ts and t = ∪Ss=1ts, for each i, t, and j.

ASSUMPTION 3. The idiosyncratic term ε̃itj(τ) is drawn at every ts for each i, j, from the

extreme value type 1 distribution with density

fε̃(ε̃) = exp(−ε̃) exp(− exp(−ε̃))

and stays constant for the remainder of ts. The distribution of ε̃itj(τ) is independent over time.

Assumptions 2 and 3 discretize the evolution of Ũitj(τ) over time which leads to a convenient

expression for the ensuing integrated count intensity in terms of summation. Assumption 3 further

yields convenient analytical expression for the shares of utility maximizing alternatives.

2.4. Count Intensity

We parametrize the link between λ̃itc(τ) and Ũitc(τ) as follows:

ASSUMPTION 4. Let h : R+ → R+ be a monotonic invertible mapping that takes the form

λ̃itc(τ) = h(Ũitc(τ))

= γ′Zit(τ) + ω1iβ̃
′
iXitc(τ) + ω2iθ̃

′
iDitc(τ) + ω3iε̃itc(τ)(2.5)

= γ′Zit(τ) + β
′
iXitc(τ) + θ

′
iDitc(τ) + εitc(τ)

where ω1i, ω2i, and ω3i are unknown factors of proportionality.

The distribution of βi, θi, and γ along with the nature of their independence is given by the following

assumption:

ASSUMPTION 5. The parameter βi is distributed according to the Dirichlet Process Mixture

(DPM) model

βi|ψi ∼ F (ψi)

ψi|G ∼ G

G ∼ DP (α,G0)

where F (ψi) is the distribution of βi conditional on the hyperparameters ψi drawn from a random

measure G distributed according to the Dirichlet Process DP (α,G0) with intensity parameter α and

base measure G0. The parameters θi and γ are distributed according to

θi ∼ N(μ
θ
,Σθ)

γ ∼ N(μ
γ
,Σγ)

where μ
θ
,Σθ, μγ , and Σγ are model hyperparameters. The distributions of βi and θi are mutually

independent for each i.
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For treatment of the Dirichlet Process Mixture model and its statistical properties, see e.g. Neal

(2000). In our application, Zit includes various demographic characteristics, while Xitc and Ditc

were described above. Higher utility derived from the most preferred alternative thus corresponds

to higher count probabilities for that alternative. Conversely, higher count intensity implies higher

utility derived from the alternative of choice through the invertibility of h. This isotonic model

constraint is motivated as a stylized fact of a choice-count shopping behavior, providing a utility-

theoretic interpretation of the count process. We postulate the specific linearly additive functional

form of h for ease of implementation. In principle, h only needs to be monotonic for a utility-

consistent model framework. Note that we do not need to separately identify ω1i, ω2i, and ω3i from

β̃i, θ̃i, and the variance of ε̃itc in (2.5) for a predictive model of the counts Yitc. In cases where the

former are of special interest, one could run a mixed logit model on (2.6), and then use these in our

mixed Poisson model for a separate identification of these parameters. Without loss of generality,

the scale parameter of the density of εitc(τ) is normalized to unity.

2.5. Count Probability Function

The top level of our model is formed by the trip count mechanism based on a non-homogenous

Poisson process with the intensity parameter λitc(τ). We impose the following assumption on the

p.m.f. of the trip count stochastic variable Yitc(τ) as a function of λitc(τ) :

ASSUMPTION 6. The count variable Yitc(τ) is distributed according to the Poisson probability

mass function

P (Yitc(τ) = yitc(τ)) =
exp(−λ̃itc(τ))λ̃itc(τ)yitc

yitc!

This assumption enables us to stochastically complete the model by relating the observed trip

counts to the underlying alternative-specific utility via the intensity parameter. The independence

of Poisson increments also facilitates evaluation of the integrated probability mass function of the

observed counts for each time period t. Let k = 1, . . . , Yitc denote the index over the observed trips

for the individual i during the time period t and let

(2.6) Ũitck = β̃
′
iXitck + θ̃

′
iDitck + ε̃itck

denote the associated realizations of Ũitc(τ) for τ ∈ [t, t). From the independence of the Poisson

increments in the count process evolution of Assumption 6 and Assumption 2, the integrated count

intensity (2.3) for the period t becomes

λitc = y
−1
itc

yitc∑

k=1

λitck
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with

λitc = γ′Zit + β
′
iXitc + θiDitc + εitc(2.7)

= V itc + εitc

for λitck ≥ 0 where yitc is a given realization of Yitc, Xitc = 1
yitc

∑yitc
k=1Xitck, Ditc =

1
yitc

∑yitc
k=1Ditck,

and εitc =
1
yitc

∑yitc
k=1 εitck. The individuals in our model are fully rational with respect to the store

choice by utility maximization. The possible deviations of the counts yit from the count intensity λit

are stochastic in nature and reflect the various constraints the consumers face regarding the realized

shopping frequency.

For alternatives whose selection was not observed in a given period it is possible that their latent

utility could have exceeded the latent utilities of other alternatives and been strictly positive for a

small fraction of the time period, but the corresponding count intensity was not sufficiently high

to result in a unit increase of its count process. Capturing this effect necessitates the inclusion of

a latent measurement of the probability of selection associated with each alternative, δitc. This

effect allows us to conduct counterfactual experiments based on the micro-foundations that alter the

observables (e.g. price) even for alternatives whose selection is rarely observed in a given sample, and

trace the impact of the counterfactual through the latent preference selection process to predictions

about expected counts.

For each time period t, denote by δitc the fraction of that time period over which the alternative

c was maximizing the latent utility Ũitc(τ) among other alternatives. By Assumption 3, δitc is the

standard market share of c for the period t given by

δitc =
exp

(
Ṽitc

)

∑J
j=1 exp

(
Ṽitj

)

where

Ṽitc = β̃
′
iXitc + θ̃

′
iDitc

is the deterministic part of the utility function (2.6). With δitc representing the fractions of the

time interval t of unit length, the conditional count probability function is a special case of the

proportional Poisson pmf (2.4)

P (Yitc = yitc|λitc) =
exp (−δitcλitc) (δitcλitc)

yitc

yitc!

Note that the count intensity λitc given by (2.7) is stochastic due to the inclusion of the idiosyncratic

εitc and the stochastic specification of βi and θi. Hence, the unconditional count probability mass

function is given by

(2.8) P (Yitc = yitc) =

∫
exp (−δitcλitc) (δitcλitc)

yitc

yitc!
g(λitc)d(λitc)

which is a special case of the generic Poisson mixture model (2.3) with the mixing distribution

g(λitc) that arises from the underlying individual utility maximization problem. However, g(λitc)
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takes on a very complicated form. From (2.7), each εitck entering λitc represents a J-order statistic

(i.e. maximum) of the random variables εitjk with means Vitjk ≡ γ′Zit + β
′
iXitjk + θiDitjk. The

conditional density g(εitc|V itc) is thus the convolution of yitc densities of J−order statistics which

is in general analytically intractable except for some special cases such as for the uniform and the

exponential distributions (David and Nagaraja, 2003). The product of g(εitc|V itc) and g(V itc) then

yields g(λitc).

The stochastic nature of λitc = V itc + εitc as defined in (2.7) is driven by the randomness inherent

in the coefficients γ, θi, βi and the idiosyncratic component εitck. Due to the high dimensionality of

the latter, we perform integration with respect to εitck analytically
6 while γ, θi, βi are sampled by

Bayesian data augmentation. In particular, the algorithm used for nonparametric density estimation

of βi is built on explicitly sampling βi.

Using the boundedness properties of a probability function and applying Fubini’s theorem,

P (Yitc = yitc) =

∫

Λ

f(yitc|εitc, V itc)g(εitc|V itc)g(V itc)d(εitc, V itc)

=

∫

V

∫

ε

f(yitc|εitc, V itc)g(εitc|V itc)dεitcg(V itc)dV itc(2.9)

=

∫

V
Eεf(yitc|V itc)g(V itc)dV itc

where

(2.10) Eεf(yitc|V itc) =
∫

ε

f(yitc|εitc, V itc)g(εitc|V itc)dεitc

Using (2.4), the joint count probability of the observed sample y = {yitc} is given by

P (Y = y) =

N∏

i=1

T∏

t=1

Cit∏

c=1

P (Yitc = yitc)

3. Analytical Expressions for High Dimensional Integrals

In this Section we derive a new approach for analytical evaluation of Eεf(yitc|V itc) in (2.10).

Bayesian data augmentation on γ, θi, βi, δ will be treated in the following Section.

As described above, the conditional mixing distribution g(εitc|V itc) takes on a very complicated

form. Nonetheless, using a series expansion of the exponential function, the Poisson mixture in (2.8)

admits a representation in terms of an infinite sequence of moments of the mixing distribution

(3.1) Eεf(yitc|V itc) =
∞∑

r=0

(−1)r

yitc!r!
δr+yitcitc η′w(εitc;V itc)

6In an earlier version of the paper we tried to data-augment also with respect to εitjk but due to its high

dimensionality in the panel this led to very poor convergence properties of the sampler for the resulting

posterior.
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with w = yitc + r, where η
′
w(εitc;V itc) is the w

th generalized moment of εitc about value V itc [see

the Technical Appendix for a detailed derivation of this result]. Since the subsequent weights in the

series expansion (3.1) decrease quite rapidly with r, one only needs to use a truncated sequence of

moments with r ≤ R such that the last increment to the sum in (3.1) is smaller than some numerical

tolerance level δ local to zero in the implementation.

3.1. Recursive Closed-Form Evaluation of Conditional Mixed Poisson Intensity

Evaluation of η′w(εitc;V itc) as the conventional probability integrals of powers of εitc is precluded

by the complicated form of the conditional density of εitc.
7 In theory, (3.1) could be evaluated

directly in terms of scaled moments derived from a Moment Generating Function (MGF) Mεitc(s)

of εitc constructed as a composite mapping of the individual MGFs Mεitck(s) of εitck. However, this

approach turns out to be computationally prohibitive [see the Technical Appendix for details]8.

We transformMεitck(s) to the the Cumulant Generating Function (CGF) Kεitck(s) of εitck and derive

the cumulants of the composite random variable εitc. We then obtain a new analytical expression

for the expected conditional mixed Poisson density in (3.1) based on a highly efficient recursive

updating scheme detailed in Theorem 1. Our approach to the cumulant-based recursive evaluation

of a moment expansion for a likelihood function may find further applications beyond our model

specification.

In our derivation we benefit from the fact that for some distributions, such as the one of εitc,

cumulants and the CGF are easier to analyze than moments and the MGF. In particular, a useful

feature of cumulants is their linear additivity which is not shared by moments [see the Technical

Appendix for a brief summary of the properties of cumulants compared to moments]. Due to their

desirable analytical properties, cumulants are used in a variety of settings that necessitate factor-

ization of probability measures. For example, cumulants form the coefficient series in the derivation

of higher-order terms in the Edgeworth and saddle-point expansions for densities.

In theory it is possible to express any uncentered moment η′ in terms of the related cumulants κ in a

closed form via the Faà di Bruno formula (Lukacs (1970), p. 27). However, as a typical attribute of

non-Gaussian densities, unscaled moments and cumulants tend to behave in a numerically explosive

7We note that Nadarajah (2008) provides a result on the exact distribution of a sum of Gumbel distributed

random variables along with the first two moments but the distribution is extremely complicated to be used

in direct evaluation of all moments and their functionals given the setup of our problem. This follows from

the fact that Gumbel random variables are closed under maximization, i.e. the maximum of Gumbel random

variables is also Gumbel, but not under summation which is our case, unlike many other distributions. At

the same time, the Gumbel assumption on εitjk facilitates the result of Lemma 1 in the same spirit as in

the logit model.
8The evaluation of each additional scaled moment η′yitc+r(εitc;V itc) requires summation over all multi-

indices w1+∙ ∙ ∙+wyitc = yitc+r for each MC iteration with high run-time costs for a Bayesian nonparametric

algorithm.
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manner. The same holds when the uncentered moments η′ are first converted to the central moments

η which are in turn expressed in terms centered expression involving cumulants. In our recursive

updating scheme, the explosive terms in the series expansion are canceled out due to the form of

the distribution of εitc which stems from Assumption 3 of extreme value type 1 distribution on the

stochastic disturbances εitj(τ) in the underlying individual choice model (2.5). The details are given

in the proof of Theorem 1 below.

