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Abstract

I study situations where one player (the “claimant”) claims resources, and another

player (the “responder”) either accepts or contests the claim. The responder observes

the claim only imperfectly. Conflict occurs with positive probability despite perfect in-

formation about the players’preferences. Noisier monitoring of claims predicts greater

conflict risk. If the game is repeated, aggressive claims can be deterred and conflict

averted if the responder’s signal of the claim is also observed by the claimant. If the

responder’s signal is privately observed, it may be impossible to deter the claimant.

When both parties make claims, a player is better-off when her own claims are ob-

served more precisely and her opponent’s claims are observed less precisely. Possible

applications include international relations, regulation, principal-agency, and product

quality provision.
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1 Introduction

Most existing theories of disagreement in bargaining are based on imperfect contract en-

forcement or private information. This paper proposes that the diffi culty of making clear

offers is another cause of disagreement.

Consider first political and economic conflicts of an asymmetric form, where one party

takes an action that establishes some “facts on the ground,” and the other party must

then decide whether to acquiesce to this action or to contest it by initiating a costly conflict.

International competition often takes this form. China gradually builds military installations

on contested islands in the South China Sea; the US decides whether and when to respond.

Russia advances in the Caucasus or Ukraine; NATO decides whether to enter the conflict.

State-sponsored hackers launch a cyberattack; the victim decides whether to “hack back.”1

Other examples involve the enforcement of regulatory policies. A factory emits a certain

amount of pollution; a regulator decides whether to shut the factory down. A politician posts

inflammatory content on social media; the platform decides whether to block her account.2

Similar issues also arise in principal-agent relationships. In an effi ciency wage contract, a

worker chooses an effort level, and her employer decides whether to fire her. In political

agency models, a politician chooses a level of misbehavior, such as corruption or election

manipulation, and citizens decide whether to oust the politician by voting or protesting.3

These situations have much in common with ultimatum bargaining: one player– the

“claimant”– claims a certain amount of resources (physical territory, economic surplus, etc.),

and another player– the “responder”– either accepts or rejects the claim, where rejection

ineffi ciently destroys some resources. But they also differ from the standard ultimatum

1Discussions of of these situations in terms of bargaining and deterrence abound. For example, for the
South China Sea, see Kaplan (2014) or Coy (2021); for Russia, see Allison (2013) or Freedman (2019);
for cyber-detterence, see Baliga, Bueno de Mesquita, and Wolitzky (2020) and references therein. A less
US-centric view of these conflicts would recognize that both sides have opportunities to claim territory and
initiate conflicts. In this paper, I consider both asymmetric situations (where one party is the “claimant”
and the other is the “responder”) and symmetric ones (where each party plays both roles).

2A large literature in environmental economics studies incentive schemes under imperfect monitoring
(Shortle and Horan, 2001). The economics literature on media censorship has so far emphasized a different
set of issues (Prat and Strömberg, 2013).

3Unlike in my model, in standard effi ciency wage and political agency models (e.g., Shapiro and Stiglitz,
1984; Ferejohn, 1986) the payoff implications of the worker/politician’s past actions are sunk at the time of
the firing decision/election, so a wide range of implicit contracts are credible for the employer/citizens.
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bargaining game in two key ways. First, the responder observes the claim only imperfectly:

that is, he does not know exactly what payoff he will receive if he accepts the claim. (Is

an installation designed for civilian or military use? Is an inflammatory Tweet hyperbole

or a genuine incitement to violence? How much pollution will a factory emit?) I model

this feature by assuming that the responder observes an informative signal of the claim,

which satisfies a full-support assumption. Second, the claimant can make a claim that is so

aggressive that the responder strictly prefers to reject it: formally, the claimant can demand

more than the whole pie. This possibility is ignored in standard bargaining models without

loss of generality, because such offers would always be rejected when offers are perfectly

observed; however, it must be taken into account when offers are imperfectly observed.4

My first set of results characterizes the Nash equilibria of this game. Since the responder’s

signal has full support, there are always trivial equilibria where the claimant demands more

than the whole pie and the responder rejects following any signal realization.5 I call an equi-

librium non-trivial if the responder accepts with positive probability. Non-trivial equilibria

exist if the responder’s signal is suffi ciently informative. In every non-trivial equilibrium, the

claimant demands the whole pie (but no more), leaving the responder indifferent between

accepting her demand and rejecting it. In the Pareto-optimal non-trivial equilibrium (i.e.,

the equilibrium with the highest probability of acceptance), the responder accepts if and

only if the signal s falls below a cutoff s∗. Thus, as in standard ultimatum bargaining, the

claimant demands the entire surplus; but unlike the usual case, this demand is rejected with

positive probability. Intuitively, the responder cannot always accept in equilibrium, or else

the claimant would increase her demand beyond the responder’s reservation utility, which

would cause the responder to reject. The model thus predicts a positive probability of in-

effi cient conflict, even though the bargaining surplus is perfectly divisible and the players’

preferences are common knowledge.6 The model is also tractable and has intuitive com-

4Ravid (2020) and Denti, Marinacci, and Rustichini (2022) study ultimatum bargaining with a rationally-
inattentive responder and with costly information acquisition, respectively; I discuss their papers in Section
2. A different role for unobserved offers arises in multilateral bargaining with externalities, where bargainers
must form beliefs about the agreements reached by third parties (e.g., Rey and Tirole, 2007).

5This logic is as in Bagwell (1995).
6From the perspective of international relations theory, none of Fearon’s (1995) “rationalist explanations

for war” seem to apply in my model. So “imperfectly observed offers”may be another such explanation.
In particular, my model does not involve “private information” in the sense of a payoff-relevant move by
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parative statics. For example, the probability of conflict decreases as the responder’s signal

becomes more precise, and it vanishes in the perfect-observability limit, where the Pareto-

effi cient equilibrium converges to the unique subgame-perfect equilibrium of the standard

ultimatum bargaining game.

The model expresses a view of ineffi cient conflict based on imperfect observability and

indifference. Since the claimant claims the whole pie, the responder is willing to start a

conflict. If the claimant could claim a penny less– and could perfectly communicate this

claim to the responder– conflict would be averted, leaving both parties better-off. But the

claimant cannot perfectly communicate her claim, because the claim itself is not perfectly

observed; moreover, allowing the claimant to send cheap talk messages to the responder does

not help.7 Given that the claim cannot be perfectly communicated, it is not optimal for the

claimant to demand a penny less, because the resulting small reduction in conflict risk is

worth less than a penny. Finally, not only is the responder willing to reject the claim in every

equilibrium, but rejection must actually occur with positive probability in every equilibrium:

indeed, I focus on the equilibrium with the smallest rejection probability.

With the analysis of this simple, one-shot bargaining game in hand, I next consider the

richer model where the bargaining game is played repeatedly. The repeated model is more

realistic– since in reality parties can change their claims over time– and it also introduces

the question of whether repeated game effects can deter aggressive claims and reduce the

risk of conflict. I show that the answer to this question depends on whether the responder’s

signal s is also observed by the claimant: that is, on whether s is public or private. With

suffi ciently informative public signals, a folk theorem can be supported by trigger strategies

of a very simple form: the claimant claims a share x < 1 of the pie; the responder accepts if

and only if s falls below a cutoff s∗; and if the responder deviates by accepting when s > s∗

(which is profitable, given that x < 1), this triggers a switch to permanent conflict with

positive probability. This equilibrium resembles the “trip wire” or “plate glass window”

strategies that Schelling (1966, p. 47) suggested were essential for deterrence: the cutoff

Nature– it is a moral hazard model, not an adverse selection model. Note that, as in standard moral
hazard models (e.g., Holmström, 1979), the claim/action is “known”in equilibrium despite being imperfectly
observed.

7Intuitively, cheap talk does not help because statements that the claim is low are not credible. More
credible methods of communication could be valuable for the claimant– this is left for future research.
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signal s∗ is a “line in the sand” that must spark conflict when it is crossed, or else both

parties realize that deterrence has broken down. In contrast, with private signals, deterrence

is impossible for a large class of strategies, including any strategy profile where the claimant’s

strategy depends only on the history of the responder’s decisions and the responder’s strategy

depends only on this history in addition to the current-period signal. However, while the

claimant cannot be deterred from claiming the whole surplus, the probability of rejection

can be made arbitrarily small when the players are patient. Intuitively, with private signals,

if x < 1 then the responder accepts after every signal, which is inconsistent with equilibrium;

but if x = 1– so that any cutoffsignal is consistent with optimal play by the responder– then

when the claimant is patient there is a cutoff signal that deters her from claiming x > 1 but

also triggers rejection with only a small probability.

The repeated bargaining model gives the claimant complete flexibility to change her

demands over time, and similarly lets the responder switch back and forth between accepting

and rejecting these demands. In some settings, it seems more realistic to instead assume that

the claimant’s demand can only increase over time, or to assume that rejecting a claim leads

to a permanent state of conflict. I thus also consider variants of the model with monotone

claims or irreversible rejection. These variants may be viewed as models of “salami tactics”

(Schelling, 1966), where one party makes increasingly aggressive demands, and its adversary

decides whether and when to fight.8 The main predictions about deterrence and conflict risk

in these model variants turn out to be exactly the same as in the repeated bargaining model.

However, the irreversible-rejection model yields a novel, pessimistic prediction regarding the

long-run outcome of the game: the probability that the players find themselves in conflict

in period t– that is, the probability that a claim was rejected in some period prior to t–

converges to 1 as t→∞.

Finally, to capture more symmetric settings where both parties have opportunities to

claim resources, I consider a version of the one-shot bargaining model where the parties take

turns playing the roles of claimant and responder, as in Rubinstein’s (1982) alternating-offers

bargaining model. My analysis of unobserved-offer ultimatum bargaining extends naturally

8Powell (1996a) models salami tactics as an incomplete-information war of attrition; my complete-
information bargaining model captures a different aspect of salami tactics. The assumption that rejection
ends the game is as in “crisis-bargaining”models like that of Fearon (1994) or Powell (1996b).
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to this alternating unobserved-offers game. A new result is that, for a natural equilibrium

selection that generalizes the Pareto-optimal equilibrium of the baseline model (“extremal

stationary cutoff equilibria”), a player’s payoff is higher when her opponent observes her

demand more precisely, as well as when she observes her opponent’s demand less precisely.

The ability to make clear demands– and to avoid perceiving the opponent’s demand clearly–

is thus a strategic advantage in bargaining.9 For example, a firm with skilled lawyers and a

busy CEO may benefit from offering its partners clear contracts, while enjoying a credible

commitment not to pay much attention to any counteroffers.

The paper is organized as follows: Section 2 introduces and analyzes the one-shot bar-

gaining game. Section 3 studies repeated bargaining, comparing the cases with public and

private signals, and also considers extensions to monotone claims and irreversible rejection.

Section 4 analyzes alternating unobserved offers. Section 5 concludes. Proofs are deferred

to the appendix.

2 Ultimatum Bargaining with Imperfect Observation

2.1 The One-Shot Bargaining Game

A claimant (“she”) and a responder (“he”) bargain over a unit surplus. The timing is as

follows: First, the claimant chooses a claim (or demand) x ∈ X = [−M,M ], where M is

a parameter strictly greater than 1. The responder then observes a signal s ∈ S ⊆ R of

x, where the distribution of s conditional on x is denoted F (s|x). Finally, the responder

decides whether to accept or reject the claim. If the responder accepts, payoffs are x for the

claimant and 1− x for the responder. If the responder rejects, each player’s payoff is 0.

I assume that the signal space S is a closed interval, which can be bounded or unbounded,

so S = [s, s̄] with s ∈ R∪{−∞} and s̄ ∈ R∪{+∞}. I impose the following standard

assumptions on F .

Assumption 1 The signal distribution F satisfies
9Schelling (1960, p. 26) also noted a version of this point: “An asymmetry in communication may well

favor the one who is (and is known to be) unavailable for the receipt of messages, for he is the one who
cannot be deterred from his own commitment by the receipt of the other’s.”
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1. Smoothness: F admits a density, f , which is twice continuously differentiable in

x.

2. Full support : f (s|x) > 0 for all s, x.

3. Strict Monotone Likelihood Ratio Property (MLRP): f (s|x) f (s′|x′) > f (s|x′) f (s′|x)

for all s < s′, x < x′.

4. Log-concavity in x: Fx (s|x) /F (s|x) ≥ Fx (s|x′) /F (s|x′) for all s, x < x′.

Full support is the key difference from standard ultimatum bargaining. MLRP says that

higher signals are informative of higher claims, and are thus “bad news”for the responder

(Milgrom, 1981). Log-concavity will imply that the claimant’s problem is quasi-concave; it

is satisfied by many common probability distributions (Bagnoli and Bergstrom, 2005).

