
Zero Settlement Risk Token Systems∗

Michael Junho Lee† Antoine Martin‡ Robert M. Townsend§

January 2024

Abstract

How might modern settlement systems with distributed ledger technology achieve

zero settlement risk? We consider the design of settlement systems that satisfies two

integral features: information-leakage proof and zero settlement risk. Legacy settlement

systems partition private information but are vulnerable to settlement fails. A token

system with dynamic ownership representation, or a dynamic ledger, can be designed

to achieve both, as long as it employs a protocol that enforces two restrictions: pro-

grams must be immediately implemented and must involve transactions based on

verifiable claims. We show how such system can support various arrangements,

including insurance, derivatives, collateralized loans, and securitization.

Keywords:
Tokenization, programmability, settlement risk, financial architecture

JEL Classification Numbers: G19, D86, D47, G29

∗The views expressed in this paper are those of the authors and do not necessarily reflect the position
of the Federal Reserve Bank of New York or the Federal Reserve System.
†Federal Reserve Bank of New York. Email: michael.j.lee@ny.frb.org.
‡Federal Reserve Bank of New York. Email: antoine.martin@ny.frb.org.
§Massachusetts Institute of Technology (MIT). Email: rtownsen@mit.edu.

1

1 Introduction

Security tokenization refers to the representation of financial assets and collateral
on distributed ledger technology (DLT). A token-based trade and settlement system,
or token system, has the potential to modernize and automate the life cycle of a trade
through the programmability of assets. An important gain, relative to the legacy system,
is ensuring that transfers occur with certainty, according to agreed upon trades. We call
this zero settlement risk.

A system with zero settlement risk presents a compelling technological solution for
traditional financial markets, which have adopted various institutional remedies to set-
tlement fails with limited success.1 A key concern is whether zero settlement risk can
be achieved without degradation in privacy, which is vital feature for institutional adop-
tion. Early distributed ledger based systems, such as Bitcoin or Ethereum, consist of
public ledgers that make visible the holdings of all accounts. Large-scale adoption by
wholesale financial markets is unlikely if a token system resolves settlement uncertainty,
but introduces a multitude of information issues. This is particularly the case as a decen-
tralized system may depend on multiple third-parties to run. Ultimately, for any token
system to be adopted in a traditional markets, it must ensure that information shared
with third-parties in the process of settling a trade does not affect future trades. Loosely
speaking, we refer to this property as information-leakage proof.

This paper explores the potential for token systems to be adopted in traditional fi-
nancial markets. The main goal is to identify the requirements of a token system to
achieve both zero settlement risk and information-leakage proof. Our results are summarized
as follows. While a token system lends itself to a wide array of designs, we show that a
token system that achieves both aforementioned properties must impose two important
restrictions on the set of programs that traders can enter. First, programs must be imme-
diately implemented (not to be confused with immediate settlement – to be defined more
precisely later). Second, transactions must be based on verifiable ownership at the time
of trade. By comparison, we show that the legacy system is information leakage-proof
but is subject to settlement risk.

Our analysis allows us to characterize a token system that could be ubiquitously
applied to financial markets, regardless of the source of settlement risk. We explic-
itly show that a zero settlement risk token system can support a breadth of financial
arrangements, including insurance and derivatives contracts, and complex multilateral

1Settlement fails occur consistent across all markets, and at times, become systemic. For example, see
Fleming and Garbade (2005) and Garbade et al. (2010) for fails in Treasury Markets.

2

transactions, such as securitization. Notably, dynamic representation of ownership, a
core component of the token system outlined in the paper, is an important innovation
over the current legacy system. One concrete benefit can be seen in its application in
collateral markets, where dynamic representation can enable efficient collateral usage,
both with respect to lowering risks associated with collateral rehypothecation and by al-
lowing collateral owners to exercise residual ownership. Overall, our paper shows that a
well-designed token system with immediate execution can co-exist and complement the
existing legacy system, by providing an alternative settlement environment for activities
and trading arrangements that are sensitive to settlement risk.

Our starting point is to assume that agents have agreed to a trade, but some may
want to renege on the trade prior to the settlement date. Our model then considers
how the design of a token system facilitates successful settlement. We start by defining
a settlement system, which is comprised of three “physical” components: a (private)
ledger, which records ownership; programs, which update the ledger; and a protocol, or
rules that govern these objects.

Three primitive conditions are imposed on the set of token systems.

1. Traders are endowed with multiple accounts.

2. Traders are able to make transfers between their own accounts, as long as it does
not conflict with pre-existing programs.

3. All programs must be complete. This implies that the program must explicitly spec-
ify instructions for all future states that could be reached with positive probability.

Conditions 1 and 2 together permit traders to act on incentives to renege on agreements
made in trades, by transferring assets from one account to another. Intuitively, Condition
3 requires that programs be well-specified, much like a complete contract.2

We show that today’s legacy settlement system can be represented as one specific
design of a settlement system in our model. First, the legacy system uses a “static
ledger,” or a ledger that represents only the real-time ownership of assets. As such, the
ledger is able to represent an asset in a single account at any given time. Second, the
set of programs used to execute transfers are unilateral, and are executed immediately.
As described earlier, settlement actions in the legacy system are taken individually by
traders, and must be taken at the promised settlement date – a feature that makes it
vulnerable to settlement fails.

2For example, an automaton should be able to follow the directions verbatim in any state of the world
without ambiguity. This reduces the possibility of using “invalid” programs as a strategic tool.

3

In contrast, token systems allow for expansive set of ledger representation and pro-
grams. First, token systems can employ a “dynamic ledger,” which can represent owner-
ship conditional on public states. For example, public states may be calendar dates, and
the ownership of the asset could be distributed probabilistically across more than one
account per date. This explicit state-contingent representation of ownership broadens
the set of trades that programs can reference. Second, token systems may enable multi-
lateral programs, or programs that are jointly created by multiple parties. This allows a
single program to guarantee the settlement of multiple legs of a trade at once.

The first key observation is that immediate execution is necessary for settlement to
occur with finality at some designated future date or state, where “immediate execu-
tion” means that the instructions for (future) irrevocable settlement are registered by the
settlement system immediately. If a token system permits programs with delayed exe-
cution, or a transfer is programmed to occur conditional on reaching a future state, then
agents can unilaterally transfer assets away from the accounts specified in the program
in the gap that occurs between the time that a program is created, and the time at which
a transfer instruction is recognized by the system. This implies that whatever trans-
fers are specified in programs must immediately be “registered” by the system – only
then can unilateral actions attempted by an agent that violate pre-existing agreements
be ruled out. Importantly, immediate execution does not imply immediate settlement,
as execution commits to, but does not immediately result, in transfers.

The second key observation is that contingent programs are open to the possibility of
information-leakage. An example is: “Transfer the asset from Account A to Account B if
the asset exists in Account A.” The contingency here is whether the asset exists in Account
A. As noted earlier, if the program is executed with delay, then it creates an opportunity
for the owner of Account A to transfer the asset to a different account. However, if
such instructions were executed immediately, then bookkeepers would need to track the
whereabouts of the assets to verify whether the contingencies of the program are met.
Information regarding the contents of Account A, however, would now be known to
other counterparties, and would constitute information-leakage.