Recall that the εitck is an J−order statistic of the utility-maximizing choice. As a building block in

the derivation of Kεitck(s) we present the following Lemma regarding the form of the distribution

fmax(εitck) of εitck that is of interest in its own right.

LEMMA 1. Under Assumptions 1 and 3, fmax(εitck) is a Gumbel distribution with mean log(νitck)

where

νitck =

J∑

j=1

exp [− (Vitck − Vitjk)]

The proof of Lemma 1 in the Appendix follows the approach used in derivation of closed-form

choice probabilities of logit discrete choice models (McFadden, 1974). In fact, McFadden’s choice

probability is equivalent to the zero-th uncentered moment of the J−order statistic in our case.

However, for our mixed Poisson model we need all the remaining moments except the zero-th one

and hence we complement McFadden’s result with these cases. We do not obtain closed-form moment

expressions directly though. Instead, we derive the CGF Kεitck(s) of εitck based on Lemma 1.

Before proceeding further it is worthwhile to take a look at the intuition behind the result in Lemma

1. Increasing the gap (Vitck − Vitjk) increases the probability of lower values of εitck to be utility-

maximizing. As (Vitck − Vitjk) → 0 the mean of fmax(εitck) approaches zero. If Vitck < Vitjk then

the mean of fmax(εitck) increases above 0 which implies that unusually high realizations of εitck

maximized the utility, compensating for the previously relatively low Vitck.

We can now derive Kεitc(s) and the conditional mixed Poisson choice probabilities. Using the form

of fmax(εitck) obtained in Lemma 1, the CGF Kεitck(s) of εitck is

(3.2) Kεitck(s) = s log (νitck)− log Γ(1− s)

where Γ(∙) is the gamma function. Let w ∈ N denote the order of the moments for which w = yitc+r

for w ≥ yitc. Let η̃
′
yitc,r−2 = (η̃

′
0, . . . , η̃

′
yitc+r−2)

T denote a column vector of scaled moments. Let

further Qyitc,r = (Qyitc,r,q, . . . , Qyitcr,r−2)
T denote a column vector of weights. The recursive scheme

for analytical evaluation of (3.1) is given by the following Theorem.

THEOREM 1. Under Assumptions 1-4 and 6,

Eεf(yitc|V itc) =
∞∑

r=0

η̃′yitc+r
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where

η̃′yitc+r = δ
yitc+r
itc

[
QTyitc,rη̃

′
yitc,r−2 + (−1)

rr−1κ1 (νitc) η̃
′
yitc+r−1

]

is obtained recursively for all r = 0, ..., R with η̃′0 = yitc!
−1. Let q = 0, ..., yitc+r−2. Then, for r = 0

Qyitc,r,q =
(yitc + r − 1)!

q!

(
1

yitc

)yitc+r−q−1
ζ(yitc + r − q)

and for r > 0

Qyitc,r,q =
1

r!
Byitc,r,q for 0 ≤ q ≤ yitc

Qyitc,r,q =
1

r!(q−yitc)
Byitc,r,q for yitc + 1 ≤ q ≤ yitc + r − 2

Byitc,r,q = (−1)r
(yitc + r − 1)!

q!

(
1

yitc

)yitc+r−q−1
ζ(yitc + r − q)

r!(q−yitc) ≡
r∏

p=q−yitc

p

where ζ(j) is the Riemann zeta function.

The proof is provided in the Appendix along with an illustrative example of the recursion for the

case where yitc = 4. The Riemann zeta function is a well-behaved term bounded with |ζ̃(j)| < π2

6

for j > 1 and ζ̃(j) → 1 as j → ∞. The following Lemma verifies the desirable properties of the

series representation for Eεf(yitc|V itc) and derives bounds on the numerical convergence rates of

the expansion.

LEMMA 2. Under Assumptions 1-4 and 6, the series representation of Eεf(yitc|V itc) in Theorem

1 is absolutely summable, with bounds on numerical convergence given by O(y−ritc ) as r grows large.

All weight terms in Qyitc,r that enter the expression for η̃
′
yitc+r can be computed before the MCMC

run by only using the observed data sample since none of these weights is a function of the model

parameters. Moreover, only the first cumulant κ1 of εitc needs to be updated with MCMC parameter

updates as higher-order cumulants are independent of νitck in Lemma 1 and hence also enter Qyitc,r.

This feature follows from fact that the constituent higher-order cumulants of the underlying εitck

for w > 1 depend purely on the shape of the Gumbel distribution fmax(εitck) which does not change

with the MCMC parameter updates in νitck. It is only the mean η
′
1(εitck) = κ1(εitck) of fmax(εitck)

which is updated with νitck shifting the distribution while leaving its shape unaltered. In contrast,

all higher-order moments of εitck and εitc are functions of the parameters updated in the MCMC run.

Hence, our recursive scheme based on cumulants results in significant gains in terms of computational

speed relative to any potential moment-based alternatives.
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4. Bayesian Analysis

4.1. Semiparametric Random Coefficient Environment

In this Section we briefly discuss the background and rationale for our semiparametric approach

to modeling of our random coefficient distributions. Consider an econometric models (or its part)

specified by a distribution F (∙;ψ), with associated density f(∙;ψ), known up to a set of parameters

ψ ∈ Ψ ⊂ Rd. Under the Bayesian paradigm, the parameters ψ are treated as random variables which

necessitates further specification of their probability distribution. Consider further an exchangeable

sequence z = {zi}ni=1 of realizations of a set of random variables Z = {Zi}
n
i=1 defined over a

measurable space (Φ,D) where D is a σ-field of subsets of Φ. In a parametric Bayesian model, the

joint distribution of z and the parameters is defined as

Q(∙;ψ,G0) ∝ F (∙;ψ)G0

where G0 is the (so-called prior) distribution of the parameters over a measurable space (Ψ,B) with

B being a σ-field of subsets of Ψ. Conditioning on the data turns F (∙;ψ) into the likelihood function

L(ψ|∙) and Q(∙;ψ,G0) into the posterior density K(ψ|G0, ∙).

In the class of nonparametric Bayesian models9 considered here, the joint distribution of data and

parameters is defined as a mixture

Q(∙;ψ,G) ∝
∫
F (∙;ψ)G(dψ)

where G is the mixing distribution over ψ. It is useful to think of G(dψ) as the conditional distribu-

tion of ψ given G. The distribution of the parameters, G, is now random which leads to a complete

flexibility of the resulting mixture. The model parameters ψ are no longer restricted to follow any

given pre-specified distribution as was stipulated by G0 in the parametric case.

The parameter space now also includes the random infinite-dimensional G with the additional need

for a prior distribution for G. The Dirichlet Process (DP) prior (Ferguson, 1973; Antoniak, 1974)

is a popular alternative due to its numerous desirable properties. A DP prior for G is determined

by two parameters: a distribution G0 that defines the “location” of the DP prior, and a positive

scalar precision parameter α. The distribution G0 may be viewed as a baseline prior that would be

used in a typical parametric analysis. The flexibility of the DP prior model environment stems from

allowing G – the actual prior on the model parameters – to stochastically deviate from G0. The

precision parameter α determines the concentration of the prior for G around the DP prior location

G0 and thus measures the strength of belief in G0. For large values of α, a sampled G is very likely

to be close to G0, and vice versa.

In our model, β = (β1, ..., βN )
′
, θ = (θ1, ..., θN )

′ are vectors of unknown coefficients. The distribution

of βi is modeled nonparametrically in accordance with the model for the random vector z described

9A commonly used technical definition of nonparametric Bayesian models are probability models with

infinitely many parameters (Bernardo and Smith, 1994).
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above. The coefficients on choice specific indicator variables θi are assumed to follow a parametric

multivariate normal distribution. This formulation for the distribution of β and θ was introduced

for a multinomial logit in Burda, Harding, and Hausman (2008) as the “logit-probit” model. The

choice specific random normal variables θ form the “probit” element of the model. We retain this

specification in order to eliminate the IIA assumption at the individual level. In typical random

coefficients logit models used to date, for a given individual the IIA property still holds since the

error term is independent extreme value. With the inclusion of choice specific correlated random

variables the IIA property no longer holds since a given individual who has a positive realization

for one choice is more likely to have a positive realization for another positively correlated choice

specific variable. Choices are no longer independent conditional on attributes and hence the IIA

property no longer binds. Thus, the “probit” part of the model allows an unrestricted covariance

matrix of the stochastic terms in the choice specification.

4.2. Prior Structure

Denote the model hyperparameters by W and their joint prior by k(W ). From (2.9),

(4.1) P (Yitc = yitc) =

∫

V
Eεf(yitc|V itc)g(V itc)dV itc

where Eεf(yitc|V itc) is evaluated analytically in Lemma 1 and Theorem 1. Using an approach

analogous to Train’s (2003, ch 12) treatment of the Bayesian mixed logit, we data-augment (4.1)

with respect to γ, βi, θi for all i and t. Thus, the joint posterior takes the form

K(W,V itc ∀i, t) ∝
∏

i

∏

t

Eεf(yitc|V itc)g(V itc|W )k(W )

The structure of prior distributions is given in Assumption 5. Denote the respective priors by k(βi),

k(θi), k(γ). The model hyperparametersW are thus formed by {ψi}
N
i=1 , G, α, G0, μθ, Σθ, μγ , and Σγ .

Following Escobar and West (1995), inference for α is performed under the prior α ∼ gamma(a, b).

4.3. Sampling

The Gibbs blocks sampled are specified as follows:

• Draw βi|τ, γ, θ for each i from K(βi|γ, θ, Z,X,D) ∝
∏T
t=1Eεf(yitc|V itc)k(β)

• Draw θi analogously to βi.

• Draw γ|β, θ, σ2 from the joint posteriorK(γ|β, θ, σ2, Z,X,D) ∝
∏N
i=1

∏T
t=1Eεf(yitc|V itc)k(γ)

• Update the DP prior hyperparameters, with the Escobar and West (1995) update for α.

• Update the parameter δitc as in Burda, Harding, and Hausman (2008).

• Update the remaining hyperparameters based on the identified θij (Train (2003), ch 12).
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5. Identification and Posterior Consistency

5.1. Identification Issues

Parameter identifiability is generally based on the properties of the likelihood function as hence

rests on the same fundamentals in both classical and Bayesian analysis (Kadane, 1974; Aldrich,

2002). Identification of nonparametric random utility models of multinomial choice has recently been

analyzed by Berry and Haile (2010). Related aspects of identification of discrete choice models have

been treated in Bajari, Fox, Kim, and Ryan (2009), Chiappori and Komunjer (2009), Lewbel (2000)

Briesch, Chintagunta, and Matzkin (2010), and Fox and Gandhi (2010). In our model likelihood

context, a proof of the identifiability of infinite mixtures of Poisson distributions is derived from the

uniqueness of the Laplace transform (Teicher, 1960; Sapatinas, 1995).

With the use of informative priors the Bayesian framework can address situations where certain

parameters are empirically partially identified or unidentified. Our data exhibits a certain degree of

customer loyalty: many i never visit certain types of stores j (denote the subset of θij on these by

θnij). In such cases θ
n
ij is not identified. Two different low values of θ

n
ij can yield the same observation

whereby the corresponding store j is not selected by i. In the context of a random coefficient model,

such cases are routinely treated by a common informative prior θi ∼ N(μ,Σ) that shrinks θnij to

the origin. In our model, the informativeness of the common prior is never effectively invoked since

θi are coefficients on store indicator variables. The sampled values of θ
n
ij are inconsequential since

they multiply the zero indicators of the non-selected stores, thus dropping out of the likelihood

function evaluation. Hence bθ and Σθ are computed only on the basis of the identified θij . This

result precludes any potential influence of the unidentified dimensions of θij on the model likelihood

via bθ and Σθ. The unidentified dimensions of θij are shrunk to zero with the prior k(bθ,Σθ). As the

time dimension T grows, all dimensions of θij become eventually empirically identified, diminishing

the influence of the prior in the model.

5.2. Posterior Consistency

The importance of posterior consistency stems from the desire to be able to correctly identify the

data generating mechanism with an increasing sample size. Even though consistency is purely a large

sample property, an inconsistent posterior is often an indication of invalid inference even for moderate

sample sizes. Moreover, consistency can be shown to be equivalent with agreement among Bayesians

with different sets of priors (Diaconis and Freedman, 1986b). If posterior consistency holds, then

for convex parameter spaces such as the space of densities which induces convex neighborhoods, the

posterior mean gives another consistent estimator.