A strategy for the claimant is a probability distribution over X. A strategy for the

responder specifies, for each signal s ∈ S, a probability σ (s) of accepting. Since F has

full support, every signal is on-path, so ex ante and sequential rationality coincide for the

responder. I thus use the Nash equilibrium (NE) solution concept. Also, since F admits a

density, I identify responder strategies that differ only on a measure-0 set of signals.

I call an equilibrium trivial if the responder rejects with probability 1. I will show that

the model has a non-trivial equilibrium if and only if the following condition holds.

Informativeness Condition lims→s fx (s|x = 1) /f (s|x = 1) < −1.

Intuitively, this condition says that when the demand is concentrated around x = 1, a

suffi ciently low signal is suffi ciently good news about the demand.

Example 1 All of the above assumptions, including the informativeness condition, are sat-

isfied if s = x+ε, where ε ∼ N
(
0, θ2

)
is a mean-zero normal random variable, with variance

θ2 fixed independently of x.

A few remarks are in order. First, the assumption that M > 1 says that the claimant

can demand more than the whole pie. This is a crucial assumption. However, so long as it is

greater than 1, the precise value of M is irrelevant. Second, for the current, one-shot model,

it makes no difference whether or not the claimant observes s. However, this distinction will
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matter when I consider repeated bargaining in Section 3. Third, the terminology “one-shot

bargaining” serves to contrast the current model (which I also call the “baseline model”)

with the repeated bargaining model of Section 3 and the alternating-offers bargaining model

of Section 4. Of course, the one-shot bargaining game is itself a dynamic game.

2.2 Equilibrium

My first result characterizes equilibria in the one-shot bargaining game.

Theorem 1 A strategy profile is a Nash equilibrium of the one-shot bargaining game if and

only if it takes one of the following two forms:

1. (Trivial) The claimant’s strategy satisfies E [x|s] ≥ 1 for all s ∈ S. The responder

always rejects.

2. (Non-Trivial) The claimant always demands x = 1. The responder’s strategy σ satisfies

1 ∈ argmaxx∈X x
∫
s∈S σ (s) f (s|x) ds.

Moreover, when a non-trivial equilibrium exists, there is a unique non-trivial equilibrium

that maximizes the probability that the responder accepts (and thus is Pareto optimal): in

this equilibrium, the responder accepts if and only if s ≤ s∗, where s∗ > s satisfies

F (s∗|x = 1) + Fx (s∗|x = 1) = 0. (1)

Finally, a non-trivial equilibrium exists if and only if the informativeness condition holds.

In a trivial equilibrium, the claimant “usually” makes unacceptable demands, so the

responder rejects after every signal. For example, for any x ≥ 1, it is an equilibrium for the

claimant to always demand x while the responder always rejects. In a non-trivial equilibrium,

the claimant demands x = 1 with probability 1, so the responder gets zero surplus and is

indifferent between accepting and rejecting after every signal. However, not every responder

strategy is consistent with equilibrium: in order for the claimant’s demand of x = 1 to be

optimal, the responder must use a strategy of the form described in the theorem. The non-

trivial equilibria are clearly the interesting ones (when the signal is informative enough that
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they exist). In the next subsection, I will also argue that there are good theoretical reasons

to focus on the Pareto-optimal non-trivial equilibrium characterized in the theorem, where

the responder uses a cutoff strategy.10

The most subtle points in Theorem 1 are that there cannot be a non-trivial mixed-

strategy equilibrium (and hence claims other than x = 1 are never accepted), that the

Pareto-optimal equilibrium takes a cutoff form, and that a non-trivial equilibrium exists

iff the informativeness condition holds. There is no non-trivial mixed-strategy equilibrium

because if the claimant mixes then E [x|s] is strictly increasing in s (as a consequence of

MLRP), so the responder must use a cutoff strategy; however, the claimant has a unique best

response to any cutoffstrategy with cutoffs∗ ∈ (s, s̄) (as a consequence of log-concavity), and

hence cannot mix. The Pareto-optimal equilibrium takes a cutoff form because maximizing

the responder’s acceptance probability subject to the requirement that x = 1 is an optimal

demand for the claimant entails setting σ (s) = 1 if fx (s|x) /f (s|x) < λ and σ (s) = 0 if

fx (s|x) /f (s|x) > λ for some threshold λ, which yields a cutoff form under MLRP. Finally,

a non-trivial equilibrium exists iff there is a cutoff equilibrium with s∗ > s. Under MLRP,

this is the case iff the informativeness condition holds.

The Pareto-optimal equilibrium in my model is related to an equilibrium in Ravid (2020).

Ravid studies ultimatum bargaining with a rationally-inattentive responder (buyer), focusing

on the case where the claimant (seller) is privately informed, so the responder pays an “at-

tention cost”to simultaneously learn about the claimant’s demand and her type. When the

claimant is not privately informed (Ravid’s “known-quality case,”where the responder only

needs to learn about the demand), in the unique equilibrium satisfying a trembling-hand-like

refinement, optimal attention implies a “recommendation strategy”for the responder with

the same behavioral implications as observing s = x + ε, with ε logistically distributed,

10The pure-strategy trivial equilibria of the one-shot bargaining game (i.e., the trivial equilibria where
the claimant always demands some x ≥ 1) are precisely the pure-strategy NE of the simultaneous-move
game where the claimant chooses x ∈ X and the responder chooses accept or reject. These strategy profiles
remain NE in the dynamic game because the signal has full support, by the argument of Bagwell (1995).
The dynamic game can also have additional pure-strategy NE– the pure-strategy non-trivial equilibria–
because the responder has multiple best responses to x = 1. This contrasts with Bagwell’s analysis, which
assumes a unique best response for the second-mover. Of course, multiple best responses are endemic in
bargaining games. For example, in the unique subgame-perfect equilibrium of the standard ultimatum game,
the proposer demands x = 1, so both accept and reject are best responses.
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and using a cutoff strategy. Since this signal distribution satisfies my assumptions, the same

argument as in the proof of Theorem 1 then implies that the claimant always demands x = 1.

Denti, Marinacci, and Rustichini (2022) compare rational inattention and costly infor-

mation acquisition in general decision problems. As an application, they consider ultimatum

bargaining with an unobserved demand (which may exceed the size of the pie), where the

responder must pay a strictly positive cost to get any information about the demand at

all. This “no free information”assumption is violated in my exogenous-signal model. With

no free information, disagreement must arise with positive probability (as in my model),

and the responder obtains a positive surplus in any non-trivial equilibrium (unlike in my

model, where the responder gets zero surplus). Moreover, the same argument as in the proof

of Theorem 1 shows that only trivial equilibria can exist under no free information if all

acquirable information structures satisfy MLRP and log-concavity, since these assumptions

preclude the existence of a mixed equilibrium. Denti, Marinacci, and Rustichini construct a

non-trivial mixed equilibrium for a particular class of information structure. By Theorem 1,

this class must violate one of my assumptions; indeed, it violates log-concavity.

Several authors have studied whether introducing communication reduces the probability

of disagreement in various bargaining models (e.g., Farrell and Gibbons, 1989; Fearon, 1995).

It is therefore worth noting that Theorem 1 holds verbatim when the game is augmented by

letting the claimant make a cheap talk statement after choosing her demand.11 The reason

why is that for every message m that the claimant may send which leaves some uncertainty

about x, the responder will accept iff s ≤ s∗ (m) for some message-contingent cutoff s∗ (m).

The claimant will therefore only send messages that induce the highest cutoff, so the message

cannot convey any useful information about the demand.

Proposition 1 Theorem 1 remains valid when the game is augmented with cheap talk.

It is also natural to ask what happens if the claimant can offer a perfectly observable cash

payment of y dollars in addition to the unobserved claim x, so that payoffs on acceptance are

x−y for the claimant and 1−x+y for the responder. This extension captures situations where

the claimant’s proposal has multiple components, some of which are perfectly observed: for
11Here σ (s) must be viewed as the probability that the responder accepts conditional on signal realization

s, integrating over the claimant’s message.

9



example, a cash transfer or the location of a physical boundary may be perfectly observable,

while compliance with an arms control or environmental agreement is not. Suppose that the

claimant can offer any cash payment up to some maximum amount L. If L < M − 1, one

can simply define the “all-in”claim to be x̃ = x − y, and the above analysis goes through

verbatim, because the all-in claim can strictly exceed 1 even if y takes its maximum value of

L. If instead L ≥M−1, then it is an equilibrium for the claimant to set (x = M, y = M − 1)

while the responder accepts after every signal. Thus, once one allows a perfectly observed

component of the claimant’s proposal, my analysis applies if and only if the range of perfectly

observable concessions that the claimant can make is smaller than the range of imperfectly

observable claims.

2.3 Selecting the Pareto-Optimal Equilibrium

Theorem 1 implies that the one-shot bargaining game can have many equilibria. However,

the trivial equilibria are uninteresting, and the non-trivial equilibria where the responder’s

strategy does not take a cutoff form seem rather artificial. Beyond these impressionistic

reasons for focusing on the Pareto-optimal equilibrium (where the responder accepts iff

s ≤ s∗ and s∗ satisfies equation (1)), this subsection gives two theoretical arguments for

doing so.

First, note that if F (s|x) = 1 {s ≥ x}– so the claim is perfectly observed– the one-shot

bargaining game reduces to the standard ultimatum game. In the unique subgame-perfect

equilibrium in this limit game (also called the Stackelberg outcome), the claimant demands

x = 1 and the responder accepts iff s ≤ 1. Thus, an equilibrium outcome of the one-shot

bargaining game is continuous in the limit as observation noise vanishes iff it converges to the

Stackelberg outcome. Van Damme and Hurkens (1997) call such outcomes noisy Stackelberg

equilibria. If an analyst predicts the subgame-perfect/Stackelberg equilibrium in the limit

game and wants her predictions to be robust to introducing a small amount of observation

noise, she must predict a noisy Stackelberg equilibrium in the imperfect monitoring game.

I show that as observation noise vanishes, the Pareto-optimal equilibrium of the one-shot

bargaining game converges to the subgame-perfect equilibrium of the ultimatum game. That

is, the Pareto-optimal equilibrium is the noisy Stackelberg equilibrium.
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Proposition 2 Suppose that S ⊇ X. For any sequence of signal distributions {F n (s|x)}n∈N
satisfying sups,x |F n (s|x)− 1 {s ≥ x}| → 0 and fnx (0|x = 1) /fn (0|x = 1) < −1 for all n,

and any corresponding sequence of equilibrium cutoff signals {sn,∗}n∈N satisfying sn,∗ > s for

all n, we have sn,∗ → 1 and F n (sn,∗|1)→ 1.

For example, the sequence of signal distributions may be given by s = x + ε with ε ∼

N
(
0, θ2

)
and θ2 → 0. Note that since S ⊇ X, the condition fx (0|x = 1) /f (0|x = 1) < −1

is a strengthening of the informativeness condition.

A second argument is that in many applications it is reasonable to think that the signal

itself is slightly payoff-relevant, so that the responder’s payoff from accepting the claim is not

1 − x but 1 − (πx+ (1− π) s), where π ∈ (0, 1) is a new parameter. For example, suppose

that x is the amount by which a new factory deviates from an environmental regulatory

standard, and s is amount of pollution emitted by the factory in its first month of operation.

Since the factory’s emissions over the long run are determined by x rather than s, in deciding

whether to shut down the factory a regulator mostly cares about x, and is thus interested

in s primarily through its information content concerning x. But perhaps s rather than

x determines the factory’s likely emissions in its second month of operation, so s is also

slightly payoff-relevant for the regulator. I refer to situations where the responder’s payoff

from accepting is 1− (πx+ (1− π) s) as having payoff-relevant signals.12

Proposition 3 Assume that the informativeness condition holds. With payoff-relevant sig-

nals and S = R, there is a unique NE, and it converges to the Pareto-optimal equilibrium

with payoff-irrelevant signals as π → 1.

The intuition is that the responder must use a cutoff strategy when π < 1, and as π → 1

this strategy converges to the (unique) equilibrium cutoff strategy in the baseline model.

