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Section A gives empirical results for the Angrist and Krueger (1991) data and
discusses implementation of PI tests and confidence sets. Section B provides further
details on the derivation of the limit problems discussed in Section 2 of the paper.
Section C shows that general nonlinear GMM models which are weakly identified in
the sense of Stock and Wright (2000) give rise to limiting problems of the form (2).
Section D concerns our linear IV simulations, gives power plots for PI tests in linear IV
with homoskedastic errors, provides further information on our simulation design, and
discusses our implementation of the MM1-SU, MM2-SU, QLR, and PI tests. Section
E provides additional details on our implementation of PI and QLR tests in Section
A. Finally, Section F discusses simulation results and derivations in a nonlinear new
Keynesian Phillips curve model.

Supplementary Materials A: Application and Imple-
mentation
To illustrate the proposed procedures we calculate confidence sets using data from
Angrist and Krueger (1991) and a range of specifications. We detail the steps required
to construct joint plug-in confidence sets, and discuss computational considerations.
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A.1 Data and Specifications

Angrist and Krueger (1991) study the relationship between years of schooling and
labor market earnings. They note that children born later in the calendar year face a
longer period of compulsory schooling than do those born earlier in the calendar year,
and argue that a worker’s quarter of birth thus provides a valid instrument from years
of schooling. The baseline specifications of Angrist and Krueger (1991) take log wages
to be linear in years of schooling, but a number of empirical studies (see Heckman
et al. (2006), Heckman et al. (2008), and references therein) have found evidence of
nonlinearity in this relationship. Here we consider a range of specifications which
allow nonlinear e�ects.20

Angrist and Krueger (1991) assume a linear structural equation

ÂYt = — ÂEt + ÊW Õ
t” + Át

where ÂYt is log weekly wages, ÂEt is years of schooling, and ÊWt is a vector of control
variables (including a constant). To relax the assumption that ÂYt is linear in ÂEt, here
we consider specifications of the form

ÂYt = —1 ÂEt +
pÿ

i=2
—i1

Ó
ÂEt Ø ci

Ô
+ ÊW Õ

t” + Át

where ci is a constant. We consider ci œ {12, 14, 16, 18} , leading to the five nested
specifications listed in Table 3. Following Angrist and Krueger (1991), Table I, we
interpret 12 years of schooling as a high school degree, 14 years of schooling as two
years of post-secondary education, 16 years of schooling as a college degree, and 18
years of schooling as a masters degree.

We focus on data from the 1930-1939 cohort. For this data, Angrist and Krueger
(1991) show that quarter of birth has a statistically significant relationship (at the 5%
level) to all the levels of education considered except for the masters degree. However,
by including dummies for multiple levels of education in the same specification (as
well as the linear term in ÂEt) we are increasing the demands made of the instruments,
and concerns about weak identification are relevant here.

20Considering multiple specifications for the Angrist and Krueger (1991) setting also allows us
illustrate how the computational burden of the plug-in test scales with the number of endogenous
regressors, holding all other features constant.
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Specification ci Highest ci corresponds to
A None None
B 12 High school degree
C 12, 14 Two years of postsecondary education
D 12, 14, 16 College degree
E 12, 14, 16, 18 Masters degree

Table 3: Specifications for Angrist and Krueger (1991) data. Specification A is the
linear specification considered by Angrist and Krueger (1991). Specification B adds
a dummy for completing 12 years of schooling, which following Angrist and Krueger
(1991) we interpret as completing high school. Specification C adds a dummy for
completing 14 years of schooling, or two years of post-secondary education. Specifi-
cation D adds a dummy for completing 16 years of schooling, which we interpret as
completing college. Finally, Specification E adds a dummy for completing 18 years of
education, which we interpret as completing a masters degree.

We choose controls ÊWt and instruments ÂZt as in specification II of Staiger and
Stock (1997) for the Angrist and Krueger (1991) data.21 For each specification, we
construct ÊXt = (Et, 1 {Et Ø c1} , ..., 1 {Et Ø cn})Õ. We eliminate the control variables
ÊWt by projection, and for ÊX, ÊW, and ÂZ matrices with rows ÊX Õ

t, ÊW Õ
t , and ÂZ Õ

t, respectively,
we let M ÂW = I ≠ ÊW

1
ÊW Õ ÊW

2≠1 ÊW Õ and define X = M ÂW
ÊX, Y = M ÂW

ÂY , and Z = M ÂW
ÂZ.

To construct confidence sets it will be helpful to have a bounded parameter space
for —. Here we consider —1 œ [≠0.5, 0.5] , which allows the marginal e�ect for each
additional year of schooling to range from an almost 40% decrease in wages to an over
60% increase. For i Ø 2 we consider —i œ [≠2, 2] , which allows an additional almost
90% decrease to over 600% increase in wages for completing year ci. In both cases
this more than su�ces to cover the economically plausible range of parameter values.

A.2 Implementation

We calculate joint confidence sets for the parameter vector — in each specification by
inverting identification-robust tests. In particular, for a given test „ the corresponding
confidence set for — will be {—0 : „ does not reject H0 : — = —0}. We report PI, QCLR,
S, K, and QLR confidence sets. We do not report confidence sets based on the MM
procedures, since these procedures depend on a choice of weight function and MM only
propose weights for the case with a single endogenous regressor, so their suggested tests

21This specification has 30 instruments, formed by interacting quarter of birth dummies with year
of birth dummies.
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are not directly applicable to specifications B-E.
The next subsection gives a detailed discussion of the implementation of the PI

test at a given point. We discuss the computational demands of the PI test and the
tradeo�s involved in particular implementation choices. Finally, we discuss how we
invert the PI test (and the other robust tests) to construct confidence sets.

A.2.1 Calculating the PI Test

To evaluate the the PI test of H0 : — = —0 for a particular value —0 in specifications
A-E, we introduce finite-sample analogs ST , DT , KT , and JT to the limiting random
variables S, D, K, and J , where ST = gÕ

T gT and so on. We compute the PI test in
four steps:

1. Calculate the statistics ST , KT , DT , and “̂

2. Calculate µ̂D

3. Calculate the plug-in weight aP I (DT ) = aMMRU (µ̂D)

4. Calculate the critical value c– (aMMRU (µ̂D)) and evaluate the test

1: Calculate statistics For Xt, Yt, and Z Õ
t the rows of X, Y, and Z respectively, we

define ft (—) as in (4) and let �̂ (—) be the usual estimator for V ar
3

ft (—)Õ , vec
1

ˆ
ˆ—Õ ft (—)

2Õ
4Õ

.

We take “̂ = vec
1
�̂

2
. Decomposing �̂ as in (5), we then let

gT (—) = 1Ô
T

�̂ff (—)≠ 1
2

qT
t=1 ft (—)

�gT (—) = 1Ô
T

�̂ff (—)≠ 1
2

qT
t=1

ˆ
ˆ—Õ ft (—)

and define �̂g◊ (—), �̂◊◊ (—) as in Example I. Note that these definitions are just as in
Example I, save where necessary to accommodate the presence of multiple endogenous
regressors. Given gT and �gT we then calculate ST , KT , and DT in the same manner
as S, K, and D, replacing all variance matrices by their estimates.

2: Calculate µ̂D A natural estimator for µ̂D is DT . As we saw in Section 7.1,
however, this choice yields sub-optimal power in linear IV with homoskedastic errors
and a single endogenous regressor. Thus we instead use a generalization of the positive-
part estimator considered in Sections 7.1 and 7.2. In particular, denoting column i of
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DT by [DT ]i we begin with an unbiased estimator of R = µÕ
D (q

i V ar ([DT ]i))
≠1 µD

in the limit problem, restrict the eigenvalues of this estimator to be weakly positive,
and choose µ̂D such that µ̂Õ

D (q
i V ar ([DT ]i))

≠1 µ̂D yields the chosen estimator of R.
In cases with a single endogenous regressor this approach recovers the positive-part
estimator used above. For more on µ̂D, see Section E of the supplementary materials.

3: Calculate the plug-in weight We calculate aMMRU (µD) using a discrete ap-
proximation to the MMRU problem. In particular, we restrict a to A = {0, 0.01, 0.02, ..., 1}
and for each element —i of the vector — consider a uniform grid of J points,

—i œ Bi,J =
I

—i,L, —i,L + —i,U ≠ —i,L

J ≠ 1 , ..., —i,U

J

where —i,L and —i,U are the lower and upper bounds of the parameter space for —i. We
then define BJ as the Cartesian product B1,J ◊ ... ◊ Bn,J . For a given value of µD, we
approximate MD (µD) by

MD (µD) =
;

vec≠1
31

Ipk ≠ (— ≠ —0)Õ ¢
1
�̂◊g�̂≠1

gg

22≠1
vec (µD)

4
(— ≠ —0) : — œ BJ

<
,

the set of values m consistent with µD and — œ BJ (for �̂◊g = �◊g).22 We then
calculate

aMMRU (µ̂D) = arg min
aœA

sup
mœMD(µ̂D)

A

sup
ãœA

Em,µ̂D
[„ã] ≠ Em,µ̂D

[„a]
B

(26)

by evaluating Em,µ̂D
[„a] for all (a, m) œ A ◊ M , which can be done by simulation.23

To further speed this step, note that Em,µ̂D
[„a] =

´
E·J (D),·K(D) [„a] dFD (µ̂D) so we

can tabulate E·J ,·K
[„a] in advance and calculate the integral by simulation. Indeed,

this is the approach we take in practice - see Section E for details.