In a seminal paper, Doob (1949) showed that under i.i.d. observations and identifiability conditions,

the posterior is consistent everywhere except possibly on a null set with respect to the prior, almost

surely. Almost sure posterior consistency in various models, including examples of inconsistency,
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has been extensively discussed by Diaconis and Freedman (1986b,a, 1990). These authors note

that in the nonparametric context such null set may be topologically very large and include cases

of interest. Consequently, they warn against careless use of priors. We show consistency of the

posterior density of β, which forms the nonparametric component of our model under the Dirichlet

process prior, by verifying the conditions necessary for invoking an extension of a consistency result

by Schwartz (1965) based on Ghosh and Ramamoorthi (2003) and Ghosal (2010). The extension

applies Schwartz’s result to a sieve constructed on the parameter space. We verify that that the

prior probability mass assigned to a complement of the sieve space is exponentially small, and that

the model sieve satisfies an entropy condition binding the rate of growth of the sieve space. The

result is summarized in the following Theorem.

THEOREM 2. Under the Assumptions 1-6 and two additional regularity conditions given in the

Appendix, the marginal posterior density of β is:

(a) weakly consistent and

(b) strongly or L1-consistent

at the true distribution of the observables as the sample size tends to infinity.

The relevant definitions of weak and strong consistency as well as the proof the Theorem are given

in the Appendix.

6. Application

In this section we introduce a stylized yet realistic empirical application of our method to con-

sumers’ joint decision process over the number of shopping trips to a grocery story and the choice

of the grocery stores where purchases are made. Shopping behavior has recently been analyzed

by economists in order to better understand the process through which consumers search for their

preferred options and the interaction between consumer choices and demographics responsible for

various search frictions. Thus, Aguiar and Hurst (2007) and Harding and Lovenheim (2010) focus

on demographics limiting search behavior, while Broda, Leibtag, and Weinstein (2009) measure

inequality in consumption.

6.1. Data description

The data used in this study is similar to that used by Burda, Harding, and Hausman (2008) and is

a subsample of the 2004-2005 Nielsen Homescan panel for the Houston area over 24 months. We use

an unbalanced panel of consumer purchases augmented by a rich set of demographic characteristics

for the households. The data is collected from a sample of individuals who joined the Nielsen panel

and identified at Universal Product Code (UPC) level for each product.

The data is obtained through a combination of store scanners and home scanners which were provided

to individual households. Households are required to upload a detailed list of their purchases with
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identifying information weekly and are rewarded through points which can be used to purchase

merchandise in an online store. The uploaded data is merged with data obtained directly from store

scanners in participating stores. For each household, Nielsen records a rich set of demographics as

well as the declared place of residence. Note that while the stated aim of the Nielsen panel is to

obtain a nationally representative sample, certain sampling distortions remain. For example, over

30% of the Nielsen sample is collected from individuals who are registered as not employed i.e.

unemployed or not in the labor force.

The shopping trips are recorded weekly and we decided to aggregate them to monthly counts.

This avoids excessive sparsity and provides a natural recurring cycle over which consumers purchase

groceries. We only observe information about the products purchased and do not observe information

about the order in which they were purchased or route traveled by the consumer. We excluded from

the sample a very small number of outliers such as households who appeared to live more than 200

miles away from the stores at which they shopped. We also dropped from the sample households

with fewer than 4 months of observations, and households that shop every month only at one store

type in order to discard cases of degenerate variation. The total number of individual data entries

use for estimation was thus 491,706 for a total 660 households.

We consider each household as having a choice among 6 different stores (H.E.B., Kroger, Randall’s,

Walmart, PantryFoods10 and ”Other”). The last category includes any remaining stores adhering to

the standard grocery store format (excluding club stores and convenience stores) that the households

visit. Most consumers shop in at least two different stores in any given month. The mean number

of trips per month conditional on shopping at a given store for the stores in the sample is: H.E.B.

(3.10), Kroger (3.61), Randall’s (2.78), Walmart (3.49), PantryFoods (3.08), Other (3.34). The

histogram in Figure 1 summarizes the frequency of each trip count for the households in the sample.
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Figure 1. Histogram of the monthly total number of trips to a store per month

for the households in the sample.

10PantryFoods stores are owned by H.E.B. and are typically limited-assortment stores with reduced

surface area and facilities.
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We employ three key variables: log price, which corresponds to the price of a basket of goods in

a given store-month; log distance, which corresponds to the estimated driving distance for each

household to the corresponding supermarket; and their interaction.

Product Category Weight

Bread 0.0804

Butter and Margarine 0.0405

Canned Soup 0.0533

Cereal 0.0960

Chips 0.0741

Coffee 0.0450

Cookies 0.0528

Eggs 0.0323

Ice Cream 0.0663

Milk 0.1437

Orange Juice 0.0339

Salad Mix 0.0387

Soda 0.1724

Water 0.0326

Yogurt 0.0379

Table 1. Product categories and the weights used in the construction of the price index.

In order to construct the price variable we first normalize observations from the price paid to a

dollars/unit measure, where unit corresponds to the unit in which the idem was sold. Typically,

this is ounces or grams. For bread, butter and margarine, coffee, cookies and ice cream we drop all

observations where the transaction is reported in terms of the number of unit instead of a volume

or mass measure. Fortunately, few observations are affected by this alternative reporting practice.

We also verify that only one unit of measurement was used for a given item. Furthermore, for

each produce we drop observations for which the price is reported as being outside two standard

deviations of the standard deviations of the average price in the market and store over the periods

in the sample.

We also compute the average price for each product in each store and month in addition to the

total amount spent on each produce. Each product’s weight in the basket is computed as the total

amount spent on that product across all stores and months divided by the total amount spent across

all stores and months. We look at a subset of the total product universe and focus on the following

product categories: bread, butter and margarine, canned soup cereal, chips, coffee, cookies, eggs, ice

cream, milk, orange juice, salad mix, soda, water, yogurt. The estimated weights are given in Table

1.
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For a subset of the products we also have available directly comparable product weights as reported

in the CPI. As shows in Table 2 the scaled CPI weights match well with the scaled produce weights

derived from the data. The price of a basket for a given store and month is thus the sum across

product of the average price per unit of the product in that store and month multiplied by the

product weight.

Product Category 2006 CPI Weight Scaled CPI Weight Scaled Product Weight

Bread 0.2210 0.1442 0.1102

Butter and Margarine 0.0680 0.0444 0.0555

Canned Soup 0.0860 0.0561 0.0730

Cereal 0.1990 0.1298 0.1315

Coffee 0.1000 0.0652 0.0617

Eggs 0.0990 0.0646 0.0443

Ice Cream 0.1420 0.0926 0.0909

Milk 0.2930 0.1911 0.1969

Soda 0.3250 0.2120 0.2362

Table 2. Comparison of estimated and CPI weights for matching product categories.

In order to construct the distance variable we employ GPS software to measure the arc distance

from the centroid of the census tract in which a household lives to the centroid of the zip code in

which a store is located.11 For stores in which a household does not shop in the sense that we don’t

observe a trip to this store in the sample, we take the store at which they would have shopped to

be the store that has the smallest arc distance from the centroid of the census tract in which the

household lives out of the set of stores at which people in the same market shopped. If a household

shops at a store only intermittently, we take the store location at which they would have shopped

in a given month to be the store location where we most frequently observe the household shopping

when we do observe them shopping at that store. The store location they would have gone to is the

mode location of the observed trips to that store. Additionally, we drop households that shop at a

store more than 200 miles from their reported home census tract.

6.2. Results

First we consider the estimated densities of our key parameters of interest on log price, log distance

and their interaction. Plots of these marginal densities are presented in Figure 2 with summary

statistics in Table 3. Plots of joint densities of pairs of these parameters (log price vs log distance,

log price vs interaction, log distance vs interaction) are given in Figure 3. All plots attest to the

existence of several sizeable preference clusters of consumers. This finding of multi-modality is

potentially quite important for policy analysis as it allows for a more complex reaction to changes in

11Our data does not capture occasional grocery store trips along the way from a location other than one’s

home.
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prices, say. The nonparametric estimation procedure developed in this paper is particularly potent

at uncovering clustering in the preference space of the consumers thus highlighting the extent to

which consumers make trade-offs between desirable characteristics in the process of choosing where

to make their desired purchase.
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Figure 2. Density of MC draws of the individual-specific coefficients on price βi1

(top), distance βi2 (middle), and their interaction βi3 (bottom) variables.
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Figure 3. Joint density of MC draws of β1 vs β2 β1 vs β3, and β2 vs β3.
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While most consumers react negatively in terms of shopping intensity to higher price and increased

travel distance, they nevertheless do appear to be making trade-offs in their responsiveness to the

key variables. The top graph pair in Figure 3 shows several distinct preference clusters in the price-

distance preference space. Moreover, consumers become even more price sensitive with increased

travel distance (bottom graph).12

Two animations capturing the evolution of the joint density of individual-specific coefficients on log

price β1i and log distance β2i in a window sliding over the domain of the interaction coefficient β3i. A

3D animation is available at http://dl.getdropbox.com/u/716158/pde867b.wmv while a 2D contour

animation is at http://dl.getdropbox.com/u/716158/pde867bct.wmv. The trend in the movement

of the joint density along the diagonal confirms that aversion to higher prices enters both coefficients

for the whole range of aversion to higher distances.

For comparison purposes, we also ran a parametric benchmark model where the parameters of inter-

est βi were distributed according to a multivariate Normal density, with common alternative-specific

indicator variables. This specification is by far the most widely used specification for the ”mixed

logit model” which allows for random preference distributions. The means of the estimated densities

of βi were statistically not different from zero and the unimodal parametric density precluded the

discovery of interesting clusters of preferences found in Figure 3. The Hausman test applied to

the means of the estimated densities strongly rejected the null of mean equivalence (p-value less

than 0.001), suggesting that imposing the Normal density on the model for βi distorts the central

tendency of the estimates.

Now let us turn our attention to the coefficients on the demographic variables which are identified in

the model through the variation in trip counts for different consumers and stores. These coefficients

relate directly to common economic intuitions on the importance of household demographics in driv-

ing search costs (Harding and Lovenheim, 2010). The posterior mean, median, standard deviation

and 90% Bayesian Credible Sets (BCS, corresponding to the 5th and 95th quantiles) for coefficients

γ on demographic variables are presented in Table 4 with their marginal counterparts incorporating

the price interaction effects in Table 5, under the heading Selective Flexible Poisson Mixture.

Faced with higher prices, households decrease their volumes of goods purchased in their stores of

choice more than proportionately (the price elasticity of demand was estimated as −1.389 for our

sample). This phenomenon is characteristic of all households, albeit differing in its extent over price

12In our previous work (Burda, Harding, and Hausman, 2008) we estimated a relevant parametric bench-

mark case for the price vs distance trade-off for each individual household separately. Even though such

benchmark estimates on short panels contained a small bias, the multimodality in preferences and price

vs distance tradeoff became apparent once these individual estimates were brought together and smoothed

over using conventional kernels. These features qualitatively confirm the nature of consumer preferences

uncovered in this paper.
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levels over household types with the high income households exhibiting the lowest propensity to

reduce quantity.

The base category for which all demographic indicator variables were equal to zero is formed by

households with more than one member but without children, with low income, low level of education,

employed, and white. Following a price increase, virtually all other household attributes increase

the shopping count intensity for the stores of choice relative to the base category (Table 5), with

one exception being the demographic attribute non-white whose coefficient was not statistically

significant from the base category. This phenomenon reflects the higher search intensity exhibited

by households shopping around various store alternatives selecting the favorably-priced items and

switching away from food categories with relatively higher price tags. Equivalently, households are

able to take advantage of sales on individual items across different store types. The extent to which

this happens differs across various demographic groups (Tables 4 and 5). Households that feature the

high age (65+) and high total household income attribute (50K+) intensify their search most when

faced with higher prices. The search effect further increases at higher price levels for high age while

abating for high income. The opportunity cost of time relative to other household types is a likely

factor at play. Middle age (more than 40 but less than 65 average for the household head) and middle

income (25K to 50K) attributes substantially increase search intensity at the same rate regardless

of the absolute price level. Households with children, Hispanic, and unemployed, attributes exhibit

similar behavior albeit to a lower degree. The higher education (college and higher) and singleton

(one-member households) categories do not exhibit any additional reaction to higher prices beyond

the effects their other demographic attributes.

