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Abstract

Current methods of estimating the random coefficients logit model employ simulations of

the distribution of the taste parameters through pseudo-random sequences. These methods

suffer from difficulties in estimating correlations between parameters and computational

limitations such as the curse of dimensionality. This paper provides a solution to these

problems by approximating the integral expression of the expected choice probability using

a multivariate extension of the Laplace approximation. Simulation results reveal that our

method performs very well, both in terms of accuracy and computational time.



1 Introduction

Understanding discrete economic choices is an important aspect of modern economics.

McFadden (1974) introduced the multinomial logit model as a model of choice behavior

derived from a random utility framework. An individual i faces the choice between K

different goods i = 1..K. The utility to individual i from consuming good j is given by

Uij = x
′
ijβ+εij, where x

′
ij corresponds to a set of choice relevant characteristics specific to the

consumer-good pair (i, j). The error component εij is assumed to be independently identi-

cally distributed with an extreme value distribution f(εij) = exp(−εij) exp(− exp(−εij)).

If the individual iis constrained to choose a single good within the available set, utility

maximization implies that the good j will be chosen over all other goods l 6= j such that

Uij > Uil, for all l 6= j. We are interested in deriving the probability that consumer i

chooses good j, which is

Pij = Pr[x
′
ijβ + εij > x

′
ilβ + εil, for all l 6= j]. (1)

McFadden (1974) shows that the resulting integral can be solved in closed form resulting

in the familiar expression:

Pij =
exp(x

′
ijβ)

K∑
k=1

exp(x′ikβ)
(= sij) . (2)

In some analyses it is also useful to think of the market shares of firms in different

markets. Without loss of generality we can also consider the choice probability described

above to be the share of the total market demand which goes to good j in market i and

we will denote this by sij. All the results derived in this paper will be valid for either

interpretation. For convenience we shall focus on the market shares interpretation of the

above equation.
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The vector of coefficients β can be thought of as a representation of the individual

tastes and determines the choice conditional on the observable consumer-good characteris-

tics. Although an extremely useful model, the multinomial model suffers from an important

limitation: it is built around the the assumption of independence of irrelevant alternatives

(IIA), which implies equal cross price elasticities across all choices as demonstrated by

Hausman (1975). Additionally it does not allow for correlations between the random com-

ponents of utility, thus limiting the complexity of human behavior which can be modeled

(Hausman and Wise, 1978).

While a number of more flexible specifications have been proposed, few proved to com-

putationally tractable. The addition of a random coefficients framework to the logit model

provides an attractive alternative (Cardell and Dunbar, 1980). In many applications how-

ever it is important to think of tastes as varying in the population of consumers according

to a distribution F (β). It is particularly important not to assume the taste parameters to

be independent since the estimation of correlations between the components of the vector

β is also of interest. The resulting correlations describe patterns of substitution between

different product characteristics.

In practice we often assume that the distribution F (β) is Normal with mean b and

covariance Σ. The purpose of random coefficients models is to estimate the unknown

parameters b and Σ from the available sample. From a computational point of view, the

aim is to obtain the expected share of good j in market i from the evaluation of the

following expectation:

Eβ(sij) =

+∞∫

−∞

exp(x
′
ijβ)

K∑
k=1

exp(x′ikβ)
dF (β) (3)

We denote this model to be the random coefficients logit model. Since the above integral

does not have a known analytic solution, the use of simulation methods currently plays an
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important part in the implementation of these models (Lerman and Manski, 1981) with

recent applications employing pseudo-random Halton sequences (Small, Winston and Yan,

2005; Train, 2003).

The random coefficients logit model is an extremely versatile tool for the analysis of

discrete choices since it can be thought of as an arbitrarily close approximate representation

of any random utility model consistent with choice probabilities (McFadden and Train,

2000). This has prompted researchers to think of this model as “one of the most promising

state of the art discrete choice models” (Hensher and Green, 2003). Applications of the

random coefficients logit model abound, not only within economics, but also in related

disciplines such as marketing or transportation research (Hess and Polak, 2005). The

random coefficients model is also an important building block for more complex models.

Thus, Berry, Levinsohn and Pakes (1995) employ the random coefficients logit model to

analyse demand based on market-level price and quantity data. Bajari, Hong and Ryan

(2005) incorporate it into an econometric model of discrete games with perfect information,

where it selects the probability of different equilibria.