4: Calculate the critical value Given aMMRU (µ̂D), the conditional critical value
c– (aMMRU (µ̂D)) is simply the 1≠– quantile of a (1 ≠ aMMRU (µ̂D)) ‰2

p+aMMRU (µ̂D) ‰2
k≠p

distribution for aMMRU (µ̂D) fixed. By virtue of the discrete approximation to the
22Here we take vec≠1 (·) to denote the inverse of the vectorization operator in (9). Thus, vec≠1 (·)

maps kp ◊ 1 vectors to k ◊ p matrices.
23To reduce simulation noise, we in fact take aMMRU (µ̂D) to be the largest value which comes

within 10≠5 of minimizing (26).
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p 1 2 3 4 5
J = 41 1.38 28.66
J = 21 1.09 7.90 157.84
J = 11 0.97 3.21 21.63 275.91
J = 5 0.89 1.60 3.84 10.61 52.70

Table 4: Runtime in seconds for computing PI tests in Matlab, averaged over 100
runs, using a laptop computer with an Intel i5 1.7 gigahertz processor and 4 GB of
RAM. Vertical axis lists the number of grid points used, while horizontal axis lists the
number of endogenous regressors. For empty cells, memory limits precluded e�cient
computation on laptop.

MMRU problem, we know that aMMRU (µ̂D) œ A. Thus, to save time we calculate
the 1 ≠ – quantile of (1 ≠ a) ‰2

p + a · ‰2
k≠p for a œ A, based on 1 million simulations,

before we begin and save the results. We then simply look up the appropriate criti-
cal value each time we evaluate the test.24 Finally, given ST , KT , aMMRU (µ̂D), and
c– (aMMRU (µ̂D)) we evaluate the test

„P I = 1 {KT + aMMRU (µ̂D) · JT > c– (aMMRU (µ̂D))} .

A.2.2 Computation Time

By taking J and A large, the discrete problem (26) can approximate the non-discretized
minimax regret problem arbitrarily well. In step 3 above, however, we must evaluate
the power Em,µ̂D

[„a] at least |M | · |A| = Jp · |A| times. Thus, there is a curse of
dimensionality in the parameter —. When the dimension p is small we can take a fine
grid of values — (that is, a large J) at little cost, but for p large the cost of increasing
J can be high. To illustrate this, Table 4 reports average runtimes for computing PI
tests in Matlab using an Intel i5 1.7 gigahertz processor and 4 GB of RAM.25

As we can see from Table 4, even on a relatively slow computer computing PI tests
is reasonably fast when p is equal to one, taking less than 1.5 seconds for all values
J considered. Even for higher-dimensional p, computing PI tests is reasonably fast
when J = 5 (taking less than 15 seconds for p < 5). However, when we increase J

and p together the computational burden of evaluating PI tests increases rapidly.
24Without the discrete approximation to the MMRU problem, we could instead calculate the

critical value by simulation for each test evaluation.
25The final confidence sets were computed in parallel on a server, however.
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Managing computational cost for large p: To reduce the computational de-
mands of the PI tests in higher dimensional problems, we need to reduce the number
of evaluations of Em,µ̂D

[„a]. If we are interested in power against a known subset of
alternatives, restricting attention to this set naturally implies such a reduction. Ab-
sent such restrictions, we can reduce |M | by limiting attention to deviations from the
null along specific directions. For instance, while above we define B by taking the
Cartesian product of the parameter grids Bi,J for each parameter, we could instead
restrict attention to alternatives which di�er from the null only in one parameter at
a time, holding the other parameters at their null values. This results in the MMRU
test against the class of alternatives MD which di�er from the null only in one struc-
tural parameter. Calculating the discrete approximation to this problem requires only
|A| · p · J evaluations of Em,µ̂D

[„a], which is an enormous reduction when p and J are
large. The MMRU property against a smaller set MD is of course weaker, but the
computational savings may be essential when p is large. One can likewise redefine
MD to be the set of alternatives which di�er in two or three parameters, as desired.

Computational Choices and Size Control It is important to emphasize that
plug-in tests continue to control size even if we use a very crude algorithm to calculate
aP I (D) , since the resulting test remains a CLC test, and so controls size by Theorem
3. Thus, in cases where computing aP I (D) is challenging, doing a poor job on this
step may result in a test with inferior power but will not lead to size distortion.

A.2.3 Computing Confidence Sets

As discussed above, the PI confidence set is obtained by inverting the PI test, yielding
{—0 : „P I does not reject H0 : — = —0}. We construct an approximate confidence set
by drawing a million points —0 uniformly at random from the parameter space for
—.26 For each draw —0, we test the null that —0 is the true value and keep —0 only
if the null is not rejected.27 In the present application sampling uniformly from the

26The one exception are the results for the conditional QLR test of I. Andrews and Mikusheva
(2016a) reported in columns C-E of Table 6, which due to computational cost are based on one
hundred thousand draws in specification C and ten thousand draws in specifications D and E. See
Section E for further details on the implementation of this test.

27The reported confidence sets are then constructed using the non-rejected points, for example
taking the min and max to obtain a confidence interval, and including a neighborhood of all non-
rejected points to construct a two-dimensional confidence set.
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QCLR PI S K QLR
95% Confidence Set [0.046,0.128] [0.046,0.128] [-0.002,0.186] [0.047,0.126] [0.045,0.128]

CI Length 0.082 0.083 0.188 0.079 0.083

Table 5: Confidence sets in specification A for Angrist and Krueger (1991) data,
constructed as discussed in Section A.2. PI confidence set is constructed using J = 41
grid points.

parameter space performs well, but one could also consider more refined MCMC-based
approaches as in Chernozhukov et al. (2009).

Since we compute the PI test using the discretized problem (26), note that a point
—0 can be included in the PI confidence set only if it is included in the confidence set
for some fixed-weight linear combination test which takes a (D) = a œ A, that is, if

min
aœA

(1 {(1 ≠ a) · KT + a · ST > c– (a)}) = 0. (27)

Once we’ve calculated the statistics KT and ST , however, it is very fast to check
whether (27) holds. Thus we only calculate the PI test when (27) holds, which sub-
stantially reduces the number of times we need to evaluate the PI test, the exact
degree of reduction depending on the specification considered.

A.3 Empirical Results:

We now report the identification-robust confidence sets obtained using the Angrist
and Krueger (1991) data. Table 5 gives confidence sets in specification A, where the
PI confidence set is computed using J = 41 grid points. Here we see that the QCLR,
PI, K, and QLR confidence sets are all quite similar, with the PI and QLR confidence
sets being slightly longer that the QCLR confidence set, while the K confidence set is
somewhat shorter than QCLR. Finally, the S confidence set is over twice as long as
the others, and is the only confidence set considered which includes zero.

Figure 4 plots confidence sets for specification B. Here the QCLR, PI, S, K, and
QLR confidence sets cover 6.8%, 6.4%, 15.8%, 5.1%, and 6.7% of the parameter space,
respectively, and the ordering of the confidence sets in terms of volume is much as in
specification A, save that the PI confidence set is now smaller than the QCLR and
QLR confidence sets, and the QLR confidence set is smaller than the QCLR. When
projected on the axes no confidence set excludes zero for either parameter, though
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QCLR Confidence Set

−2 0 2
−0.5

0

0.5

PI Confidence Set

−2 0 2
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0

0.5

S Confidence Set
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0
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K Confidence Set

−2 0 2
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0

0.5
QLR Confidence Set

−2 0 2
−0.5

0

0.5

Figure 4: Confidence sets in specification B for Angrist and Krueger (1991) data,
constructed as discussed in Section A.2. PI confidence set based on J = 41 grid
points. Vertical axis corresponds to coe�cient on E, while horizontal axis corresponds
to coe�cient on 1 {Et > 12} .

all confidence sets other than S exclude (0,0) so the corresponding tests reject the
joint hypothesis of zero coe�cients for both endogenous regressors. Moreover, as is
intuitively reasonable all confidence sets suggest some substitution between the two
endogenous regressors: the larger the linear e�ect of education, the smaller the e�ect
of graduating high school must be to justify the observed data.

It is di�cult to report results for specifications C-E since the joint confidence sets
are of dimension three or more, and we must project on lower-dimensional subspaces
to obtain easily reported objects.28 Table 6 reports one-dimensional confidence sets
obtained by projecting the joint confidence sets on the individual parameters, where
we use J = 5 grid points to calculate PI tests in all cases for consistency. From this
table, several points become clear. First, for specification A reducing from J = 41 to
J = 5 grid points in the calculation of the PI test has only a small e�ect on the PI

28Note that we may also be interested in confidence sets for individual parameters for their own
sake. For this purpose, projection-based intervals of the type considered here will be valid but
typically conservative. Unfortunately, eliminating this conservativeness is a open problem, and PI
tests constructed by plugging in estimates for poorly identified nuisance parameters will not in general
have correct size. For related results, see Guggenberger et al. (2012).
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confidence set, while this change has a somewhat larger e�ect in specification B. As
we increase the number of endogenous regressors the one-dimensional confidence sets
become less informative, and in specifications D and E cover the full parameter space
for each of the parameters. At the same time, the fraction of the joint parameter
space covered by the confidence sets does not increase nearly so dramatically, so the
large size of marginal confidence sets reflects in part conservativeness resulting from
projection. We see that the S confidence set has the largest volume in all specifications
other than D, while the PI confidence set is smaller than the QCLR confidence set in
all specifications save A, often by a substantial margin. The QLR confidence set is
small in specifications A and B, but its volume increases in specifications C-E. While
the K confidence set has the smallest volume in most specifications studied, this is
the result of the bounds chosen for the parameter space. Even in specification A, if
we double the bounds of the parameter space (results not shown) we find that the K
confidence set has two disjoint components while the PI, QCLR, and QLR confidence
sets remain connected and have less than half the volume of the K confidence set.

Supplementary Materials B: Derivation of Limit Prob-
lems for Examples
In this section, we provide additional details on the derivation of the limit problems
in examples I and II.

Example I: Weak IV Re-writing our moment condition we have that

fT (—0) = fT (—0) ≠ fT (—) + fT (—) = 1
T

ÿ
(Xt— ≠ Xt—0) Zt + fT (—).