Table 6 shows the posterior means, medians, standard deviations and 90% Bayesian Credible Sets

for the means of bθ and Table 7 for the variances Σθ of the store indicator variable coefficients

θij . In the absence of an overall fixed model intercept while including all store indicator variables,

these coefficients play the role of random intercepts for each household. Hence, interpretation of

their estimated distributions needs to be conducted in the context of other model variables. Kroger,

Walmart, and Other have the lowest store effect means but also relatively large variances of the

means, reflecting the diversity of preferences regarding the shopping intensity at these store types

on the part of the pool of households. Pantry Foods and Randalls exhibits the highest store effects

which likely stems from their business concept featuring an array of specialty departments, once

their price levels – the highest among all the store types – have been controlled for. H.E.B. belongs

to the mid-range category in terms of store shopping intensity preference. The store effects also

exhibit various interesting covariance patterns (Table 7). While H.E.B. and Pantry Foods exhibit a

low covariance, Randalls and Pantry Foods exhibit relatively high covariance, which is explained by

the fact that their marketing approach targets similar customer segments.

Figure 4 shows the kernel density estimate of the MC draws of the Dirichlet process latent class

model hyperparameter α. The sharp curvature on the posterior density of α against a diffuse prior
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suggests that the large data sample exerts a high degree of influence in the parameter updating

process. When we restricted α to unity in a trial run, the number of latent classes in the Dirichlet

mixture fell to about a third of its unrestricted count, yielding a lower resolution on the estimated

clusters of βi; the demographic parameters γ were smaller on the base demographic variables while

larger on the interactions with price, suggesting an estimation bias under the restriction. Hence,

sampling α under a diffuse prior does play a role for the accuracy of estimation results.

Figure 5 features the density of the number of latent classes obtained at each MC step in the Dirichlet

process latent class sampling algorithm (left) and their ordered average membership counts (right).

Thus, the density of β estimate is on average composed of about 74 mixture components, while this

number oscillates roughly in the range of 65 to 85 components with the exact data-driven count

determined by the algorithm in each MC step. However, only about 20 latent class components

contain a substantial number of individuals associated with them at any given MC step while the

remainder is composed of low-membership or myopic classes. This flexible mixture can be contrasted

with the parametric benchmark Normal model which is by construction composed of one component

lacking any adaptability properties. In earlier work we have also conducted a sensitivity analysis

by restricting the number of mixture components and found little variation in the results once the

number of components exceeds 20.
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7. Counterfactual Welfare Experiment

In order to illustrate the usefulness of our model in applications, we conducted a welfare experiment

that seeks to evaluate the amount of compensating variation resulting from a price increase of a

particular choice alternative. We chose Walmart for the price change since its large share of the

market will affect a wide spectrum of consumers across all demographic categories. In the welfare

experiment, we ask the following question: after a price increase for a given choice alternative

(Walmart), how much additional funding do we need to provide to each person each month in order

to achieve the same level of utility regarding both the choice and count intensity as they exhibited

before the price increase? In 2006 the state of Maryland passed such a tax for Walmart, but the tax

was not implemented on US constitutional grounds.

For every i, t the expected count intensity is

E[λit] =

J∑

c=1

δitcE[λitc]

=

J∑

c=1

δitc

∫
λitcg(λitc)dλitc

and conditionally on V it = (V it1, . . . , V itJ)
′ we have

E[λit|V it] =
J∑

c=1

δitc

∫
(V itc + εitc)g(εitc|V itc)dεitc

=

J∑

c=1

δitcη1(εitc;V itc)

where η1(εitc;V itc) is the first uncentered moment of εitc, i.e.

E[λit|V itc] =
J∑

c=1

δitc

(

V itc +
1

yitck

yitck∑

k=1

log(νitck) + γe

)

νitck =

J∑

j=1

exp(−V itck + V itjk)

Since in the counterfactual experiment we do not directly observe the new hypothetical yitck and

the corresponding changes in V itck within the time period t, instead of
1
yitck

∑yitck
k=1 log(νitck) we

use log (νitc) with νitc =
∑J
j=1 exp(−V itc + V itj) where V itc and V itj are quantities set in the

counterfactual experiment to be constant throughout the given time period t. We also assume that

following the price increase the demand for the affected alternative will initially fall at the same rate

than the price hike. Thus,

E[λit|V itc] =
J∑

c=1

δitc



V itc + log




J∑

j=1

exp(−V itc + V itj)



+ γe




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where

−V itc + V itj = βi1 (− lnPriceitc + lnPriceitj) + βi2 (− lnDistitc + lnDistitj)

+βi3 (− lnPriceitc × lnDistitc + lnPriceitj × lnDistitj) + θic − θij

The difference in count intensities after the price increase is

E[λnewit |V
new

it ]− E[λ
old
it |V

old

it ] =

J∑

c=1

δnewitc E[λ
new
itc |V

new

itc ]−
J∑

c=1

δolditcE[λ
old
itc |V

old

itc ]

=

J∑

c=1

δnewitc



V
new

itc + log




J∑

j=1

exp(−V
new

itc + V
new

itj )



+ γe



(7.1)

−
J∑

c=1

δolditc



V
old

itc + log




J∑

j=1

exp(−V
old

itc + V
old

itj )



+ γe





= Δit

The answer to our welfare question is then obtained from the solution to the equation

(7.2) −Δit =
J∑

c=1

δnew∗itc E[λnew∗itc |V
new∗
itc ]−

J∑

c=1

δnewitc E[λ
new
itc |V

new

itc ]

where new∗ denotes the state with additional funding that compensates for the change in prices and

brings individual’s shopping intensity on the original level. We evaluate Δit in (7.1) and then, using

a univariate fixed point search, we solve (7.2) for the additional funds, split proportionately by δitj

among the choice alternatives, that are required to compensate for the price increase, yielding the

required compensating variation.

The results (Table 8) reveal that on average consumers require about six dollars a month, or just

under a hundred dollars a year, to compensate for the change of their shopping habits after a 10%

Walmart price increase, nine dollars a month (or just over one hundred dollars a year) following a

20% increase, and eleven dollars a month (or hundred and thirty dollars a year) following a 30%

increase. The average sample household monthly expenditure on grocery store food is $170 of which

$84 is spent in Walmart. A 10% Walmart price increase thus translates to about 7% of Walmart

(or 4% overall) increased grocery cost to consumers in terms of compensating variation, reflecting

the fact that individuals are able to switch to other store alternatives. For higher Walmart price

increases the relative cost to consumers rises less than proportionately since the elevated Walmart

prices approach and exceed the prices in competing stores and store switching becomes relatively

cheaper. In contrast, the parametric benchmark Normal model predicts much higher welfare costs,

reaching to about three times the amounts of the semiparametric Poisson model. The Hausman test

applied to the means of the estimated compensating variations rejected the null of mean equivalence

(p-value less than 0.001). We find that the benchmark Normal model finds this unrealistic policy

response because of its use of a Normal distribution and imposition of the IIA property, at the

individual level.
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8. Conclusion

In this paper we have introduced a new mixed Poisson model with a stochastic count intensity param-

eter that incorporates flexible individual heterogeneity via endogenous latent utility maximization

among a range of alternative choices. Our model thus combines latent utility maximization of an al-

ternative selection process within a count data generating process under relatively weak assumptions.

The distribution of individual heterogeneity is modeled semiparametrically, relaxing the indepen-

dence of irrelevant alternatives at the individual level. The coefficients on key variables of interest

are assumed to be distributed according to an infinite mixture model while other individual-specific

parameters are distributed parametrically, allowing for uncovering local details in the former while

preserving parameter parsimony with respect to the latter. To overcome the curse of dimensionality

in our model, we develop a closed-form analytical expression for a central conditional expectation

term and implement it using an efficient recursive algorithm based on higher-order moment expan-

sion of the Poisson conditional intensity function. We also include a proof of posterior consistency.

Our model is applied to the supermarket visit count data in a panel of Houston households. The

results reveal an interesting mixture of consumer clusters in their preferences over the price-distance

trade-off, and their joint density for diverse levels of the variable interaction. Various household

demographic types exhibit differing patterns of search intensity adjustment when faced with higher

prices. The opportunity cost of time and the income effect appear as plausible explanations behind

the observed shopping patterns. The results of a counterfactual welfare experiment that subjects

Walmart to 10% to 30% price increase suggest that consumers need to be compensated by one to

two hundred dollars per year on average in order to achieve the original levels of utility.

Selective Flexible Poisson Mixture Normal Poisson

Parameter Mean Median S.D. 90% BCS Mean Median S.D. 90% BCS

βi1 (log price) -4.05 -4.16 3.67 (-10.13,0.75) -1.06 -1.05 1.43 (-2.68,0.20)

βi2 (log distance) -1.23 -0.31 3.82 ( -9.48,2.68) 0.55 0.55 1.09 (-1.02,1.80)

βi3 (interaction) -2.58 -2.16 3.86 ( -9.58,2.25) -0.87 -0.87 1.18 (-2.49,0.38)

Table 3. Summary statistics of βi draws.
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Selective Flexible Poisson Mixture Normal Poisson

Variable Mean Median S.D. 90% BCS Mean Median S.D. 90% BCS

Singleton 0.90 0.69 0.20 ( 0.64, 1.30) 1.89 1.92 0.25 ( 1.41, 2.27)

Children 1.04 0.85 0.10 ( 0.88, 1.25) 0.24 0.23 0.36 (-0.35, 0.77)

Non-white 0.20 0.35 0.13 (-0.03, 0.41) -0.58 -0.64 0.38 (-1.17, 0.09)

Hispanic 0.98 0.41 0.28 ( 0.43, 1.37) 1.33 1.32 0.31 ( 0.82, 1.82)

Unemployed 0.66 0.46 0.20 ( 0.32, 0.98) -0.61 -0.63 0.43 (-1.32, 0.15)

Education 0.81 0.68 0.15 ( 0.59, 1.11) 0.79 0.77 0.23 ( 0.40, 1.18)

Middle Age 0.86 1.12 0.12 ( 0.68, 1.09) 1.56 1.62 0.30 ( 0.91, 1.98)

High Age 1.97 1.91 0.18 ( 1.67, 2.28) 2.67 2.63 0.46 ( 1.97, 3.42)

Middle Income 2.15 2.41 0.12 ( 1.95, 2.36) 1.08 1.06 0.25 ( 0.64, 1.46)

High Income 2.53 2.61 0.20 ( 2.20, 2.89) 1.33 1.36 0.19 ( 0.96, 1.62)

logP× Singleton -1.63 -1.84 0.42 (-2.36,-0.95) -3.01 -3.08 0.69 (-3.95,-1.91)

logP× Children -0.66 -0.45 0.44 (-1.35,-0.07) 1.14 1.09 0.70 (-0.24, 2.12)

logP× Non-white 0.01 0.24 0.37 (-0.42, 0.86) 4.93 5.51 1.24 ( 2.55, 6.43)

logP× Hispanic 0.78 0.76 0.28 ( 0.34, 1.31) 0.97 1.06 0.51 ( 0.05, 1.69)

logP× Unemployed 1.92 1.36 0.44 ( 1.40, 2.67) 3.74 3.96 0.63 ( 2.39, 4.48)

logP× Education -1.16 -0.75 0.39 (-1.72,-0.60) -0.69 -0.86 0.61 (-1.58, 0.38)

logP× M Age 4.19 2.60 0.69 ( 3.10, 5.15) -0.67 -0.97 0.92 (-1.77, 1.38)

logP× H Age 2.03 1.33 0.18 ( 1.68, 2.27) -3.39 -2.96 1.16 (-5.22,-1.97)

logP× M Income 0.02 0.44 0.51 (-0.88, 0.84) 1.66 1.66 0.45 ( 0.82, 2.48)

logP× H Income -0.30 -0.29 0.42 (-1.16, 0.34) 1.29 1.36 0.65 ( 0.09, 2.35)

Table 4. Coefficients γ on demographic variables. logP denotes interaction term

with price.