As a result, a token system achieves both information-leakage proof and zero set-
tlement risk if and only if it involves a protocol that requires immediate execution and
restricts the set of feasible programs to those that specify non-contingent transfers, i.e.
transfers that occur unconditionally.3 While seemingly restrictive, non-contingent trans-
fers permit a wide array of contracts. Notably, immediate execution in a token system

3This permits trades that can resemble both spot and forward contracts, though clearly different with
regard to the settlement process.

4

does not imply that all trades are spot transactions – forward contracts are permitted as
long as it can be verified that the seller of a claim can deliver the claim unconditionally.

Our characterization of the zero-settlement risk token system lends itself to financial
market applications with distinct features. First, all transactions, by virtue of being free
of settlement risk, share the property that they are atomically settled, i.e. any exchange
of token ownership is settled simultaneously. Second, the dynamic representation of
ownership on a token system enables trades involving state-contingent transfers with-
out the assistance of third-parties or intermediaries. We outline two sets of contracts:
insurance and derivatives, which encompass a variety of financial arrangements that
support hedging and speculative activity. A notable application is (cash-settled) deriva-
tives markets. As a token system can execute and settle transactions based on public
state realizations, traders can enter derivative contracts that specify transfers conditional
on states. Similar to a margin account, the set of feasible contracts are restricted by
tokenized unencumbered cash collateral.

Collateral naturally plays an important role in the context of decentralized finance
(DeFi). At heart, collateral serves as protection against credit risk, and is especially im-
portant to incentivize parties of a transaction to fulfill obligations. We show that zero
settlement risk token systems can augment the efficient use of collateral by allocating
precise contingent ownership rights required to facilitate financial activity, such as lend-
ing. Specifically, when an underlying asset is collateralized, assets can be programmed
to move from a borrower to lenders’ account conditional on a credit default. With im-
mutability of the asset transfer in case of default, a collateralized loan would effectively
achieve zero settlement risk. Thus, settlement certainty complements collateral usage.
These insights apply more broadly to traditional financial markets in which collateral
plays an integral role, such as repo markets or leveraged finance.

The programmability of assets on a token system also supports complex financial
transactions that involve arbitrarily many constituents. We illustrate this in the context of
securitization, which is typically a heavily intermediated segment of the financial system.
Portions of the cashflows of an asset can be separately traded directly between agents
without the involvement of an intermediary and, furthermore, contracts’ underlying
cashflows of an asset can be re-traded without the involvement of the issuer. In effect, a
token system can facilitate transactions that replicate the main benefits of securitization.

This paper provides a tangible guideline to designing a zero-settlement risk token
system with key desirable features. The existing literature on the design of settlement
systems focuses on gross vs. netted settlement systems (e.g. Rochet and Tirole (1996),
Kahn et al. (2003)). There, a key trade-off arises between higher liquidity needs and set-

5

tlement risk. By delaying settlement, and clearing multiple transactions at once, traders
can economize on liquidity (Johnson et al. (2004)). This leaves open the risk of settlement
failure if a party were to default prior to settlement. Note, however, in the legacy sys-
tem, strategic settlement fails occur regardless of whether settlement is gross or netted.4

This is due to the feature that the legacy system segregates trading activity with settle-
ment activity. In contrast, the zero-settlement risk token system in our setting resolves
settlement fails. Qualitatively, the zero-settlement risk token system shares features of
both types. Like a gross-settlement system, it requires any and all transfers entered by
agents to be viable at the time of trade. Like a netted settlement system, it allows agents
who obtain an asset through a prior trade to enter a trade based on that asset without
incurring additional liquidity.

A large literature has explored the financial applications of distributed ledger tech-
nologies (Townsend (2019)). Existing papers have focused on public blockchain imple-
mentations with a particular emphasis on the consensus mechanism.5 In these papers,
a crucial factor is the incentive for validating nodes to settle transactions truthfully and
efficiently. A public blockchain is however not appropriate for traditional financial mar-
kets, where underlying holdings and transactions are sensitive and private information.6

Wholesale adoption requires information to be partitioned. This paper abstracts from
the consensus mechanism, and focuses exclusively on the design of token systems that
retains some desirable features of information environment and also resolves settlement
risk – a feature of token systems that is often assumed in other studies. We show that it
is not true in general that programmability resolves settlement risk.

This paper takes as given that agents agree to a trade, and considers how restric-
tions to the settlement environment can make traders’ ex-post incentives to renege on
contractual obligations irrelevant. The main contribution of this paper is to character-
ize the conditions that allow for a token system to be robust to settlement failures, and
demonstrate its applicability to a variety of financial settings. An important conclusion
of this paper is that a zero settlement risk token system requires immediate execution
of programs. In settings with limited commitment, immediate execution can, however,
materially alter the information environmentt. In a related paper, Lee et al. (2022) takes

4Take for example, Treasuries, which are settled in Fedwire, a real-time gross settlement system. See
Fleming and Garbade (2002), Fleming and Garbade (2005), and Fleming and Keane (2016) on this.

5The decentralized nature of public blockchains introduces a broad array of issues, including settlement
incentives (Chiu and Koeppl (2019), Hinzen et al. (2020), Cong et al. (2019)), collusive behavior (Lehar and
Parlour (2020), Cong and He (2019)), protocols (Saleh (2018)), and conflicts arising from verifying public
signals, (Makarov et al. (2022), Garratt and Monnet (2022), etc.

6For example, Cong and He (2019) examines the implications of this information on the underlying
market structure.

6

as given a zero settlement risk token system, and considers an environment with en-
dogenous trading, and shows that efficiency is, indeed, tied to the whether the token
system is paired with a congruent trading mechanism.

2 The Architecture of Tokenized Securities Markets

We lay out the physical environment from first principles to formally characterize the
architecture of a tokenized securities market. There are two key considerations. First,
systems differ in terms of the scope of commitment, through the programmability of
assets traded in a market. Second, systems differ in terms of the information structure
required to settle trades. After defining desirable properties of settlement systems, we
identify conditions under which a token system satisfies such properties. Our framework
is general enough to nest the legacy settlement system as a special case, and highlights
its strengths and limitations.

Our starting point is to assume that agents have agreed to a trade, and consider
the design of a settlement system. We consider an array of token systems, as well as
the legacy system. We think of settlement as transferring the ownership of an asset
from one party to another. To represent ownership, we use the concept of an account.
Specifically, owning an asset is defined as having the asset in one’s account.7 We call the
set of all accounts the ledger. Importantly, agents have only a partial view of the ledger
that pertains to their accounts.

We then study programs, which are instructions to update the ledger. A protocol
specifies the set of feasible programs, which can vary depending on the set of contin-
gencies that agents can use in programs. The main innovation of tokenized systems,
relative to legacy systems, are programs and a ledger that is capable of representing
state-contingent ownership.

2.1 Environment

Consider an environment in which there is a single indivisible asset with maturity
T > 1.8 Let there be T dates, indexed by t = 1, ..., T and M traders, where m = 1, ..., M,
and a bookkeeper. We use the concept of “account” to define ownership. An agent owns
the asset if the asset is in that agent’s account. There are K accounts, where K ≥ M can

7For simplicity, we assume that all agents in our model have their own accounts and abstract from the
possibility that an asset can be held in custody on behalf of a third party.