Making signals slightly payoff-relevant is one way of perturbing the model to make the

responder’s best response strict. It should be noted that other perturbations select different
12Here I assume that the claimant’s payoff when the responder accepts remains x, rather than

πx + (1− π) s. The same result applies for the latter specification, so long as F is such that
E [(πx+ (1− π) s)1 {πx+ (1− π) s ≤ s∗}] has a unique maximizer for any s∗. As well as being slightly
simpler, the former specification is more natural in applications like the pollution example, where the fac-
tory owner benefits from skirting environmental regulations but does not directly benefit from emitting
pollution. The general approach of perturbing the game by making s payoff relevant is somewhat in the
spirit of Maggi (1999), who studied a variant of Bagwell (1995) where the first-mover has private information.
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equilibria. For example, if the responder’s payoff from accepting the claim is perturbed to

1 − x + ρ, where ρ is an independent “taste shock,” then the model has a unique pure-

strategy equilibrium, where the claimant always demands x = M and the responder accepts

iff ρ ≥ M − 1. The conclusion of this subsection is thus that some attractive approaches

to equilibrium selection pick out the Pareto-optimal equilibrium, not that every plausible

approach does so.13

2.4 Varying the Amount of Observation Noise

Recall that the disagreement probability converges to 0 as observation noise vanishes (Propo-

sition 2). A natural comparative static is that this convergence is monotone if noise enters

the signal additively and is reduced by a scalar factor.

Proposition 4 Suppose that s = x + θε, where θ > 0 is a parameter and ε is a random

variable whose distribution G admits a density g satisfying Assumption 1. Let s∗ be given

by equation (1). Then F (s∗|x = 1) is decreasing in θ.

Since the claimant’s equilibrium expected utility equals F (s∗|x = 1), Proposition 4 im-

plies that the claimant always benefits from making her demand more transparent, while the

responder’s equilibrium expected utility is 0 regardless of the transparency of the claimant’s

demand. In Section 4, I show that with alternating-offers bargaining, each party’s expected

utility is greater when their own demand is more transparent, as well as when their oppo-

nent’s demand is less transparent.

A slightly subtle aspect of Proposition 4 arises when s∗ < 1. In this case, the “direct

effect”of increasing θ (i.e., the effect holding s∗ fixed) is to increase the acceptance proba-

bility. Proposition 4 says that, when s∗ < 1, this direct effect is always outweighed by an

indirect effect on the acceptance probability that enters through a decrease in s∗. The intu-

ition is that the claimant’s marginal benefit of increasing x equals the acceptance probability

13An interesting open question is whether the additive taste-shock model has a mixed equilibrium that
converges to the Stackelberg outcome as observation noise vanishes. Note that such an equilibrium cannot
exist when xF (s|x) is concave in x for each s, as in this case the claimant’s best-response is unique for any
distribution over cutoffs s∗.
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Figure 1: Agreement Probability as a Function of Observation Noise

F (s∗|x = 1), while her marginal cost of increasing x equals −Fx (s∗|x = 1); and since the

marginal cost is decreasing in θ, the marginal benefit must be so as well.

Figure 1 illustrates Proposition 4 in the normal-noise case, G = N
(
0, θ2

)
. The figure

graphs the agreement probability as a function of θ2: the dependent variable is the value of

Φθ2 (s∗) at which Φθ2 (s∗) = φθ2 (s∗), where φθ2 and Φθ2 are the pdf and cdf of a N
(
0, θ2

)
random variable. For example, the agreement probability is 70% if θ2 = 0.5, but falls to 38%

when θ2 = 1.

2.5 Discussion

I briefly discuss how my model relates to classic bargaining models with incomplete infor-

mation or “noisy”demands, as well as possible dynamic interpretations of the model.

A standard explanation of disagreement in bargaining is that the proposer/claimant does

not know the responder’s reservation value. Unknown reservation values and unobserved of-

fers both lead to disagreement with positive probability, and in both models the probability

of disagreement is increasing in the amount of uncertainty (under appropriate conditions).14

Other predictions differ between the models. With unobserved offers the claimant’s expected

14If the responder’s reservation value is v = v0+θε, where θ > 0 is a parameter and ε is a random variable,
then the probability of agreement is decreasing in θ if 1− F (v) is log-concave, similarly to Proposition 4.
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payoff is always decreasing in the amount of observation noise, while with unknown reserva-

tion values the effect of uncertainty on the claimant’s expected payoff is ambiguous.15 Also,

with unobserved offers the claimant demands 1 and the responder’s expected payoff is 0, re-

gardless of the distribution of observation noise, while with unknown reservation values the

claimant’s demand and the responder’s (positive) expected payoffdepend on the distribution

of reservation values. The distinctive feature that with unobserved offers the responder is

always “on the fence”between accepting and rejecting fits many of my motivating examples.

Other differences between the two models concerns dynamic bargaining. If the pro-

poser can quickly change her demand when it is rejected, the Coase conjecture (Fudenberg,

Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986) predicts that disagree-

ment in incomplete-information bargaining is short-lived, and a similar conclusion holds in

repeated incomplete-information bargaining with a persistent reservation value (Hart and

Tirole, 1988). It is thus unclear if incomplete information about reservation values is a ro-

bust explanation for persistent disagreement. In contrast, it seems natural to assume that

observation noise is iid across periods in the repeated version of my model, in which case

the only Markov equilibria are repetitions of one-shot equilibria, which feature a constant

probability of disagreement.16 Also, alternating-offers bargaining with two-sided uncertainty

about reservation values is notoriously diffi cult to analyze (Ausubel, Cramton, and De-

neckere, 2002), while I show in Section 4 that the alternating-offers version of my model is

tractable and yields some new insights.

Another relevant comparison is to Nash’s demand game (Nash, 1953; Binmore, 1987;

Abreu and Pearce, 2015), where random perturbations of the bargaining set are used to

select the Nash bargaining solution. Carlsson (1991) analyzes a similar model, where the

players’ demands are perturbed rather than the bargaining set. In Carlsson’s model, a

demand of 50 cents may be perturbed to 51 cents, while in my model a demand of 50

cents may be misperceived as 51 cents, but is always “really”(in terms of the final payoffs

on acceptance) 50 cents. The apparently minor difference of whether noise hits a player’s

15If v = v0 + θε, where θ > 0 is a parameter and ε is a mean-0 random variable, the effect of an increase
in θ on the proposer’s expected utility can be positive or negative, depending on the distribution of ε, in
contrast to Proposition 4. To see why, note that changing θ rotates the “demand curve”facing the proposer
around v0, which can either increase or decrease profit (cf. Johnson and Myatt, 2006).
16Non-Markov equilibria in this model are the subject of Section 3.
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demand itself or the opponent’s signal of the demand is actually important, because the

opponent’s interpretation of the signal is endogenously determined by Bayes’rule. Another

difference is that Nash’s game involves simultaneous demands. For these reasons, the analysis

and conclusions of Nash’s demand game and its variants are quite different from mine.

Finally, I note that my baseline model can be given a dynamic interpretation, where time

runs from t = 0 to M , and the claimant gradually claims resources over time at rate 1,

stopping when she has claimed x resources. At time t = M , the responder gets a signal s of

the claim x, and chooses accept or reject. Payoffs are realized at the end of the game. This

dynamic interpretation is similar to the truly dynamic model with monotone demands and

irreversible rejection considered in Section 3.3, with the differences that in the genuinely dy-

namic model the claimant claims resources at an endogenous and possibly history-dependent

rate, the responder can reject at any time (ending the game), signals and payoffs realize over

time rather than only at the end of the game, and the claimant may (depending on the

model specification) observe the signals. As we will see, these differences matter: they lead

the dynamic model to have a larger set of equilibria than the baseline model, possibly in-

cluding equilibria where the responder obtains a positive payoff. Nonetheless, the baseline

model already captures some situations where claims accrue over time.

2.6 Extensions

The baseline model is so stylized that its fit with any particular application is somewhat loose.

To conclude this section, I sketch two extensions that fit economic applications more tightly.

The goal here is illustrating the model’s applicability rather than studying the applications

per se, so I only sketch the analysis. Nonetheless, the model does seem to deliver some

insights in these settings.

2.6.1 Uncertain Contract Interpretation

Suppose that the claim is a formal contract offered to the responder. If the responder accepts,

the contract will eventually be presented to a court, which interprets it. The court’s inter-

pretation is uncertain at the time of contracting. The parties’final payoffs are determined
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by the court’s interpretation of the contract.

To model this situation, let x equal the expected interpretation of the contract, from the

perspective of the claimant at the moment she writes the contract. The court’s interpretation

is given by by x + ε1, where ε1 is a mean-zero random variable, and the final payoffs if the

contract is accepted are given by x + ε1 for the claimant and 1 − x − ε1 for the responder.

When deciding whether to accept the contract, the responder observes x + ε2, where ε2 is

another random variable. This corresponds to the responder’s own interpretation of the

contract, which may differ from the court’s interpretation.17

This model with a general correlation structure between ε1 and ε2– the court’s inter-

pretaion and the responder’s interpretation– can be analyzed along the lines of the baseline

model. Two special cases bear emphasis. First, when ε1 and ε2 are independent, we recover

the baseline model, as in this case ε1 is just an independent mean-zero shock to the players’

payoffs when the contract is accepted, which does not affect incentives since the parties are

risk-neutral. Second, when ε1 and ε2 are perfectly correlated, we recover a standard lemons

model, where ε2 (= ε1) is the responder’s payoff-relevant private information.18

The uncertain-contract-interpretation model thus interpolates between the baseline model

and a lemons model, where the baseline model arises when the responder has no private in-

formation about the court’s interpretation, and the lemons model arises when the responder

can perfectly predict it. One can ask various questions of this model, for example deriving

conditions under which lower variation in ε2 leads to a higher probability of agreement, as

is true in the polar cases of the baseline model and (under similar conditions) the lemons

model.

2.6.2 Moral Hazard in Product Quality

Suppose that the claimant is a seller who produces a good of quality q at cost c (q), and

offers it for sale to the responder (buyer) at a price p. The buyer observes p perfectly, but

17Uncertain contract interpretation is somewhat related to costly contemplation as modeled by Tirole
(2009), Bolton and Faure-Grimaud (2010), and Ravid (2020).
18To spell out the mapping, suppose that the claimant is a buyer who offers price p for a good of uncertain

quality q, where q is the responder’s (seller’s) private information, and a quality-q good is worth 1+ q to the
buyer and q to the seller. Letting x = 1− p and ε2 = q recovers the current model, as payoffs on acceptance
are 1 + q − p = x+ ε2 for the buyer and −q + p = 1− x− ε2 for the seller.
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observes only a noisy signal s ∼ F (s|q) of q. If the buyer accepts, payoffs are p − c (q) for

the seller and q− p for the buyer; if the buyer rejects, payoffs are −c (q) and 0, respectively.

Thus, the production cost c (q) is sunk at the time of contracting, and the buyer’s valuation

of a quality-q good equals q.19

Let us impose a refinement that equilibria of this game, where the seller chooses q and

p simultaneously, should also be equilibria of the game where the seller chooses first p and

then q. (This rules out equilibria where the seller is forced to name a particular price

by threatening that different prices induce adverse beliefs about quality.) Then, since the

price p is observed, the model is equivalent to the baseline model with a “perceived offer”

to the buyer of E [q|s] − p, but where the seller must incur a sunk cost to improve the

perceived offer. By the same logic as in the baseline model, there in a unique non-trivial

pure-strategy equilibrium (which is also the unique non-trivial equilibrium overall under

appropriate conditions, given the aforementioned refinement). In this equilibrium, the seller

sets q = p, and the buyer is indifferent but nonetheless accepts or rejects based on s. Making

quality more observable increases the probability of acceptance. Interestingly, quality can

be above or below the first-best level (given by c′ (q) = 1). The intuition for why quality can

be above first-best is that naming a high price has a commitment benefit for the seller, as it

improves her incentive to make a sale and thus induces her to provide high quality. In this

case, counterintuitively, making quality more observable decreases quality and price (toward

the first-best level).

3 Repeated Bargaining: Prospects for Deterrence

Now suppose the one-shot bargaining game is played repeatedly over an infinite horizon.

The players maximize their discounted expected payoffs, with discount factor δ ∈ [0, 1). For

convenience, I also assume that the players observe the outcome of a public randomizing de-

vice zt ∼ U [0, 1] at the end of every period t. I consider two versions of this repeated-game

19There is a vast literature on moral hazard in product quality, including major branches on reputation
(e.g., Klein and Leffl er, 1981; Milgrom and Roberts, 1986) and search (e.g., Wolinsky, 1983). However, I
have been surprisingly unable to locate work where quality-provision is modeled as a one-shot moral hazard
problem with imperfect monitoring, as in the current setting.