Note that the expectation of fT (—) under true parameter value — is zero by our
identifying assumption, so E— [fT (—0)] = E

Ë
1
T

q
XtZt

È
(— ≠ —0) . Since

E
5 1
T

ÿ
XtZt

6
= E

5 1
T

ÿ
Zt (Z Õ

tfi + V2,t)
6

= E
5 1
T

ÿ
ZtZ

Õ
t

6
fi,

we can see that provided that 1
T

q
ZtZ Õ

t æp QZ for QZ positive definite and 1Ô
T

q
ZtV1,t

and 1Ô
T

q
ZtV2,t converge in distribution to jointly normal random vectors, the weak-
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Specification A B C D E

Et

QCLR [0.046,0.128] [-0.232,0.198] [-0.481,0.5] [-0.5,0.5] [-0.5,0.5]
PI [0.046,0.130] [-0.213,0.181] [-0.464,0.5] [-0.5,0.5] [-0.5,0.5]
S [-0.002,0.185] [-0.296,0.316] [-0.5,0.5] [-0.5,0.5] [-0.5,0.5]
K [0.047,0.126] [-0.206,0.163] [-0.451,0.5] [-0.5,0.5] [-0.5,0.5]

QLR [0.045,0.128] [-0.217,0.194] [-0.481,0.5] [-0.5,0.5] [-0.5,0.5]

1 {Et Ø 12}

QCLR [-0.733,2] [-2,2] [-2,2] [-2,2]
PI [-0.601,2] [-2,2] [-2,2] [-2,2]
S [-1.555,2] [-2,2] [-2,2] [-2,2]
K [-0.488,2] [-2,2] [-2,2] [-2,2]

QLR [-0.705,2] [-2,2] [-2,2] [-2,2]

1 {Et Ø 14}

QCLR [-2,2] [-2,2] [-2,2]
PI [-2,2] [-2,2] [-2,2]
S [-2,2] [-2,2] [-2,2]
K [-2,2] [-2,2] [-2,2]

QLR [-2,2] [-2,2] [-2,2]

1 {Et Ø 16}

QCLR [-2,2] [-2,2]
PI [-2,2] [-2,2]
S [-2,2] [-2,2]
K [-2,2] [-2,2]

QLR [-2,2] [-2,2]

1 {Et Ø 18}

QCLR [-2,2]
PI [-2,2]
S [-2,2]
K [-2,2]

QLR [-2,2]

Volume

QCLR 8.23% 6.82% 11.92% 11.21% 13.14%
PI 8.39% 6.02% 8.50% 8.56% 10.8%
S 18.75% 15.75% 16.77% 15.13% 16.34%
K 7.91% 5.09% 7.51% 8.28% 11.64%

QLR 8.33% 6.69% 14.22% 15.25% 15.94%

Table 6: One-dimensional projections and volume of 95% joint confidence sets in
specifications A-E for Angrist and Krueger (1991) data, constructed as discussed in
Section A.2. PI confidence sets are computed using J = 5 grid points. Volume is the
percent of parameter space covered by the joint confidence set.
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instruments sequence fiT = cÔ
T

implies that under true parameter value —,

Ô
T

Q

a fT (—0)
≠ ˆ

ˆ—
fT (—0)

R

b æd N

Q

a

Q

a QZc(— ≠ —0)
QZc

R

b , �(—0)
R

b .

Combined with the consistency of �̂ff , this immediately yields (6).

Example II: Minimum Distance The identifying assumption for the minimum
distance model imposes ÷ = f(◊). Note, however, that

gT (◊0) = �̂≠ 1
2

÷ (÷̂ ≠ f(◊0)) = �̂≠ 1
2

÷ (÷̂ ≠ f(◊)) + �̂≠ 1
2

÷ (f(◊) ≠ f(◊0))

where by assumption the first term converges to a N(0, Ik) distribution and the sec-
ond term converges to �≠ 1

2
÷ (f(◊) ≠ f(◊0)) by the Continuous Mapping Theorem and

the assumed consistency of �̂÷. The consistency of �gT (◊) for �≠ 1
2 ˆ

ˆ◊
f(◊0) follows

similarly, immediately implying (7).

Supplementary Materials C: Limit Problem for Weak
GMM Models
In this section, we prove some additional results for GMM models which are weakly
identified in the sense of Stock and Wright (2000). Suppose we begin with a moment
function ft(Â) which is di�erentiable in the parameter Â and satisfies the usual GMM
identifying assumption that EÂ [ft(Â)] = 0, and are interested in testing H0 : Â = Â0.
Suppose that, much like in Stock and Wright (2000), our parameter vector Â =
(Â1, Â2) is such that Â1 is weakly identified while Â2 is strongly identified, and that
the expectation of ft(Â0) under alternative Â is

EÂ [ft(Â0)] = h̃1(Â1) + 1Ô
T

h̃2(Â1, Â2)

for h̃1, h̃2 continuously di�erentiable. Letting Â denote the true parameter value, for
sample size T let us reparametrize in terms of ◊ = ◊T =

1Ô
T (Â1 ≠ Â1,0) , Â2

2
and note

that the null can now be written H0 : ◊ = ◊0 = (0, ◊2,0). This reparameterization is
infeasible as it demands knowledge of the unknown true value Â1, but this is irrelevant
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provided we use a test which is invariant to linear reparameterizations. Let

gt(◊) = f

A

Â1,0 + ◊1Ô
T

, ◊2

B

denote the moment function under this new parametrization, and note that the ex-
pectation of gt(◊0) under alternative ◊ is

E◊ [gt(◊0)] = h̃1

A

Â1,0 + ◊1Ô
T

B

+ 1Ô
T

h̃2

A

Â1,0 + ◊1Ô
T

, ◊2

B

= h̃1

A

Â1,0 ≠ ◊1Ô
T

B

+ 1Ô
T

h̃2

A

Â1,0 + ◊1Ô
T

, ◊2

B

= h̃1 (Â1,0) + 1Ô
T

ˆ

ˆÂÕ
1
h̃1

A

Â1,0 + ◊̄1Ô
T

B

◊1 + 1Ô
T

h̃2

A

Â1,0 + ◊1Ô
T

, ◊2

B

where in the last step we have taken a mean value expansion in ◊1 with intermedi-
ate value ◊̄1. Note, however, that the identifying assumption for GMM implies that
h̃1 (Â1,0) = 0 while under our continuity assumptions

ˆ

ˆÂÕ
1
h̃1

A

Â1,0 + ◊̄1Ô
T

B

æ ˆ

ˆÂÕ
1
h̃1 (Â1,0)

and
h̃2

A

Â1,0 + ◊1Ô
T

, ◊2

B

æ h̃2 (Â1,0, ◊2) .

Hence, E◊ [gt(◊0)] = h(◊) + o
1

1Ô
T

2
where

h(◊) = 1Ô
T

ˆ

ˆÂÕ
1
h̃1 (Â1,0) ◊1 + 1Ô

T
h̃2 (Â1,0, ◊2) . (28)

Note that the strongly identified parameters ◊1 enter h(◊) linearly while the weakly
identified parameters ◊2 may enter non-linearly. Suppose that for our original moment
functions ft(◊), we have that under the sequence of alternatives ÂT =

1
Â1,0 ≠ 1Ô

T
◊1, Â2

2

1Ô
T

Q

a
q

ft(Â0) ≠ EÂT
[ft(Â0)]

vec
1q ˆ

ˆÂÕ ft(Â0) ≠ EÂT

Ë
ˆ

ˆÂÕ ft(Â0)
È2

R

b æd N (0, �f )
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where �f is consistently estimable and �ff , the upper-left block of �f , is full rank.
Since alternative ◊ in the new parametrization corresponds to this sequence of alter-
natives in the original parametrization, this implies that under ◊ we have

1Ô
T

Q

a
q

gt(◊0) ≠ E◊ [gt(◊0)]
vec

1q ˆ
ˆ◊Õ gt(◊0) ≠ E◊

Ë
ˆ

ˆ◊Õ gt(◊0)
È2

R

b æd N (0, �)

for � =
Q

a �gg �g◊

�◊g �◊◊

R

b consistently estimable and �gg = �ff full-rank. Letting

gT (◊0) = 1Ô
T

�̂≠ 1
2

gg

ÿ

t

gt(◊0)

and
�gT (◊0) = 1Ô

T
�̂≠ 1

2
gg

ÿ

t

ˆ

ˆ◊
gt(◊0)

note that Q

a gT (◊0)
�gT (◊0)

R

b æd N

Q

a

Q

a m

µ

R

b ,

Q

a I �g◊

�◊g �◊◊

R

b

R

b

where µ = limT æŒ E◊

Ë
1Ô
T

q ˆ
ˆ◊Õ gt(◊0)

È
provided this limit exists and m = h(◊) œ

M(µ, “), where M(µ, “) will depend on the structure of the problem at hand: in
some cases it may be that without additional structure we cannot restrict the set of
possible values m and have M(µ) = Rk while in others, like Example I, we may be
able to obtain further restrictions. Note further, that while we framed the analysis
here using reparameterization in terms of local alternatives for strongly identified
parameters, we could equivalently have formulated �gT using the Jacobian of the
original moment function, ˆ

ˆÂÕ ft (Â0), post-multiplied by an appropriate sequence of
normalizing matrices AT , as in Appendix 1.