8We can easily extend to an environment of many assets. We stick to one for expositional purposes.

7

be arbitrarily large and each agent controls at least one account uk, k ≤ K. To move the
asset from one account to another, traders require the services of a bookkeeper.

Settlement can only be performed by a bookkeeper, who acts upon instructions re-
ceived from traders. In the legacy system, the bookkeeper is a settlement agent. In a
token system, a bookkeeper is a validating node. These instructions take the form of
programs, as we discuss below. We assume that the bookkeeper is endowed with the
smallest information set necessary to settle trades based on the instructions received.

2.2 Programmability and Settlement Protocols

Ledger. We can represent the state of all accounts at a given time as a vector of length
K, where elements are 0 or 1, with 1 denoting the presence of the asset in that account.
Since there is only one asset, the sum of all elements of the vector equals 1. Let L denote
the set of all such vectors. We call `t ∈ L a static ledger at time t. For example, if at date t
the asset resides in account 1, then `t is a vector with all zeroes, except for 1 in row 1.

1
0
...
0

 (1)

Updating the ledger is done with a transformation, which specifies an (additive)
change to the ledger. A transformation for the static ledger, φ ∈ Φs, is a vector of
size K, such that all elements of the ledger belong to the set {-1, 0, 1} and the sum of all
elements is equal to 0.

Definition 1 (Static Ledger Accounting). A transformation φ is said to be valid on `t ∈ L if
applying φ to `t yields a ledger `t′ where `t′ ∈ L. Otherwise, it is said to be invalid.

For example, suppose the owner of account 1 wants to transfer the asset to account
K, which may be controlled by the same or a different trader. This corresponds to a
transformation: 

−1
0
...
0
1

 , (2)

8

which is valid because the resulting vector is also a static ledger.
In a token environment, a more comprehensive representation of ownership can fa-

cilitate a broader set of transformations. An important feature of programs is that they
can be used to commit to future changes to the ledger, including changes contingent on
future states.

To consider this, let there be N public states θn ∈ Θ where n = 1, ..., N. While public
states can include any publicly observable event, we will use calendar date as a running
example for the set of states, where θn represents the date n and N = T.

The dynamic ledger ` ∈ L represents the ownership of the asset over the entire set Θ,
where L is the set of all K-by-N arrays and the elements of each column sum to 1. When
states are calendar dates, column n of the dynamic ledger, denoted `n, corresponds to
the static ledger at date (and state) n.

For example, if trader A owns and holds the asset in account k = 1 at t = 1, and
ownership of the asset doesn’t change, then ` can be represented as

1 1 ... 1
0 0 ... 0
...
0 0 ... 0

 . (3)

A transformation on a dynamic ledger is a straightforward extension of the same ob-
ject for a static ledger. We use `n[k] to represent the kth row of ledger `n. A transformation
φ ∈ Φd is a K-by-N matrix given by

φ1[1] φ2[1] ... φN[1]
φ1[2] φ2[2] ... φN[2]

...
φ1[K] φ2[K] ... φN[K]

 (4)

where Φd is the set of K-by-N matrices such that ∑k φn[k] = 0 for all n ∈ N.

Definition 2 (Dynamic Ledger Accounting). A transformation φ is said to be valid on ` ∈ L
if applying φ to ` yields a ledger `′ where `′ ∈ L. Otherwise, it is said to be invalid.

Continuing our example, suppose trader A wants to transfer the asset to account K
at t = 1, which may be controlled by the same or a different trader. This corresponds to

9

a transformation 
−1 −1 ... −1
0 0 ... 0
...
0 0 ... 0
1 1 ... 1

 . (5)

This transformation is valid because the resulting object is also a dynamic ledger.
Each trader can see what is in her account but cannot see other traders’ accounts.

Furthermore, the set of accounts owned by a trader is unknown to others unless dis-
closed. This implies that, along with the set of public states Θ, there are up to 2KN
private states V = {`n[k] = 0, `n[k] = 1}n=1,...,N

k=1,...,K .

Programs. A program is a set of instructions to the bookkeeper specifying if, when, and
how to update the ledger. First, instructions specify how to update the ledger, in the
form of a transformation.

Second, programs can allow for contingent settlement. For example, suppose each
date can have two states, “rain” and “shine,” which are mutually exclusive. Trader A
may want to send the asset to another trader at date t only if it rains that day. We use ζ

to denote the conditions under which an asset is transferred.
Third, we allow for the instructions to the bookkeeper to remain hidden until a future

date (and state). For example, trader A may not want to reveal to the bookkeeper that
the asset should be sent to another trader at date t if it rains until date t− 1. The date
(and state) at which the bookkeeper becomes aware of the conditions ζ is called the
“schedule,” denoted σ.9

A useful analogy is to think of a program in a sealed envelope. Intuitively, we can
imagine agent A sending the program to the bookkeeper in an envelope that remains
sealed until date t − 1. The schedule corresponds to the conditions under which the
envelope is unsealed by the bookkeeper, which in this case is reaching date t− 1. Once
opened, the bookkeeper can read instructions to transfer the asset to another agent (e.g.
transformation) if it rains at date t (e.g. contingency).

With this in mind, we can define a program. A program is a mapping µ : L → L,
where each program µ = (σ, ζ, φ) specifies a schedule σ, set of conditions ζ, and a
transformation φ. Note that transformations can only refer to publicly observable states,

9Schedules would be unnecessary if technology allows the bookkeeper to update the ledger without
knowing the transformation and the conditions.

10

while conditions can include private states.
Once the conditions specified in the schedule σ are met, the program is committed to

the dynamic ledger by the bookkeeper. At this moment, the bookkeeper gains access
to the contents of the program, and also given access to parts of the ledger required to
verify conditions ζ (if any). When and if conditions are met, the bookkeeper applies the
transformation φ ∈ Φ to the ledger `.10

The benefit from using a schedule is to delay the timing at which a bookkeeper gains
access to private information on the ledger. Going back to the earlier example above,
suppose that trader A wants to send the asset to another trader at date t, if it rains that
day, but does not want the details of the trade to be shared with anyone else, including
the bookkeeper. Trader A can use a schedule σ that delays the commitment of the
program to date t, which postpones the timing at which the bookkeeper learns about
the details of the instructions.

Some basic restrictions are applied to programs that a trader can submit. First, traders
may only write programs with valid transformations that involve debiting an account
they own. Second, traders may only submit complete programs as defined below:

Definition 3. A program is complete if, at the time that it is submitted given the state of the
ledger ` and all existing committed programs, when and if conditional on σ and ζ being met, the
transformation φ is always valid.

An agent can only submit a program for which the transformations to be taken under
the state of the world specified by ζ are valid. This requires that a program, given the
ledger and all preceding committed programs, cannot assign a transformation in any
state specified by ζ that is invalid. This notion of “completeness” is closely related to
complete contracts. It implies that all contingencies of the program are fully specified.11

Both restrictions are imposed on the ledger `, and the set of committed programs.
These two restrictions imply that, first, traders are able to unilaterally submit complete
programs that involve valid transformations where their account is debited. Second, if
a program involves transformations that debits accounts belonging to multiple traders,
i.e. a multilateral program, all parties must agree to the terms, and it must involve valid
transformations where only the parties’ accounts are debited.

