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 What is the weak instruments (WI) problem and what causes it?  Universal 

agreement does not exist on these questions. We define weak instruments by two 

features: (1) 2SLS is badly biased toward the OLS estimate and alternative “unbiased” 

estimators such as LIML may not solve the problem and (2) the standard (first order) 

asymptotic distribution does not give an accurate framework for inference.1  Thus, a 

researcher may estimate “bad results” and not be aware of the outcome.  The cause of WI 

is often stated to be a low R2 or F statistic of the reduced form equation, in the most 

commonly occurring situation of one right hand side endogenous variable.  We find the 

situation is more complex with an additional factor, the correlation between the stochastic 

disturbances of the structural equation and the reduced form, that needs to be taken into 

account.  We discuss in this paper: a specification test of Hahn-Hausman (2002a) for WI, 

a caution against using “no moments” estimators such as LIML in the WI situation, 

suggestions for different estimators, an approach to inference of Frank Kleibergen (2002) 

for WI, and we end with a caution of how “small biases” can become “large biases” in 

the WI situation. 

 We begin with the limited information structural model under the assumptions of 

e.g. Hausman (1983): 
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where we assume that Y1 and Y2 are each single jointly endogenous variables.  Without 

loss of generality, we “partial out” the Z1 variables by multiplying through each equation 

by the complementary projection Q  .  We write the 

resulting equations as: 
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where dim( ) K=2π  and the sample size is n. We also assume homoscedasticity:  
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We initially assume the presence of valid instruments, 0]/'[ =nzE ε and 02 ≠π .  
Without loss of generality we use the normalization  (rescaling of units) 1== vvσσ εε  so 
that Var  and )1/(1)( 2

2 Ry −= ρσ ε =v .2 
 
 I.  Problems Caused by Weak Instruments 
 Hahn and Hausman (2002a, 2002b) (and others) derive the bias of 2SLS up to 

second order to be 
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where nzz ππ ''=Θ , assumed to be fixed, R2 is the theoretical value from the second 

(reduced form) equation,  y2 is normalized to have mean zero, and the last expression 

follows from our normalization.  We find from equation (4) that 2SLS is biased towards 

OLS since the OLS bias also depends on the covariance term vεσ  or the correlation 

parameter ρ .  Thus, Hausman (1978) specification tests may incorrectly fail to reject use 

of the OLS estimator because of the bias.  Also, while R2 and the F = nR2/K statistics 

from the reduced form give information about the bias, the correlation parameter, , is 

an important parameter in determining the bias.  Thus, using “too many” instruments, the 

sample size, R

ρ

2, and ρ  all can lead to substantial bias in the 2SLS estimator.  No statistic 

based on a subset of these parameters seems entirely adequate in diagnosing WI. 

 For inference Hahn-Hausman (2002c) (and others) derive the asymptotic 

distribution of the 2SLS estimator. Under the assumption that 

0)1(/ ≠+=∞→∞→ µµ someforonKthatsuchnasK  they derive 
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where Θ= εεσSLS2V , the usual 2SLS first order asymptotic variance.  Accurate 

estimation of the denominator is typically not difficult since it depends on the unbiased 

reduced form parameters estimates of 2π .  However, the bias of the 2SLS estimator can 
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lead to a severe downward bias in the estimate of εεσ .  Hahn-Hausman (2002c) find that 

to second order 
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Note that the leading term in the bias calculation of equation (6) can be quite large in the 

presence of WI.  As either the number of instruments grows or the covariance between 

the structural and reduced term stochastic disturbances becomes large, the downward bias 

in the estimation of εεσ  will also become large.  We now apply the normalization that we 

used above to find:  
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Equation (7) demonstrates that the downward bias can be substantial; in Monte-Carlo 

results Hahn-Hausman (2002c) find that for R2  = .01 and 9.0=ρ that the mean bias of 

the 2SLS estimate of the variance varies from –70% to –80% as K, the number of 

instruments, increases from 5 to 30.3   

 WI may also be an important cause of the finding that the often used test of over 

identifying restrictions (OID test) rejects “too often” when weak instruments are present, 

i.e. the actual size of the test is considerably larger than the nominal size.  See Hahn-

Hausman (2002a), Table III where the nominal size is 0.05 while the actual size is often 

greater than 0.35 and sometimes greater than 0.5.  The OID test can be quite important 

since it tests the economic theory embodied in the model as discussed by e.g. Hausman 

(1983).  In the weak instrument situation it may have increased importance given the 

substantial bias in the 2SLS estimator.  From Hausman (1983, p. 433) we write the OID 

test as: 

 

(8)  
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W is distributed as chi-square with K-1 degrees of freedom.  From equation (8) we see 

that a downward biased of εεσ  can lead to substantial over-rejection and an upward 

biased size of the OID test.  Thus, correcting for this problem can have an important 
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effect on test results.  This downward bias in the estimate of εεσ  may be especially 

important when WI occurs in times series model where the correlation can be quite high, 

e.g. recent research by MotohiroYogo (2002) estimates the intertemporal substitution 

elasticity estimates the absolute value of ρ  for the US to vary between 0.78-0.94 

depending on the sample period used. 