17



model: public signals, where the period-t signal st ∼ F (·|xt) is observed by the claimant as

well as the responder; and private signals, where st is observed only by the responder. With

public signals, the public history (i.e., the history of all publicly available information) at

the beginning of period t is ht = (sτ , aτ , zτ )
t−1
τ=1, where aτ ∈ {accept, reject} is the respon-

der’s period-τ decision, while with private signals ht = (aτ , zτ )
t−1
τ=1. I briefly discuss richer

information structures where the players observe correlated signals in Section 3.2.20

A player’s behavioral strategy is public if it depends only on the public history ht. That

is, a public strategy for the claimant specifies a distribution over X for each ht, and a public

strategy for the responder specifies an acceptance probability for each pair (ht, st), where

st ∈ S is the current-period signal. I focus on the solution concept of public perfect equilibria

(PPE), which is a profile of public strategies that form a Nash equilibrium conditional on

any public history.21 Note that this solution concept is well-defined with both public signals

and private signals– the difference between the two versions of the model is whether the

past signals (sτ )
t−1
τ=1 are included in h

t, not the solution concept. PPE is a standard solution

concept in repeated games, but it is not without loss of generality. In what follows, I discuss

how my results might change under a more permissive solution concept.

3.1 Public Signals

I show that a simple type of trigger strategies can be used to deter aggressive claims and

avert conflict, so long as the signal s is publicly observed and satisfies the following condition:

Unbounded Informativeness For all x ∈ X, lims→s̄ fx (s|x) /f (s|x) =∞.

Intuitively, this condition says that suffi ciently high signals are unboundedly strong bad

news about the demand. Again, this condition holds if s = x+ ε with ε ∼ N
(
0, θ2

)
.

Definition 1 A trigger strategy profile is characterized by numbers x ∈ (0, 1], s ∈ S, and

α ∈ [0, 1], and is defined as follows:

20In this section, the responder’s payoff is not measurable with respect to his information. This could be
remedied by introducing a second signal of xt, which is observed at the end of period t. Adding such a signal
does not affect the results of this section, because the strategies I consider would not condition on it.
21PPE were introduced by Fudenberg, Levine, and Maskin (1994). Of course, the Nash equilibrium

requirement allows players to contemplate deviations to any strategy, including non-public ones.
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1. In Phase 1, the claimant demands x and the responder accepts iff st ≤ s.

2. In Phase 2, the claimant demands 1 and the responder rejects after every signal.

3. Play begins in Phase 1, and permanently transitions to Phase 2 at the end of period t

if either

(a) The responder rejected and zt > α.

(b) st > s and the responder accepted.

Thus, in Phase 1 the claimant demands x and the responder accepts iff the signal st is

suffi ciently favorable; in Phase 2 the players play a trivial equilibrium; and play switches from

Phase 1 to Phase 2 if either the responder rejects and the public randomization realization zt

is suffi ciently high, or the responder deviates by accepting on a signal where he was supposed

to reject. Note that both players’strategies are public.

Trigger strategies model the “trip wires”or “plate glass windows”that have long been

thought to be essential for deterrence (Schelling, 1966, p. 47). A key feature of these strate-

gies is that both players are disciplined by the threat of switching to a trivial equilibrium:

the claimant because aggressive claims increase the probability that the responder rejects

and the triggering event described in 3(a) occurs; and the responder because accepting after

an unfavorable signal (which is tempting when x < 1) causes the triggering event described

in 3(b) to occur.22

Theorem 2 Assume signals are public and unboundedly informative. For all x ∈ (0, 1] and

all η > 0, there exists δ̄ < 1 such that, for every δ > δ̄, there exists a trigger equilibrium

(and thus a PPE) where the claimant demands x in Phase 1 and expected payoffs are within

η of (x, 1− x).

A couple technical remarks: First, the role of public randomization is to reduce the value

destruction that results when punishment is triggered “accidentally.”Public randomization

22Schelling (1966, p. 56) elegantly (and humorously) described the logic of the latter triggering event in
the context of the Cold War: “Our deterrence rests on Soviet expectations. This, I suppose, is the ultimate
reason why we have to defend California– aside from whether or not Easterners want to. There is no way
to let California go to the Soviets and make them believe nevertheless that Oregon and Washington, Florida
and Maine, and eventually Chevy Chase and Cambridge cannot be had under the same principle.”

19



could be dispensed with by making the transition to the trivial equilibrium temporary rather

than permanent: from the players’ perspectives, permanently transitioning to the trivial

equilibrium with probability 1 − α is equivalent to deterministically transitioning to the

trivial equilibrium for T periods, where T satisfies δT = α. Second, the folk theorem for

repeated games with imperfect public monitoring (Fudenberg, Levine, and Maskin, 1994)

suggests that the unbounded informativeness condition can be relaxed, at the cost of using

more complicated strategies. However, I am not aware of a general folk theorem that formally

covers the current model, which is a repeated extensive-form game with continuous actions.

It is also worth noting that the feature that aggressive claims are deterred by the threat

of future punishment in addition to current-period rejection is necessary for supporting an

equilibrium payoffclose to 1 for the responder. To see this, suppose that the responder uses a

strategy that is stationary on-path, meaning that the responder uses the same threshold s∗ in

every period along the equilibrium path. (In other words, the strategy is of the trigger form

but without contingency 3(a), or equivalently with α = 1.23) By the full support assumption,

the claimant’s continuation payoff remains constant even if she makes an off-path demand,

so her problem is maxx̃∈X x̃F (s∗|x̃), with first-order condition

Fx (s∗|x)

F (s∗|x)
= −1

x
.

To support an equilibrium payoff close to 1 for the responder, this condition must hold

for some x close to 0. As x → 0, this condition can hold only if Fx (s∗|x) /F (s∗|x) →

−∞, and hence s∗ → s (since Fx (s|x) /F (s|x) is increasing in s, as shown in Lemma 4

in the Appendix). But this in turn implies that F (s∗|x) → 0, which contradicts with the

responder’s payoff being close to 1. Intuitively, if x ≈ 0 and the responder’s strategy is

stationary on-path, the claimant loses very little when her equilibrium demand is rejected,

so she can be deterred from marginally increasing the demand only if the equilibrium demand

is rejected with high probability. In contrast, when the responder is patient, the threat of

future punishment is severe even when x is small, so more aggressive demands can be deterred

even when the equilibrium demand is accepted with high probability.

23In particular, play still switches to a punishment phase if the responder deviates by accepting after an
unfavorable signal.
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3.2 Private Signals

In contrast to the situation with public signals, deterrence fails in any PPE when the signal

is private.

Theorem 3 Assume signals are observed only by the responder. In any PPE, conditional

on reaching any public history ht, either the claimant demands x = 1 with probability 1 or

the responder rejects after every signal with probability 1 (or both).

Thus, the possible on-path outcomes of a PPE in the repeated bargaining game with

private signals are exactly the same as those in the one-shot game: either the claimant

demands the entire pie and the responder accepts, or the responder rejects.

To see the intuition, suppose the responder accepts with positive probability in period t,

conditional on reaching public history ht. By a similar argument as in the one-shot game,

this implies that the claimant’s period-t demand is deterministic (conditional on reaching

ht). If the responder strictly prefers to accept this demand (taking into account any impact

of his decision on his continuation payoff), and hence accepts with probability 1, he continues

to accept with probability 1 if the claimant increases her demand. But then it is strictly

optimal for the claimant to increase her demand, because, in a public equilibrium, the

claimant’s continuation payoff is independent of her period-t demand, conditional on the

responder’s period-t accept/reject decision. Therefore, the responder must be indifferent

between accept and reject at any history where he accepts with positive probability, and

hence his payoff is the same as if he always rejects. It follows that the responder accepts

with positive probability only when the claimant demands 1.24

While Theorem 3 shows that, with private signals, repeated game effects cannot deter

aggressive demands (at least with public strategies), they can reduce disagreement. In

particular, note that if x = 1 then the trigger strategy profile defined in Section 3.1 remains a

well-defined public strategy profile when the signal is private, because the claimant’s demand

is the same in both phases, so the claimant does not need to observe the signal to play her

strategy. The following result is therefore an immediate corollary of Theorem 2.

24Theorem 3 is in the spirit of Matsushima’s (1991) anti-folk theorem for repeated games with conditionally
independent private monitoring, but my model does not satisfy his assumptions (for example, the responder’s
accept/reject decision is a public signal in my model) and the argument is different.
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Corollary 1 Assume signals are observed only by the responder and are unboundedly infor-

mative. For all η > 0, there exists δ̄ < 1 such that, for every δ > δ̄, there exists a trigger

equilibrium where the claimant demands x = 1 in Phase 1 and the claimant’s expected payoff

is greater than 1− η.

Theorems 2 and 3 formalize a sense in which deterrence is qualitatively more diffi cult

with private signals. These results have the practical implication that an actor who wants to

deter aggressive claims can benefit by committing to publicize its information. For example,

a well-known obstacle to deterrence in cyber-space is that firms and governments often prefer

to conceal the fact that they have been hacked, rather than revealing the hack and facing the

diffi cult question of how to respond (Sanger, 2019). Greater transparency in these situations

can help facilitate deterrence.

I conclude this section by discussing the robustness of the impossibility of deterrence

under private signals to allowing richer information structures and more complex, non-public

equilibria. Realistically, the claimant should observe a private signal r of the responder’s

signal s; however, if we maintain the restriction to PPE, the claimant will not use this signal

in equilibrium, and Theorem 3 remains valid. Allowing non-public equilibria complicates

matters significantly, however (whether or not the claimant observes a signal of s). Probably

the simplest equilibria that could secure a positive payofffor the responder are ones where the

claimant continues to use a public strategy, but the responder uses a non-public strategy that

conditions on past signal realizations. For example, if M is not too large one could imagine

an equilibrium where in odd periods the claimant demands x = 0.5 and the responder always

accepts, while in even periods the claimant demands x = 1 and the responder accepts iff

st ≤ s∗ (st−1), where s∗ (·) is a decreasing function. While these equilibria may be relatively

easy to construct, they are clearly not robust to making the responder’s signal slightly payoff-

relevant in the manner discussed in Section 2.3, and thus may not be very realistic.25 Finally,

it may be possible to construct more robust equilibria where both parties use non-public

strategies, and in particular the claimant uses a mixed strategy where her current claim is

conditioned on the realizations of her past private randomizations. It is not clear if such

25This critique is closely related to the non-purifiability of belief-free equilibria in private-monitoring
repeated games (e.g., Bhaskar, 1998).
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equilibria can actually be constructed; if they can, they would likely be quite complicated,

and possibly unrealistic.26 I leave this as a open question.

3.3 Monotone Claims, Irreversible Rejection, and Salami Tactics

In some applications, it seems more realistic to assume that xt must be monotone and/or

that rejecting a claim is irreversible (in contrast to the repeated game model considered so

far, where the claim and the accept/reject decision can be freely changed form period to

period). The resulting model also captures the intuitive notion of “salami tactics,”where

the claimant gradually claims resources and the responder decides whether and when to

initiate a conflict.

As compared to the repeated game model, constraining xt to be monotone and/or making

rejection irreversible shrinks the players’strategy spaces. Therefore, any equilibrium in the

repeated game model with the property that xt is monotone and rejection is “permanent”

(meaning that whenever the responder rejects in period t, he also rejects in all future periods

with probability 1) remains an equilibrium in the constrained model. Note that the trigger

strategy profiles used in Section 3.1 involve monotone xt but “impermanent” rejection, so

these profiles remain equilibria if xt is constrained to be monotone, but not if rejection is

also constrained to be permanent. In this case, the following modification can be used.

Definition 2 A modified trigger strategy profile is characterized by numbers x ∈ (0, 1],

s ∈ S, and α ∈ [0, 1], and is defined as follows:

1. In Phase 1, the claimant demands x and the responder accepts after every signal.

2. In Phase 2, the claimant demands 1 and the responder rejects after every signal.

3. Play begins in Phase 1, and permanently transitions to Phase 2 at the end of period t

if st > s and zt > α.

26Such equilibria would be “belief-based”in the sense of Sekiguchi (1997) and Bhaskar and Obara (2002).
This type of equilibrium is notoriously diffi cult to analyze.
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Thus, the responder now accepts after every signal, and the claimant is deterred from

increasing her demand entirely through the threat of switching to permanent rejection.27

Proposition 5 If one replaces “trigger equilibrium” with “modified trigger equilibrium,”

Theorem 2 remains valid under the monotone claims and/or irreversible rejection restric-

tions. Theorem 3 also remains valid under the monotone claims and/or irreversible rejection

restrictions.

I omit the proof of Proposition 5. For the first part, the proof is a variation on the proof

of Theorem 2, with slightly different formulas. For the second part, the proof of Theorem 3

can be read verbatim.