Our main setting is a financial market, where programs settle trades. To focus on
the programmability of securities’ settlement, we simplify the other leg of transactions

10We abstract from potential conflicts that might arise from the verification of public signals, which
pose an issue particularly for decentralized systems with no central authority (for example, see Garratt
and Monnet (2022).

11In the context of the system, this eliminates possibility of “collisions” between programs, whereby
transformations taken by one program render a subsequent program’s transformation invalid.

11

by assuming that there is a separate representation of cash with which programs can
implement delivery-versus-payment (DvP) settlement.12

Protocol. A protocol P imposes constraints on the set of feasible programs. A protocol
specifies the set of schedules, Σ, that can be used and the set of states, Z, that programs
can reference.

We consider three options for the set of schedules Σ:13

1. No Schedule (Immediate), denoted Σ = ∅. In this case, the moment a program is
submitted by an agent, it is applied to the ledger.

2. Schedule on public state, where Σ = ∅ ∪Θ. In this case, the conditions under which
a program is applied to the ledger can depend on the realization of a public state
θn ∈ Θ.

3. Schedule on private state, where Σ = ∅ ∪Θ ∪ V. In this case, the conditions under
which a program is applied to the ledger can depend on the realization of a private
state, e.g. (`n

t [k] = 1).

We assume the existence of a technology that allows the bookkeeper to observe the
private states necessary to verify that a schedule is met, and no other information about
the ledger. Intuitively, we can think of the bookkeeper having access to a machine that
answers truthfully questions of the type “is the asset in account k at date (and state)
t?” The bookkeeper does not know the entire state of the ledger and the information
available is restricted to the information necessary to verify that a schedule is met.

Similarly, we consider three options for the set of states Z that programs can reference,
where ζ ∈ Z:

1. Non-contingent, where transformation is to be committed unconditionally. We de-
note this case by Z = ∅.

2. Contingent on public state, where Z = ∅ ∪Θ.

3. Contingent on private state, where Z = ∅ ∪Θ ∪V.

Again, we assume that the bookkeeper is able to observe the private states necessary to
verify that the conditions of a program are met.

12DvP in a multi-chain environment remains a challenging problem from a technological standpoint.
13We focus on these three cases for parsimony.

12

We make two basic assumptions on how the protocol processes a sequence of pro-
grams. First, we assume that programs are committed in sequential order. For example,
consider two programs, µ1 and µ2. The schedule associated with µ1 specifies that the
corresponding transformation should be added to the ledger at date t and the schedule
for µ2 specifies date t + 1. If there are no other programs, then at date t the ledger will
be updated according to `′ = ` + φ1. Then at date t + 1 the ledger will be updated
according to `′′ = `′ + φ2.

Second, as a tie-breaking rule, we assume that all programs, if scheduled at the same
time, are sequentially implemented. Consider two programs, µ1 and µ2 and assume that
their schedules both specify that the corresponding transformation should be added to
the ledger at date t. In that case, one program is randomly chosen to be implemented
first (with probability 1/2). If program µ1 is chosen, then the updating will be `′ = `+ φ1

and then `′′ = `′ + φ2. Otherwise, it will be `′ = `+ φ2 and then `′′ = `′ + φ1.

Bookkeeper. As noted above, a representative bookkeeper acts as a third-party interme-
diary who implements changes to the ledger. In particular, the bookkeeper commits and
implements programs, including applying programs to the ledger, and taking settlement
actions corresponding to programs’ transformations. The agent is assumed to provide
settlement services competitively, with an outside option normalized to 0.14

Recall that the bookkeeper is endowed with the smallest information set necessary
to verify whether the conditions ζ of a program are met.15 Put differently, we assume
that information structure is partitioned, and only shared with the bookkeeper if the
implementation of a submitted program deems it necessary.

This requires that the underlying states specified in Σ and Z are observable to the
bookkeeper at the time of a program’s schedule, even if these are private states from the
perspective of the agents. This possibility is one of the key tensions on the choice of a
protocol. Even if we assume that only the smallest set of information necessary is shared
with the bookkeeper, a protocol may allow for programs that could lead to a bookkeeper
gaining access to private information that can be exploited, either directly or indirectly
by another agent in the market.

14We assume this as our main interest lies not in the economics of incentives for settlement services, but
in potential for information leakage through the settlement environment.

15Note, since all programs are complete, the transformation φ is valid when ζ is met.

13

3 Trade and Settlement

Given the physical environment, we highlight two key considerations in the design
of a settlement system. The first is with regard to the leakage of private information
through the settlement system.

Given a system with some protocol P , the bookkeeper must gain access to the in-
formation set ΩP to assess and commit programs submitted by the traders. A valid
concern is whether ΩP contains sensitive information that could lead to collusive or
strategic behavior between the bookkeeper and a subset of traders, which could affect
equilibrium bargaining between traders. A necessary and sufficient condition to negate
that concern is that, when information is made available to the bookkeeper, it is already
part of the information set of the traders involved in the program. We call a system with
this property information-leakage proof or leakage-proof for short:

Definition 4. A settlement system with protocol P is called leakage-proof if ΩP is a subset of
the information set of any agents involved in a feasible program.

The second consideration is whether the protocol is able to resolve settlement uncer-
tainty. Settlement uncertainty refers to the possibility that, after agents have agreed on a
trade, the settlement corresponding to the terms of trade fails to occur. Settlement fails
can occur due to technological issues, such as that witnessed in the aftermath of Septem-
ber 11 attack (Fleming and Garbade, 2002), or for strategic reasons, as documented by
Fleming and Garbade (2005).

Definition 5. A settlement system with protocol P is said to resolve settlement uncertainty if
given a contract, there exists a set of feasible programs that ensures that settlement occurs with
probability 1.

The resolution of settlement uncertainty is a common objective for the design of set-
tlement systems, and a primary value proposition of token systems. Token systems,
through the use of smart contracts, could reduce or even eliminate settlement uncer-
tainty.

Trading. Using the settlement framework laid out in Section 2.2, we consider how dif-
ferent protocols may process a canonical trade between two agents. Suppose that there
are two periods, t = 1 and t = 2. At the beginning of t = 1, trader A owns the asset and
agrees to sell it to trader B. For settlement to occur, the traders must submit a program
corresponding to the trade, which entails A sending the asset to B in t = 2. At the end

14

of t = 1, A privately learns about an attractive outside option with positive probability,
which gives A an incentive to renege on his contract with B and fail to deliver the asset.

Timeline:

t = 1 Trading Period. A agrees to send an asset to B in t = 2. Immediately before the
period ends, an attractive outside option may become available to A with a positive
probability.

t = 2 Settlement Period. Settlement takes place. In particular, programs (if any) are
implemented.

As a benchmark, we briefly consider how current systems operate. The legacy system
can be recast within our framework as a system with specific restrictions on the ledger
and programs. With a legacy settlement environment, when the traders negotiate the
trade at date 1, no restrictions are imposed by the settlement system. For example, a
trader can sell a security that she does not currently own. In addition, for settlement
to occur as agreed, appropriate settlement actions must be taken independently by the
seller of the security. Specifically, the seller must send settlement instructions to the
bookkeeper at date 2. This implies, first, a sharp separation between trade and settlement
activities. Second, the set of feasible transformations is restricted to those for which
the seller owns the security at the time when settlement instructions are sent to the
bookkeeper. Indeed, a seller cannot instruct the bookkeeper to transfer securities she
does not have in her account. This means that, for a settlement action to take place in
state θn, the seller must submit a program when θn is realized (and have the asset in her
account).