We can say a bit more regarding the strongly identified parameters ◊1. Note that by
the definition of ◊, ˆ

ˆ◊Õ
1
gt(◊0) = 1Ô

T
ˆ

ˆÂÕ
1
ft(Â0). Hence, 1Ô

T

q ˆ
ˆ◊Õ

1
gt(◊0) = 1

T

q ˆ
ˆÂÕ

1
ft(Â0)

and we can re-write µ as limT æŒ E◊

Ë
1
T

q ˆ
ˆÂÕ

1
ft(Â0) 1Ô

T

q ˆ
ˆÂÕ

2
ft(Â0)

È
. Further, the

central limit theorem we have assumed for 1Ô
T

q ˆ
ˆÂÕ

1
ft(Â0) implies that 1Ô

T

q ˆ
ˆ◊Õ

1
gt(◊0) æp

µ1 = limT æŒ E◊

Ë
1
T

q ˆ
ˆÂÕ

1
ft(Â0)

È
. Together with (28) this implies that under standard

regularity conditions (see e.g. Newey and McFadden (1994)) h(◊1, ◊2,0) = µ1 · ◊1 and
hence that in the special case where all parameters are strongly identified we obtain
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the Gaussian shift limiting problem
Q

a g

�g

R

b ≥ N

Q

a

Q

a µ · ◊

µ

R

b ,

Q

a I 0
0 0

R

b

R

b .

Supplementary Materials D: Further Details of Weak
IV Simulations
In Section 7.2 of the paper we discuss simulation results in weak IV limit problems
calibrated to match parameters estimated using data from Yogo (2004). This section
details the estimates, simulation design, and implementation of CLR, MM, QLR, and
PI tests underlying these results. We also give some additional results on the linear
IV model with homoskedastic errors, and the performance of MM tests with tuning
parameters as in Moreira and Moreira (2013).

D.1: Results for Homoskedastic IV Model

We directly compare the weight function aCLR (D) implied by the CLR test to the
plug-in weight functions aP I (D) for plug-in tests in the homoskedastic IV model. We
then plot the power curves of all tests considered.

D.1.1 Weight Function Comparison

The task of comparing the weight functions implied by PI tests for the various esti-
mators of r is considerably simplified by the following lemma:

Lemma 2 For A and B symmetric positive-definite matrices of dimension 2 ◊ 2 and
k ◊ k, respectively, the function aMMRU (µD) in the limit problem (6) with � = A ¢ B

can be taken to depend on µD only through r = µÕ
D�≠1

D µD.

Proof: Note that � = A ¢ B implies that � =
S

U 1 A12/A11

A12/A11 A22/A11

T

V ¢ I. To prove

the result, it is easier to work with the formulation of the problem discussed in AMS.
In particular, consider k ◊ 1 random vectors ÂS and ÂT (denoted by S and T in AMS)
with Q

a
ÂS
ÂT

R

b ≥ N

Q

a

Q

a c—µfi

d—µfi

R

b , I

R

b ,
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were c— ranges over R for di�erent true values of —. AMS (Theorem 1) show that the
maximal invariant to rotations of the instruments is

1
ÂS Õ ÂS, ÂS Õ ÂT , ÂT Õ ÂT

2
, and note that

the S statistic can be written S = ÂS Õ ÂS, while the K statistic is K = (ÂSÕ ÂT)2

ÂT Õ ÂT . Kleibergen
(2007) considers a finite-sample Gaussian IV model with a known covariance matrix
for the structural errors, and his Theorem 3 establishes that (in our notation) ÂT Õ ÂT =
DÕ�≠1

D DÕ, where �D = I
3

A22
A11

≠
1

A12
A11

224
. Hence, in the limit problem (6) with � =

S

U 1 A12/A11

A12/A11 A22/A11

T

V ¢ I, the maximal invariant under rotations of the instruments
1

ÂS Õ ÂS, ÂS Õ ÂT , ÂT Õ ÂT
2

is a one-to-one transformation of (J, K, DÕ�DD).
By the imposed invariance to rotations of the instruments, it is without loss of

generality to assume that d—µfi = e1 ·
Ô

r, where e1 œ Rk has a one in its first entry
and zeros everywhere else. Hence, T̃ ÕT̃ = DÕ�DD ≥ ‰2

k (r) . For fixed r, the distribu-
tion of (J, K, DÕ�DD) depends only on c—µfi = ||m||e1 and on consistently estimable
parameters. The value of r imposes no restrictions on the value of ||m||. Hence, the
power of any unconditional linear combination test „a can be written as a function of
||m|| and r, the power envelope for unconditional linear combination tests is defined
by —u

||m||,r = supaœ[0,1] E||m||,r [„a], and the maximum regret for any unconditional linear
combination test (taking µD and hence r to be known) is

sup
||m||œR+

1
—u

||m||,r ≠ E||m||,r [„a]
2

which depends only on r. We can thus take the MMRU test „MMRU(µD) to depend
on µD only through r = µÕ

D�≠1µD.⇤

Since the weights of both the CLR test and the plug-in approaches discussed in
Section 6.1 depend on r̂ alone, in Figure 5 we plot the values of aCLR (r̂), aMMRU (r̂),
aMMRU (r̂MLE), aMMRU (r̂P P ), and aMMRU (r̂KRS) as functions of r̂ for k = 5. All
the weight functions exhibit similar qualitative behavior, placing large weight on S

for small values of r̂ and increasing the weight on K as r̂ grows, but there are some
notable di�erences. Perhaps most pronounced, aMMRU (r̂) is lower than any of the
other functions, as is intuitively reasonable given that r̂ tends to overestimate r. As
previously noted both r̂MLE and r̂P P are zero for a range of strictly positive values r̂.
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Figure 5: Weight functions aCLR(r̂) for CLR and aMMRU (r̃ (r̂)) for PI tests with
di�erent estimators r̃ of r discussed in Section 6.1 for linear IV with five instruments
and homoskedastic errors.

D.1.2 Power Curves for Homoskedastic IV Model

Figures 6 and 7 plot power curves for the CLR, K, AR, and PI tests in the linear IV
calibrations discussed in Section 7.1 of the paper.

D.2: Estimation of Parameters for the Limit Problem

The behavior of (g, �g) in the weak IV limit problem (6) is determined entirely by
(m, µ, �). The set M(µ) of possible values m given µ is M(µ) = {b · µ : b œ R}, so
to simulate the power properties of di�erent tests in the limit problem all we require
are values of µ and �.

To obtain values for these parameters, as noted in the text we use data from Yogo’s
(2004) paper on weak instrument-robust inference on the elasticity of inter-temporal
substitution. For all countries we use quarterly data for a (country-specific) period
beginning in the 1970’s and ending in the late 1990’s. We focus on estimation based
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on the linear IV moment condition

ft(—) = Zt (Yt ≠ Xt—)

where Yt is the change in consumption (Yogo’s �c), Xt is the real interest rate, and
Zt is a 4◊1 vector of instruments which following Yogo we take to be lagged values of
the nominal interest rate, inflation, consumption growth, and the log dividend-price
ratio. We focus on the case with Xt the risk-free rate since this is the case for which
Yogo finds the strongest relationship between the instruments and the endogenous
regressor (see Table 1 of Yogo (2004)). All data is de-meaned prior to beginning the
analysis.

For country i we estimate µ by µ̂i = 1Ô
T

q
ZtXt, take —̂i to be the two-step GMM es-

timate of —, and let �̂i be the Newey-West covariance estimator for V ar
3

1Ô
T

q 1
ft(—̂i)Õ, Z Õ

tXt

2Õ
4

based on 3 lags of all variables. These estimates will not in general be consistent for
the parameters of the limit problem under weak-instrument asymptotics, but give us
empirically reasonable values for our simulations.

D.3: Simulation Design

For each country i we consider the problem of testing H0 : — = —0 in the limit problem.
For true parameter value — and µ̃i = �̂≠ 1

2
ff,iµ̂i, in simulation runs b = 1, ..., B we draw

Q

a gb

�gb

R

b ≥ N

Q

a

Q

a µ̃i (— ≠ —0)
µ̃i

R

b , �̂i

R

b

where

�̂i =
S

U I �̂g◊,i

�̂◊g,i �̂◊◊,i

T

V =
S

U I �̂≠ 1
2

ff,i�̂f—,i�̂
≠ 1

2
ff,i

�̂≠ 1
2

ff,i�̂—f,i�̂
≠ 1

2
ff,i �̂≠ 1

2
ff,i�̂——,i�̂

≠ 1
2

ff,i

T

V .

Note that this is the limiting distribution (6) of the normalized moment condition
and Jacobian (gT , �gT ) in a weak IV problem with true parameters —, � = �̂i, and
µ = µ̂i. We then calculate the S and K tests „S,b, „K,b as in (17) and (16). We define
the QCLR test as in Theorem 4 and, following Kleibergen (2005), take r = DÕ

b�̂≠1
D,iDb

for �̂D,i = �̂◊◊,i ≠ �̂◊g,i�̂g◊,i. Details on the implementation of the MM-SU tests are
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discussed in the next section. Finally, to calculate the PI test we take

µ̂D,b = Db ·

Ú
max

Ó
DÕ

b�̂≠1
D,iDb ≠ k, 0

Ô

Ò
DÕ

b�̂≠1
D,iDb

which is a generalization of the positive-part estimator r̂P P to the non-Kronecker case,
and consider „P I,b = „MMRU(µ̂D,b). Details on calculation of the PI test are given in
the Section D.7.

For each value — in a grid we estimate the power of each test against this alternative
by averaging over B, e.g. estimating the power of „K by 1

B

q
„K,b (where we take

B = 5, 000), and repeat this exercise for each of the eleven countries considered.