The model’s predictions regarding the players’payoffs are thus unaffected by requiring

that claims are monotone and/or rejection is irreversible. However, if rejection is irreversible,

one obtains a novel prediction regarding the long-run outcome of the game: ultimately, deter-

rence breaks down and conflict prevails. This prediction applies for any Nash equilibrium,

regardless of whether signals are public or private, and regardless of whether claims are

restricted to be monotone.

Proposition 6 Fix any NE of the repeated bargaining game with irreversible rejection. Let-

ting qt = Pr (aτ = accept ∀τ ≤ t) denote the probability that the responder accepts in each of

the first t periods, we have qt → 0.

The intuition is that if qt 9 0 then there exists a period T beyond which the equilibrium

rejection probability is very small. By the full support assumption, this implies that the

rejection probability starting from period T is also very small if the claimant deviates by

demanding xt = M in every period t ≥ T . But then this deviation is profitable.

4 Alternating Unobserved Offers

The baseline model of Section 2 captures asymmetric situations where one party claims

resources and the other party can either acquiesce or start a conflict. This setup fits some
27Modified trigger strategies could also have been used in Section 3.1. I prefer the original definition of

trigger strategies because they seem more descriptive, and also because the claimant’s strategy continues to
satisfy the definition of a public strategy in the private-signals model.
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of my motivating applications well, such as the politician—social media platform example,

or other regulation or agency problems. Other applications, such as international relations,

are more symmetric, and in these applications it may be better to view the parties as taking

turns claiming resources. A natural model of these more symmetric situations is Rubinstein’s

(1982) alternating-offers bargaining model with imperfectly-observed offers. This is simply

the alternating-offers version of the baseline model.

Formally, the game proceeds in discrete periods, t = 1, 2, . . .. In odd periods, the game is

the one-shot bargaining model of Section 2, where player 1 makes a demand x1 ∈ [−M,M ]

and then player 2 observes a signal s1 ∈ [s1, s̄1], distributed F1 (s1|x1), before accepting or

rejecting. In even periods, the roles are reversed: player 2 makes a demand x2 ∈ [−M,M ]

and then player 1 observes a signal s2 ∈ [s2, s̄2], distributed F2 (s2|x2), and then accepts or

rejects. I assume for simplicity that the players have the same discount factor δ ∈ [0, 1), so

if player j 6= i accepts player i’s demand xi in period t, the game ends with payoffs of δ
t−1xi

for player i and δt−1 (1− xi) for player j.28 When an offer is rejected, play continues on to

the next period. The signal distributions F1 and F2 can differ from each other, but both are

assumed to satisfy Assumption 1. Observe that if δ = 0, we recover the one-shot model of

Section 2; and if F1 and F2 are degenerate, we recover Rubinstein’s model.

With perfectly-observed offers, Rubinstein showed that this model has a unique subgame-

perfect equilibrium. With imperfectly-observed offers, there are already multiple equilibria

in ultimatum bargaining (as shown in Theorem 1), so such a strong uniqueness result cannot

hold. For example, there is a PPE in the alternating-offers game where the Pareto-optimal

equilibrium of the one-shot bargaining game is played in period 1, and this period-1 play

is supported by having the players permanently switch to a trivial (no-trade) equilibrium

starting in period 2 if player 2 rejects in period 1. As shown in Proposition 2, player 1’s

payoff in this equilibrium converges to 1 as observation noise vanishes. Similarly, there is also

a PPE where player 2 always rejects in period 1 and the Pareto-optimal one-shot equilibrium

is played in period 2, so now it is player 2’s payoff that converges to 1 as noise vanishes.

Despite this multiplicity, there is a natural class of equilibria to focus on, which gen-

eralizes the Pareto-optimal equilibrium of the one-shot game while imposing a stationarity

28Throughout this section, i and j indicate distinct players.
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assumption. These are stationary cutoff equilibria (SCE), where for each i ∈ {1, 2} there

exist numbers xi ∈ [−M,M ] and s∗i > si such that player i claims xi whenever it is her turn

to make a claim, and player j accepts iff si ≤ s∗i whenever it is his turn to respond. Note

that the condition that s∗i > si for each i together with the full-support assumption implies

that each player’s claim is accepted with positive probability in every period.

I will show that, under the following additional assumption on F1 and F2, (i) an SCE

exists, (ii) the set of SCE is ordered, where equilibria that are better for player 1 are worse

for player 2, and (iii) the extremal SCE (i.e., the best and worst SCE for each player) exhibit

interesting comparative statics.

Assumption 2 For each i ∈ {1, 2}, the signal distribution Fi satisfies

1. Additive noise: There exists a distribution Gi and a parameter θi such that

Fi (si|xi) = Gi ((si − xi) /θi) for all si, xi.

2. Informativeness: Denoting the support of Gi by [zi, z̄i] (where zi ∈ R∪{−∞} and

z̄i ∈ R∪{+∞}) and denoting the density ofGi by gi, we have limz→z gi (z) /Gi (z) >

θi/ (1− δ) and limz→z̄ gi (z) < θi/
(
1− δ2

)
.

The additive noise assumption simplifies the analysis by ensuring that the sensitivity

of the acceptance probability to i’s demand, Fi,x (s∗i |xi) := ∂Fi (s
∗
i |xi) /∂xi, is pinned down

by the acceptance probability Fi (s∗i |xi) itself, rather than depending separately on s∗i and

xi. This property will be useful in relating the first-order condition for xi to be an optimal

demand for player i and the Rubinstein-type equation that determines xi as a function of

the acceptance probabilities (equation (3) below). The additive noise assumption also gives

a parameter θi for measuring the noisiness of i’s claim. The informativeness assumption

will be used to establish existence of an SCE, similarly to how the earlier informativeness

condition was used in Section 2.

In what follows, I parameterize an SCE by the equilibrium demands (x1, x2) and the

equilibrium rejection probabilities (p1, p2), where pi = 1 − Fi (s
∗
i |xi) for i ∈ {1, 2}. I also

denote player i’s equilibrium expected utility by Ui. Since a player is always indifferent

between accepting and rejecting her opponent’s offer in an SCE, and since player 1 makes
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the first offer, we have

U1 = (1− p1)x1 + δp1 (1− x2) and U2 = 1− x1. (2)

My main result for the alternating unobserved offers model is as follows.

Theorem 4 With alternating unobserved offers, the following hold:

1. An SCE exists.

2. The set of SCE is completely ordered: for any two SCE (x1, x2, p1, p2) and (x′1, x
′
2, p
′
1, p
′
2)

with payoffs (U1, U2) and (U ′1, U
′
2), if xi ≥ x′i for some i ∈ {1, 2}, then xj ≤ x′j, pi ≤ p′i,

pj ≥ p′j, Ui ≥ U ′i , and Uj ≤ U ′j.

3. For each i ∈ {1, 2}, the smallest and largest SCE values of xi and Ui are both decreasing

in θi and increasing in θj, and the smallest and largest SCE values of pi are both

increasing in θi and decreasing in θj.

Part 2 of the theorem says that the players’preferences over distinct SCE are opposed:

better SCE for player i are worse for player j. Moreover, in a better SCE, a player demands

more and has her demand accepted more often; while her opponent demands less and has

his demand accepted less often. Part 3 of the theorem says that, at least for extremal SCE,

a player benefits when her own demand is observed more precisely, as well as when her

opponent’s demand is observed less precisely. That is, the ability to make clear demands

(and the opponent’s inability to do so) is an advantage in bargaining.29

The logic of Theorem 4 is that an SCE is determined by four equations, which jointly

determine the four equilibrium variables (x1, x2, p1, p2). The equations are, for each player

i ∈ {1, 2}, the condition that player i is indifferent between accepting and rejecting her

opponent’s demand, and the condition that player i’s own demand is optimal given the

cutoff signal s∗i used by the opponent. The former equations are

1− xj = δ (1− pi)xi + δ2pi (1− xj) for i ∈ {1, 2} , j 6= i.

29An open question is whether some natural assumptions on (F1, F2) might rule out multiple SCE. For
the range of parameters in Figures 2—4 below, it can be verified numerically that the SCE is unique.

27



The explanation for these equations is familiar from Rubinstein-type bargaining models. For

each i ∈ {1, 2}, they say that player i is indifferent between accepting player j’s demand

(which gives payoff 1− xj) and rejecting it and returning with her own demand in the next

period (which gives payoff δ (1− pi)xi + δ2pi (1− xj), noting that player i’s next-period

demand is itself accepted with probability 1 − pi). The two equations can be solved for

(xi, xj) as a function of (pi, pj), to obtain

xi =
(1 + δpj)

(
1− δ2pi

)
(1 + δ)

(
1− δ2pipj

) for i ∈ {1, 2} , j 6= i. (3)

Equation (3) characterizes the unique subgame-perfect equilibrium of a Rubinstein-type

bargaining model where each of player i’s offers is “lost” with exogenous probability pi.

Note that xi is decreasing in pi and increasing in pj. That is, in Rubinstein-type bargaining,

a player benefits when her opponent’s offers go missing with higher probability, and she

suffers when her own offers go missing. This easy observation is a “baby version”of part 3

of Theorem 4. The actual result also accounts for the fact that pi and pj are endogenous.30

The remaining equilibrium conditions require that each player i’s demand is optimal

given the opponent’s cutoff signal s∗i : that is,

xi = argmax
x̃i

Fi (s
∗
i |x̃i) x̃i + (1− Fi (s∗i |x̃i)) δ (1− xj) for i ∈ {1, 2} , j 6= i.

This is similar to the claimant’s problem in the baseline model, except that now player

i’s continuation payoff when her demand is rejected equals δ (1− xj), rather than 0. The

first-order condition (which, as in the baseline model, is necessary and suffi cient) is

Fi (s
∗
i |xi) + (xi − δ (1− xj))Fi,x (s∗i |xi) = 0.

Substituting for xi and xj using the Rubinstein equations, (3), and simplifying, we have

xi − δ (1− xj) =
(1− δ) (1 + δpj)

1− δ2pipj
> 0,

30Rubinstein-type bargaining with an exogenous chance of losing offers fits into the general framework of
Binmore (1987) or Merlo and Wilson (1993), so the baby result that xi is decreasing (increasing) in exogenous
pi (pj) is not entirely novel.
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so the first-order condition can be written as

(1− δ) (1 + δpj)

1− δ2pipj

(
−Fi,x (s∗i |xi)
Fi (s∗i |xi)

)
= 1.

Since Fi (s∗i |xi) = 1 − pi and −Fi,x (s∗i |xi) = gi
(
G−1
i (1− pi)

)
/θi by the additive noise as-

sumption, the first-order condition further simplifies to

(1− δ) (1 + δpj) gi
(
G−1
i (1− pi)

)(
1− δ2pipj

)
(1− pi)

= θi. (4)

The proof is completed by showing that equation (4) defines a continuous, downward-sloping

curve Ci in (pi, pj)-space (which follows because gi (z) /Gi (z) is decreasing in z, by MLRP),

and that the curves Ci and Cj intersect (which follows from the informativeness assumption).

This observation implies that an SCE exists, and together with the Rubinstein equations it

implies that the set of SCE has the desired order structure. Finally, increasing θi shifts the

curve Ci upwards and therefore increases the smallest and greatest SCE values of pi, which

together with the order structure implies part 3 of theorem.

Figures 2—4 illustrate Theorem 4 in the normal-noise case, Gi = N
(
0, θ2

i

)
for i ∈ {1, 2}.

The figures graph the SCE demands (x1, x2), rejection probabilities (p1, p2), and expected

payoffs (U1, U2) as a function of θ2
1 ∈ [0.5, 1.5], when θ2

2 is fixed at 1 and δ is fixed at

0.9 (with the player 1 variables in red). The comparative statics of Theorem 4 are clearly

visible. Another interesting observation is that the acceptance probabilities are lower with

alternating offers than with an ultimatum offer. For example, the acceptance probability

in ultimatum bargaining with θ2 = 1 is 38%, but the acceptance probability in alternating-

offers bargaining with θ2
1 = θ2

2 = 1 and δ = 0.9 is less than 10%. Thus, in this parametric

example, the ability to make counter-offers not only moderates the opponent’s demand (as in

Rubinstein’s model), but also increases the probability of rejecting it (unlike in Rubinstein).