In the context of our model, a legacy system is characterized by the following:

Definition 6. The legacy system is a system with a static ledger, unilateral programs, and a
protocol that permits only non-contingent, immediate programs, i.e. Σ = ∅ and Z = ∅.

Defining the legacy system as referencing a static ledger is without loss of generality
because this system does not allow for commitment through the settlement system. At
the time of settlement, the seller submits a program containing instructions to the book-
keeper (in the form of a transformation) that specifies that the asset be moved from the
seller’s account to the buyer’s account. The program is unilateral because no input from
the buyer is warranted for the seller to submit this instruction. The set of state that the
program can reference, i.e. Z, is empty because the transformation that the seller sends
to the bookkeeper is immediately implemented at the moment the program is submitted.
For the same reason, the program does not include a schedule.

15

Given this characterization, we consider whether the legacy system is leakage-proof
and/or resolves settlement uncertainty. The legacy system settlement instructions are
sent to the bookkeeper at time of settlement, which takes place after trading has oc-
curred. This separation between trade and settlement directly ensures that any informa-
tion shared with the bookkeeper at the time of settlement cannot affect trade, since any
program associated with a trade is submitted after the event. The temporal separation
between trade and settlement also comes with a disadvantage. Since settlement actions
are taken at a later date, settlement successfully occurs only if the seller finds it incentive
compatible to honor the agreed upon trade. The seller can choose not to submit the set-
tlement instruction if doing so is privately optimal at the time of settlement. The below
proposition summarizes this:

Proposition 1. The legacy system is privacy-preserving but does not resolve settlement uncer-
tainty.

Proof. Privacy-preserving falls directly from the definition. The remaining is shown by
example. Suppose that A agrees to sends an asset to B in t = 2. Settlement uncertainty
is resolved only if there exists a program at t = 1, such that a unilateral program by A
to send the asset elsewhere before t = 2 is not feasible. Since Σ = Z = ∅, there does not
exist such a program.

Proposition 1 formally illustrates a key weakness of the legacy system: settlement
uncertainty. The limited way in which a static ledger can represent ownership, and
restricting the set of programs to unilateral programs with no schedules provides flexi-
bility, but at the cost of depending on all settlement actions to be incentive compatible.

Can a token system be leakage-proof and resolve settlement uncertainty? In the
remainder of this section, we show that necessary and sufficient conditions are that the
protocol allow only non-contingent programs, Σ = ∅, and disallow schedules, Z = ∅.

First, we find that for any protocol with a schedule, which can depend on public
and/or private states, a non-contingent program may not be complete. For example,
consider a program that specifies that the asset be transferred from trader A’s account
to trader B’s account at date t + 1, unconditionally. Such a program is not complete
because the asset may not reside in trader A’s account at date t + 1.

Contingency requires that the program specify transformation, i.e. actions, to be
taken in all future states of the world. In the context of the trade between A and B,
this implies that the program must specify the transfer of the asset from an account kA

16

owned by A, to an account kB owned by B conditional on the asset residing in account kA at
t = 2, and no transformation otherwise. It follows that:

Lemma 1. A non-contingent multilateral program is complete only if the program is committed
without delay.

Proof. Suppose initially A holds the asset in some account k for t = 1, 2. Consider a
non-contingent program µ with a schedule, whereby it specifies a transformation that
transfers the asset from account k to k′ at t = 2. To establish a contradiction, suppose
the program is complete. At t = 1, the dynamic ledger assigns ownership to account
k. Hence, at any time prior to t = 2, a unilateral program µ′ with no schedule, with
transformation from account k to k′′ 6= k′ is complete. This implies that when t = 2 is
realized, µ is not valid. This violates Definition 3. Note that a similar argument follows
for schedules on private state as well.

An implication of Lemma 1 is that programs with schedules must be contingent in
order to be complete. A corollary of Lemma 1 is that a protocol with a program that
is non-contigent, Z = ∅ and with a schedule, Σ = Θ(∪V), is ruled out as a candidate
protocol, since programs would not be complete.

We can now consider whether remaining possible types of protocols satisfy both of
the desired properties of leakage-proof and resolution of settlement uncertainty. The
broadest class of protocol allows for contingent programs with schedules. We can show
that this class is subject to settlement uncertainty.

Lemma 2. Any protocol for which the set of feasible programs includes contingent programs
with delay is subject to settlement uncertainty.

Proof. We show by counterexample. Note that a protocol fails to resolve settlement un-
certainty, if given the multilateral program submitted by and A and B, there exists an
action that A can take to retain the asset. A can submit a unilateral program transfers
the t = 2 ownership of the asset between any two of his accounts, as long as (1) A owns
the asset in t = 2 and (2) there does not exist a sequentially preceding committed pro-
gram. This implies that any program with a schedule at t = 2 is invalid, and settlement
uncertainty arises. This implies that any program must involve no schedule.

The intuition can be captured by a simple example. Consider a contingent program
with a schedule created by traders A and B to settle the agreed upon trade. The program
must specify that the transfer of the asset from A’s account to B’s account at t = 2, is
conditional on the asset residing in the specified account of A’s, since otherwise the program

17

would not be complete. Suppose that the schedule delays the implementation of the
program to date t = 2. Delaying the time at which the program is committed allows
trader A to submit a separate unilateral program that transfers the asset to a different
account before date t = 2 . This means that, at date t = 2, the conditions of the contingent
program are not met, and no transfer occurs.

More generally, whenever a contingent program is committed with delay, it allows for
the possibility that some agents (in this case, agent A) can unilaterally submit programs
that supersede a scheduled program, leading to a settlement failure. Hence, a necessary
condition to avoid settlement failure is to require contingent programs to be committed
without delay.

The next lemma shows that this comes at the cost of providing the bookkeeper with
access to private information.

Lemma 3. Any protocol for which the set of feasible programs includes contingent programs
without delay is not information-leakage proof.

Proof. The proof is by contradiction. First note that a protocol is not privacy-preserving
if there exists a feasible program that requires providing access to information to the
bookkeeper not available to parties of a program. Suppose that A and B submit a con-
tingent program µ = (∅, `kA

2 = 1, φ), where kA is an account owned by A and φ is a
transformation that transfer the asset from kA to B’s account kB. Since there is no sched-
ule, the program is visible to the bookkeeper at submission. Note that in order to verify
whether µ’s condition (`kA

2 = 1) holds, the bookkeeper must be able to verify whether
`kA

2 = 0 or `kA
2 = 1. Since B does not observe or learn `kA

2 at any time prior to t = 2, this
violates the privacy-preserving property.

This intuition is straightforward. If the program is committed without delay, the
bookkeeper at the time of the trade, and thus before the time of settlement, obtains
information that could be valuable to other traders.

The only remaining set of protocols to consider is those with non-contingent pro-
grams and no schedules. We find that such protocols are both leakage-proof and resolves
settlement uncertainty:

Proposition 2. A protocol is both leakage-proof and resolves settlement uncertainty if and only
if it restricts the set of programs to non-contingent, immediate programs, i.e. Σ = ∅ and Z = ∅.