D.4: The MM1-SU and MM2-SU Tests

The MM1-SU and MM2-SU procedures of MM maximize weighted average power
against particular weights on (—, µ) over a class of tests satisfying a su�cient con-
dition for local unbiasedness. To apply the results of MM in our context, we can
take (Z ÕZ)≠ 1

2 Z ÕY (in the notation of MM) to equal
1

g �g
2

and then derive their
statistics S and T as they describe, noting that S as defined in MM is, up to rotation,
equal to g as defined here. MM calculate their weights using the 2 ◊ 2 and k ◊ k

symmetric positive definite matrices �ú and �ú solving min Î� ≠ � ¢ �ÎF (see MM
for the weights). To choose the scalings for (�ú, �ú), we follow van Loan and Pitsianis
(1993) and normalize the Frobeinus norm of �ú to one. Thus, since we estimate dif-
ferent covariance matrices for each of the 11 countries in the Yogo data, the MM tests
use di�erent weight functions for each country. For each pair (�ú, �ú) MM consider
two di�erent weight functions, which they label MM1 and MM2 respectively. Each
of these weight functions features a tuning parameter (which MM call ‡ and ’ for
the MM1 and MM2 weights, respectively). Following MM we set both ‡ and Î equal
to one tenth of the sample size. Results based on an alternative choice of tuning
parameters, as in Moreira and Moreira (2013), are reported below.

MM consider several di�erent tests based on their weights. They find in simula-
tion that weighted average power optimal conditionally similar tests can have some
undesirable power properties in non-homoskedastic linear IV models, in particular ex-
hibiting substantial bias. To remedy this they impose further restrictions on the class
of tests, considering first locally unbiased (LU) tests, which satisfy ˆ

ˆ—
E—0,µ [„] = 0 for
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all µ œ M. They then consider the class of strongly unbiased (SU) tests which satisfy
the condition E—0,µ [„g] = 0 for all µ œ M, and which they show are a subset of the LU
tests. They find that weighted average power optimal tests within this class (based
on the MM1 and MM2 weights) have good power in their simulations, and it is these
tests which we consider here.

As noted in the main text, the class of CLC tests is a subset of the SU tests. To
see this, note that (for fixed D) S and K are both invariant to switching the sign of
g. Since g ≥ N (0, Ik) conditional on D = d under — = —0, we can see that for any
conditional linear combination test „a(D),

E—0,µ

Ë
„a(D)g|D = d

È
= E—0,µ

Ë
≠„a(D)g|D = d

È
= 0

and thus that all CLC tests satisfy E—0,µ

Ë
„a(D)g

È
= 0 and are SU tests. Since the

MM1-SU and MM2-SU tests are weighted average power optimal in the class of SU
tests, it follows that their weighted average power must be at least as high as that of
any CLC test (for their respective weights).

The MM-SU tests are not available in closed form. However, as discussed in MM,
approximating these tests numerically is fairly straightforward. We implement the
MM-SU tests using the linear programing approach discussed by MM, using 5,000
draws for S (J = 5, 000 in MM’s notation). Evaluating the MM-SU tests also involves
an integral over a function of —, which we likewise approximate via Monte-Carlo (based
on 1,000 draws). One issue we encountered at this stage is that some of the matrices
used in the construction of the MM weights are near-degenerate, leading to negative
eigenvalues when evaluated numerically. The issue appears to be purely numerical, but
despite extensive exploration, as well as consultation with Marcelo Moreira, we have
not succeeded in fully eliminating this issue. It seems unlikely to have a substantial
impact on the simulated performance of the MM procedures, but it is possible it could
have some e�ect.

D.5: Results for Alternative MM Tuning Parameters

As noted in the text, Moreira and Moreira (2013) took the tuning parameters in the
MM1-SU and MM2-SU tests both equal to one, rather than setting them to one-
tenth of the sample size as do MM. Since we previously followed Moreira and Moreira
(2013) in implementation of these tests, for comparability with previous versions here
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QCLR AR K PI MM1-SU MM2-SU QLR
Australia 0.60% 17.78% 1.58% 4.86% 8.12% 3.02% 3.98%
Canada 4.00% 20.98% 4.92% 10.06% 9.00% 6.66% 11.62%
France 0.66% 20.44% 0.76% 6.92% 3.12% 2.64% 4.76%

Germany 4.18% 20.90% 10.42% 6.94% 8.80% 8.84% 18.72%
Italy 5.16% 14.72% 9.08% 5.54% 11.92% 6.54% 4.14%
Japan 40.12% 16.56% 85.08% 6.52% 9.70% 14.84% 8.48%

Netherlands 2.22% 19.16% 8.24% 7.82% 2.76% 2.26% 3.20%
Sweden 1.96% 19.72% 2.52% 5.02% 7.36% 2.16% 2.24%

Switzerland 4.02% 21.36% 4.10% 7.86% 8.76% 7.20% 2.60%
United Kingdom 26.68% 18.86% 37.40% 11.18% 14.48% 5.66% 10.98%

United States 13.70% 17.22% 16.10% 8.74% 24.10% 13.54% 3.66%

Table 7: Maximal point-wise power shortfall relative to other tests considered, for
simulations calibrated to match data in Yogo (2004). QCLR denotes the quasi-CLR
test of Kleibergen (2005) while PI is the plug-in test discussed in Section 7.2.1 of the
paper. AR is the Anderson Rubin (or S) test, K is Kleibergen (2005)’s K test, and
MM1-SU and MM2-SU are the weighted average power optimal SU tests of Moreira
and Moreira (2013). Note that here we set the tuning parameters in these tests as in
Moreira and Moreira (2013), rather than Moreira and Moreira (2015).

we report results for the same calibrations to Yogo data considered in the paper where
we now select the tuning parameters as in Moreira and Moreira (2013). Figures 8-10
plot power curves for the eleven simulation designs considered, while Table 7 reports
the maximal power shortfall for each test relative to the other tests considered in each
simulation design. As noted in the text, for this choice of tuning parameters the PI
test has the smallest maximal power shortfall of all the tests considered.

D.6: Implementation of QLR Test

To evaluate the QLR test of I. Andrews and Mikusheva (2016a) we need to evaluate
a conditional critical value function, which requires simulating the conditional distri-
bution of a QLR statistic under the null. To accelerate the required calculations we
follow Andrews and Mikusheva (2016a) and take a discrete approximation to the pa-
rameter space and evaluate both the QLR statistic and critical values via grid search.
Critical values are then based on 1,000 simulation draws.
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D.7: Implementation of PI Test

To implement the PI test, we need to calculate the MMRU test

„MMRU(µ̂D,b) = 1
;3

1 ≠ aMMRU(µ̂D,b)
4

Kr + aMMRU(µ̂D,b)Sr Ø c–

3
aMMRU(µ̂D,b)

4<

so the critical task is evaluating aMMRU(µ̂D,b). As discussed in Section 6 above,
aMMRU(µ̂D,b) solves a minimization problem which depends on µ̂D,b and on �̂i.

As in Section A, we approximate aMMRU by considering grids of values in a and
—. We first simulate the critical values c– (a) for linear combination tests based on
K +a·J for a œ A = {0, 0.01, ..., 1}, which are simply the 1≠– quantiles of ‰2

p+a·‰2
k≠p

distributions, and store these values for later use. To speed up power simulations, for
each a œ A and (·J , ·K) values in a grid we calculate

Pr
Ó
‰2

p (·K) + a · ‰2
k≠p (·J) > c–(a)

Ô

based on 106 simulations and store the results as well.
We next consider a grid B = {≠5, ≠4.9, ..., 5} of 101 values for the alternative —h.

For each value —h we solve for

µ̂b,h =
1
I ≠ �̂◊g,i (—h ≠ —0)

2≠1
µ̂D,b

which gives us the value µ for which D would have mean µ̂D,b under alternative —h.
Note that the mean m of g under —h is then mb,h = µ̂b,h (—h ≠ —0). We take draws
l = 1, ..., L = 10, 000 from

Db,l ≥ N
1
µ̂D,b, �̂D,i

2

and for each (h, l) pair we calculate ·K,b,h,l = mÕ
b,hPDb,l

mb,h and ·J,b,h,l = mÕ
b,hMDb,l

mb,h.
We could estimate the power of the linear combination test with weight a against

alternative —h by

Ê [„a|— = —h] = 1
L

ÿ
Pr

Ó
‰2

p (·K,b,h,l) + a · ‰2
k≠p (·J,b,h,l) > c–(a)

Ô
.

Instead, to reduce the amount of required computation we note that for (b, h) fixed,
·K,b,h,l +·J,b,h,l = mÕ

b,hmb,h and thus for fixed (b, h) the power of the linear combination
test with weight a can be written as a function of ·K,b,h,l alone. Using this observation,
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we group the ten smallest values of ·K,b,h,l, the next ten smallest, etc. and assign each
cell the (·K , ·J) values given the by average of its endpoints. This gives us pairs
(·̄K,q, ·̄J,q) for q œ {1, ..., 1000}, and we estimate

Ê [„a|— = —h] = 1
1000

ÿ
Pr

Ó
‰2

p (·̄K,q) + a · ‰2
k≠p (·̄J,q) > c–(a)

Ô

where by using (·̄K,q, ·̄J,q) we need only calculate power 1000 times rather than 10000.
To further speed computation, we approximate Pr

Ó
‰2

p (·̄K,q) + a · ‰2
k≠p (·̄J,q) > c–(a)

Ô

by interpolating using our stored values for Pr
Ó
‰2

p (·K) + a · ‰2
k≠p (·J) > c–(a)

Ô
.

For each a œ A we estimate the maximum regret by

sup
—hœB

3
max
ãœA

Ê [„ã|— = —h] ≠ Ê [„a|— = —h]
4

and pick aMMRU (µ̂D,b) as the largest value a œ A which comes within 10≠5 of minimiz-
ing this quantity- we do this instead of taking aMMRU (µ̂D,b) to be the true minimizing
value in order to slightly reduce simulation noise in aMMRU (µ̂D,b) .

Supplementary Materials E: Additional Implemen-
tation Details
This section provides further details on our implementation of the PI and QLR tests
and confidence sets in Section A.