Selective Flexible Poisson Mixture Normal Poisson

Variable Mean Median S.D. 90% BCS Mean Median S.D. 90% BCS

Singleton 0.33 0.31 0.13 ( 0.12,0.60) 0.85 0.85 0.18 (0.54,1.17)

Children 0.81 0.81 0.15 ( 0.55,1.05) 0.64 0.59 0.24 (0.27,1.06)

Non-white 0.20 0.20 0.12 (-0.02,0.43) 1.12 1.14 0.19 (0.76,1.39)

Hispanic 1.26 1.30 0.24 ( 0.74,1.58) 1.67 1.66 0.25 (1.25,2.08)

Unemployed 1.33 1.30 0.24 ( 0.97,1.79) 0.68 0.70 0.30 (0.14,1.14)

Education 0.41 0.39 0.17 ( 0.11,0.72) 0.55 0.54 0.17 (0.28,0.86)

Middle Age 2.31 2.30 0.20 ( 1.95,2.64) 1.32 1.33 0.16 (1.03,1.59)

High Age 2.67 2.66 0.17 ( 2.41,2.93) 1.50 1.50 0.19 (1.17,1.79)

Middle Income 2.16 2.16 0.17 ( 1.86,2.46) 1.65 1.66 0.20 (1.31,1.98)

High Income 2.42 2.44 0.15 ( 2.12,2.64) 1.78 1.85 0.23 (1.36,2.10)

Table 5. Marginal coefficients γ on demographic variables.
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Parameter Mean Median Std.Dev. 90% BCS

bθ1 (HEB) 7.672 7.708 0.301 ( 7.093, 8.112)

bθ2 (Kroger) 5.651 5.838 1.016 ( 3.931, 7.127)

bθ3 (Randalls) 8.225 8.365 0.937 ( 6.607, 9.369)

bθ4 (Walmart) 4.830 4.915 0.877 ( 3.380, 6.177)

bθ5 (Pantry Foods) 11.79 11.681 0.486 (11.168,12.679)

bθ6 (other) 4.689 4.897 0.808 ( 3.331, 5.739)

Table 6. Means bθ of distributions of store indicator variable coefficients θi.

Parameter Mean Median Std.Dev. 90% BCS

Σθ1θ1 (HEB) 2.205 2.199 0.142 ( 1.983, 2.450)

Σθ1θ2 (HEB & Kroger) -0.008 -0.009 0.084 (-0.146, 0.130)

Σθ1θ3 (HEB & Randalls) 0.594 0.594 0.101 ( 0.428, 0.763)

Σθ1θ4 (HEB & Walmart) 0.211 0.210 0.079 ( 0.078, 0.345)

Σθ1θ5 (HEB & Pantry Foods) -1.105 -1.090 0.144 (-1.366,-0.889)

Σθ1θ6 (HEB & other) -0.877 -0.872 0.109 (-1.067,-0.710)

Σθ2θ2 (Kroger) 1.992 1.988 0.134 ( 1.779, 2.224)

Σθ2θ3 (Kroger & Randalls) 0.139 0.137 0.087 (-0.001, 0.283)

Σθ2θ4 (Kroger & Walmart) 0.060 0.059 0.073 (-0.060, 0.180)

Σθ2θ5 (Kroger & Pantry Foods) -0.169 -0.168 0.087 (-0.312,-0.028)

Σθ2θ6 (Kroger & other) 0.086 0.084 0.081 (-0.047, 0.221)

Σθ3θ3 (Randalls) 2.209 2.200 0.178 ( 1.933, 2.516)

Σθ3θ4 (Randalls & Walmart) -0.002 -0.003 0.076 (-0.126, 0.125)

Σθ3θ5 (Randalls & Pantry Foods) 0.559 0.541 0.154 ( 0.341, 0.862)

Σθ3θ6 (Randalls & other) 0.392 0.391 0.096 ( 0.236, 0.555)

Σθ4θ4 (Walmart) 1.747 1.743 0.113 ( 1.569, 1.941)

Σθ4θ5 (Walmart & Pantry Foods) 0.331 0.331 0.087 ( 0.186, 0.472)

Σθ4θ6 (Walmart & other) 0.038 0.037 0.076 (-0.084, 0.162)

Σθ5θ5 (Pantry Foods) 2.311 2.303 0.154 ( 2.074, 2.585)

Σθ5θ6 (Pantry Foods & other) -0.410 -0.409 0.096 (-0.572,-0.256)

Σθ6θ6 (other) 2.180 2.173 0.138 ( 1.967, 2.421)

Table 7. Covariances Σθ of distributions of store indicator variable coefficients θi
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Walmart price increase 10% 20% 30%

Variable Mean Normal Mean Mean Normal Mean Mean Normal Mean

Pooled sample 5.96 17.76 8.57 22.12 10.6 26.36

Singleton = 1 9.84 13.05 12.22 17.12 12.9 21.03

Singleton = 0 4.93 19.12 7.61 23.56 9.98 27.89

Children = 1 3.88 12.50 5.58 16.71 7.68 20.73

Children = 0 6.49 19.11 9.34 23.48 11.31 27.75

Non-white = 1 8.78 21.62 9.71 26.28 8.78 30.81

Non-white = 0 5.27 17.00 8.27 21.31 11.10 25.48

Hispanic = 1 3.70 12.76 7.35 16.33 12.49 20.16

Hispanic = 0 6.18 18.41 8.68 22.84 10.44 27.11

Unemployed = 1 8.22 14.80 7.76 19.21 3.86 23.25

Unemployed = 0 5.79 18.07 8.63 22.43 11.11 26.69

Education = 1 7.01 17.29 9.11 21.39 11.04 25.67

Education = 0 4.77 18.17 7.95 22.76 10.11 26.95

Med Age = 1 5.31 18.17 7.41 22.57 8.96 26.77

Med Age = 0 6.71 17.05 9.93 21.36 12.67 25.67

High Age = 1 9.37 15.40 13.0 19.98 16.35 24.72

High Age = 0 4.59 18.41 6.77 22.72 8.45 26.83

Med Income = 1 3.31 13.55 4.99 16.79 8.81 19.72

Med Income = 0 6.88 19.92 9.77 24.80 11.20 29.64

High Income = 1 5.40 19.26 7.71 23.39 8.19 27.63

High Income = 0 6.64 16.18 9.63 20.78 13.61 25.02

Table 8. Monthly compensating variation in dollar amounts of compensating

variation for individuals in different demographic categories: comparison of the Se-

lective Flexible Poisson Mixture model and a parametric benchmark Normal Poisson

model.
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9. Appendix

9.1. Implementation Notes

The estimation results along with auxiliary output are presented below. All parameters were sampled

by running 30,000 MCMC iterations, saving every fifth parameter draw, with a 10,000 burn-in phase.

The entire run took about 24 hours of wall clock time on a 2.2 GHz AMD Opteron unix machine

using the fortran 90 Intel compiler version 11.0. In applying Theorem 1, the Riemann zeta function

ζ(j) was evaluated using a fortran 90 module Riemann zeta. 13

In the application, we used F (ψi) = N(μ
φi
β ,Σ

φi
β ) with hyperparameters μ

φi
β and Σ

φi
β , with φi denoting

a latent class label, drawn as μφiβ ∼ N(μ
β
,Σβ), Σ

φi
β ∼ IW (Σφiβ , v0Σβ ), μβ = 0, Σβ = diag(100),

Σφiβ = diag(1/2), and v0Σβ = dimβ + 10. Since the resulting density estimate should be capable of

differentiating sufficient degree of local variation, we imposed a flexible upper bound on the variance

of each latent class: if any such variance exceeded double the prior on Σφiβ , the strength of the prior

belief expressed as v0Σβ was raised until the constraint was satisfied. This left the size of the latent

classes to vary freely up to double the prior variance. This structure gives the means of individual

latent classes of βi sufficient room to explore the parameter space via the diffuse Σβ while ensuring

that each latent class can be well defined from its neighbor via the (potentially) informative Σφiβ and

v0Σβ which enforce a minimum degree of local resolution in the nonparametrically estimated density

of βi. The priors on the hyperparameters μθ and Σθ of θi ∼ N(μθ,Σθ) were set to be informative

due to partial identification of θi, as discussed above, with μθ ∼ N(μ
θ
,Σθ), μθ = 0, Σθ = diag(5),

Σθ ∼ IW (Σθ, v0Σθ ), and v0Σθ = dim(θ) + 10. Such prior could guide the θis that were empirically

unidentified while leaving the overall dominating weight to the parameters themselves. We left the

prior on γ completely diffuse without any hyperparameter updates since γ enters as a “fixed effect”

parameter. The curvature on the likelihood of γ is very sharp as γ is identified and sampled for the

entire panel.

The starting parameter values for γ, β and θ were obtained from the base-case parametric Poisson

model estimated in Stata, with a N(0, 0.1) random disturbance applied to βi and θi. Initially,

each individual was assigned their own class in the DPM algorithm. The RW-MH updates were

automatically tuned using scale parameters to achieve the desired acceptance rates of approximately

0.3 (for a discussion, see e.g. p. 306 in Train, 2003). All chains appear to be mixing well and

having converged. In contrast to frequentist methods, the draws from the Markov chain converge

in distribution to the true posterior distribution, not to point estimates. For assessing convergence,

we use the criterion given in Allenby, Rossi, and McCulloch (2005) characterizing draws as having

13The module is available in file r zeta.f90 at http://users.bigpond.net.au/amiller/ converted to f90 by
Alan Miller. The module was adapted from from DRIZET in the MATHLIB library from CERNLIB, K.S.
Kolbig, Revision 1.1.1.1 1996/04/01, based on Cody, W.J., Hillstrom, K.E. & Thather, H.C., ‘Chebyshev
approximations for the Riemann zeta function’, Math. Comp., vol.25 (1971), 537-547.
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the same mean value and variability over iterations. Plots of individual chains are not reported here

due to space limitations but can be provided on request.

9.2. Proof of Lemma 1: Derivation of fmax(εitck)

We have

Fj(εitck) = exp {− exp [− (εitck + Vitck − Vitjk)]}

fc(εitck) = exp [− (εitck + Vitck − Vitck)] exp {− exp [− (εitck + Vitck − Vitck)]}

Therefore

fmax(εitck) ∝
∏

j 6=c

exp {− exp [− (εitck + Vitck − Vitjk)]}

× exp (−εitck) exp {− exp (−εitck)}

= exp





−

J∑

j=1

exp [− (εitck + Vitck − Vitjk)]





exp (−εitck)

= exp





− exp (−εitck)

J∑

j=1

exp [− (Vitck − Vitjk)]





exp (−εitck)

≡ f̃max(εitck)

Defining zitck = exp (−εitck) for a transformation of variables in fmax(εitck), we note that the

resulting f̃emax(zitck) is an exponential density kernel with the rate parameter

νitck =

J∑

j=1

exp [− (Vitck − Vitjk)]

and hence νitck is the factor of proportionality for both probability kernels f̃
e
max(zitck) and f̃max(εitck)

which can be shown as follows:
∫ ∞

−∞
νitckf̃max(εitck)dεitck = νitck

∫ ∞

−∞
exp {− exp (−εitck) νitck} exp (−εitck) dεitck

= νitck

∫ 0

−∞
exp {−zitckνitck} d(−zitck)

= νitck

∫ ∞

0

exp {−zitckνitck} d(zitck)

=
νitck

νitck
exp {−zitckνitck}

∣
∣
∣
∣

∞

0

= 1

Hence

fmax(εitck) = exp (log(νitck)) f̃max(εitck)

= exp {− exp (−(εitck − log(νitck))} exp (−(εitck − log(νitck))
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which is Gumbel with mean log(νitck) (as opposed to 0 for the constituent f(εttjk) ) or exponential

with rate νitck (as opposed to rate 1 for the constituent f(zitck) ).

Note that the derivation of fmax(εitck) is only concerns the distribution of εitjk and is independent

of the form of λit.

9.3. Proof of Theorem 1: Derivation of Conditional Choice Probabilities

The proof proceeds by first deriving an analytical expression for the generalized w-th moment

η′w(εitc;V itc) in (3.1) via its composite cumulant representation, and then uses its structure to

arrive at a closed-form expression for the desired full integral term Eεf(yitc|V itc) in (3.1).

Let κ(εitc;V itc) denote the uncentered cumulant of εitc with mean V itc while κ(εitc) denotes the

centered cumulant of εitc around its mean. Uncentered moments η
′
w and cumulants κw of order w

are related by the following formula:

η′w =

w−1∑

q=0

(
w − 1
q

)

κw−qη
′
q

where η′0 = 1 (Smith, 1995). We adopt it by separating the first cumulant κ1(εitc;V itc) in the form

η′w(εitc;V itc) =

w−2∑

q=0

(w − 1)!
q!(w − 1− q)!