The implementation of the random coefficients model remains a challenging application

of the method of simulated moments. In particular the estimation of a full covariance ma-

trix of the taste parameters, which fully incorporates all the possible correlations between

parameters, seems to elude most researchers and appears to be a serious limitation of the

simulation approach. In Section 2 of this paper we will derive an analytic approxima-

tion of the integral expression in Equation 3 which can be incorporated into an extremely

convenient non-linear least squares framework for the estimation of all mean and variance-

covariance parameters of the taste distribution. Section 3 shows the superior performance

of the new method based on the Laplace method compared to the simulation alternative

in cases where the model is specified with non-zero correlations.
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2 A Laplace Approximation of the Expected Share

Consider the expected share of product j in market i under the random coefficients logit

model introduced above.

Eβ(sij) = Eβ





exp(x
′
ijβ)

K∑
k=1

exp(x′ikβ)





= Eβ





(
K∑

k=1

exp(x
′
ijkβ)

)−1


 , (4)

wherexijk = xik − xijforall k. Assume that the taste parameters β are drawn from a

normal multivariate distribution with mean b and covariance matrix Σ,

f(β) = (2π)−p/2
∣∣∣ Σ

∣∣∣
−1/2

exp
{
−1

2
(β − b)′Σ−1(β − b)

}
. (5)

For simplicity we focus in our derivations on the case where all coefficients are random.

More generally, we may wish to allow for mixture of fixed and random coefficients. The

results in this paper will continue to hold in this case too and we restate the main result

of this paper in terms of both random and fixed coefficients in Appendix B.

Then the expected share is given by the following multivariate integral:

Eβ(sij) = (2π)−p/2
∣∣∣Σ

∣∣∣
−1/2

+∞∫

−∞
exp[−g(β)]dβ, where (6)

g(β) =
1
2

(β − b)′Σ−1(β − b) + log

(
K∑

k=1

exp(x
′
ijkβ)

)
(7)

In this section we provide an approximation to the integral expression above using the

asymptotic method of Laplace. While univariate applications of this method are common

to mathematics and physics, where they are routinely applied to the complex functions to
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derive “saddle-point approximations”, few applications to econometrics or statistics have

been attempted. The extension of the method to multivariate settings was developed by

Hsu (1948) and Glynn (1980). A statement of the main theorem is given in Appendix A

together with the technical conditions required for the approximation to exist. Statistical

applications of the Laplace approximation were developed by Daniels (1954) and Barndorff-

Nielsen and Cox (1979) who employ the Laplace approximation to derive the indirect

Edgeworth expansion, a generalization of the Edgeworth expansion method for distributions

to exponential families. The Laplace method was also applied in Bayesian statistics to

derive approximations to posterior moments and distributions (Tierney and Kadane, 1986;

Efstathiou, Guthierrez-Pena and Smith, 1998). More recently, Butler (2002) noticed that

the Laplace approximation often produces accurate results in subasymptotic situations

which are not covered by the traditional setting. It is this insight which we will use below.

Now perform a Taylor expansion of the function g(β) around the point β̃ij, such that

g(β̃ij) < g(β) for all β 6=β̃. This expansion is given by:

g(β) ∼= g(β̃ij)+
(
β − β̃ij

)′
[
∂g

∂β
|β=β̃ij

]+
1
2

(
β − β̃ij

)′
[
(

∂2g(β)
∂β∂β′

)

β=β̃ij

]
(
β − β̃ij

)
+O(

(
β − β̃ij

)3
).

(8)

Substituting in the integral expression above we obtain:

Eβ(sij) ∼= |Σ|−1/2 exp(−g(β̃ij))×
+∞∫

−∞
(2π)−p/2 exp

{
−1

2

(
β − β̃ij

)′
[
(

∂2g(β)
∂β∂β′

)

β=β̃ij

]
(
β − β̃ij

)
+ O(

(
β − β̃ij

)3
)

}
dβ (9)

The intuition for this approach is given by the fact that if g(β) has a minimum at the

point β̃ij, then the contribution of the function g(β) to the exponential integral will be

dominated by a small region around the point β̃ij. Furthermore by using a second order
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Taylor expansion around β̃ij, we make the further assumption that the higher order terms

of the expansion may be safely ignored. Let Σ̃ij the inverse of the Hessian of g(β) evaluated

at β̃ij, i.e. Σ̃−1
ij =(∂2g(β)

∂β∂β′ )β=β̃ij
. Note that both β̃ij and Σ̃ij are indexed by i and j to remind

us that these values depend on the covariates of the share of product j in market i explicitly

and in general will not be constant across products or markets.