Proof of Proposition 2. By Lemmas 2 and 3, it is shown that any protocol other than Σ = ∅
and Z = ∅ violates at least one of two properties. It suffices to show that a protocol with
Σ = ∅ and Z = ∅. is both privacy-preserving and resolves settlement uncertainty.

18

Let the asset reside in A’s account k. Suppose that A and B submit a noncontingent
program µ = (∅, ∅, φ), where φ is given by:

kA :

kB :


0 0
0 −1
... ...
0 1
...


i.e. A transfers ownership of the asset at t = 2 from account kA to B’s account kB. This
implies that the program is complete, which is true only if at the time the program is to
be submitted, t = 2 ownership resides in account kA. Conditional on being successfully
submitted, the dynamic ledger is updated to:

kA :

kB :


0 0
1 0
... ...
0 1
...


Given this, consider when an outside opportunity for A realizes. Note that for A to
submit any non-contingent program involving the asset at t = 2, the asset must reside in
his account for `2. However, since the asset resides in KB in the updated dynamic ledger,
no such program is complete.

This result shows a settlement system can resolve settlement uncertainty and retain
privacy-preserving properties if and only if it uses a protocol that restricts the set of
programs to non-contingent transfers with instant settlement. To summarize, we refer
to a zero settlement risk token system as a one that satisfies the conditions specified in
Proposition 2:

Definition 7. A zero settlement risk token system is a system with a dynamic ledger, unilat-
eral and multilateral programs, and a protocol that restricts the set of programs to non-contingent,
immediate programs, i.e. Σ = ∅ and Z = ∅.

The protocol required to design a token system that satisfies the two properties is
in some ways restrictive, relative to the legacy system. In the legacy system, the dis-
association between trade and settlement meant that, albeit subject to settlement risk,

19

Figure 1: Timeline of trade and settlement in legacy and token system

Transaction in legacy system.

1. Agents meet and bargain.

2. Agents unilaterally submit pro-
grams.

3. If valid, programs are committed in-
stantly.

4. Settlement occurs.

Transaction in Token system
with no settlement uncertainty.

1. Agents meet.

2. Multilateral program is initiated,
and bargaining occurs.

3. Program is executed only if valid.

4. Settlement occurs.

the settlement process itself did not constrain the set of transactions or contracts that
agents were permitted to enter. In contrast, a zero settlement risk token system resolves
settlement uncertainty but may prohibit certain transactions from occurring if relevant
conditions of ownership are not satisfied by parties of a transaction.

As we illustrate in the next section, however, these restrictions still permit a wide
array of contracts. An important distinction is that immediacy of transfers does not
necessitate direct ownership of an asset at the time the trade is negotiated. Instead it
requires verifiable ownership of the asset at the time the trade must be settled. For
example, if an agent owns rights to the asset in the future, in verifiable way(i.e. repre-
sented on the dynamic ledger), then the agent can enter trades involving or dependent
on that future ownership, even though he does not actually own the asset at the time
of trade. By broadening the representation of ownership, a token system can facilitate
transactions involving future claims without any settlement risk. One implication is that
a token system could improve the liquidity of certain claims that would be much riskier
to base trade on in a legacy environment.

Moreover, a token system facilitates zero-settlement risk transactions whilst precisely
allocating state-contingent ownership. This is especially important for transactions in-
volving collateral. In a transaction, such as a loan, involving collateral, the underlying
collateral is required only in future state where terms have not been met by the col-
lateral provider. In practice, however, collateral is typically perfected by relinquishing
control, for instance, either through escrow or a repurchase agreement. In the process,
the collateral owner forgoes state-contingent control rights that are not encumbered by
the loan. Under the token system, an agent posting collateral retains and can actively
transact on state-contingencies that are unencumbered by existing transaction, making
more efficient use of the collateral itself.

20

4 Implementing Zero-Settlement Risk Token Systems

In the previous section we proposed a framework to study settlement systems that
encompasses legacy systems as well as systems that allow agents to commit to future set-
tlement. We were able to show that the legacy system, while information-leakage proof,
is subject to settlement uncertainty, because traders are unable to commit. Finally, we
proved that a settlement system can resolve settlement uncertainty and retain privacy-
preserving properties if and only if it uses a protocol that restricts the set of programs to
non-contingent transfers with instant settlement.

These results provide a theoretical foundation for the appropriate set of restric-
tions required to develop a zero-settlement-risk system. An important consideration
is how zero-settlement-risk token systems can be implemented in financial markets, and
whether conditions specified in Proposition 7 support and/or permit various financial
applications. In this section, we consider the implementation of zero-settlement-risk
token system in concrete financial market applications.

To explicitly consider a broad set on financial applications, it is useful to extend
the model in Section 2 to a multi-token environment. Suppose that there are 1 + X
tokens indexed s = 0, 1, ..., X. It suffices to consider 2 types of tokens. Let the first
token s = 0 represent a tokenized financial asset, such as a Treasury security. The
remaining s = 1, ..., X each represent a numeraire token, such as tokenized cash. As
before, each token is represented by a dynamic ledger `s ∈ L, and changes to the ledger
involve transformations φs ∈ Φd. We further maintain the assumption that Definitions
1-3 hold for the numeraire token as well. Following the arguments outlined in Section
3, it suffices to extend a program as µ = (∅, ∅, φ̂), where φ̂ is a set of transformations
{φs}, performing a change to ownership for each respective ledgers `s.

Atomic Swaps. One of the core issues in modern systems is the existence of settlement
and credit risk involved in large value transactions. In the context of Treasuries and
other financial assets involving large notional payments, legacy systems have developed
protocols, such as Delivery vs. Payment (DvP), to ensure that the transfer of both sides
of a trade occur without delay between each other.

An important feature of a zero-settlement risk system as specified under Definition
7 is that by virtue of eradicating settlement risk, high-frequency credit risks that arise
during the process of settlement are also alleviated. Under circumstances involving
the exchange of multiple tokens, this form of real-time transfer encompasses a feature
commonly referred to as atomic settlement (also known as “atomic swaps”) (Bech et al.,

21

2020). As will be evident, atomic settlement is closely related to DvP but not the same.
Formally, let us define atomic settlement as follows:

Definition 8 (Atomic Settlement). An atomic settlement refers to an exchange of tokens that
involves the simultaneous exchange of tokens to their new owners.

To explore how atomic settlement arises in a zero-settlement risk system, consider a
simple bilateral spot market where two types of tokens are exchanged. Going back to
the example of the Treasury market, one token may represent Treasury securities, and
the other token is the numeraire, e.g. tokenized cash or reserves. In a spot market, all
transfers involve the entire ownership claim of a token, such that ownership is trans-
ferred across all states Θ. This implies that the set of transformations in a spot market
are confined to those in the values of rows share the same value. A transformation in
which token s is transferred from Account 1 to Account K is given by:

−1 −1 ... −1
0 0 ... 0
...
1 1 ... 1

 , (6)

and committed on the dynamic ledger `s pertaining to token s. Without loss of generality,
consider a trade in the spot market between two traders A and B, who agree to trade
token 0 in exchange for x numeraire tokens. We characterize the set of programs that
can implement the trade and satisfy under Definition 7:

Proposition 3 (Atomic Settlement). In a bilateral spot market, a trade between two traders A
and B is implemented by a program σ = (∅, ∅, φ̂), where φ̂ is given by

φ0 =

kA :

kB :


0 0 ... 0
−1 −1 ... −1
...
1 1 1 1
0 0 ... 0

 , φs =

kA :

kB :


0 0 ... 0
1 1 ... 1
...
−1 −1 −1 −1
0 0 ... 0

 where s ∈ S and |S| = x


(7)

Furthermore, if the program is feasible, then trade is subject to atomic settlement.