κw−q(εitc;V itc)η
′
q(εitc;V itc)

+κ1(εitc;V itc)η
′
w−1(εitc;V itc)(9.1)

since only the first cumulant is updated during the MCMC run, as detailed below. Using the

definition of εitc as

εitc =
1

yitc

yitc∑

k=1

εitck

by the linear additivity property of cumulants, conditionally on V itc, the centered cumulant κw(εitc)

of order w can be obtained by

κw(εitc) = κw

(
1

yitc

yitc∑

k=1

εitck

)

=

(
1

yitc

)w
κw

(
yitc∑

k=1

εitck

)

=

(
1

yitc

)w yitc∑

k=1

κw (εitck)(9.2)

[see the Technical Appendix for a brief overview of properties of cumulants].
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From Lemma 1, εitck is distributed Gumbel with mean log(νitck). The cumulant generating function

of Gumbel distribution is given by

Kεitck(s) = μs− log Γ(1− σs)

and hence the centered cumulants κw(εitck) of εitck take the form

κw(εitck) =
dw

dsw
Kεitck(s)

∣
∣
∣
∣
s=0

=
dw

dsw
(μs− log Γ(1− s))

∣
∣
∣
∣
s=0

yielding for w = 1

(9.3) κ1(εitck) = log(νitck) + γe

where γe = 0.577... is the Euler’s constant, and for w > 1

κw(εitck) = −
dw

dsw
log Γ(1− s)

∣
∣
∣
∣
s=0

= (−1)wψ(w−1)(1)

= (w − 1)!ζ(w)(9.4)

where ψ(w−1) is the polygamma function of order w − 1 given by

ψ(w−1)(1) = (−1)w(w − 1)!ζ(w)

where ζ(w) is the Riemann zeta function

(9.5) ζ(w) =

∞∑

p=0

1

(1 + p)w

(for properties of the zeta function see e.g. Abramowitz and Stegun (1964)).

Note that the higher-order cumulants for w > 1 are not functions of the model parameters (γ, βi, θi)

contained in νitck. Thus only the first cumulant κ1(εitck) is subject to updates during the MCMC

run. We exploit this fact in our recursive updating scheme by pre-computing all higher-order scaled

cumulant terms, conditional on the data, before the MCMC iterations, resulting in significant run-

time gains.

Substituting for κw(εitck) from (9.3) and (9.4) in (9.2) yields

κ1(εitc) =
1

yitc

yitc∑

k=1

κ1 (εitck)

=
1

yitc

yitc∑

k=1

log(νitck) + γe
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and for w > 1

κw(εitc) =

yitc∑

k=1

κw(εitck)

=

(
1

yitc

)w−1
(w − 1)!ζ(w)

For the uncentered cumulants, conditionally on V itc, we obtain

(9.6) κ1(εitc;V itc) = V itc + κ1(εitc)

while for w > 1

(9.7) κw(εitc;V itc) = κw(εitc)

[see the Technical Appendix for details on the additivity properties of cumulants.]

Substituting for κ1(εitc;V itc) and κw−q(εitc;V itc) with w > 1 from from (9.6) and (9.7) in (9.1),

canceling the term (w − i− 1)!, yields

η′w(εitc;V itc) =
w−2∑

q=0

(w − 1)!
q!

(
1

yitc

)w−q−1
ζ(w − q)η′q(εitc;V itc)

+[V itc +
1

yitc

yitc∑

k=1

log(νitck) + γe]η
′
w−1(εitc;V itc)(9.8)

Note that the appearance (and hence the possibility of cancellation) of the explosive term (w−q−1)!

in both in the recursion coefficient and in the expression for all the cumulants κw−q is a special feature

of Gumbel distribution which further adds to its analytical appeal.

Let

(9.9) η̃′r+yitc(εitc;V itc) =
(−1)r

r!yitc!
δr+yitcitc η′r+yitc(εitc;V itc)

denote the scaled raw moment obtained by scaling η′r+yitc(εitc;V itc) in (9.8) with (−1)
rδr+yitcitc /(r!yitc!).

Summing the expression (9.9) over r = 1, . . . ,∞ would now give us the desired series representation

for (2.10). The expression (9.9) relates unscaled moments expressed in terms of cumulants to scaled

ones. We will now elaborate on a recursive relation based on (9.9) expressing higher-order scaled

cumulants in terms of their lower-order scaled counterparts. The recursive scheme will facilitate fast

and easy evaluation of the series expansion for (2.10).

The intuition for devising the scheme weights is as follows. If the simple scaling term (−1)r/(r!yitc!)

were to be used for calculating η′r+yitc(εitc;V itc) in (9.8), the former would be transferred to η
′
r+yitc+1

along with a new scaling term for higher r in any recursive evaluation of higher-order scaled moments.

To prevent this compounding of scaling terms, it is necessary to adjust scaling for each w appropri-

ately.
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Let

η̃′0 =
1

yitc!
η′0

with η′0 = 1 and let

Byitc,r,q = (−1)
r (yitc + r − 1)!

q!

(
1

yitc

)yitc+r−q−1
ζ(yitc + r − q)

Let p = 1, . . . , r + yitc, distinguishing three different cases:

(1) For p ≤ yitc the summands in η̃
′
p from (9.8) do not contain r in their scaling terms. Hence

to scale η′p to a constituent term of η̃
′
r+yitc these need to be multiplied by the full factorial

1/r! which then appears in η̃′r+yitc . In this case,

Qyitc,r,q =
1

r!
Byitc,r,q

(2) For p > yitc (i.e. r > 0) but p ≤ r + yitc − 2 the summands in η̃′p already contain scaling

by 1/(q− yitc)! transferred from lower-order terms. Hence these summands are additionally

scaled only by 1/r!(q−yitc) where r!(q−yitc) ≡
∏r
c=q−yitc

c in order to result in the sum η̃′p

that is fully scaled by 1/r!. In this case,

Qyitc,r,q =
1

r!(q−yitc)
Byitc,r,q

(3) The scaling term on the first cumulant κ1(εitc;V itc) is r
−1 for each p = 1, . . . , yitc + r.

Through the recursion up to η̃′yitc+r the full scaling becomes r!
−1. In this case,

Qyitc,r,q =
1

r
(−1)r

Denoting η̃′yitc,r−2 = (η̃
′
0, . . . , η̃

′
yitc+r−2)

T and Qyitc,r−2 = (Qyitc,r,q, . . . , Qyitcr,,r−2)
T the recursive

updating scheme

η̃′yitc+r = δ
r+yitc
itc

[
QTyitc,r−2η̃

′
yitc,r−2 + (−1)

rr−1κ1 (νitc) η̃
′
yitc+r−1

]

yields the expression

η̃′yitc+r(εitc;V itc) = (−1)rδr+yitcitc

yitc+r−2∑

q=0

(yitc + r − 1)!
r!q!

+
ζ(yitc + r − q)

yyitc+r−q−1itc

η̃′q(εitc;V itc)

+(−1)rδr+yitcitc

1

r!
[V itc +

1

yitc

yitc∑

k=1

log(νitck) + γe]η̃
′
yitc+r−1(εitc;V itc)(9.10)

for a generic yitc + r which is equivalent to our target term in (9.9) that uses the substitution for

η′w(εitc;V itc) from (9.8). However, unlike the unscaled moments η
′
q(εitc;V itc), the terms on the

right-hand side of (9.10) are bounded and yield a convergent sum over r = 1, . . . ,∞ required for

evaluation of (2.10), as verified in Lemma 2. An illustrative example of our recursive updating

scheme for yitc = 4 follows.
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9.4. Illustrative Example of Recursive Updating:

Let ξ = (β, θ, γ). Each column in the following table represents a vector of terms that sum up in

each column to obtain the scaled moment η̃′p, up to δ
r+yitc
itc . This example is for yitc = 4, with rk = k.

r q p : 1 2 3 4 5 6 7 8

0 0 κ1(ξ)η̃
′
0 B4,0,0η̃

′
0 B4,0,0η̃

′
0 B4,0,0η̃

′
0

1
r1
B4,1,0η̃

′
0

1
r1

1
r2
B4,2,0η̃

′
0

1
r1

1
r2

1
r3
B4,3,0η̃

′
0

1
r1

1
r2

1
r3

1
r4
B4,4,0η̃

′
0

0 1 = η̃′1 κ1(ξ)η̃
′
1 B4,0,1η̃

′
1 B4,0,1η̃

′
1

1
r1
B4,1,1η̃

′
1

1
r1

1
r2
B4,2,1η̃

′
1

1
r1

1
r2

1
r3
B4,3,1η̃

′
1

1
r1

1
r2

1
r3

1
r4
B4,4,1η̃

′
1

0 2 = η̃′2 κ1(ξ)η̃
′
2 B4,0,2η̃

′
2

1
r1
B4,1,2η̃

′
2

1
r1

1
r2
B4,2,2η̃

′
2

1
r1

1
r2

1
r3
B4,3,2η̃

′
2

1
r1

1
r2

1
r3

1
r4
B4,4,2η̃

′
2

0 3 = η̃′3 κ1(ξ)η̃
′
3

1
r1
B4,1,3η̃

′
3

1
r1

1
r2
B4,2,3η̃

′
3

1
r1

1
r2

1
r3
B4,3,3η̃

′
3

1
r1

1
r2

1
r3

1
r4
B4,4,3η̃

′
3

0 4 = η̃′4
1
r1
κ1(ξ)η̃

′
4

1
r1

1
r2
B4,2,4η̃

′
4

1
r1

1
r2

1
r3
B4,3,4η̃

′
4

1
r1

1
r2

1
r3

1
r4
B4,4,4η̃

′
4

1 5 = η̃′5
1
r2
κ1(ξ)η̃

′
5

1
r2

1
r3
B4,3,5η̃

′
5

1
r2

1
r3

1
r4
B4,4,5η̃

′
5

2 6 = η̃′6
1
r3
κ1(ξ)η̃

′
6

1
r3

1
r4
B4,4,5η̃

′
6

3 7 = η̃′7
1
r4
κ1(ξ)η̃

′
7

4 8 = η̃′8

Note on color coding: The terms in green are pre-computed and stored in a memory array before

the MCMC run. The one term in violet is updated with each MCMC draw. The terms in red are

computed recursively by summing up the columns above and updating the red term in the following

column, respectively, within each MCMC step.

9.5. Proof of Lemma 2

From (9.10) we have

η̃′yitc+r(εitc;V itc) =

yitc+r−2∑

q=0

O(q!−1)O(y−ri1 )O(1)η̃
′
q(εitc;V itc)

+O(r!−1)O(1)η̃′yitc+r−1(εitc;V itc)

as r grows large, with dominating term O(y−ri1 ). For yitc > 1, O(y
−r
i1 ) = o(1). For yitc = 1, using

(9.10) in (2.10), for R large enough to evaluate Eεf(yitc|V itc) with a numerical error smaller than

some tolerance level, switch the order of summation between r and q to obtain a triangular array

Eεf(yitc = 1|V itc) ≈
R∑

r=0

η̃′1+r(εitc;V itc)

=
R−1∑

q=0

η̃′q(εitc;V itc)
R∑

r=0

(−1)r
(r + 1− q)!

r!q!
ζ(r + 1− q)

+η̃′R(εitc;V itc)

R∑

r=0

(−1)r
1

r!
[V itc + log(νitc1) + γe]

=

r−1∑

q=0

η̃′q(εitc;V itc)

q−1∑

r=0

(−1)r
(r + 1− q)!

r!q!
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with zero elements η̃′q(εitc;V itc) = 0 for q = r, r + 1, . . . , R. Substitute for ζ(r + yitc − q) from (9.5)

and split the series expression for p = 0 and p ≥ 1 to yield

Eεf(yitc|V itc) ≈
R−1∑

q=0

η̃′q(εitc;V itc)

R∑

r=0

(−1)r
(r + 1− q)!

r!q!

∞∑

p=0

1

(1 + p)r+1−q

+η̃′R(εitc;V itc)

R∑

r=0

(−1)r
1

r!
[V itc + log(νitc1) + γe]

=

R−1∑

q=0

η̃′q(εitc;V itc)

R∑

r=0

(−1)r
(r + 1− q)!

r!q!

+

R−1∑

q=0

η̃′q(εitc;V itc)

R∑

r=0

(−1)r
(r + 1− q)!

r!q!

∞∑

p=1

1

(1 + p)r+1−q

+η̃′R(εitc;V itc)
R∑

r=0

(−1)r
1

r!
[V itc + log(νitc1) + γe]

For any given q < r, the sum over r in the first term is zero for any odd R.The sum over p in the

second term is O(1) as r grows large, while the sum over r is o(1) as q grows large with r. For q ≥ r

the elements of the array are zero by construction. The third term is O(r!−1), completing the claim

of the Lemma.

9.6. Proof of Theorem 2

The proof follows the application of Theorem 4.4.2 (weak consistency) and Theorem 4.4.4 (strong

consistency) in Ghosh and Ramamoorthi (2003), henceforth GR. These results extend the classic

theory of Schwartz (1965) based on the existence of uniformly exponentially consistent tests of the

true parameter versus alternatives. An illuminating exposition of extensions of the Schwartz theory

with applications can also be found in Ghosal (2010).