Then we can re-write the integral above as:

Eβ(sij) ∼=|Σ|−1/2 exp(−g(β̃ij))
∣∣∣ Σ̃ij

∣∣∣
1/2

(2π)−p/2

∣∣∣∣ Σ̃ij

∣∣∣∣
−1/2

+∞∫

−∞
exp

{
−1

2

(
β − β̃ij

)′
Σ̃ij

−1
(β − β̃ij)

}
dβ.

(10)

We recognize the right hand side of this expression to be Gaussian integral, that is the

integral over the probability density of a Normal variable β with mean β̃ij and covariance

Σ̃ij. Since this area integrates to 1 we have,

(2π)−p/2
∣∣∣ Σ̃ij

∣∣∣
−1/2




+∞∫

−∞
exp

{
−1

2

(
β − β̃ij

)′
Σ̃−1

ij (β − β̃ij)
}

dβ


 = 1 (11)

and we can write the expected share of product i in market j as

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp(−g(β̃ij)) (12)

The expansion point β̃ij has to be chosen optimally for each share, that is β̃ij solves the

equation g′(β)|β=β̃ij
= 0, i.e.

(
β̃ij − b

)′
Σ−1 +

K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x′ijkβ̃ij)





= 0 (13)
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In Appendix B we show that -g(β) is the sum of two strictly concave functions and

thus it is also concave. Hence, the function g(β) attains a unique minimum at the point

β̃ij. We can also think of the optimal expansion point β̃ij as solving a fixed-point equation,

β̃ij = B(β̃ij), where

B(β̃ij) = b′ −




K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x′ijkβ̃ij)






Σ. (14)

Additionally, the Hessian of g(β) is given by

∂2g(β)
∂β∂β′

= Σ−1 +

K∑
k=1

xijkx
′
ijk exp(x

′
ijkβ̃ij)

K∑
k=1

exp(x′ijkβ̃ij)
−

[
K∑

k=1

xijk exp(x
′
ijkβ̃ij)

]
[

K∑
k=1

x′ijk exp(x
′
ijkβ̃ij)

]

[
K∑

k=1

exp(x′ijkβ̃ij)
]2

(15)

The following proposition summarizes the main result of this paper by approximating

the Gaussian integral corresponding to the expected share of product i in market j using

a Laplace approximation.

Proposition 1: If β has a Normal distribution with mean b and covariance Σ, we can

approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x
′
ijkβ))

−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃ij − b

)′
Σ̃−1

ij (β̃ij − b)
} (

K∑

k=1

exp(x
′
ijkβ̃ij)

)−1

, (16)
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where

Σ̃ij =





Σ−1 +

K∑
k=1

xijkx
′
ijk exp(x

′
ijkβ̃ij)

K∑
k=1

exp(x′ijkβ̃ij)
−

[
K∑

k=1

xijk exp(x
′
ijkβ̃ij)

]
[

K∑
k=1

x′ijk exp(x
′
ijkβ̃ij)

]

[
K∑

k=1

exp(x′ijkβ̃ij)
]2





−1

,

(17)

and β̃ij solves the fixed-point equation β̃ij = B(β̃ij) for

B(β̃ij) = b′ −




K∑

k=1





x
′
ijk

exp(x
′
ijkβ̃ij)

K∑
k=1

exp(x′ijkβ̃ij)






Σ. (18)

In the next section we present detailed simulation results which show the performance

of the approximation in estimating the unknown parameters b and Σ of the model. The

figure below shows the remarkably good fit between of the Laplace approximation of the

true market share at fixed values of b and Σ for two covariates.

The exact expected share obtained by numerical integration coincides with the expected

share obtained by the Laplace approximation almost everywhere. The only noticeable

deviation occurs for values of the expected share close to 1. Fortunately, this case is

relatively infrequent in economic applications where in multi-brand competition models we

may expect to have many small shares in any given market but it is unlikely to have more

than a few very large shares in the entire sample. The Laplace approximation introduced

in this section has the peculiar property of being an asymmetrical approximation to a

symmetrical function. This feature however proves to be extremely useful for economic

applications since it provides an very close approximation to small shares which are much

more likely to occur in economic data than shares close to 1 where the approximation tends

to underestimate the true expected share.
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The optimal expansion point β̃ij used in Proposition 1 can be computed by standard

iterative methods which solve the fixed-point equation β̃ij = B(β̃ij). While such methods

are widely available in commercial software packages and tend to be extremely fast, the

optimal expansion point β̃ij needs to be computed for each firm in each market separately,

which may potentially slow down numerical optimization routines if large data sets are

used. To improve computational efficiency we can further derive an approximate solution

to the fixed point equation, which as we will show in the next section, performs very well.