ρ

b

 

II. Diagnosis 

WI can cause substantial bias in the 2SLS estimator, see e.g. Hahn-Hausman 

(2002), Table III.  However, n, R2, K and  all affect the bias.  Thus, a test that includes 

the effects of these factors may be useful.  Hahn-Hausman (2002a) propose a 

specification test that includes all of these factors.  They consider the “reverse” 2SLS 

estimator 
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and use the fact that under conventional (first order) asymptotics that the inverse of  

should have correlation one with the “forward” 2SLS estimator .  To construct a test 

they adopt the second order asymptotic approach of Paul Bekker (1994) and derive the 

result that the difference between the estimators takes the form 
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where B̂ is an estimate of the probability limit of the difference between the two possible 

estimators of β  and V is the variance of the “bias corrected” difference.  Two primary 

reasons can lead to a rejection.  First, the orthogonality assumptions of the instruments 

may be false.  The traditional Sargan test of overidentifying restrictions also tests this 

assumption, but it is well known to have poor size properties sometimes as we discussed 

above.   Alternatively, a rejection may occur because the finite sample properties of the 

first order asymptotic approximation are not sufficiently accurate (weak instruments) in 

the current situation to be used.  Stock et. al. (2002) recommend a test based on the F 

statistic of the reduced form of equation (2) that does not take account of the effect of 
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vεσ , which is responsible for both the bias in the OLS estimator and the bias in the 2SLS 

estimator as well as the bias in estimating the variance of the structural equation, εεσ . 

2π

 

III. Possible Cures 

The first approach to the 2SLS bias problem would be to use a (second-order) 

unbiased estimator, such as the Nagar estimator or the maximum likelihood (LIML) 

estimator which e.g. Hausman (1983) discusses.4  However, these estimators sometimes 

perform well and sometimes poorly in the WI situation.  The problem arises because the 

Nagar and LIML estimator do not have finite sample moments.  While long known since 

Robert Mariano and Takamitsu Sawa (1972) and Sawa (1972), it had not been generally 

recognized that the lack of moments could cause problems in actual empirical situations.  

However, the empirical example and Monte-Carlo results of Hahn-Hausman (2002a) and 

Hahn-Hausman-Kuersteiner (HHK, 2002) demonstrate that the “moments problem” can 

create problems in the WI situation. HHK (2002), Tables 1 and 2, find that the inter-

quartile range (IQR) of the LIML and Nagar estimators often far exceed the IQR of the 

2SLS estimator when WI are present.5 Thus, we recommend extreme caution in using 

“no moments” estimators (e.g. LIML, Nagar, and JIVE) in the presence of WI.   

HHK (2002) recommend two alternative approaches, instead of using either 

Nagar or LIML.  First, they consider the Jackknife 2SLS (JN2SLS) estimator.  The 

JN2SLS estimator omits the jth observation in calculating the reduced from estimate of 

 in equation (2) when estimating the instrument for the jth observation of the structural 

model.  Thus, it uses n-1 observations to estimate 2π , rather than using all n 

observations.  The JK2SLS estimator eliminates the (second-order) finite sample bias of 

2SLS.  Since the jackknife estimator, bJ, is a linear combination of n 2SLS-type 

estimators it will have finite sample moments up to the degree of overidentification.  

Since the WI usually occurs when many instruments are used, this result solves the 

“moments problem.”  Under an approximation where K becomes large HHK (2002) 

demonstrate that to a second order asymptotic approximation, the JK2SLS estimator has 

the same MSE as the Nagar estimator.  Thus, the MSE of )( β−Jbn  is 
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where the first term is the usual first-order asymptotic variance of the 2SLS, LIML, and 

Nagar estimators, and the term following the equal sign arises from our normalization. 

 Another estimator that is designed to solve the “moments problem” is the Wayne 

Fuller (1977) modification of LIML.  The Fuller estimator depends on an unknown 

parameter that can be chosen to eliminate finite sample (second-order) bias.  

Alternatively, the parameter can be chosen to yield a smaller MSE according to second 

order calculations, but the resulting estimator does have finite sample bias.  The 

approximate second-order MSE of the unbiased Fuller estimator )( β−Fbn  is  
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Equation (12) will be smaller than equation (11) because the correlation enters with a 

minus sign. 