This seems like a realistic prediction of the model.
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Figure 2: Demands

Figure 3: Rejection Probabilities

Figure 4: Expected Payoffs
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5 Conclusion

This paper has developed a simple theory of disagreement in bargaining, based on the idea

that a party’s demand or claim– which in reality often corresponds to a substantive action,

rather than a formal term in a proposed contract– is imperfectly observed. Imperfectly

observed demands cannot always be accepted, because if they were, the claimant would ask

for more. The resulting bargaining model is tractable and has many intuitive features: for

example, demands are more likely to be accepted when they are observed more precisely. In

repeated bargaining, trigger strategies can deter aggressive claims if the signal of the claim

is publicly observed, but not if it is observed only by the responding party. In alternating-

offers bargaining, the ability to make clear demands is an advantage, as is being known for

an inability to accurately assess others’demands.

Rational-choice theorists traditionally view bargaining failure as a puzzle in need of ex-

planation. This perspective is rooted in the assumption that bargainers can make perfectly

clear offers, and thus can avoid disagreement by moderating their demands. This assump-

tion is often a useful simplification but it is probably not very realistic, especially when an

“offer”is a concrete state of affairs rather than a number of dollars or some other unambigu-

ously measurable quantity. The current paper is a preliminary study of the consequences

of relaxing this assumption. Among many further questions that could be asked about

unobserved-offers bargaining, a particularly interesting one is whether empirical evidence

supports the proposed connection between noisy monitoring of claims and conflict risk.
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A Appendix: Omitted Proofs

A.1 Proof of Theorem 1

It is obvious that any strategy profile where E [x|s] ≥ 1 for all s ∈ S and the responder

always rejects is a trivial NE; and conversely that in every trivial NE it must be the case

that E [x|s] ≥ 1 for all s ∈ S. I show that every non-trivial NE takes the prescribed form.

Lemma 1 In any NE, the responder accepts with probability strictly less than 1.

Proof. If the responder accepts with equilibrium probability 1, the full support assumption

implies that he accepts with probability 1 after every signal. The claimant’s unique best

response to this strategy is demanding x = M . But the responder’s best response to x = M

is to always reject.

Lemma 2 The claimant uses a pure strategy in every non-trivial NE.

Proof. Suppose toward a contradiction that the claimant uses a mixed strategy. By a

standard property of MLRP (Milgrom, 1981, Proposition 1), for any non-degenerate prior

distribution G of x, if the conditional distribution F (s|x) satisfies full support and strict

MLRP, then G (x|s) > G (x|s′) for all s < s′ and all x such that 0 < G (x) < 1. Therefore,

E [x|s] < E [x|s′] for all s < s′. The latter property implies that the responder must use

a cutoff strategy: accept iff s ≤ s∗, for some s∗ ∈ S.31 Moreover, by full support and the

hypothesis that the responder accepts with positive probability (as the equilibrium is non-

trivial), s∗ > s. Also, since the responder cannot accept with probability 1 (by Lemma 1),

s∗ < s̄.

A contradiction can now be derived by showing that the claimant’s best response to any

cutoff strategy satisfying s < s∗ < s̄ is pure. Note that the claimant’s expected utility

from demanding x equals xF (s∗|x). Strict MLRP, s < s∗ < s̄, and full support imply that

F (s∗|x) > F (s∗|x′) for all x < x′, and hence Fx (s∗|x) < 0 for all x. Finally, if Fx (s∗|x) < 0

for all x and F is log-concave in x, then xF (s∗|x) has a unique maximizer. Indeed, if x is a

31Recall that I identified strategies that differ on a measure-0 set, so the responder’s behavior at s = s∗ is
immaterial.
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critical point of xF (s∗|x), then xFx (s∗|x) + F (s∗|x) = 0, and hence the second derivative

of xF (s∗|x) at the critical point equals

xFxx (s∗|x) + 2Fx (s∗|x) = −F (s∗|x)Fxx (s∗|x)

Fx (s∗|x)
+ 2Fx (s∗|x) .

Since Fx (s∗|x) < 0 and F (s∗|x)Fxx (s∗|x) ≤ (Fx (s∗|x))2 (by log-concavity in x), the second

derivative is strictly negative. Hence, every local extremum of xF (s∗|x) is a strict local

maximum, so xF (s∗|x) has a unique global maximizer.

Lemmas 1 and 2 imply that the claimant demands x = 1 in any non-trivial NE: if the

claimant demanded x < 1, the responder would always accept, contrary to Lemma 1; and if

the claimant demanded x > 1, the responded would always reject, so the equilibrium could

not be non-trivial. Therefore, x = 1 must be an optimal demand for the claimant: that is,

1 ∈ argmaxx∈X x
∫
s∈S σ (s) f (s|x) ds. This completes the proof of the first part of Theorem

1.

I now show that, if a non-trivial NE exists, the probability that the responder accepts is

maximized at an equilibrium where the responder accepts iffs ≤ s∗, where s∗ > s satisfies (1).

To see this, note that the probability that the responder accepts equals
∫
σ (s) f (s|x = 1) ds,

while a necessary condition for x = 1 to be an optimal demand for the claimant (i.e.,

the first-order condition of the claimant’s problem maxx x
∫
σ (s) f (s|x) ds at x = 1) is∫

σ (s) (f (s|x = 1) + fx (s|x = 1)) ds = 0. By a standard Lagrangian argument, maximizing

the probability that the responder accepts over strategies σ (s) subject to the first-order

condition implies that σ (s) = 1 if fx (s|x = 1) /f (s|x = 1) is below some threshold λ > 0,

and that σ (s) = 0 if fx (s|x = 1) /f (s|x = 1) > λ. Since fx (s|x = 1) /f (s|x = 1) is strictly

increasing in s under full support and MLRP (Milgrom, 1981; Proposition 5), this implies

that the probability that the responder accepts is maximized by an equilibrium where the

responder accepts iff s ≤ s∗, for some s∗. Finally, when the responder’s strategy takes this

form, the claimant’s first-order condition at x = 1 is (1).

It remains to show that a non-trivial equilibrium exists iff the informativeness condition

holds. Since a non-trivial equilibrium exists iffsuch an equilibrium exists where the responder

accepts iff s ≤ s∗ for some s∗ > s, I restrict attention to equilibria of this cutoff form. As
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was shown in the proof of Lemma 2, the claimant’s problem has a unique local maximizer

when the responder uses a cutoff strategy. Therefore, there exists a non-trivial equilibrium

of the cutoff form iff there exists s∗ > s that satisfies (1). The following lemma therefore

completes the proof.

Lemma 3 There exists s∗ > s that satisfies (1) iff the informativeness condition holds

I first record a simple implication of full support and MLRP.

Lemma 4 For any x and s′ > s, we have Fx (s′|x) /F (s′|x) > Fx (s|x) /F (s|x).

Proof. Suppressing the conditioning event to ease notation, we have

d

ds

Fx (s)

F (s)
=

1

F (s)2 (F (s) fx (s)− f (s)Fx (s))

=
1

F (s)2

(∫ s

−∞
f (s̃) fx (s) ds̃−

∫ s

−∞
f (s) fx (s̃) ds̃

)
=

1

F (s)2

∫ s

−∞
(f (s̃) fx (s)− fx (s̃) f (s)) ds̃,

which is strictly positive because f (s̃) fx (s) > fx (s̃) f (s) for all s̃ < s (Milgrom, 1981,

Proposition 5).

Proof of Lemma 3. Let

h (x, s) = F (s|x) + xFx (s|x) . (5)

Note that (1) holds iff h (1, s∗) = 0. Since F and Fx are continuous in s, there exists s∗ > s

such that h (1, s∗) = 0 iff there exist s, s′ > s such that h (1, s) ≤ 0 ≤ h (1, s′).

As seen in the proof of Lemma 2, for every s, h (x, s) is single-crossing from above in x:

if h (x, s) = 0 then h (x′, s) > 0 for all x′ < x and h (x′, s) < 0 for all x′ > x. Since F is a cdf

and M > 1, there exists s′ > s such that F (s′|x = M) > 1/M . Since MF (s′|x = M) > 1,

we have argmaxx xF (s′|x) > 1. Since h (x, s′) = (d/dx)xF (s′|x) is single-crossing from

above in x, we have h (1, s′) > 0.

34



It remains to show that there exists s > s such that h (1, s) ≤ 0 iff the informativeness

condition holds. For all s > s, we have F (s|x = 1) > 0 by full support, so h (1, s) ≤ 0 iff

Fx (s|x = 1)

F (s|x = 1)
≤ −1. (6)

By Lemma 4, Fx (s|x = 1) /F (s|x = 1) is strictly increasing in s. Hence, there exists s > s

such that h (1, s) ≤ 0 iff

lim
s→s

Fx (s|x = 1)

F (s|x = 1)
< −1.

If Fx (s|x = 1) does not converge to 0 as s → s, then the left hand side of this inequality

equals −∞, and the informativeness condition holds. If instead lims→s Fx (s|x = 1) = 0,

then by l’Hopital’s rule, we have

lim
s→s

Fx (s|x = 1)

F (s|x = 1)
= lim

s→s

fx (s|x = 1)

f (s|x = 1)
,

which is less than −1 iff the informativeness condition holds.

A.2 Proof of Proposition 1

I show that the claimant always demands x = 1 in any non-trivial equilibrium. Viewing

σ (s) as the probability that the responder accepts conditional on signal realization s, the

rest of the proof follows that of Theorem 1.

Fix a non-trivial equilibrium. As in the proof of Lemma 2, if the distribution of x con-

ditional on message m is non-degenerate, the responder accepts iff s ≤ s∗ (m), for some

message-contingent cutoff s∗ (m). Furthermore, if the distribution of x conditional on mes-

sage m is degenerate on some x 6= 1, the responder accepts iff s ≤ s∗ (m) ∈ {s, s̄} (i.e., he

always rejects, or always accepts). Hence, for every message m, either the distribution of

x conditional on m is degenerate on x = 1, or the responder accepts iff s ≤ s∗ (m). Let

s̄∗ = supm s
∗ (m). Since the signal has full support, it is suboptimal for the claimant to

send a message m that induces a cutoff strategy with s∗ (m) < s̄∗. Hence, the claimant only

sends messages m such that either s∗ (m) = s̄∗ or the distribution of x conditional on m is

degenerate on x = 1. Call the former set of messages M1 and the latter set M2. Since the
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result is immediate if the probability that the claimant sends a message in M1 is 0, assume

that this probability is strictly positive.

As in the proof of Lemma 2, there is a unique maximizer of xF (s̄∗|x): call it x∗. Therefore,

either the claimant demands x∗ and sends a message in M1, or she demands 1 and sends

a message in M2. By the same reasoning as in Lemma 1, the responder must accept

with probability strictly less than 1 after receiving a message in M1: therefore, x∗ ≥ 1.

Since the responder accepts with positive probability after receiving a message in M2 (since

the equilibrium is non-trivial), he must also accept with positive probability after receiving

a message in M1, or else the responder will never send such a message (contrary to our

hypothesis): therefore, x∗ ≤ 1. Hence, x∗ = 1, so the claimant always demands x = 1.

A.3 Proof of Proposition 2

Consider a convergent subsequence and suppose that sn,∗ → ŝ 6= 1. Suppose that ŝ > 1. By

1 ∈ argmaxx∈X xF
n (sn,∗|x), we have

F n (sn,∗|x = 1) ≥ 1 + min {sn,∗,M}
2

F n

(
sn,∗|x =

1 + min {sn,∗,M}
2

)
.

Since sn,∗ → ŝ > 1 and sups,x |F n (s|x)− 1 {s ≥ x}| → 0, we have

1 + min {sn,∗,M}
2

F n

(
sn,∗|x =

1 + min {sn,∗,M}
2

)
→ 1 + min {ŝ,M}

2
> 1,

which is a contradiction since F n (sn,∗|x = 1) ≤ 1.

Similarly, suppose that ŝ < 1. Since fnx (0|1) /fn (0|1) < −1 for all n, the fact that

Fx (s|x = 1) /F (s|x = 1) is strictly increasing in s (by Lemma 4), together with (1), implies

that ŝ > 0. By 1 ∈ argmaxx∈X xF
n (sn,∗|x), we have

F n (sn,∗|x = 1) ≥ sn,∗

2
F n

(
sn,∗|x =

sn,∗

2

)
.
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Since sn,∗ → ŝ < 1 and sups,x |F n (s|x)− 1 {s ≥ x}| → 0, we have

F n (sn,∗|x = 1)→ 0 and
sn,∗

2
F n

(
sn,∗|x =

sn,∗

2

)
→ ŝ

2
> 0,

which is a contradiction. This shows that all convergent subsequences converge to ŝ = 1. As

the same argument also contradicts the existence of a subsequence diverging to −∞ or +∞,

the space of possible cutoff signals can be taken to be compact, so the original sequence also

converges to ŝ = 1.