Let h(β) = log
(

K∑
k=1

exp(x
′
ijkβ)

)
and perform a quadratic Taylor approximation of

g(β) around the constant parameter vector b. Then,

h(β) ∼= hij(b) + (β − b)
′
Jij(b) +

1
2
(β − b)

′
Hij(b) (β − b) + O((β − b)3), (19)

where the Jacobian and Hessian terms are given by

Jij(b) =
K∑

k=1





x′ijk
exp(x

′
ijkb)

K∑
k=1

exp(x′ijkb)





and (20)

Hij(b) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb)

K∑
k=1

exp(x′ijkb)
−

[
K∑

k=1

xijk exp(x
′
ijkb)

]
[

K∑
k=1

x′ijk exp(x
′
ijkb)

]

[
K∑

k=1

exp(x′ijkb)
]2 . (21)

Thus, we can re-write the expression for g(β) as

g(β) =
1
2

(β − b)′Σ−1(β − b) + hij(b) + (β − b)
′
Jij(b) +

1
2
(β − b)

′
Hij(b) (β − b) (22)
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The optimal expansion point β̃ij solves the equation ∂g(β)/∂β = 0. Hence,

∂g(β)
∂β

= (β − b)′Σ−1 + J
′
ij(b) + (β − b)′Hij(b) = 0. (23)

Since this expression is now linear we can easily solve for the optimal expansion point

β̃ij,

β̃ij = b +
[
Σ−1 + Hij(b)

]−1
Jij(b). (24)

We can now re-write Proposition 1 to obtain an easily implementable version of the

Laplace approximation of the expected share.

Proposition 2: If β has a Normal distribution with mean β and covariance Σ, we can

approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x′ijkβ))
−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃ij − b

)′
Σ̃−1

ij (β̃ij − b)
} (

K∑

k=1

exp(x′ijkβ̃ij)

)−1

, (25)

where

β̃ij = b +
[
Σ−1 + Hij(b∗)b∗=b

]−1
Jij(b) (26)

Σ̃−1
ij = Σ−1 + Hij(b∗)b∗=b̃ij

, (27)

and

Jij(b) =
K∑

k=1





x′ijk
exp(x′ijkb)

K∑
k=1

exp(x′ijkb)





(28)
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Hij(b∗) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb

∗)

K∑
k=1

exp(x′ijkb∗)
−

[
K∑

k=1

xijk exp(x′ijkb∗)
]

[
K∑

k=1

x′ijk exp(x′ijkb∗)
]

[
K∑

k=1

exp(x′ijkb∗)
]2 . (29)

Notice that the Hessian expression Hij(b∗) is evaluated at different points b∗ in the

computation of the values of β̃ij and Σ̃ij. Proposition 2 is also insightful in that it explains

why a simple Taylor expansion of the Gaussian integral around the mean bwill fail. Consider

the expression for β̃ij, which is the optimal expansion point in the Laplace approximation.

Notice that β̃ij=b only if Jij(b) = 0. But this expression can only be zero if the vectors of

covariates xijk are zero for all k. Hence a Taylor approximation of the same problem will

fail since it expands each expected share around a constant value when in fact it ought

to perform the expansion around an optimal value which will differ from share to share

depending on the covariates. The Laplace approximation developed above performs this

optimal expansion.

3 Monte-Carlo Simulations

In this section we discuss the estimation of the random coefficients model by non-linear least

squares after applying the Laplace approximation derived in the previous section to each

expected market share. We will also compare its performance in Monte-Carlo simulations

to that of alternative methods used for the estimation of these models in the econometric

literature.

Since the model was introduced over thirty years ago, several estimation methods have

been proposed which try to circumvent the problem that the integral expression for the

expected shares does not have a closed form solution for most distributions of the taste

parameters. While numerical integration by quadrature is implemented in numerous soft-

ware packages it is also extremely time consuming. In practice it is not possible to use
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numerical integration to solve such problems if the number of regressors is greater than

two or three. We have found that even for the case of a single regressor this method is

extremely slow and not always reliable.