E.1 Estimator µ̂D

Note that for V = (q
i vec ([D]i))

≠1 and [A]ij the element in row i and column j of A,

E [DÕV D]ij = E
Ë
[D]Õi V [D]j

È
= E

Ë
[µD]Õi V [µD]j

È
+ E

Ë
[D ≠ µD]Õi V [D ≠ µD]j

È

= [µÕ
DV µD]ij + E

Ë
tr

1
[D ≠ µD]Õi V [D ≠ µD]j

2È

= [µÕ
DV µD]ij + tr

1
V · E

Ë
[D ≠ µD]j [D ≠ µD]Õi

È2

= [µÕ
DV µD]ij + tr

1
V · Cov

1
[D]j , [D]i

22
.
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Thus, an unbiased estimator of [µÕ
DV µD]ij is [DÕV D]ij ≠tr

1
V · Cov

1
[D]j , [D]i

22
. Let

R̂ = DÕV D and define R̂U to be the corresponding unbiased estimator for R = µÕ
DV µD.

Unlike R, R̂U may have negative eigenvalues. To address this possibility, let R̂P be
matrix with the same eigenvectors as R̂U which sets any negative eigenvalues to zero.
Our estimator of µD is

µ̂D = DR̂≠ 1
2 R

1
2
P

which can be seen to imply estimate R̂P for R. Moreover, in the case with a single
endogenous regressor, this choice of µ̂D can be seen to yield the positive-part estimator
used in Section 7.2 and described in footnote 15. To obtain a feasible estimator µ̂D,

we simply plug in a consistent estimator for V , based on �̂D = �̂◊◊ ≠ �̂◊g�̂g◊.

E.2: Calculation of aPI (D) = aMMRU (µ̂D)

After approximating the MMRU problem as described in Section D.7, to calculate
the plug-in weight aMMRU (µ̂D) we need to repeatedly evaluate Em,µ̂D

[„a] for di�erent
values a. As in D.7 above, we reduce the computational burden at this step by
recognizing that Em,µ̂D

[„a] =
´

E·J (D),·K(D) [„a] dFD (µ̂D) and tabulating E·J ,·K
[„a]

in advance. In particular, for each a œ A and (·J , ·K) values in a grid we calculate

Pr
Ó
‰2

p (·K) + a · ‰2
k≠p (·J) > c–(a)

Ô

based on a million simulations and store the results. Note that the resulting values
depend only on k, p, and A. Thus, in computing e.g. confidence sets, we only have to
do this tabulation once per specification.

To evaluate Em,µ̂D
[„a], for each (µ̂D, m) pair, we take draws l = 1, ..., L = 10, 000

from
vec (Dl) ≥ N

1
vec (µ̂D) , �̂D

2

for �̂D = �̂◊◊ ≠ �̂◊g�̂g◊. For each l we calculate ·K,l = mÕPDl
m and ·K,l = mÕMDl

m.

To approximate
´

E·J (D),·K(D) [„a] dFD (µ̂D) , we group the twenty smallest values of
·K,l, the next twenty smallest, etc. and assign each cell the (·K , ·J) values given the
by average of its endpoints. This gives us pairs (·̄K,q, ·̄J,q) for q œ {1, ..., 500}, and we
estimate

ˆ
E·J (D),·K(D) [„a] dFD (µ̂D) = 1

500
ÿ

Pr
Ó
‰2

p (·̄K,q) + a · ‰2
p (·̄J,q) > c–(a)

Ô
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where by using (·̄K,q, ·̄J,q) we need only calculate power 500 times rather than 10,000.
To compute Pr

Ó
‰2

p (·̄K,q) + a · ‰2
k≠p (·̄J,q) > c–(a)

Ô
we then simply interpolate using

our stored values.

E.3: Evaluation of QLR Critical Values

To evaluate the conditional QLR test of I. Andrews and Mikusheva (2016a) we need to
repeatedly simulate from the conditional distribution of the QLR statistic (the di�er-
ence between the continuously updating GMM objective evaluated at the the null and
at the continuously updating GMM estimator) given D under the null. This requires
repeated numerical optimization, which becomes more challenging as we increase the
dimension of the parameter and is very demanding for specifications D and E for the
Angrist and Krueger (1991) data. For each parameter —i we construct a grid of five
values evenly spaced between —i,L and —i,U , and then construct a grid of values of —

by taking the Cartesian product of these grids for the individual parameters. Note
that the resulting grid is the same as the grid of values BJ used to evaluate the PI
test for J = 5.

In each simulation run we evaluate the continuously updating GMM objective
function at each point in BJ . We then take the point with the lowest value of the
objective function as the starting value for numerical (simplex) minimization. Critical
values are based on 500 simulation draws.

Supplementary Materials F: Inference on the New
Keynesian Phillips Curve
To illustrate the application of PI tests to a nonlinear example, we study the perfor-
mance of robust minimum distance inference on new Keynesian Phillips curve (NKPC)
parameters. There is considerable evidence that some NKPC parameters are weakly
identified: Mavroeidis et al. (2014) review the empirical literature on the role of ex-
pectations in the NKPC and find that parameter estimates are extremely sensitive to
model specification and, conditional on correct specification, su�er from weak identifi-
cation. To address these weak identification issues Magnusson and Mavroeidis (2010)
(henceforth MM) propose identification-robust S and K statistics for testing hypothe-
ses on NKPC parameters using a minimum distance approach. These statistics will
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form the basis for our analysis.
MM study a simple new Keynesian Phillips curve model

fit = (1 ≠ ‹)2

‹ (1 + fl)xt + 1
1 + fl

E [fit+1| It] + fl

1 + fl
fit≠1 + Át (29)

where fit is inflation, xt is a measure of marginal costs, E [ ·| It] denotes an expec-
tation conditional on information available at time t, Át is an exogenous shock with
E [Át+1| It] = 0, and the parameters ‹ and fl denote the degree of price stickiness and
price indexation, respectively. Following Sbordone (2005), MM further assume that
(fit, xt) follows a nth order vector auto-regressive (VAR) process, which can be written
in companion form as

zt = A(Ï)zt≠1 + ‘t

where zt = (fit, xt, ..., fit≠n+1, xt≠n+1)Õ is a 2n ◊ 1 vector, A (Ï) is a 2n ◊ 2n matrix,
Ï is the vector of 4n unknown VAR parameters, and ‘t are VAR innovations with
E [‘t+1| It] = 0. For efi and ex unit vectors such that eÕ

fizt = fit, eÕ
xzt = xt and

◊ = (‹, fl) , define the 2n-dimensional distance function f(Ï, ◊) as

f(Ï, ◊) = A (Ï)Õ
IC

I ≠ 1
1 + fl

A (Ï)Õ
D

efi ≠ (1 ≠ ‹)2

‹ (1 + fl)ex

J

≠ fl

1 + fl
efi.

MM show that the NKPC model (29) implies that the true parameter values Ï and
◊ satisfy f(Ï, ◊) = 0, and propose testing H0 : ◊ = ◊0 using an identification-robust
minimum distance approach.

To model weak identification in this context, suppose the data is generated by
a sequence of models with drifting true VAR coe�cients ÏT = Ï + 1Ô

T
cÏ + o

1
1Ô
T

2
.

We assume that the usual OLS estimates for the VAR coe�cients are consistent and
asymptotically normal Ô

T (Ï̂ ≠ ÏT ) æd N (0, �ÏÏ)

where we have a consistent estimator �̂ÏÏ for �ÏÏ. The �-method (Theorem 3.1 in
Van der Vaart (2000)) then yields that

Ô
T (f(Ï̂, ◊) ≠ f(ÏT , ◊)) æd N

A

0,
ˆ

ˆÏÕ f(Ï, ◊)�ÏÏ
ˆ

ˆÏÕ f(Ï, ◊)Õ
B

.

To model weak identification in this context MM assume that ˆ
ˆ◊Õ f(ÏT , ◊) = 1Ô

T
C
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for a fixed matrix C, with the result that
Ô

T ˆ
ˆ◊Õ f(ÏT , ◊) is constant across T . This

leads to the usual issues associated with weak identification, including nonstandard
limiting distributions for non-robust test statistics. Here, we will take a more flexible
approach and assume only that ˆ

ˆ◊Õ f(ÏT , ◊) drifts towards some, potentially reduced-
rank, matrix as the sample size grows.

To apply our robust testing approach in this context, define

�̂ff = ˆ

ˆÏÕ f(Ï̂, ◊0)�̂ÏÏ
ˆ

ˆÏÕ f(Ï̂, ◊0)Õ

which is a consistent, �-method-based estimator for �ff = limT æŒ T ·V ar (f(Ï̂, ◊0)Õ) .

We can then define
gT (◊) =

Ô
T �̂≠ 1

2
ff f(Ï̂, ◊)

�gT (◊) = �̂≠ 1
2

ff

ˆ

ˆ◊Õ f(Ï̂, ◊)AT .

for AT a sequence of full-rank normalizing matrices which may depend on the sequence
of true VAR parameters ÏT . Under sequences of true parameter values ◊T such that
gT (◊0) converges in distribution, corresponding to local alternatives for strongly iden-
tified parameters and fixed alternatives for weakly identified ones, arguments discussed
in Section F.3 below yield the weak convergence

Q

a gT (◊0)
�gT (◊0)

R

b æd

Q

a g

�g

R

b ≥ N

Q

a

Q

a m

µ

R

b ,

Q

a I �g◊

�◊g �◊◊

R

b

R

b . (30)

where �g is full rank almost surely, m œ M (µ, “) for M (µ, “) appropriately defined,
� is consistently estimable, and details on all terms may be found below. Hence,
this model falls into the class considered in the paper. While �gT depends on the
(generally unknown) sequence of normalizing matrices AT , provided we restrict at-
tention to postmultiplication-invariant CLC tests we can instead conduct tests based
on the feasible statistics (g̃T , �g̃T , “̃) = h

1
gT , �gT , “̂; A≠1

T

2
. For “̂ as defined below

the statistics ST and KT based on (g̃T , �g̃T , “̃) are equivalent to the MD ≠ AR and
MD ≠ K statistics discussed in MM.
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F.1 Coverage Simulations

After assuming that (fit, xt) follows a VAR(3), MM apply their approach to create
confidence sets for the parameter ◊ based on quarterly US data from 1984 to 2008
and show that their robust minimum distance approach yields smaller confidence sets
than an identification-robust GMM approach. MM suggested using S and JK tests
„ST

= 1
Ó
ST > ‰2

6,1≠–

Ô
and

„JKT
= max

Ó
1

Ó
KT > ‰2

2,1≠–K

Ô
, 1

Ó
JT > ‰2

4,1≠–J

ÔÔ
,

where –K = 0.8 · – and –J = 0.2 · –. They use the JK test rather than the K test „KT

to address spurious power declines for the K test. We take these tests, together with
the K test „KT

, as the benchmarks against which we compare the performance of the
PI test. In particular, we consider the plug-in test

„P IT
= 1 {(1 ≠ aP I (DT , “̃)) · KT + aP I (DT , “̃) · ST > c–(aP I(DT , “̃))}

where as before

aP I(D, “) = arg min
aœ[0,1]

sup
mœMD(µ̂D,“)

(—u
m ≠ Em,µ̂D,“ [„a])

and for simplicity we take µ̂D = D.