GR Theorems 4.4.2 and 4.4.4 are sufficiently generic to cover the consistency our parameter of

interest – the posterior density of β. The weak consistency case follows immediately from GR

Theorem 4.4.2 by imposing a Kullback-Leibler positivity condition on the prior. In verifying the

sufficient condisions for the strong consistency case we follow the GR treatment of density estimation

(GR chapter 5) which differs from our case in two aspects. In GR, the target posterior density is

constructed directly as functional of the observables in the form of a Normal kernel mixture centered

on the observables. In our case the target posterior density of β is also expressed as a functional of

the observables, but its form is obtained from the economic model given by Assumptions 1–6. This

difference necessitates a remake of the section of the GR proof where the posterior functional form

is explicitly used, which is the first part of the GR Lemma 5.6.2 showing that the pointwise distance

between the posterior density at two different parameter values can be bounded by some small δ.

The second difference is that using a different functional form of the target posterior density requires

the construction of a slightly different sieve and hence bound on the corresponding metric entropy
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growth. The sieve only differs in its support but not its form, though, and hence we keep relatively

close to GR on this aspect. Replacing the relevant parts of Theorem 4.4.4 in GR then constitutes

our strong consistency proof. The notation throughout closely follows GR and Ghosal (2010).

The setup is similar to the one considered in GR (p. 121), and Ghosal (2010, p. 55). Denote by

yi the set of observables {Yitk : k = 1, . . . , Cit}, by wi = {Yi, Xi, Zi, Di} the set of observables for

the individual i, and by wn the set of observables for all n individuals. The observables {X,Z,D}

are assumed distributed i.i.d., exogenously to our model for y. Denote by Ω ⊂ Rd the parameter

space of β. Denote by Dα the probability measure defined on the set of probability measures M(R)

generated by the Dirichlet Process DP (α,G0). The existence and uniqueness of Dα is guaranteed

e.g. by Theorem 3.2.1 in GR. Let f(ψi|wi) denote the marginal posterior density of β given yi for

which, from Assumptions 1–6 and hence 2.9,

f(ψ|wi) ∝
∫

V\Ω
Eε[fy(yitc|V itc)]g(V itc|ψ)d(γ, θ)k(β;ψ)

An analytical expression for Eε[fy(yitc|V itc)] is given in (3.1). We will use the short-hand notation

f0 for the true density of β, and f for a generic density of β. Given f, wi are i.i.d. with a common

distribution Pf . From Assumption 5, the hyperparameters ψ1, . . . , ψn are i.i.d. G given G, and

wi ∼ Pf (∙, ψi) given ψ1, . . . , ψn, G. Let P∞f denote the joint distribution of the sequence {wi}
∞
i=1.

Assume that Pf (∙, ψi) is absolutely continuous with respect to the Lebesgue measure yielding the

density pf (w) over the domain of the observables.

Let Lμ = {f : f is measurable, f ≥ 0,
∫
fdμ = 1} denote the space of densities with respect to a

σ-finite measure μ on Ω. Every f ∈ Lμ then corresponds to the probability measure Pf . Equip Lμ

with the L1-metric

‖f − g‖ =
∫
|f − g| dμ

Under the L1-metric, Lμ is complete and separable. On Lμ the L1-metric is equivalent to the total

variation metric (GR, p. 58). Denote by Π(f) the prior on Lμ, which in our case is induced by Dα,

and let Π(f |wn) denote the posterior. Let U be a set containing f0. The following two definitions

make the posterior consistency concept precise in the weak and the strong sense.

Definition 1 (GR Definition 4.2.1). {Π(∙|wn)} is said to be strongly or L1-consistent at Pf0 if there
is Ω0 ⊂ Ω such that P∞f0 (Ω0) = 1 and for ω ∈ Ω0

Π(U |wn)→ 1

for all total variation neighborhoods of Pf0 .

Definition 2 (GR Definition 4.2.2). {Π(∙|wn)} is said to be weakly consistent at Pf0 if there is
Ω0 ⊂ Ω such that P∞f0 (Ω0) = 1 and for ω ∈ Ω0

Π(U |wn)→ 1

for all weak neighborhoods of Pf0 .
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A useful approach to proving posterior consistency due to Schwartz (1965) imposes conditions on

the support of the prior in the sense of the Kullback-Leibler divergence

K(f1, f2) =

∫
f1 log(f1/f2)dμ

with f1, f2 ∈ Lμ. The Schwartz approach has been extended and applied by a number of authors to

various types of models. In general, the posterior probability of the complement U c of U (and in

general any set in place of U c) can be expressed as

(9.11) Π(f ∈ U c|wn) =

∫
Uc

∏n
i=1

pf (wi)
pf0 (wi)

Π(df)
∫
Lμ

∏n
i=1

pf (wi)
pf0 (wi)

Π(df)

To prove consistency it suffices to show that Π(f ∈ U c|wn) → 0 a.s. P∞f0 for which the sufficient

conditions are

(9.12) lim inf
n→∞

enb
∫

Lμ

n∏

i=1

pf (wi)

pf0(wi)
Π(df) =∞ a.e. P∞f0 , ∀b > 0

and

(9.13) lim
n→∞

enb0
∫

Uc

n∏

i=1

pf (wi)

pf0(wi)
Π(df) = 0 a.e. P∞f0 for some b0 > 0

These correspond to (4.1) and (4.2) in GR, respectively. (9.13) ensures that the numerator in (9.11)

converges to zero enb0 exponentially fast for some b > 0 while (9.12) ensures that the denominator

multiplied by enb converges to infinity for all b > 0. We need to provide sufficient conditions for

(9.12) and (9.13) to hold. The weak and strong consistency case differ in the metric utilized.

9.7. Controlling the Denominator

A sufficient condition for (9.12) is referred to as the Kullback-Leibler (or K-L) positivity property

of the prior. We first define the concept of K-L support as in Ghosal (2010), p. 55 and then state

sufficient conditions for the property to hold in an assumption on the true density of β. Denote by

Kε(f) the neighborhood {g : K(pf , pg) < ε}.

Definition 3. Let f0 be in Lμ. f0 is said to be in the K-L support of the prior Π, if for all ε > 0,
Π(Kε(f0)) > 0.

We impose the K-L support condition by the following assumption.

ASSUMPTION 7. Π(Kε(f0)) > 0 for all ε > 0.

Since ε can be chosen arbitrarily small, it immediately follows that the denominator in (9.11) mul-

tiplied by is exponentially large. Assumption 7 is thus sufficient to control the denominator.
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9.8. Controlling the Numerator

Schwartz’s original approach was to link (9.13) with the power of uniformly exponentially consistent

tests for the hypothesis H0 : f = f0 versus H1 : f ∈ U c. Under the existence of these tests, Schwartz

(1965) showed that the ratio of the marginal density of the observations with f conditioned to lie

outside U to the true joint density is exponentially small except on a set with exponentially small

sampling probability, which is sufficient to control (9.13) as required.

Under the weak topology, GR Theorem 4.4.2 shows that the K-L positivity condition given in

Assumption 7 is sufficient for the existence of such uniformly consistent tests (for a formal definition

see GR Definition 4.4.2) which in turn yield posterior consistency since Assumption 7 is also sufficient

for controlling (9.12).

However, if U is a neighborhood of f0 under the strong topology of total variation or the L1-metric

then these uniformly consistent tests will not exist, as shown by LeCam (1973) and Barron (1999)

(GR, p. 132). In this case, the Schwartz approach will still go through but instead of U c one needs

to use its truncation to the sieve space Fn with the property that Fcn ⊂ U c. Before proceeding

further we will define a useful concept:

Definition 4 (GR Definition 4.4.5). Let G ⊂ Lμ. For δ > 0, the L1-metric entropy J(δ,G) is defined
as the logarithm of the minimum of all n such that there exist f1, . . . , fn in Lμ with the property
G ⊂ ∪n1{f : ‖f − fi‖ < δ}.

The formal statement for satisfying (9.13) in this case and hence strong consistency is given by GR

Theorem 4.4.3 with sufficient conditions provided by GR Theorem 4.4.4. Since the proof of our

Theorem 2 involves showing that the conditions of GR Theorem 4.4.4 are satisfied, we will restate

the latter here:

THEOREM 3 (Theorem 4.4.4 of GR). Let Π be a prior on Lμ. Suppose f0 ∈ Lμ and Π(Kε(f0)) > 0
for all ε > 0. If for each ε > 0, there is a δ < ε, c1, b1 > 0, b < ε2/2, and Fcn ⊂ Lμ such that, for all
n large,

Π(Fcn) < c1e
−nb1(9.14)

J(δ,Fn) < nb(9.15)

then the posterior is strongly consistent at f0.

The condition 9.14 imposes a restriction on the probability mass assigned to the complement of the

sieve space by the prior, while 9.15 requires a bound of the metric entropy limiting the rate of growth

of the sieve. Theorem 4.4.4 of GR is generic and covers a wide range of applications. In verifying

its sufficient conditions we will proceed similarly to the density estimation case of GR (chapter 5)

but with the key differences described above.



43

9.9. Entropy Bound

In order to apply Theorem 4.4.4 of GR, given

U = {f : ‖f − f0‖ < ε}

for some δ < ε/4, we need to construct sieves {Fn : n ≥ 1} such that J(δ,Fn) ≤ nb and Fcn has

an exponentially small prior probability. The DP prior has the property that Dα{G : G[−an, an] >

1− δ} → 1 as an →∞. Hence, a natural candidate for Fn is

(9.16) Fn = ∪nF
an
n

with

Fann =

{∫
f(ψ|w)dG(ψ) : G[−an, an] > 1− δ

}

where an ∈ Rd such that an → ∞. This sieve is very similar to the one considered in GR (section

5.6.2). The following regularity condition will be useful in verifying the entropy bound.

ASSUMPTION 8. Given the prior structure of Assumption 5,

‖f(ψ1|∙)− f(ψ2|∙)‖ ≤ c1 ‖ψ1 − ψ2‖E

where c1 <∞ is a constant that does not depend on n, and ‖∙‖E is the Euclidean norm.

This Lipschitz continuity type assumption controls the influence of the prior hyperparameters ψ on

the posterior density. The assumption is easily satisfied if f(ψ|∙) is a smooth density, such as a

smooth mixture of Normals as in our application.

The following Lemma provides a bound on J(δ,Fann ).

LEMMA 3. Under the Assumptions 1–8,

J(δ,Fann ) ≤ c2an

where c2 > 0 is a constant.

Proof. The proof proceeds in two steps, along the lines of GR (section 5.6.2). First we consider the
case of G[−an, an] = 1 for some fixed finite an ∈ Rd. This is then generalized to G[−an, an] > 1− δ
while permitting an to increase with n at a rate that preserves the previously established inequality.

Let

Fann,1 =

{∫
f(ψ|w)dG(ψ) : G[−an, an] = 1

}

Given δ, let N be the smallest integer greater than c1an/δ. Cover (−an, an] with a set of balls Ei
of radius an/N so that if ψ,ψ

′ ∈ Ei then ‖ψ − ψ′‖E < an/N and consequently by Assumption 8,
‖f(ψ|∙)− f(ψ′|∙)‖ < δ.

The rest of the proof proceeds as in the proof of GR Lemma 5.6.2 and GR Lemma 5.6.3. In particular,
let

GN =

{

(P1, . . . , PN )} : Pi ≥ 0,
N∑

i=1

Pi = 1

}

be the N -dimensional probability simplex and let G∗N be a δ-net in GN , i.e. given P ∈ GN , there is

P ∗ = (P ∗1 , . . . , P
∗
N ) ∈ G

∗
N such that

∑N
i=1 |Pi − P

∗
i | < δ. Let F∗ =

{∑N
i=1 P

∗
i f(ψi|wi) : P

∗ ∈ G∗N
}
.
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Then F∗ is 2δ-net in Fann,1. To show this, note that if
∫
f(ψ|w)dG(ψ) ∈ Fann,1 then set Pi = P (Ei)

and let P ∗ ∈ G∗N be such that
∑N
i=1 |Pi − P

∗
i | < δ. Then, similarly to GP (p. 171),

∥
∥
∥
∥
∥

∫
f(ψ|w)dG(ψ)−

N∑

i=1

P ∗i f(ψ|wi)

∥
∥
∥
∥
∥
≤

∥
∥
∥
∥
∥

∫
f(ψ|w)dG(ψ)−

N∑

i=1

∫
IEif(ψi|wi)dG(ψ)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

N∑

i=1

Pif(ψ|wi)−
N∑

i=1

P ∗i f(ψ|wi)

∥
∥
∥
∥
∥

≤
∫ N∑

i=1

IEi ‖f(ψi|wi)− f(ψi|wi)‖ dG(ψ) +
N∑

i=1

|Pi − P
∗
i |

≤ 2δ

where IEi is an indicator function taking the value of 1 over the set Ei and 0 elsewhere. This shows
that

(9.17) J(δ,Fann,1) ≤ J(2δ,GN )

The bound for J(δ,GN ) is then given by

(9.18) J(2δ,GN ) ≤ N
d (c1an/δ + 1)

(

1 + log
1 + δ

δ

)

using the approach of Barron, Schervish, and Wasserman (1999) cited in GR. Using GR Lemma
5.6.3,

J(3δ,Fann ) ≤ J(δ,F
an
n,1)

which together with (9.17) and (9.18) completes the proof of the Lemma. �

Given these results, we can now proceed to the statement of the proof of Theorem 2.