The main attempt to estimate random coefficients models is based on the method of

simulated moments (McFadden, 1989; Pakes and Pollard, 1989), where the expectation is

replaced by a an average over repeated draws from the distribution of taste parameters:

Eβ(sij) =
∫ exp(x

′
ijβ)

K∑
k=1

exp(x′ikβ)
dF (β) ∼= 1

R

R∑

r=1

exp(x
′
ijβr)

K∑
k=1

exp(x′ikβr)
, (30)

where βr is drawn from the distribution F (β). Random sampling from a distribution

may nevertheless provide poor coverage of the domain of integration. There is no guarantee

that in a particular set of draws the obtained sequence will uniformly cover the domain of

integration and may in fact exhibit random clusters which will distort the approximation.

To achieve a good approximation the number of draws R will have to be very large.

More recently the use of variance reduction techniques has been advocated in an at-

tempt to improve the properties of simulated estimation (Train, 2003). Negatively cor-

related pseudo-random sequences may lead to a lower variance of the resulting estimator

than traditional independent sampling methods. The method currently employed in econo-

metrics uses Halton sequences (Small, Winston and Yan, 2005).

Halton sequences can be constructed as follows. For each dimension rof the vector β

and some prime number k construct the sequence

st+1 =
{

st, st +
1
k
, ..., st +

(k − 1)
kt

}
, fors0 = 0. (31)

This sequence is then randomized by drawing µ uniform (0,1) and for each element s,

12



letting s∗ = mod(s + µ).

This method provides coverage of the unit hypercube by associating each dimension

with a different prime number k. In order to transform these points into draws from the

relevant distribution an inversion in then applied, e.g. if the desired distribution is Normal

one would turn these points on the unit hypercube into values of β, by letting βr = Φ−1(s∗r),

which corresponds to the inverse of the normal distribution.

The use of Halton sequences improves performance over the use of independent draws

and yet nevertheless it suffers from the curse of dimensionality. Many thousand draws are

required for each observation and the application of this method is extremely problematic

for the estimation of even a small number of parameters since it is so time consuming.

The mathematical properties of Halton sequences are not sufficiently well understood

and may represent a liability in some applications. Train (2003) reports that in estimating

a random coefficients logit model for households’ choice of electricity supplier repeatedly,

most runs provided similar estimates of the coefficients, yet some runs provided significantly

different coefficients even though the algorithm was unchanged and applied to the same

data set. Similarly, Chiou and Walker (2005) report that simulation based methods may

falsely identify models if the number of draws is not sufficiently large. The algorithm may

produce spurious results which “look” reasonable yet are not supported by the underlying

data.

Additionally, to our knowledge, it was not possible so far to estimate the full covariance

matrix using simulation based methods. Researchers focus exclusively on the estimation of

the mean and variance parameters thereby assuming a diagonal structure to the covariance

matrix Σ of the taste parameters. We will show how this problem can be easily overcome

by the use of the Laplace approximation method we propose in this paper. Later on in

this section we will also show how ignoring the covariances may lead to biased results and
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Table 1: Estimation of the one variable random coefficients model. N = 1000,K = 6.

Mean Bias Quadrature Fixed Point Laplace Laplace Halton
b 0.00778 0.00492 0.00555 0.00269
σ2 0.04957 0.02348 0.00634 -0.02011

MSE Quadrature Fixed Point Laplace Laplace Halton
b 0.01003 0.00297 0.00281 0.00301
σ2 0.09833 0.06641 0.08357 0.07381

unreliable policy analysis if the taste parameters in the true data generating process are

correlated.

We propose estimating the model parameters (b, Σ) by non-linear least squares. Let

sij be the observed market share of firm j in market i. We can construct the aproxi-

mation of the expected share using the Laplace approximation as described in Section 2,

ŝij(b,Σ) = Eβ(sij). This will be a non-linear function in the model parameters b and Σ

and can be implemented using either Proposition 1 or Proposition 2. The implementation

of Proposition 2 is immediate and only involves the use of matrix functions. We can then

proceed to estimate the model parameters by least squares or weighted least squares which

can improve efficiency:

(
β̂, Σ̂

)
= argminβ,Σ

N∑

i=1

K∑

j=1

(sij − ŝij(b, Σ))2. (32)

The optimization can be achieved using a Newton type constrained optimization rou-

tine. Some parameters may require linear constraints (e.g. if the optimization is performed

over variance parameters, then (σ2)p > 0 for all taste parameters βp). The optimization

needs to ensure that the estimated covariance matrix is positive definite at each step, for

example by employing an appropriate re-parametrization or the Cholesky decomposition
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This can be achieved by an appropriate penalization at the edges of the allowable

domain. The model can also be estimated by minimum chi-square techniques or by maxi-

mum likelihood given our evaluation of the expected shares. Simulation results suggest no

significant performance differences between these methods.