Finally, suppose that ŝ = 1 and F n (sn,∗|1)→ α < 1. By 1 ∈ argmaxx∈X xF
n (sn,∗|x), we

have

F n (sn,∗|x = 1) ≥ 1 + α

2
F n

(
sn,∗|x =

1 + α

2

)
.

Since α < 1 and sups,x |F n (s|x)− 1 {s ≥ x}| → 0, we have

F n (sn,∗|x = 1)→ α and
1 + α

2
F n

(
sn,∗|x =

1 + α

2

)
→ 1 + α

2
> α,

which is a contradiction. Therefore, we also have F n (sn,∗|1)→ 1.

A.4 Proof of Proposition 3

Since S = R and π < 1, for any strategy for the claimant, the responder accepts if s is a

suffi ciently large negative number. Therefore, every equilibrium is non-trivial. By the same

argument as in the proof of Lemma 2, this implies that the claimant uses a pure strategy.

Letting x∗ (π) denote the claimant’s (pure) equilibrium demand, the responder’s unique

best response is to accept iff s ≤ s∗ (π), where s∗ (π) = (1− πx∗ (π)) / (1− π). Hence, the

claimant’s problem is maxx∈X xF (s∗ (π) |x).

I claim that x∗ (π)→ 1 as π → 1. To see this, take a convergent subsequence and suppose

that x∗ (π)→ x̂. Suppose further that x̂ < 1. This implies that s∗ (π)→∞. But since F is

a cdf and M > 1, for suffi ciently large s the solution to maxx∈X xF (s|x) is greater than 1,

which contradicts the hypothesis that argmaxx∈X xF (s∗ (π) |x) < 1 for π suffi ciently close

to 1.

Next, suppose that x̂ > 1, and therefore s∗ (π)→ −∞. Note that the first-order condition
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of the claimant’s problem is

Fx (s∗ (π) |x∗ (π))

F (s∗ (π) |x∗ (π))
= − 1

x∗ (π)
.

Since s∗ (π) → −∞ and Fx (s, x) /F (s, x) is continuous, the left-hand side of this equation

converges to lims→−∞ fx (s|x̂) /f (s|x̂). By log-concavity (and l’Hôpital’s rule), x̂ > 1, and

the informativeness condition, we have

lim
s→−∞

fx (s|x̂)

f (s|x̂)
= lim

s→−∞

Fx (s|x̂)

F (s|x̂)
≤ lim

s→−∞

Fx (s|1)

F (s|1)
= lim

s→−∞

fx (s|1)

f (s|1)
< −1 < −1

x̂
,

which is a contradiction. This shows that x̂ = 1. Since the convergent subsequence was

arbitrarily chosen, compactness of X implies that the original sequence converges to 1.

I have established that x∗ (π) → 1 as π → 1. Since F (s, x) is continuous and x∗ (π) =

argmaxx∈X xF (s∗ (π) |x), by the maximum theorem s∗ (π)→ ŝ such that 1 ∈ argmaxx∈X xF (ŝ|x).

This implies that ŝ→ s∗, given by (1).

A.5 Proof of Proposition 4

Note that F (s∗|x = 1) = G ((s∗ − 1) /θ) = G (z∗), where z∗ := (s∗ − 1) /θ. The claimant’s

first-order condition is

0 = F (s∗|1) + Fx (s∗|1) = G (z∗)− g (z∗)

θ
, or θ =

g (z∗)

G (z∗)
.

Totally differentiating the first-order condition with respect to θ, we have

1 =
d

dθ
θ =

d

dθ

g (z∗)

G (z∗)
=

1

G (z∗)2

(
G (z∗) g′ (z∗)− g (z∗)2) dz∗

dθ
.

At the same time, since F is log-concave, we have

F (s∗|x = 1)Fxx (s∗|x = 1)− Fx (s∗|x = 1)2 =
1

θ2

(
G (z∗) g′ (z∗)− g (z∗)2) < 0.
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Combining these equations, we have dz∗/dθ < 0. Hence, G (z∗) = F (s∗|x = 1) is likewise

decreasing in θ.

A.6 Proof of Theorem 2

Fix x ∈ (0, 1] and η > 0, and consider the trigger strategy profile with demand x, with

thresholds s and α to be determined later. Let V denote the claimant’s continuation payoff

in Phase 1, and let β = (1− α) / (1− δ). We have

V = (1− δ)xF (s|x) + (1− (1− α) (1− F (s|x))) δV

= (1− δ)xF (s|x) + (1− β (1− δ) (1− F (s|x))) δV

=
(1− δ)xF (s|x)

1− δ (1− β (1− δ) (1− F (s|x)))

=
xF (s|x)

1 + βδ (1− F (s|x))
.

The claimant’s optimality condition is

x ∈ argmax
x′

(1− δ)x′F (s|x′) + (1− β (1− δ) (1− F (s|x′))) δV,

with first-order condition

F (s|x) + xFx (s|x) + βδFx (s|x)V = 0.

We show that s and β can be chosen so that the first-order condition holds and V > x−η.

Let

g (x) = sup
s∈S

Fx (s|x)

F (s|x) (1− F (s|x))
,

and, for any η̃ > 0, let

γ (η̃) =

 η̃/2 if 1 + xg (x) ≥ 0

min
{
η̃,− 1

1+xg(x)

}
/2 if 1 + xg (x) < 0

.
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Let s (η̃) be the greatest solution to

Fx (s|x)

F (s|x) (1− F (s|x))
= −1 + γ (η̃)

γ (η̃)x
. (7)

This is well-defined because the left-hand side of (7) is continuous by assumption, and we

have

sup
s∈S

Fx (s|x)

F (s|x) (1− F (s|x))
= g (x) = −

1 +
(
− 1

1+xg(x)

)
(
− 1

1+xg(x)

)
x

> −1 + γ (η̃)

γ (η̃)x
,

and

inf
s∈S

Fx (s|x)

F (s|x) (1− F (s|x))
≤ lim

s→s̄

Fx (s|x)

1− F (s|x)
= lim

s→s̄
−fx (s|x)

f (s|x)
< −1 + γ (η̃)

γ (η̃)x
,

where the last inequality holds by unbounded informativeness. Moreover, note that limη̃→0 γ (η̃) =

0, and therefore limη̃→0 s (η̃) = s̄, again by unbounded informativeness.

We now fix s. Rearranging (7) gives

γ (η̃)

1− F (s (η̃) |x)
= −(1 + γ (η̃))F (s (η̃) |x)

xFx (s (η̃) |x)
.

Since lims→s̄ Fx (s|x) = 0, because F (s|x) is a cdf for every x, we have

lim
η̃→0

γ (η̃)

1− F (s (η̃) |x)
=∞.

Hence, there exists η̃ ∈ (0, η) such that γ (η̃)F (s|x) > 1− F (s (η̃) |x). Fix any such η̃, and

let s = s (η̃).

Given this value of η̃ and s (which, note, does not depend on δ), let

β =
1

δ

(
γ (η̃)F (s|x)

1− F (s|x)
− 1

)
> 0.

Finally, let

δ1 = 1− 1− F (s|x)

γ (η̃)F (s|x)
< 1,

and note that
1− δ1

δ1

=
1− F (s|x)

γ (η̃)F (s|x)− (1− F (s|x))
.
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Note that, for any δ ≥ δ1, we have

α = 1− (1− δ) β = 1− 1− δ
δ

(
γ (η̃)F (s|x)

1− F (s|x)
− 1

)
≥ 1− 1− δ1

δ1

(
γ (η̃)F (s|x)

1− F (s|x)
− 1

)
= 0,

so the strategy profile is well-defined.

By construction, we have

F (s|x) + xFx (s|x) + βδFx (s|x)V

= F (s|x) + xFx (s|x) +
βδxFx (s|x)F (s|x)

1 + βδ (1− F (s|x))

= F (s|x)− 1 + γ (η̃)

γ (η̃)
F (s|x) (1− F (s|x)) +

(
γ(η̃)F (s|x)
1−F (s|x)

− 1
)(
−1+γ(η̃)

γ(η̃)
F (s|x) (1− F (s|x))

)
F (s|x)

1 +
(
γ(η̃)F (s|x)
1−F (s|x)

− 1
)

(1− F (s|x))

= 0.

So the first-order condition of the claimant’s problem holds, and (as we have seen) the

second-order condition holds by log-concavity of F . Moreover,

V =
xF (s|x)

1 + βδ (1− F (s|x))
=

xF (s|x)

1 + γ (η̃)F (s|x)− (1− F (s|x))
=

x

1 + γ (η̃)
>

x

1 + η̃
>

x

1 + η
> x−η.

Similarly, the responder’s value equals

(1− x)F (s|x)

1 + βδ (1− F (s|x))
=

1− x
1 + γ (η̃)

> 1− x− η.

Finally, the responder’s strategy is optimal so long as the one-shot gain from accepting the

claimant’s demand of x is outweighed by the lost continuation value of δ (1− x) / (1 + γ (η̃)):

that is, if

(1− δ) (1− x) ≤ δ
1− x

1 + γ (η̃)
, or δ ≥ δ2 :=

1 + γ (η̃)

2 + γ (η̃)
.

Taking δ̄ = max {δ1, δ2} completes the proof.
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A.7 Proof of Theorem 3

Fix any PPE and any η > 0. For any period t and public history ht, let U t (ht) denote

the responder’s continuation payoff at history ht, and let Ū = supt,ht U
t (ht). We show that

Ū ≤ η. Since this holds for any η > 0, we have Ū ≤ 0.

Fix (t, ht) such that U t (ht) ≥ Ū − (1− δ) η. Note that the responder’s continuation

payoff starting in period t+ 1 is at most Ū . Hence, if the responder accepts with probability

0 in period t conditional on reaching history ht, then we have

U t
(
ht
)
≤ δŪ ≤ δ

(
U t
(
ht
)

+ (1− δ) η
)
, (8)

or equivalently U t (ht) ≤ δη, which implies that Ū ≤ η. So suppose that the responder

accepts with positive probability in period t conditional on reaching history ht.

I claim that, in this case, the claimant uses a pure strategy at history ht. Since the

equilibrium strategies are public, each player’s continuation payoff at the start of period

t + 1 depends only on ht, at (the current-period {accept, reject} decision), and zt (which

realizes after at). Hence, by the same argument as in the proof of Lemma 2, the responder

uses a cutoff strategy in period t, with s∗ > s. Therefore, the claimant’s expected utility

from demanding x in period t equals
(
(1− δ)x+ δV A

)
F (s∗|x) + δV R (1− F (s∗|x)), where

V A and V R are her continuation payoffs from accept and reject, and s∗ is the responder’s

cutoff signal. For any values of V A and V R, the same argument as in the proof of Lemma 2

shows that this expectation is unimodal in x. So the claimant uses a pure strategy.

Next, the claimant’s demand at history ht must leave the responder indifferent between

accepting and rejecting. For, if the responder strictly preferred accepting, the claimant

would increase her demand, which would increase her current-period payoffwithout affecting

her continuation payoff (again because the equilibrium strategies are public). Thus, the

responder’s payoff is the same as that when he always rejects in period t. Hence, equation

(8) applies, and we can again conclude that Ū ≤ η.

We have shown that Ū ≤ 0. Since the responder’s minmax payoff is 0, this implies that,

conditional on reaching any public history ht, the responder’s expected payoff in period t

equals 0. Moreover, we have seen that, if the responder accepts with positive probability
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conditional on reaching history ht, the claimant must use a pure strategy that leaves the

responder indifferent. Since the responder’s continuation payoff at each history equals 0,

this pure strategy must demand x = 1. By the full support assumption, it follows that

either the claimant demands x = 1 with probability 1 or the responder rejects after every

signal with probability 1.

A.8 Proof of Proposition 6

Suppose otherwise. Then for any ε > 0, there exists a period T (ε) such that, for any

t ≥ T (ε), the equilibrium probability that the responder accepts in period t (conditional

on having accepted in all earlier periods) exceeds 1 − ε. By the full support assumption,

for any η > 0, there exists ε (η) > 0 such that if the responder’s stage-game strategy

σ : S → ∆ {accept, reject} satisfies
∫
S
σ (s) f (s|x) ds > 1−ε (η) for some x ∈ [−M,M ], then∫

S
σ (s) f (s|x = M) ds > 1− η. Hence, for any η > 0, if the claimant deviates to demanding

xt = M in every period t ≥ T (ε (η)), her continuation payoff starting from period T (ε (η))

is at least

(1− δ)
∞∑
t=0

δt (1− η)t+1 M =
(1− δ) (1− η)M

1− δ (1− η)
.