 HHK (2002) use the Monte-Carlo design of Hahn-Hausman (2002a) to investigate 

the finite sample performance of the estimators.  They find that JN2SLS performs 

considerably better than Nagar, which is supposed to be equivalent according to the 

asymptotic approximations but suffers from the “no moments” problem.  The Fuller 

estimators do well, and outperform JN2SLS in MSE when the number of instruments is 

not large with a reverse ordering with more instruments.  When the IQR is used, LIML 

and Nagar are again found to have significantly larger IQR that the other estimators that 

have moments.  Here the Fuller unbiased estimator does not do as well as the Fuller 

estimator with lower MSE.  HHK conclude that the 2SLS, JN2SLS, and biased Fuller 

estimators perform best. 

 HHK (2002) also use their Monte-Carlo results to perform an empirical 

investigation to see how well the second order asymptotic approximations do in 

explaining the empirical results.  They find that the sample size N and the ratio (R2/(1-

R2)) have approximately the effect that the asymptotic formulae predict.  For the 

correlation coefficient, ρ , they find that the 2SLS formulae has approximately the 
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expected effect.  However, the effect for JN2SLS and the Fuller estimator is only about ½ 

as large as the asymptotic formulae of equation (11) and (12) predict.  Thus, the 

advantage of the Fuller estimator over JN2SLS is smaller than the asymptotic expansions 

predict.  Lastly, they find that the effect of the number of instruments is only about 40% 

as large for 2SLS as predicted by the asymptotic 2SLS MSE formula.  Thus, “instrument 

pessimism” seems overstated for 2SLS, which may be why 2SLS often performs better 

than expected in terms of MSE in the WI situation. 

 Kleibergen (2002) takes a quite different approach to a cure for the WI problem.  

Rather than focusing on parameter estimators, he attempts to correct the statistical 

inference problem in the WI situation.  We discussed above that 2SLS, for instance, often 

lead to asymptotic distribution, which yields standard errors and confidence intervals that 

are “too small.”  Thus, the standard statistics may be unreliable on which to base 

inference.  Kleibergen modifies the Anderson-Rubin (AR) statistic by projecting the 

stochastic disturbances on only the IV estimate of the endogenous variables, rather than 

on all the instruments as does the AR statistic.  In the model of equations (1) and (2) the 

Kleibergen statistic is distributed as chi-square with one degree of freedom, rather than K 

degrees of freedom as is the AR statistic.  Thus, it usually leads to better inferential 

procedures because of its greater power.  The Kleibergen statistic is defined for a null 

hypothesis of 0β  using equation (2)  
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The estimate of the reduced form parameter is the same as the LIML estimate where the 

estimate is 0β , see Hausman (1983, equation (4.39)).  More generally, equation (13) is 

similar to the form of the LIML objective function and reaches a minimum at the LIML 

estimate.  Thus, the confidence interval will be centered at the LIML estimate.  As 0β  

varies confidence intervals for β  are generated.  As Kleibergen point out the confidence 

intervals can sometimes have “peculiar shapes” that need not be convex and they can be 
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infinite.  Given the close relationship of the Kleibergen statistic to the LIML estimator 

and our experience with the “no moments” problem, we wonder how well the statistic 

will perform when LIML displays poor performance.  This is a topic for future research.  

 

IV. An Application 

Estimating the return to education has been a well-researched problem over the 

past 25 years.  The usual result is that researchers find the OLS estimate to be smaller 

than the 2SLS estimate by approximately 25%-50%, e.g. David Card (2001).  Joshua 

Angrist and Alan Krueger (1991) used a sample of n = 329,509 observations to estimate 

the returns to education where the 2SLS estimator is considerable closer to the OLS 

estimator than usual as demonstrated in Table 1.   

**Table 1 goes here** 

For the K= 30 case the difference of OLS 0.071 and 2SLS of 0.089 is 25%, and the 

Hausman (1978) specification test does not reject the OLS estimator.6  Similarly, the 

LIML, Fuller and JN2SLS, while slightly higher than the 2SLS estimator also do not 

reject.  However, the reverse 2SLS estimator (R2SLS) estimates the return to education 

to be 0.163, a large difference although the Hahn-Hausman (2002a) test does not reject 

the 2SLS estimator.  When quarterly interactions are not used to form the instruments, 

and K=3, the 2SLS estimator in Table 1 is now 0.105, a sizeable increase of 47.9% over 

the OLS estimator as would be expected from equation (4), the bias expression for 

2SLS.7  The LIML, Fuller, and JN2SLS estimators all increase and now all of the 

estimates reject the OLS estimate using a Hausman specification test.  Given the 

approximate 14% increase in the LIML and Fuller estimators, a question may arise of 

how good the asymptotic formulae are because these estimators are second order 

unbiased so the estimate should not depend on K contrary to our empirical finding.  We 

conclude that the results can depend on the number of instruments used.  Using too many 

instruments can create bias towards the OLS estimator, which is one of our definitions of 

the WI problem. 