Proof of Theorem 2.

(a) Under the weak topology, GR Theorem 4.4.2 shows that the K-L positivity condition given here
in Assumption 7 is sufficient for weak posterior consistency.

(b) Under the strong topology with the L1-metric, we apply GR Theorem 4.4.4. Its sufficient
conditions are satisfied as follows: the K-L positivity property by Assumption 7, Condition
(9.14) by Assumptions 5, 7, and the definition of Fn, and condition (9.15) by Lemma 3 and
(9.16).

�
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10. Technical Appendix

10.1. Poisson mixture in terms of a moment expansion

Applying the series expansion

exp(x) =

(
∞∑

r=0

(x)r

r!

)

to our Poisson mixture in (2.8) yields

P (Yitc = yitc|δitc) =
∫

Λ

1

yitc!
exp(−δitcλitc) (δitcλitc)

yitc g(λitc)dλitc

=

∫

(V×ε)

1

yitc!
exp(−δitc(εitc + V itc))δ

yitc
itc (εitc + V itc)

yitcg(εitc|V itc)g(V itc)d(εitc, V itc)

=

∫

V

∫

ε

1

yitc!

(
∞∑

r=0

(−δitc(εitc + V itc))r

r!

)

δyitcitc (εitc + V itc)
yitcg(εitc|V itc)dεitcg(V itc)dV itc

=

∫

V

∞∑

r=0

∫

ε

(−1)rδr+yitcitc (εitc + V itc)
r+yitc

r!yitc!
g(εitc|V itc)dεitcg(V itc)dV itc

=

∫

V

∞∑

r=0

(−1)r

r!yitc!

∫

ε

δr+yitcitc (εitc + V itc)
r+yitcg(εitc|V itc)dεitcg(V itc)dV itc

=

∫

V

∞∑

r=0

(−1)r

r!yitc!
δr+yitcitc η′r+yitc(εitc;V itc)g(V itc)dV itc

whereby
∑∞
r=0

(−1)r

r!yitc!
δr+yitcitc η′r+yitc(εitc;V itc) is equivalent to Eεf(yitc|V itc) in (2.10).

10.2. Evaluation of Conditional Choice Probabilities Based on Moments

The moments η′w(εitc;V itc) can be evaluated by deriving the Moment Generating Function (MGF)

Mεitc|V itc(s) of the composite random variable εitc and then taking the w−th derivative ofMεitc|V itc(s)

evaluated at s = 0 :

(10.1) η′w(εitc;V itc) =
dw

dsw
Mεitc|V itc(s)

∣
∣
∣
∣
s=0

The expression for Mεitc|V itc(s) can be obtained as the composite mapping

Mεitc|V itc(s) = F1(Mεit(s))

= F1(F2(Mεitck(s)))(10.2)

where Mεitck(s) is the MGF for the centered moments of εitck, Mεitc(s) is the MGF of the centered

moments of εitc, and F1 and F2 are functionals on the space C
∞ of smooth functions.
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Let eitc =
∑yitc
k=1 εitck so that εitc = y

−1
itc eitc. Using the properties of an MGF for a composite random

variable (Severini, 2005) and the independence of εitck over k conditional on Vit

Mεitc|V itc(s) = exp(V its)Meitc(y
−1
itc s)

= exp(V its)

yitc∏

k=1

Mεitck(y
−1
itc s)(10.3)

for |s| < κ/y−1itc for some small κ ∈ R+. Let rn = r + yitc. Substituting and using the product rule

for differentiation we obtain

f(yitc|V itc) =
∞∑

r=0

(−1)r

r!yitc!
η′rn(εitc;V itc)

=

∞∑

r=0

(−1)r

r!yitc!

drn

dsrn
Mεitc|V itc(s)

∣
∣
∣
∣
s=0

=

∞∑

r=0

(−1)r

r!yitc!

drn

dsrn
exp(V its)Meit(y

−1
itc s)

∣
∣
∣
∣
s=0

=

∞∑

r=0

(−1)r

r!yitc!

{
rn∑

w=0

rn!

w!(rn − w)!
V
(rn−w)
it

dw

dtw
Meit(y

−1
itc s)

∣
∣
∣
∣
s=0

}

Using the expression forMeit(s) in (10.3) and the Leibniz generalized product rule for differentiation

yields

dw

dtw
Meit(y

−1
itc s)

∣
∣
∣
∣
s=0

=
dw

dtw

yitc∏

k=1

Mεitck(y
−1
itc s)

∣
∣
∣
∣
∣
s=0

=
∑

w1+∙∙∙+wyitc=w

w!

w1!w2! . . . wyitc !

yitc∏

k=1

dwk

dtwk
Mεitck(y

−1
itc s)

∣
∣
∣
∣
s=0

(10.4)

Using Mεitck(s), Lemma 1, and the form of the MGF for Gumbel random variables,

(10.5)
dwk

dtwk
Mεitck(y

−1
itc s)

∣
∣
∣
∣
s=0

=

wk∑

p=0

wk!

p!(wk − p)!

(
y−1itc log(νitck)

)(wk−p)
(−y−1itc )

pΓ(p)(1)

Moreover,

Γ(p)(1) =

p−1∑

j=0

(−1)j+1j!ζ̃(j + 1)

with

ζ̃(j + 1) =

{
−γe for j = 0

ζ(j + 1) for j ≥ 1

where ζ(j + 1) is the Riemann zeta function, for which |ζ̃(j + 1)| < π2

6 and ζ̃(j + 1)→ 1 as j →∞.

Using Γ(p)(1) in (10.5) and canceling p! with j! we obtain

dwk

dtwk
Mεitck(y

−1
itc s)

∣
∣
∣
∣
s=0

=

wk∑

p=0

wk!

(wk − p)!
α1(wk, p)
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where

α1(wk, p) ≡
(
y−1itc log(νitck)

)(wk−p)
(−y−1itc )

p

p−1∑

j=0

(−1)j+1
1

p!(j)
ζ̃(j + 1)

p!(j) ≡
p∏

c=j+1

c

for c ∈ N.

Substituting into (10.4) yields

dw

dtw
Meit(y

−1
itc s)

∣
∣
∣
∣
s=0

=
∑

w1+∙∙∙+wyitc=w

w!

w1!w2! . . . wyitc !

yitc∏

k=1

wk∑

p=0

wk!

(wk − p)!
α1(wk, p)

= w!
∑

w1+∙∙∙+wyitc=w

1

w1!w2! . . . wyitc !

yitc∏

k=1

wk!

wk∑

p=0

1

(wk − p)!
α1(wk, p)

= w!
∑

w1+∙∙∙+wyitc=w

yitc∏

k=1

wk∑

p=0

1

(wk − p)!
α1(wk, p)

= w!α2(yitc)

where

α2(yitc) ≡
∑

w1+∙∙∙+wyitc=w

yitc∏

k=1

wk∑

p=0

1

(wk − p)!
α1(wk, p)

Substituting into (10.1) and (3.1), canceling w! and terms in rn! we obtain

Eεf(yitc|V itc) =
∞∑

r=0

(−1)r

r!yitc!

{
rn∑

w=0

rn!

w!(rn − w)!
V
(rn−w)
itc

dw

dtw
Meit(y

−1
itc s)

∣
∣
∣
∣
s=0

}

(10.6)

=

∞∑

r=0

(−1)r

r!

rn∑

w=0

rn!
(yitc)

(r + yitc − w)!
V
(rn−w)
itc α2(yitc)

where

rn!
(yitc) ≡

rn∏

c=yitc+1

c

for c ∈ N.

10.3. Result C: Moments of Gumbel Random Variables

Let fG(X;μ, σ) denote the Gumbel density with mean μ and scale parameter σ. The moment-

generating function of X ∼ fG(X;μ, σ) is

MX(t) = E[exp(tX)] = exp(tμ)Γ(1− σt) , for σ|t| < 1.

(Kotz and Nadarajah, 2000).
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Then,

η′r(X) =
dr

dtr
MX(t)

∣
∣
∣
∣
t=0

=
dr

dtr
exp(μt)Γ(1− σt)

∣
∣
∣
∣
t=0

=

r∑

w=0

(
r

w

) [
dr−w

dtr−w
exp(μt)

dw

dtw
Γ(1− σt)

]∣∣
∣
∣
t=0

=

r∑

w=0

r!

w!(r − w)!

[
μ(r−w) exp(μt)(−σ)wΓ(w)(1− σt)

]∣∣
∣
t=0

=

r∑

w=0

r!

w!(r − w)!
μ(r−w)(−σ)wΓ(w)(1)

where Γ(w)(1) is the wth derivative of the gamma function around 1.

Γ(m)(1) =

m−1∑

j=0

ψj(1)

ψj(1) for j = 1, 2, can be expressed as

ψj(1) = (−1)
j+1j!ζ(j + 1)

where ζ(j + 1) is the Riemann zeta function

ζ(j + 1) =

∞∑

c=1

1

c(j+1)

(Abramowitz and Stegun, 1964). Hence,

Γ(m)(1) =

m−1∑

j=0

(−1)j+1j!ζ̃(j + 1)

where

ζ̃(j + 1) =

{
−γe for j = 0

ζ(j + 1) for j ≥ 1

for which |ζ̃(j + 1)| < π2

6 and ζ̃(j + 1) → 1 as j → ∞ (Abramowitz and Stegun, 1964). Note that

the NAG fortran library can only evaluate ψm(1) for m ≤ 6.
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Moreover,

dr

dtr
MX(ct)

∣
∣
∣
∣
t=0

=
dr

dtr
exp(μct)Γ(1− σct)

∣
∣
∣
∣
t=0

=

r∑

w=0

(
r

w

) [
dr−w

dtr−w
exp(μct)

dw

dtw
Γ(1− σct)

]∣∣
∣
∣
t=0

=

r∑

w=0

r!

w!(r − w)!

[
(μc)

(r−w)
exp(μct)(−σc)wΓ(w)(1− σct)

]∣∣
∣
t=0

=

r∑

w=0

r!

w!(r − w)!
(μc)

(r−w)
(−σc)wΓ(w)(1)

10.4. Properties of Cumulants

The cumulants κn of a random variable X are defined by the cumulant-generating function (CGF)

which is the logarithm of the moment-generating function (MGF), if it exists:

CGF (t) = log
(
E
[
etX
])

=

∞∑

n=0

κn
tn

n!

The cumulants κn are then given by the derivatives of the CGF (t) at t = 0. Cumulants are related

to moments by the following recursion formula:

κn = μ
′
n −

n−1∑

k=1

(
n− 1
k − 1

)

κkμ
′
n−k

Cumulants have the following properties not shared by moments (Severini, 2005):

(1) Additivity: Let X and Y be statistically independent random vectors having the same

dimension, then

κn(X + Y ) = κn(X) + κn(Y )

i.e. the cumulant of their sum X + Y is equal to the sum of the cumulants of X and Y .

This property also holds for the sum of more than two independent random vectors. The

term ”cumulant” reflects their behavior under addition of random variables.

(2) Homogeneity: The nth cumulant is homogenous of degree n, i.e. if c is any constant, then

κn(cX) = c
nκn(X)

(3) Affine transformation: Cumulants of order n ≥ 2 are semi-invariant with respect to affine

transformations. If κn is the n
th cumulant of X, then for the nth cumulant of the affine

transformation a+ bX it holds that, independent of a,

κn(a+ bX) = b
nκn(X)
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