This expression is strictly greater than 1 iff

η < η∗ :=
(1− δ) (M − 1)

M − δ (M − 1)
,

which is strictly positive because δ ∈ (0, 1) and M > 1. Therefore, for any η < η∗, the

claimant can guarantee a continuation payoff strictly greater than 1 starting from period

T (ε (η)). However, the sum of the players’payoffs in each period is at most 1, and the

responder’s equilibrium continuation payoff starting from any period is at least her minmax

payoff of 0. So this is a contradiction.

A.9 Proof of Theorem 4

We first note that, by the same argument as in Lemma 1, a player’s demand cannot be

accepted with equilibrium probability 1. Hence, each player must be indifferent between
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accepting and rejecting her opponent’s demand in any SCE, so every SCE must satisfy the

Rubinstein equations, (3). By the argument given in the text, it follows that, in every SCE,

(pi, pj) must satisfy (4) (as well as the symmetric equation for player j).

Since gi (z) /Gi (z) is decreasing in z (as Fi,x (si|xi) /Fi (si|xi) = −gi
(
si−xi
θi

)
/Gi

(
si−xi
θi

)
is

increasing in si, by Lemma 4), letting z = G−1
i (1− pi), we see that gi

(
G−1
i (1− pi)

)
/ (1− pi)

is increasing in pi, and therefore the left-hand side of (4) is increasing in pi, as well as

increasing in pj. Since the left-hand side of (4) is clearly continuous in pi and pj, this

equation defines a continuous, downward-sloping curve Ci in (pi, pj)-space. Let pi and p̄i be

the smallest and greatest values of p̄i lying on this curve, which are given by

1− δ2

1− δ2p
i

gi

(
G−1
i

(
1− p

i

))
1− p

i

= θi and (1− δ)
gi
(
G−1
i (1− p̄i)

)
1− p̄i

= θi.

(That is, the points
(
p
i
, 1
)
and (p̄i, 0) lie on the curve Ci.) Note that pi > 0 and p̄i < 1

because, by the informativeness assumption,

lim
pi→0

1− δ2

1− δ2pi

gi
(
G−1
i (1− pi)

)
1− pi

= lim
z→z̄

(
1− δ2

)
gi (z) < θi and

lim
pi→1

(1− δ)
gi
(
G−1
i (1− pi)

)
1− pi

= lim
z→z

(1− δ) gi (z)

Gi (z)
> θi.

Define the curve Cj and 0 < p
j
< p̄j < 1 symmetrically: in particular, the points (0, p̄j)

and
(

1, p
j

)
lie on the curve Cj. Since 0 < p

i
< p̄i < 1, 0 < p

j
< p̄j < 1, and the curves

Ci and Cj are continuous, by the intermediate value theorem they intersect at some point

(pi, pj) satisfying pi < pi < p̄i and p
j
< pj < p̄j. Moreover, any point (p1, p2) at the

intersection of Ci and Cj, together with the corresponding demands (x1, x2) given by the

Rubinstein equations, (3), corresponds to an SCE, because each player is indifferent between

accepting and rejecting the opponent’s demand, and each player’s demand is optimal given

the opponent’s acceptance rule. (Conversely, any tuple (p1, p2, x1, x2) that does not satisfy

these conditions is not an SCE.) This proves part 1 of the theorem.

Since the curves Ci and Cj are both downward-sloping, for any two intersections (p1, p2)

and (p′1, p
′
2) with p′1 ≥ p1, we have p′2 ≤ p2. Letting (x1, x2) and (x′1, x

′
2) be the corresponding
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solutions to the Rubinstein equations, we have x′1 ≤ x1 and x′2 ≥ x2. By the formulas for the

players’equilibrium payoffs, (2), the facts that p′1 ≥ p1, x′1 ≤ x1, x′2 ≥ x2, x1 ≥ δ (1− x2),

and x′1 ≥ δ (1− x′2) (where the latter two inequalities were established in the text) imply

that U ′1 ≤ U1 and U ′2 ≥ U2. This proves part 2 of the theorem.

Finally, let (p∗1, p
∗
2) and (p∗∗1 , p

∗∗
2 ) be the extremal SCE values of (p1, p2). Fix i ∈ {1, 2}.

Slightly abusing notation, for each pi ∈
[
p
i
, p̄i

]
, let Ci (pi) (resp., Cj (pi)) denote the value

of pj such that (pi, pj) lies on the curve Ci (resp., Cj). Note that Ci
(
p
i

)
= 1 > Cj

(
p
i

)
and

Ci (p̄i) = 0 < Cj

(
p
i

)
. Note also that increasing θi shifts the curve Ci upwards and leaves

the curve Cj fixed. Applying Theorem 1 of Milgrom and Roberts (1994) to the function

Ci (pi) − Cj (pi), it follows that increasing θi results in an increase in both p∗1 and p
∗∗
1 , and

hence (since Cj is fixed and downward-sloping) a decrease in both p∗2 and p
∗∗
2 . Together

with the Rubinstein equations, (3), and the formulas for the players’equilibrium payoffs,

(2), both of which are independent of θi, it follows that the smallest and largest SCE values

of xi and Ui (resp., xj and Uj) are decreasing (resp., increasing) in θi. This proves part 3 of

the theorem.

References

[1] Abreu, Dilip, and David Pearce. “A Dynamic Reinterpretation of Nash Bargaining with
Endogenous Threats.”Econometrica 83.4 (2015): 1641-1655.

[2] Allison, Roy. Russia, the West, and Military Intervention. Oxford University Press,
Oxford, 2013.

[3] Ausubel, Lawrence M., Peter Cramton, and Raymond J. Deneckere. “Bargaining with
Incomplete Information.” Handbook of Game Theory with Economic Applications 3
(2002): 1897-1945.

[4] Baliga, Sandeep, Ethan Bueno De Mesquita, and Alexander Wolitzky. “Deterrence with
Imperfect Attribution.”American Political Science Review 114.4 (2020): 1155-1178.

[5] Bagwell, Kyle. “Commitment and Observability in Games.”Games and Economic Be-
havior 8.2 (1995): 271-280.

[6] Bhaskar, Venkataraman “Informational Constraints and the Overlapping Generations
Model: Folk and Anti-Folk Theorems.”Review of Economic Studies 65.1 (1998): 135-
149.

45



[7] Bhaskar, Venkataraman, and Ichiro Obara. “Belief-Based Equilibria in the Repeated
Prisoners’ Dilemma with Private Monitoring.” Journal of Economic Theory 102.1
(2002): 40-69.

[8] Binmore, K. G.: “Perfect Equilibria in Bargaining Models," in The Economics of Bar-
gaining, ed. by K. G. Binmore and P. Dasgupta. Oxford: Basil Blackwell (1987): 77-106.

[9] Bolton, Patrick, and Antoine Faure-Grimaud. “Satisficing Contracts.”Review of Eco-
nomic Studies 77.3 (2010): 937-971.

[10] Carlsson, Hans. “A Bargaining Model where Parties Make Errors.”Econometrica, 59.5
(1991): 1487-1496.

[11] Coy, Peter. “What Game Theory Says about China’s Strategy,”New York Times, Sept.
13, 2021.

[12] Denti, Tommaso, Massimo Marinacci, and Aldo Rustichini. “Experimental Cost of In-
formation.”American Economic Review Forthcoming (2022).

[13] Farrell, Joseph, and Robert Gibbons. “Cheap Talk Can Matter in Bargaining.”Journal
of Economic Theory 48.1 (1989): 221-237.

[14] Fearon, James D. “Domestic Political Audiences and the Escalation of International
Disputes.”American Political Science Review (1994): 577-592.

[15] Fearon, James D. “Rationalist Explanations for War.” International Organization 49
(1995): 379-379.

[16] Ferejohn, John. “Incumbent Performance and Electoral Control.”Public Choice 50.1
(1986): 5-25.

[17] Freedman, Lawrence. Ukraine and the Art of Strategy. Oxford University Press, 2019.

[18] Fudenberg, Drew, David Levine, and Jean Tirole, “Infinite-Horizon Models of Bargain-
ing with One-Sided Incomplete Information.”Game-Theoretic Models of Bargaining,
Cambridge University Press, West Nyack, NY (1985): 73-98.

[19] Fudenberg, Drew, David Levine, and Eric Maskin. “The Folk Theorem with Imperfect
Public Information.”Econometrica 62.5 (1994): 997-1039.

[20] Gul, Faruk, Hugo Sonnenschein, and Robert Wilson. “Foundations of Dynamic
Monopoly and the Coase Conjecture.”Journal of Economic Theory 39.1 (1986): 155-
190.

[21] Hart, Oliver D., and Jean Tirole. “Contract Renegotiation and Coasian Dynamics.”
Review of Economic Studies 55.4 (1988): 509-540.

[22] Holmström, Bengt. “Moral Hazard and Observability.”Bell Journal of Economics 10.1
(1979): 74-91.

46



[23] Johnson, Justin P., and David P. Myatt. “On the Simple Economics of Advertising,
Marketing, and Product Design.”American Economic Review 96.3 (2006): 756-784.

[24] Kaplan, Robert D. Asia’s Cauldron: The South China Sea and the End of a Stable
Pacific. Random House, 2014.

[25] Klein, Benjamin, and Keith B. Leffl er. “The Role of Market Forces in Assuring Con-
tractual Performance.”Journal of Political Economy 89.4 (1981): 615-641.

[26] Maggi, Giovanni. “The Value of Commitment with Imperfect Observability and Private
Information.”RAND Journal of Economics (1999): 555-574.

[27] Matsushima, Hitoshi. “On the Theory of Repeated Games with Private Information:
Part I: Anti-Folk Theorem without Communication.”Economics Letters 35.3 (1991):
253-256.

[28] Merlo, Antonio, and Charles Wilson. “A Stochastic Model of Sequential Bargaining
with Complete Information.”Econometrica 63.2 (1995): 371-399.

[29] Milgrom, Paul R. “Good News and Bad News: Representation Theorems and Applica-
tions.”Bell Journal of Economics (1981): 380-391.

[30] Milgrom, Paul, and John Roberts. “Price and Advertising Signals of Product Quality."
Journal of Political Economy 94.4 (1986): 796-821.

[31] Milgrom, Paul, and John Roberts. “Comparing Equilibria.”American Economic Review
(1994): 441-459.

[32] Nash, John. “Two-Person Cooperative Games.”Econometrica 21.1 (1953): 128-140.

[33] Powell, Robert. “Uncertainty, Shifting Power, and Appeasement.”American Political
Science Review (1996a): 749-764.

[34] Powell, Robert. “Bargaining in the Shadow of Power.”Games and Economic Behavior
15.2 (1996b): 255-289.

[35] Prat, Andrea, and David Strömberg. “The Political Economy of Mass Media.”Advances
in Economics and Econometrics 2 (2013): 135.

[36] Ravid, Doron. “Ultimatum Bargaining with Rational Inattention.”American Economic
Review 110.9 (2020): 2948-63.

[37] Rey, Patrick, and Jean Tirole. “A Primer on Foreclosure.”Handbook of Industrial Or-
ganization 3 (2007): 2145-2220.

[38] Rubinstein, Ariel. “Perfect Equilibrium in a Bargaining Model.” Econometrica, 50.1
(1982): 97-109.

[39] Sanger, David E. The Perfect Weapon: War, Sabotage, and Fear in the Cyber Age.
Crown, New York, 2019.

47



[40] Schelling, Thomas C. The Strategy of Conflict. Harvard University Press, Cambridge,
1960.

[41] Schelling, Thomas C. Arms and influence. Yale University Press, New Haven, 1966.

[42] Sekiguchi, Tadashi. “Effi ciency in Repeated Prisoner’s Dilemma with Private Monitor-
ing.”Journal of Economic Theory 76.2 (1997): 345-361.

[43] Shapiro, Carl, and Joseph E. Stiglitz. “Equilibrium Unemployment as a Worker Disci-
pline Device.”American Economic Review 74.3 (1984): 433-444.

[44] Shortle, James S., and Richard D. Horan. “The Economics of Nonpoint Pollution Con-
trol.”Journal of Economic Surveys 15.3 (2001): 255-289.

[45] Tirole, Jean. “Cognition and Incomplete Contracts.”American Economic Review 99.1
(2009): 265-94.

[46] Van Damme, Eric, and Sjaak Hurkens. “Games with Imperfectly Observable Commit-
ment.”Games and Economic Behavior 21.1-2 (1997): 282-308.

[47] Wolinsky, Asher. “Prices as Signals of Product Quality.”Review of Economic Studies
50.4 (1983): 647-658.

48