Spot transactions are subject to the simple requirement that the terms of trade are
immediately feasible. In this case, this requires A to own token 0 and B to own at least

22

x numeraire tokens at the time of trade. When this condition is satisfied, the program
specifies an immediate, non-contingent update to the dynamic ledger `s pertaining to
each token. Since the program is implemented only if the entire set of transformations
φ̂ are feasible, trades in the market are settled atomically.

Incidentally, the programs above also involve DvP settlement. It is worth noting,
however, that atomic settlements in the token system achieves more settlement certainty
than what is typically achieved in DvP settlement. Legacy systems with DvP do not
in general eradicate all forms of settlement risk – Rather, it ensures that one leg of a
transaction does not occur without the assurance that both legs of a transaction occur.
This means that a trade can still fail to settle if one of the parties fails to satisfy the terms
of trade (e.g. make a payment or transfer the asset). In contrast, atomic settlement as
outlined in Proposition 3 guarantee that any trades within the token system are settled as
programmed. Though subtle, this difference is significant in the context of markets with
high-value, high-frequency transactions, where settlement fails can be costly. Finally, we
overviewed a simple bilateral spot market to illustrate why trading in a token system
settles atomically. However, since atomic settlement naturally arises from the condition
that the set of all transformations φ̂ specified in a program must be feasible, this feature
will generally apply to all subsequent applications.

Contingent Claims. A technological difference between token system and legacy sys-
tems is the token system’s dynamic representation of ownership. Because a token system
can explicitly record and update ownership of an asset over future public states, a token
system can facilitate trades involving state-contingent transfers without the assistance
of third parties or intermediaries, and also ensure that these trades are settled with cer-
tainty. This has implications on a variety of financial markets involving hedging and
speculative activity.

Let us begin by considering a market in which traders buy and sell state-contingent
claims of token 0 using numeraire tokens. To fix ideas, let there be two dates t = 0, 1.
In date t = 0, traders agree to a series of trades regarding transfers in date t = 1.
Furthermore, let there be two states in date t = 1, Ω = {ω = rain, shine}, such that
there are 4 public states, Θ = date×Ω.

Proposition 4 (Hedging). Suppose that A and B agree to an insurance contract, whereby A
pays xA numeraire tokens to B at t = 0, and B pays xB numeraire tokens to A at t = 1 if
ω = rain. This contract is implemented by a program σ = (∅, ∅, φ̂), where φ̂ is given by:

23



φsA =



t = 0 t = 1, rain t = 1, shine

0 0 0

kA : −1 −1 −1

...

kB : 1 1 1

0 0 0


, φsB =



t = 0 t = 1, rain t = 1, shine

0 0 0

kA : 0 1 0

...

kB : 0 −1 0

0 0 0



where si ∈ Si and |Si| = xi for i = A, B


(8)

An insurance contract involves a non-contingent payment by the insuree (i.e. A) at
the onset of the contract, and a contingent payment by the insurer (i.e. B) in the case
that certain states are realized. The program can also be mapped to other financial
transactions, such as swaps. In the case of a credit default swap, the state ω could
capture the default status of a firm or security, in which case the buyer (A) pays an
upfront price xA in exchange for a payment xB by the seller (B) in the event of a default.

In the case of insurance-type arrangements, the timing of payments by parties of
the contract are staggered. Alternatively, two agents with opposing risks may want to
enter risk-sharing arrangements, whereby ex-post transfers occur depending on state
realizations. Speculative and predictive markets also involve ex-post transfers based on
the realization of future events or outcomes. We can characterize a program in which
two agents can enter a contract in which both transfers occur at t = 1, and dependent
on future state realization ω:

Proposition 5 (Derivatives). Suppose that A and B agree to an derivative contract, whereby A
pays xA numeraire tokens to B at t = 1 if ω = shine, and B pays xB numeraire tokens to A at
t = 1 if ω = rain. This contract is implemented by a program σ = (∅, ∅, φ̂), where φ̂ is given
by:

24



φsA =



t = 0 t = 1, rain t = 1, shine

0 0 0

kA : 0 0 −1

...

kB : 0 0 1

0 0 0


, φsB =



t = 0 t = 1, rain t = 1, shine

0 0 0

kA : 0 1 0

...

kB : 0 −1 0

0 0 0



where si ∈ Si and |Si| = xi for i = A, B


(9)

Note, the design of the program outlined Proposition 5 is generic and can be mapped
to a variety of different types of contracts. For example, the program can relate to cash-
settled derivatives, such as binary derivatives, in which the underlying state ω relates
to the price of an underlying, such as a stock or index. An inherent use case of such
program is that it can facilitate speculative activity – even bilaterally, without risk of
credit or settlement failure.

In both examples, the finality of a contract is ensured through the earmarking of
token ownership under certain realizations. A token system, by immediately reflecting
changes in future contingent ownership arising from trade, achieves the intended effect
of margin requirements but with zero risk of settlement fails (or related credit risk). In
addition, we have considered programs where all transactions require a single numeraire
token, such as a cash equivalent. Next, we consider the explicit use of tokens as collateral.

Collateral. Collateral plays an important role in current applications of token-based mar-
kets. In the case of DeFi, markets are designed around the principle that participants
can control assets and enter trades without revealing personal information beyond proof
of ownership. In such world, financial transactions beyond simple payments often uti-
lize collateral to strengthen incentives to fulfill obligations and facilitate more complex
arrangements. Incidentally, token systems are actively explored by traditional financial
markets involving collateral in order to improve efficiency and liquidity of collateralized
lending markets.

Consider a borrower A and a lender B who enter a collaterized loan. A and B agree
in a contract whereby B lends A xB numeraire tokens at t = 0. A promises to transfer

25

xA numeraire tokens to B at t = 1, and pledges token 0 as collateral. If A fails to transfer
xA numeraire tokens to B at t = 1, then A’s asset c collateral is transferred to B.

Proposition 6 (Collateralized Loan). Suppose that A and B agree to a collateralized loan,
whereby B lends A xB tokens at t = 0 in exchange for xA tokens at t = 1, and in the event
of failing to pay, relinquishing token 0 to B. This contract is implemented by a program σ =

(∅, ∅, φ̂) where φ̂ is given by:

φ0 =



t = 0 t = 1, ? = 1 t = 1, ? = 0

0 0 0

kA : 0 0 −1

...

kB : 0 0 1

0 0 0


, φsA =



t = 0 t = 1, ? = 1 t = 1, ? = 0

0 0 0

kA : 0 −1 0

...

kB : 0 1 0

0 0 0


,

φsB =



t = 0 t = 1, ? = 1 t = 1, ? = 0

0 0 0

kA : 1 1 1

...

kB : −1 −1 −1

0 0 0



where si ∈ Si and |Si| = xi for i = A, B, and ? = 1 if r numeraire tokens in kA and 0 otherwise.