In Table 1 we estimate a random coefficients model with a single taste parameter using

the different methods discussed above. The covariate is drawn from a mixture distribution

of a normal and a uniform random variable. This particular construction is performed

in order to correct for unreliable estimates that have been reported when only normal

covariates are being used. Since the model only requires univariate integration we can also

perform numerical integration. We use a second order Newton-Coates algorithm to perform

the integration by quadrature for each expected share. Additionally we compute estimates

using the two versions of the Laplace approximation of the expected share as described in

Section 2 in Propositions 1 and 2 respectively. The results labelled as “Fixed Point Laplace”

compute the optimal expansion points β̃ijusing iterative fixed point techniques. The results

labelled “Laplace” approximate this fixed point calculation using the analytic expression

of Proposition 2. We also compute estimates using Halton sequences as implemented by

Whinston, Small and Yan (2005). We perform 500 draws for each observation.

The results in Table 1 show that all four methods produce comparable results. Inter-

estingly, though numerical integration tends to be outperformed by either of the approx-

imation methods presented here. In particular the Laplace approximation we proposed

performs very similarly to the simulated estimation based on Halton sequences both in

terms of mean bias and mean squared error. This result was confirmed in additional sim-

ulations were the number of taste parameters was increased. The Laplace approximation

introduced in this paper outperforms the method of simulated moments in terms of com-

putational time. Even in this simple one dimensional example the Laplace method runs

15



about three times faster than the corresponding estimation using Halton sequences.

We have found no significantly different performance results between the Laplace ap-

proximation using the fixed point calculation and that using the approximation to the

optimal expansion point. The Laplace approximation of Proposition 2 nevertheless out-

performed all other methods in terms of computational time, being 3 to 5 times faster than

the simulation approach.

Once we allow for multiple taste parameters we can ask the question whether these

taste parameters are correlated with each other. Consider a model with 3 taste parameters,

drawn from a distribution with mean (b1, b2, b3)′ and variances (σ2
1, σ

2
2, σ

2
3). In many cases

of interest there is no a priori reason to constrain the covariance matrix of this distribution

to be diagonal. We can allow for correlations between taste parameters by setting the

off-diagonal elements of the covariance matrix equal to σij = ρijσiσj for −1 < ρij < 1.

The parameter ρij measures the strength of the correlation between the different taste

parameters. The full covariance matrix which needs to be estimated in this case is:

Σ =




σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3




(33)

We use the Laplace approximation method to estimate all 9 parameters and report

results for mean bias and MSE in Table 2. We were not able to estimate the same parame-

ters using the method of simulated moments with Halton sequences. The algorithm failed

to converge for Halton sequences under different model parameters and different starting

values.

Computational issues involving the use of simulated moments seem to have prevented

empirical work involving the estimation of the full covariance matrix. We now wish to
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Table 2: Estimation of the three variable random coefficients model with covariances.
N = 2000,K = 6.

Laplace Mean Bias MSE
b1 0.01167 0.00233
b2 0.00679 0.00201
b3 -0.00371 0.00298
σ2

1 -0.06889 0.09499
σ2

2 -0.08245 0.07016
σ2

3 0.03880 0.03180
ρ12 0.04918 0.00774
ρ13 0.04317 0.00350
ρ23 -0.00702 0.00551

explore to what extent this may bias the results. To this purpose we estimate the same

model as in the above example but ignore the covariances. Thus the true model has ρij 6= 0

but we only estimate the restricted model where we assume ρij = 0 for all i, j, i 6= j.

The results are presented in Table 3. We were able to obtain estimates of the restricted

model using both the new Laplace approximation we propose and by using the simulation

approach involving Halton sequences. Once again both methods produce comparable re-

sults. While the estimates of the mean parameters (b1, b2, b3)′ seem to be sufficiently robust

to the misspecification of the covariance matrix, the estimates of the variance parameters

(σ2
1, σ

2
2, σ

2
3) seem to be strongly affected by the non-inclusion of the covariance terms in

the optimization. While the size of the bias is model dependent we have found an absolute

value of the bias between 30-60% in most simulations. Additionaly, it seems that negative

correlations which are falsely excluded bias the results much more than positive ones.