To compare the performance of the PI test to the tests discussed by MM, we cali-
brate a simulation example based on the empirical application of MM. In particular,
we estimate structural and reduced-form parameters using the data studied by MM
and generate samples of 100 observations based on these estimates together with the
assumption of Gaussian errors ‘t (see below for details).29 We calculate the true size
of nominal 5% tests, based on 10,000 simulations, and report the results in Table 8.
We find that all the tests over-reject, which is unsurprising given the non-linearity of
the model together with the small sample size, but that only the JK and S tests has
true size exceeding 10%.

Next, we simulate false coverage probabilities for confidence sets formed by invert-
ing these tests. In particular we calculate the rejection rates for PI, JK, S, and K

29We simulate samples of size 100 because MM use a dataset with 99 observations in their empirical
application.

85



PI JK S K
Size 9.34% 10.52% 12.28% 8.74%

Table 8: Size of nominal 5% tests in NKPC simulation example based on 10,000
simulations. PI is plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K
tests of Magnusson and Mavroeidis (2010), respectively.

PI JK S K
PI * 3.0% 4.2% 1.0%
JK 6.4% * 2.0% 6.0%
S 31.2% 26.6% * 30.0%
K 17.6% 17.6% 17.4% *

Table 9: Maximal point-wise di�erences in false coverage probability of nominal 5%
tests in NKPC example. The entry in row i, column j lists the maximum extent to
which the rejection probability of test i falls short of the rejection probability of test
j. For example, the largest margin by which the simulated rejection probability of
the PI test falls short relative to the JK test is 3%. Based on 500 simulations. PI is
plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K tests of Magnusson
and Mavroeidis (2010), respectively.

tests of hypotheses H0 : ◊ = ◊0 for ◊0 not equal to the true parameter value.30 Table
9 reports the maximal di�erence in point-wise false coverage probability across tests,
based on 500 simulations. For each test we report the largest margin by which the
rejection probability of that test falls short relative to that of the other tests consid-
ered over ◊0 œ (0, 1)2, which is the parameter space for the model.31 For example, the
second entry of the first row of Table 9 reports

sup
◊0œ(0,1)2

E◊̃ [„JKT ,◊0 ≠ „P IT ,◊0 ]

where „P IT ,◊0 and „JKT ,◊0 denote the PI and JK tests of H0 : ◊ = ◊0, respectively,
and ◊̃ = (‹̃, fl̃) = (0.96, 0.48) is the true parameter value in the simulations. As these

30We focus on calculating false coverage probabilities rather than power because there are many
reduced-form parameter values Ï compatible with a given structural parameter value ◊ú, and the
power of tests of H0 : ◊ = ◊0 against ◊ú will generally depend on Ï. Hence, to simulate the power
function we must either adopt some rule to pick Ï based on ◊ú or calculate power on a 12-dimensional
space, whereas to calculate false coverage probabilities it su�ces to consider a 2-dimensional space
of values ◊.

31For computational reasons, our simulations use a discretized version of this parameter space- see
below.
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PI JK S K
PI * 1.6% 2.0% 8.2%
JK 11.4% * 1.4% 16.4%
S 42.0% 33.2% * 46.0%
K 20.4% 21.6% 21.8% *

Table 10: Maximal point-wise di�erences in false coverage probability of size cor-
rected 5% tests in NKPC example. The entry in row i, column j lists the maximum
extent to which the rejection probability of test i falls short of the rejection prob-
ability of test j. For example, the largest margin by which the simulated rejection
probability of the PI test falls short relative to the JK test is 1.6%. Based on 500
simulations. PI is plug-in test, while JK, S, and K are MD-KJ, MD-AR, and MD-K
tests of Magnusson and Mavroeidis (2010), respectively.

PI JK S K
Expected Area: feasible confidence sets 0.084 0.0873 0.110 0.094

Expected Area: corrected confidence sets 0.131 0.141 0.169 0.138

Table 11: Expected area of 95% confidence sets formed by inverting tests in NKPC
example, based on 500 simulations. PI is plug-in test, while JK, S, and K are MD-KJ,
MD-AR, and MD-K tests of Magnusson and Mavroeidis (2010), respectively.

results make clear, the PI test outperforms the other tests studied and has the smallest
maximal rejection rate shortfall. The JK test also performs reasonably well, with a
much smaller maximal rejection rate shortfall than the S and K tests. Interpreting
these results is complicated by the fact that, while all the tests considered have correct
asymptotic size under weak identification, their finite sample size di�ers substantially.
To account for such size di�erences, Table 10 reports results analogous to those of
Table 9 based on (infeasible) size-corrected versions of all four tests. As in Table 9,
we can see that the PI test o�ers the best performance, followed by the JK test.32

After simulating false coverage probabilities, it is easy to calculate the expected
32To size-correct the S and K tests, we simply take their critical values to be the 95th percentiles

of their respective distributions for testing H0 : ◊ = ◊̃. To size-correct the PI test we consider

„ú
P IT

= 1 {(1 ≠ aP I (DT , “̃)) · KT + aP I (DT , “̃) · ST ≠ c–(aP I(DT , “̃)) > cú}

where cú is chosen to give correct size when testing H0 : ◊ = ◊̃. Likewise, the size-corrected JK test
is

„ú
JKT

= 1
)

max
)

KT ≠ ‰2
2,1≠–K

, JT ≠ ‰2
4,1≠–J

*
> cú*

for cú chosen to ensure correct size for testing H0 : ◊ = ◊̃. Note that if we instead take cú = 0, these
coincide with the non-size-corrected PI and JK tests.
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area of confidence sets obtained by inverting the PI, JK, S, and K tests. The expected
area for confidence sets formed by inverting both the feasible and size-corrected tests
is reported in Table 11. As we can see, using size-corrected tests increases the area of
all confidence sets. In each case the PI test produces confidence sets with the smallest
expected area, while the S test yields confidence sets with the largest expected area.
The feasible JK test yields smaller confidence sets than the feasible K test, but size
correction reveals that this is due in part to finite-sample size distortions for the
JK test: when we invert size-corrected tests, we find that JK confidence sets have
larger expected area than K confidence sets. A further advantage of the PI-test-based
confidence sets is that, like K-test-based confidence sets, they are non-empty in all
500 simulations, whereas confidence sets formed by inverting the JK and S tests are
empty in 3.2% and 4.8% of simulations, respectively.33 These results confirm that the
PI test outperforms the other tests considered.

F.2 Details of NKPC Example

Define the infeasible estimator �̂ by

�̂ =
Q

a �̂ff �̂f◊

�̂◊f �̂◊◊

R

b =

Q

a
ˆ

ˆÏÕ f(Ï̂, ◊0)�̂ÏÏ
ˆ

ˆÏÕ f(Ï̂, ◊0)Õ

ˆ
ˆÏÕ vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0)AT /
Ô

T
2

�̂ÏÏ
ˆ

ˆÏÕ f(Ï̂, ◊)Õ ...

ˆ
ˆÏÕ f(Ï̂, ◊0)�̂ÏÏ

ˆ
ˆÏÕ vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0)AT /
Ô

T
2Õ

ˆ
ˆÏÕ vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0)AT /
Ô

T
2

�̂ÏÏ
ˆ

ˆÏÕ vec
1

ˆ
ˆ◊Õ f(Ï̂, ◊0)AT /

Ô
T

2Õ

R

b

and note that given our assumptions this will be consistent for

� = lim
T æŒ

V ar

AÔ
Tf(Ï̂, ◊0)Õ, vec

A
ˆ

ˆ◊Õ f(Ï̂, ◊0)AT

BÕB

.

To derive the weak convergence (30), as well as the form of the matrices AT , note
that since we have assumed ÏT æ Ï and

Ô
T (Ï̂ ≠ ÏT ) æd N (0, �ÏÏ) , the �-method

33Note that there is no guarantee that confidence sets formed by inverting the PI test will be
non-empty in general.
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(Theorem 3.1 in Van der Vaart (2000)) yields that

Ô
T (fT (Ï̂, ◊0) ≠ fT (ÏT , ◊0)) æd N

A

0,
ˆ

ˆÏÕ f(Ï, ◊0)�ÏÏ
ˆ

ˆÏÕ f(Ï, ◊0)Õ
B

Ô
T · vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0) ≠ ˆ
ˆ◊Õ f(ÏT , ◊0)

2
æd

ˆ
ˆÏÕ

1
vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0)
22

�ÏÏ
ˆ

ˆÏÕ

1
vec

1
ˆ

ˆ◊Õ f(Ï̂, ◊0)
22Õ

.