(10)

In this case, both types of tokens are used: the numeraire token, and token 0, which
acts as collateral. In the collateralized loan program, there is a transfer that is contingent
on whether A is able to fulfill the promised payment xA to B or not. A notable difference,
relative to Proposition 5 is that the state is a private state, namely whether there are xA

numeraire tokens in A’s account at t = 1. Yet, the above program is feasible under
a zero-settlement risk token system. This is because, whether A is able to deliver xA

numeraire tokens or not, is a form of credit risk and not settlement risk.
Proposition 7 illustrates that the token system under Definition 7 is amenable to

trades that are subject to credit risk. In the above collateralized loan contract, there is
still zero settlement risk. In the event that A defaults on his payment to B (whether it
is strategically or non-strategically motivated), the collateral token is immutably trans-
ferred to B.

26

Notably, a collateralized loan on the token system has an advantage over other forms
of collateralized loans that are designed to ensure that collateral is unencumbered. Con-
sider for example, a repo contract, which requires A to effectively transfer the asset to B
until payment xA is made. In the token system, A retains full control over the asset prior
to t = 1, and also retains contingent ownership of the asset conditional on repaying B.
Generally, the token system allows the agent to trade claims of the collateral that is un-
encumbered by the pre-arrangement, something that is difficult to do in today’s system
where unconditional restrictions are used to safeguard securities.

Multilateral Trades. A shared feature of all the applications examined so far is the
ability for agents to enter trades without the involvement of third-party intermediation.
This is made possible by resolving the need for mediation involved in the settlement
process. By facilitating riskless settlement, agents can enter and implement complex
financial transactions that are typically difficult due to the involvement of the multiple
parties and stakeholders.

We illustrate this by considering the application of securitization. Suppose that there
are three periods, t = 0, 1, 2. A wants to securitize t = 1, 2 cashflows of token 0 and
auction off each cashflow. Suppose that the winning bids are made by agents B and C,
respectively. This can be implemented in a token system as follows:

Proposition 7 (Securitization). A can securitize and sell state-dependent cashflows of token
0, whereby B lends A xB tokens at t = 0 in exchange for xA tokens at t = 1, and in the
event of failing to pay, relinquishing token 0 to B. This contract is implemented by a program
σ = (∅, ∅, φ̂) where φ̂ is given by:

φ0 =



t = 0 t = 1 t = 2

0 0 0

kA : 0 −1 −1

...

kB : 0 1 0

...

kC : 0 0 1

0 0 0





(11)

A simple program can “securitize” the cashflows to transfer the cashflow rights to
buyers. A can enter a single program that transfers rights to both B and C. In the first
part of the transformation, the asset is “transferred” from A’s account to B’s account

27

at t = 1 before returning back to A’s at the end of t = 1. In the second part of the
transformation, the asset is transferred from to C’s account at t = 2. Here, the public
state Θ ∈ {t = 1, t = 2}, and the tokenized asset pays its cashflow to the account in
which it resides in any period. As the asset is programmed to be transferred between
accounts according to the agreement, the B and C can expect the receive the cashflows
at t = 1 and t = 2, respectively, without fail.

An example of this are Treasury STRIPS, which were historically issued by a dealer,
who purchased a Treasury security and re-issued new securities that represented indi-
vidual coupons of the Treasury. Combining the application shown in Proposition 5, a
corollary is that the repackaging and distribution of cashflows can be arbitarily complex,
as long as the states specified by the transformation are feasible.

5 Conclusion

This paper theoretically studies the design of token systems. We develop a conceptual
framework to consider the design of settlement systems that feature a distributed ledger
and programmability. A token system can take many forms, but we find that appro-
priate restrictions on programs can resolve settlement uncertainty and partition private
information. Our environment can be used to represent the legacy settlement system.
Though the legacy system is effective in partitioning information, it is susceptible to
settlement fails.

We provide concrete implementation of how the zero-settlement risk token system
characterized in the paper is amenable to various financial contracts and arrangements.
Though the restrictions required by the system do not exist in the current environment,
a tokenized market enables trades to occur without settlement risk – a feature of modern
financial markets that continues to compromise efficient trade today.

References

Bech, Morten L, Jenny Hancock, Tara Rice, and Amber Wadsworth, “On the future of
securities settlement,” BIS Quarterly Review, March, 2020.

Chiu, Jonathan and Thorsten V Koeppl, “Blockchain-based settlement for asset trad-
ing,” The Review of Financial Studies, 2019, 32 (5), 1716–1753.

Cong, Lin William and Zhiguo He, “Blockchain disruption and smart contracts,” The
Review of Financial Studies, 2019, 32 (5), 1754–1797.

28

, , and Jiasun Li, “Decentralized mining in centralized pools,” The Review of Financial
Studies, 2019.

Fleming, Michael J and Frank M Keane, “What’s behind the March spike in treasury
fails?,” Technical Report, Federal Reserve Bank of New York 2016.

and Kenneth Garbade, “When the back office moved to the front burner: Settlement
fails in the Treasury market after September 11,” Economic Policy Review, 2002, 8 (2).

and , “Explaining settlement fails,” Current Issues in Economics and Finance, 2005, 11
(9).

Garbade, Kenneth, Frank M Keane, Lorie Logan, Amanda Stokes Kirby, and Jennifer
Wolgemuth, “The introduction of the TMPG fails charge for US Treasury securities,”
Economic Policy Review, 2010, 16 (2).

Garratt, Rodney and Cyril Monnet, “An impossibility theorem on truthful reporting in
fully decentralized systems,” 2022.

Hinzen, Franz J, Kose John, and Fahad Saleh, “Bitcoin’s Fatal Flaw: The Limited Adop-
tion Problem,” NYU Stern School of Business, 2020.

Johnson, Kurt, James J McAndrews, and Kimmo Soramäki, “Economizing on liquidity
with deferred settlement mechanisms,” Federal Reserve Bank of New York Economic Policy
Review, 2004, 10 (3), 51–72.

Kahn, Charles M, James McAndrews, and William Roberds, “Settlement risk under
gross and net settlement,” Journal of Money, Credit and Banking, 2003, pp. 591–608.

Lee, Michael Junho, Antoine Martin, and Robert M. Townsend, “Optimal Design of
Token Markets,” 2022.

Lehar, Alfred and Christine A Parlour, “Miner collusion and the bitcoin protocol,”
Available at SSRN, 2020.

Makarov, Igor, Antoinette Schoar et al., “Cryptocurrencies and Decentralised Finance,”
Technical Report, Bank for International Settlements 2022.

Rochet, Jean-Charles and Jean Tirole, “Controlling risk in payment systems,” Journal of
Money, Credit and Banking, 1996, 28 (4), 832–862.

Saleh, Fahad, “Blockchain without waste: Proof-of-stake,” The Review of Financial Studies,
2018.

29

Townsend, Robert, “Distributed ledgers: Innovation and regulation in financial infras-
tructure and payment systems,” 2019.

30

	Introduction
	The Architecture of Tokenized Securities Markets
	Environment
	Programmability and Settlement Protocols

	Trade and Settlement
	Implementing Zero-Settlement Risk Token Systems
	Conclusion