The failure to include the correlations between taste parameters may also lead to incor-

rect policy recommendations. Thus, consider the three variable described above where the

true data generating process has non-zero correlation terms and a full covariance matrix.

We can interpret the model as follows.
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Table 3: Estimation of the three variable random coefficients model without covariances.
The true model contains covariances but these are not estimated. N = 2000,K = 6.

Mean Bias Mean Bias MSE MSE
Laplace Halton Laplace Halton

b1 0.02037 0.01003 0.00321 0.00256
b2 0.01582 0.00778 0.00201 0.00258
b3 0.00651 0.00212 0.00122 0.00197
σ2

1 -0.01032 -0.21102 0.10192 0.18226
σ2

2 -0.50883 -0.43340 0.32381 0.27094
σ2

3 -0.12991 -0.14967 0.03900 0.09577

We label the first variable as “price” and consider the policy experiment whereby the

government has to decide whether to impose a 10% tax on a specific good. The tax is

fully passed on to the consumers in the form of a 10% price increase. There are K = 6

competing firms in each market producing differentiated brands of the good on which the

tax was imposed. We wish to simulate the ex post effect of the tax on the market shares

of each firm. In order to do so we collect a sample of observations consisting of the market

shares of each firm in different markets and the product characteristics of the differentiated

good produced by brand and market. We estimate the random coefficients model with a full

covariance matrix which allows for correlations between taste parameters. We also estimate

the same model but limit ourselved to estimating a diagonal covariance thus restricting the

correlations to be zero and also derive the logit estimates of the means corresponding to

the case where the taste parameters are assumed to be constant in the population. We can

use these estimates to simulate the distribution of market shares of each firm across the

markets and compare them to the initial distribution of market shares before the tax was

implemented. We present the resulting distributions in Figure 2.

If we estimate any of the mis-specified models by using either the logit estimates of

Equation 2 or the random coefficients logit estimates of Equation 3 under the assumption
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of no correlation we would reach very different conclusions from the case when we take

into account the full covariance matrix between taste parameters. Thus we can see how

ignoring the correlations may lead to incorrect policy recommendations when the random

coefficients model is used to estimate the distribution of taste parameters.

4 Conclusion

In this paper we have introduced a new analytic approximation to the choice probability

in a random coefficients logit model. The approximation was derived using a multivariate

extension of the Laplace approximation for subasymptotic domains. The expression results

in a non-linear function of the data and parameters which can be conveniently estimated

using non-linear least squares.

This new method of estimating random coefficients logit models allows for the estima-

tion of correlations between taste parameters. The estimation of a full covariance matrix

seems to have eluded many previous implementations of the random coefficients logit model

employing simulations of the underlying taste distributions.

Simulation results show that our new method performs extremely well, both in terms of

numerical accuracy and computational time. We also provide an example of the importance

of estimating correlations between taste parameters through a tax simulation where very

different policy implications would be reached if the estimated model is mis-specified by

restricting the correlations to be zero.

In this paper we have focused on the case of Normal preferences. Harding and Hausman

(2006) show how the Laplace approximation procedure described in this paper can also be

applied to more general preference specifications that allow for skewness or multimodality

in addition to correlations between taste parameters.
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A Appendix

This appendix states the multivariate Laplace approximation theorem. For additional

discussions of the theorem and applications to statistics see Muirhead (2005) and Jensen

(1995). A proof is given in Hsu (1948).

Laplace Approximation Theorem. Let D be a subset of Rp and let f and g be

real-valued functions on D and T a real parameter. Consider the integral

I =
∫

β∈D

f(β) exp(−Tg(β))dβ (34)

a) g has an absolute minimum at an interior point β̃ of D;

b) there exists T ≥ 0 such that f(β) exp(−Tg(β)) is absolutely integrable over the domain

D;

c) all first and second order partial derivatives of g(x), ∂g
∂βi

, ∂2g
∂βi∂βj

, for i = 1 . . . p and

j = 1 . . . p exist and are continuous in the neighborhood N(β̃) of β̃.

d) there is a constant γ < 1 such that | exp(−g(β))

exp(−g(β̃))
| < γ for all x ∈ D\N(β̃)

e) f is continuous in a neighborhood N(β̃) of β̃.