The Angrist-Krueger sample is larger than usual for empirical research, although 

other studies sometimes have similar sized samples.  We consider a random 1% 

subsample which has n=3293, more in keeping with the typical situation.  We now find 
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the LIML estimator to be 0.855, a non-believable number that may well arise from a “no 

moments” violation.  We also find the Fuller and reverse Fuller estimates to differ by a 

large amount and to give non-believable results, which causes us to question whether in 

finite samples the Fuller estimator always solves the LIML “no moments” problem.  We 

similarly find that the forward and reverse 2SLS estimates differ considerably, and a 

Hahn-Hausman (2002a) test rejects the use of the 2SLS estimators.  Thus, we have a 

strong indication of a weak instruments problem.  The JN2SLS estimator give a 

“reasonable estimate” with an increase over the 2SLS estimate, as expected by equation 

(3).  The JN2SLS also leads to a rejection of the OLS estimator, contrary to the other IV 

estimators (except R2SLS). 

Kleibergen (2002) estimates the AK model with similar results to ours found in 

Table 1, although LIML is somewhat larger at 0.108.  As expected, his confidence 

interval is centered at the LIML estimate but is somewhat larger than the LIML 

confidence interval.  The Kleibergen confidence interval is about 50% larger than the 

confidence estimator that would arise from the first order asymptotic LIML confidence 

interval.  It would be interesting to see how the Kleibergen procedure works when the 

sample size n = 3293 and the LIML estimator does not perform well.   

 

V. A Cautionary Note 

All of our analysis, and indeed all of the analysis of the WI situation in the 

literature, assumes valid instruments so that z is orthogonal toε .  Suppose you do OLS 

and 2SLS along with the other IV estimators we have discussed and the result is that the 

IV estimators are reasonable close to each other and exceed the OLS estimator by a 

substantial amount.  Are the results ready for acceptance?  Not necessarily.  Suppose that 

the instruments are only slightly correlated with the stochastic disturbance; indeed, much 

less correlated than y2 (or ) is correlated with2v 1ε .  IV estimation may lead to very poor 

results. 

Hahn-Hausman (2002c) have analyzed this problem.  They consider the “large 

sample bias” of 2SLS with invalid instruments: 

(15) [ ] 2

2

'
'

2
1plim

R
Rb W

W
SLS

−
=

Θ
≈− ε

ε σ
σ

β  

 9



 where 2πz=W  and the last equality follows from the normalization.  Thus, when R2 is 

small, e.g. 0.01, a large amount of bias results which does not decrease with increasing 

sample size.  To further analyze the problem they use a local specification similar to the 

approach in Hausman (1978, Theorem 2.1): 

(16) 0)/(1 ≠+= γγε forenz  

where (e, ) is homoscedastic and zero mean normally distributed with covariance 

matrix, as before.  Hahn-Hausman derive the asymptotic distribution of the 2SLS 

estimator with locally invalid instruments to be 
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where 2πz=W is the instrument and nzz /'' γπ=Ξ , which is assumed to be fixed.  The 

first term in the numerator of the meanΞ arises from failure of the orthogonality 

condition. The second term is the usual finite sample bias term and it decreases with the 

sample size. The variance continues to be V  under instrument invalidity because of 

the local departure in equation (16).   Hahn-Hausman (2002c) compare this result to the 

OLS estimator under the same local departure 
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The distribution is centered around the usual OLS bias, and the numerator of the mean of 

the distribution arises from the instrument invalidity.  The variance V  under 

instrument invalidity with the local departure in equation (16) 
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Hahn-Hausman (2002c) explore situations where the OLS MSE from equation (18) may 

be less than the 2SLS MSE from equation (17).  Their findings highlight the result that 

when R2 is low (below 0.1) OLS may do better than 2SLS.  This finding emphasizes the 

importance of the test of overidentifying restrictions, if the size problems can be 

corrected, or the Hahn-Hausman (2002a) specification test, both of which should be 

sensitive to instrument invalidity. 
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Table 1: Estimation with the Angrist-Krueger (1991) Model 
        
n and K OLS 2SLS R2SLS LIML Fuller RFuller JN2SLS 
n=329509 .071 .089 .163* .093 .093 .096 .093 
K=30 (.0003) (.016) (.024) (.018) (.018) (.018) (.016) 
        
K=3 --- .105* .118* .106* .107* .110* .106* 
  (.020) (.021) (.020) (.020) (.021) (.020) 
        
N=3293 .073 .098 .694* .855 .396 .831 .159* 
K=30 (.003) (.043) (.369) (.963) (.291) (.865) (.041) 
        
Note: * denotes Hausman (1978) specification test rejects null hypothesis of OLS consistency
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