Then for large T , we have:

Ĩ =
(

2π

T

)p/2

[det(H(β̃))]
−1/2

f(β̃) exp(−Tg(β̃)),whereH(β̃) =
∂2g(β̃)
∂β̃∂β̃′

(35)

and

I = Ĩ(1 + O(T−1)) asT →∞. (36)
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In Section 2 we let f(β) = 1 and g(β) = 1
2(β − b)′Σ−1(β − b) + log

(
K∑

k=1

exp(x
′
ijkβ)

)
.

This is sometimes referred to as an exponential form Laplace approximation.

Moreover we use the observation of Butler (2002) that in many cases of interest this

approximation performs very well even in subasymptotic cases where T remains small. In

our case T = 1.

B Appendix

In some applications we may wish to allow for a mixture of fixed and random coefficients.

We can partition the p × 1 dimensional vector of taste parameters into two subvectors b0

and β1 of lengths p0 and p1 respectively, where p0 + p1 = p. The vector b0 contains the

fixed (unknown) parameters corresponding to the non-random coefficients of the model,

while the vector β1 captures the random coefficients. Furthermore, we can assume that β1

is Normally distributed with mean b1 and variance Σ. The results derived in this paper

extend to the case of a model specification with both random and fixed coefficients by

performing the integration over the random coefficients while treating the fixed coefficients

as constant for the purpose of deriving the Laplace approximation.

We now re-state Proposition 2 for the case with both fixed and random coefficients,

β = (b0, β1). The unknown parameters to be estimated are (b0, b1, Σ), where b1 corresponds

to the vector of mean parameters of the random coefficients β1 and Σ is the corresponding

covariance matrix of β1.

Proposition 2.1: We can approximate Eβ(sij) =Eβ{(
K∑

k=1

exp(x′ijkβ))
−1

} by

Eβ(sij) ∼=

√√√√
∣∣∣Σ̃ij

∣∣∣
|Σ | exp

{
−1

2

(
β̃1

ij − b1
)′

Σ̃−1
ij (β̃1

ij − b1)
} (

K∑

k=1

exp(x′ijkβ̃ij)

)−1

, (37)
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where β̃ij = (b0, β̃1
ij) and β̌ = (b0, b1) and

β̃1
ij = b1 +

[
Σ−1 + Hij(b∗)b∗=b̌

]−1
Jij(b̌) (38)

Σ̃−1
ij = Σ−1 + Hij(b∗)b∗=b̃ij

, (39)

and

Jij(b∗) =
K∑

k=1





x′ijk
exp(x′ijkb∗)

K∑
k=1

exp(x′ijkb
∗)





(40)

Hij(b∗) =

K∑
k=1

xijkx
′
ijk exp(x

′
ijkb

∗)

K∑
k=1

exp(x′ijkb∗)
−

[
K∑

k=1

xijk exp(x′ijkb∗)
]

[
K∑

k=1

x′ijk exp(x′ijkb∗)
]

[
K∑

k=1

exp(x′ijkb∗)
]2 . (41)

In Section 2 we assert one of the conditions required for the existence of a Laplace

approximation with a unique expansion point, the concavity of the function −g(β). The

Lemma below proves this result.

Lemma: The function g(β) is convex, where

g(β) =
1
2

(β − b)′Σ−1(β − b) + log

(
K∑

k=1

exp(x
′
ijkβ)

)
(42)

Proof: g(β) is the sum of two convex functions, a quadratic form in β and the function

g1(β) = log
(

K∑
k=1

exp(x
′
ijkβ)

)
. The Hessian of this function is given by Hij(β) defined in
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equation 21 above. In order to see that Hij(β) ≥ 0 notice that,

[
K∑

k=1

exp(x′ijkb)

]2

Hij(b) =
K∑

k=1

exp(x′ijkb)
K∑

k=1

xijkx
′
ijk exp(x

′
ijkb)− (43)

−
[

K∑

k=1

xijk exp(x′ijkb)

]
[

K∑

k=1

x′ijk exp(x′ijkb)

]
. (44)

If we expand the right hand side of equation 48 and cancel the terms in xijkx
′
ijk(exp(x

′
ijkb))

2

we can re-arrange this expression as:

[
K∑

k=1

exp(x′ijkb)

]2

Hij(b) =
K−1∑

r=1

K∑

s=r+1

(xijr − xijs) (xijr − xijs)
′ exp(x′ijrb) exp(x′ijsb) ≥ 0.

(45)
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Figure 1: Comparison of expected share obtained by numerical integration and the cor-
responding Laplace approximation for a model with 2 covariates at fixed values of b and
Σ.
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Figure 2: Market shares of Firm 1 before and after tax
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