We can see that the assumed convergence of gT (◊0) =
Ô

T �̂≠ 1
2

gg f(Ï̂, ◊0) thus holds only
if

Ô
Tf(ÏT , ◊0) converges. To obtain convergence in distribution for �gT (◊0) , we will

need to choose an appropriate sequence of normalizing matrices AT , which may in
turn depend on the sequence of true VAR parameters ÏT . To examine this issue in
more detail, in the next subsection we briefly discuss two ways in which identification
could fail in this model, one resulting in weak identification for ‹ and the other in
weak identification for fl.

F.2.1 Possible Sources of Weak Identification

Since we have assumed that (fit, zt) follow a VAR(3), we have that Ï is 12-dimensional
and can take

A(Ï) =

S

WWWWWWWWWWWWU

Ï11 Ï12 Ï13 Ï14 Ï15 Ï16

Ï21 Ï22 Ï23 Ï24 Ï25 Ï26

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

T

XXXXXXXXXXXXV

.

Note that efi = (1, 0, 0, 0, 0, 0)Õ and ex = (0, 1, 0, 0, 0, 0)Õ.
Fix a true parameter value ◊. Identification of ‹ fails if Ï2i = 0 for all i œ {1, ..., 6}.

In this case we have that A(Ï)Õex = 0, with the consequence that ‹ does not enter
the distance function f (Ï, ◊) and ˆ

ˆ‹
f (Ï, ◊) = 0. To model ‹ as weakly identified,

fix Ï1i,T = Ï1i for i œ {1, ..., 6} at values such that f (ÏT , ◊) = 0 when Ï2i = 0
for i œ {1, ..., 6}. We can take sequences of true VAR parameter values ÏT such that
Ï1i,T = 1Ô

T
c1,i +o

1
1Ô
T

2
,Ï2i,T = 1Ô

T
c2,i +o

1
1Ô
T

2
and f (ÏT , ◊) = 0 ’T , which will imply

that
Ô

T ˆ
ˆ‹

f (ÏT , ◊) æ C‹ for a 6 ◊ 1 vector C‹ . Thus, if we take AT =
S

U
Ô

T 0
0 1

T

V

we will have that the first column of ˆ
ˆ◊Õ f(Ï̂, ◊)AT converges in distribution to a non-
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degenerate random vector. Provided the values Ï1i,T are such that ˆ
ˆfl

f (ÏT , ◊) æ Cfl

for a non-zero vector Cfl, then �̂≠ 1
2

gg
ˆ

ˆ◊Õ f(Ï̂, ◊)AT æd �g for a matrix �g which is full
rank almost surely, as we assumed.

The parameter fl may also be weakly identified. In particular, note that

ˆ

ˆfl
f(Ï, ◊) = A (Ï)Õ

ÓË
1

(1+fl)2 A (Ï)Õ
È

efi + (1≠‹)2

‹(1+fl)2 ex

Ô
≠ 1

(1+fl)2 efi

so if
1
I ≠ A (Ï)Õ A (Ï)Õ

2
efi = A (Ï)Õ ex

(1 ≠ ‹)2

‹

then ˆ
ˆfl

f(Ï, ◊) = 0 for all values of fl, so fl is unidentified. In the same manner as
above, for any pair (Ï, ‹) satisfying this restriction we can take ‹ fixed and construct
a sequence ÏT converging to Ï at a

Ô
T rate such that �≠ 1

2
gg

ˆ
ˆ◊Õ f(Ï̂, ◊)AT æd �g for

�g full rank almost-surely with AT =
S

U 1 0
0

Ô
T

T

V .

F.2.2 Derivation of the Limit Problem

To derive the form of the limit problem (30) we need to understand the behavior of
gT and �gT under alternatives. Note that for alternative ◊T and true reduced-form
parameter value ÏT , we have that since f(ÏT , ◊T ) = 0,

f(ÏT , ◊0) = f(ÏT , ◊0) ≠ f(ÏT , ◊T ).

Define

m(ÏT , ◊T ) = f(ÏT , ◊0) ≠ f(ÏT , ◊T ) =
A (ÏT )Õ

Ó1
1

1+flT
≠ 1

1+fl0

2
A (ÏT )Õ efi +

1
(1≠‹T )2

‹T (1+flT ) ≠ (1≠‹0)2

‹0(1+fl0)

2
ex

Ô
+

1
flT

1+flT
≠ fl0

1+fl0

2
efi,

and note that the assumed convergence for gT implies that
Ô

Tm(ÏT , ◊T ) converges
to m. To determine the form of the set M (µ), which characterizes the behavior of m

under various alternatives, note that

ˆ

ˆ◊
f(ÏT , ◊0) =

Ë
A (ÏT )Õ

1 1≠‹2
0

‹2
0 (1+fl0)

2
ex A (ÏT )Õ

ÓË
1

(1+fl0)2 A (ÏT )Õ
È

efi + (1≠‹0)2

‹0(1+fl0)2 ex

Ô
≠ 1

(1+fl0)2 efi

È
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and hence
A (ÏT ) ex =

A
1 ≠ ‹2

0
‹2

0 (1 + fl0)

B≠1 C
ˆ

ˆ◊Õ f(ÏT , ◊0)
D

1
=

h1(◊0)
C

ˆ

ˆ◊Õ f(ÏT , ◊0)
D

1

for h1 (◊0) =
1 1≠‹2

0
‹2

0 (1+fl0)

2≠1
, and

A (ÏT )Õ A (ÏT )Õ efi = (1 + fl0)2
C

ˆ

ˆ◊Õ f(ÏT , ◊0)
D

2
≠ (1 ≠ ‹0)2

‹0
A (ÏT )Õ ex + efi =

h2(◊0)
C

ˆ

ˆ◊Õ f(ÏT , ◊0)
D

2
≠ h3(◊0)h1(◊0)

C
ˆ

ˆ◊Õ f(ÏT , ◊0)
D

1
+ efi,

for h2 (◊0) = (1 + fl0)2 and h3 (◊0) = (1≠‹0)2

‹0
. For m (ÏT , ◊T ) as defined above, this

implies that

m (ÏT , ◊T ) =1
1

1+flT
≠ 1

1+fl0

2 1
h2(◊0)

Ë
ˆ

ˆ◊Õ f(ÏT , ◊0)
È

2
≠ h3(◊0)h1(◊0)

Ë
ˆ

ˆ◊Õ f(ÏT , ◊0)
È

1
+ efi

2
+

1
(1≠‹T )2

‹T (1+flT ) ≠ (1≠‹0)2

‹0(1+fl0)

2
h1(◊0)

Ë
ˆ

ˆ◊Õ f(ÏT , ◊0)
È

1
+

1
flT

1+flT
≠ fl0

1+fl0

2
efi =

h4(◊0, ◊T )
Ë

ˆ
ˆ◊Õ f(ÏT , ◊0)

È

1
+ h5(◊0, ◊T )

Ë
ˆ

ˆ◊Õ f(ÏT , ◊0)
È

2

for

h4 (◊0, ◊T ) = ≠
A

1
1 + flT

≠ 1
1 + fl0

B

h3(◊0)h1(◊0) +
A

(1 ≠ ‹T )2

‹T (1 + flT ) ≠ (1 ≠ ‹0)2

‹0 (1 + fl0)

B

h1(◊0)

and
h5 (◊0, ◊T ) =

A
1

1 + flT

≠ 1
1 + fl0

B

h2(◊0).

Thus, knowledge of ˆ
ˆ◊Õ f(ÏT , ◊0) su�ces to let us calculate m(ÏT , ◊) for any alter-

native ◊ in the sample of size T . Consequently, in each sample size T , an estimate of
µT = ˆ

ˆ◊Õ f(ÏT , ◊0)AT implies a corresponding set MT (µT ) =
ÓÔ

Tm(ÏT , ◊) : ◊ œ �
Ô
.

For a given convergent sequence ÏT , we can then define M in the limit problem as
M(µ) = limT (MT (µ) fl C) for any compact set C: the restriction to the set C ensures
convergence, and has the e�ect of restricting attention to a particular neighborhood of
fixed alternatives for weakly identified parameters and local alternatives for strongly
identified parameters. Note that in any given sample size we need not know AT to
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calculate MT (µT ) once given an estimate of ˆ
ˆ◊Õ f(ÏT , ◊0), so if we just treat ˆ

ˆ◊Õ f(Ï̂, ◊0)
as a Gaussian random matrix with mean ˆ

ˆ◊Õ f(ÏT , ◊0) and proceed accordingly, this
will (asymptotically) correspond to using the correct M(µ) under all sequences yield-
ing limit problems in this class. Indeed, this is the approach we adopt to calculate
plug-in tests in our simulations.

F.2.3 NKPC Simulation Details

The assumption that (fit, xt) follows a 3rd order VAR means that, once we make a
distributional assumption on the driving shocks ‘t, we can simulate data from the
NKPC model discussed above for any combination of parameters (Ï, ◊) such that
f (Ï, ◊) = 0. For Ï̂ the VAR coe�cients estimated from the data used by MM with
estimated variance matrix �̂ÏÏ, we find the coe�cients

1
Ï̃, ◊̃

2
solving

1
Ï̃, ◊̃

2
= arg min

(Ï,◊):f(Ï,◊)=0
(Ï̂ ≠ Ï)Õ �̂≠1

ÏÏ (Ï̂ ≠ Ï) .

This yields the pair of reduced form and structural coe�cients consistent with the
NKPC model which, in a covariance-weighted sense, are as close as possible to the
estimated VAR coe�cient Ï̂. Using the residuals ‘̂t from calculating the VAR coe�-
cients Ï̂, we estimate the covariance matrix of the driving shocks by

V̂‘ = 1
T

Tÿ

t=1

A

‘̂t ≠ 1
T

Tÿ

s=1
‘̂s

B A

‘̂t ≠ 1
T

Tÿ

s=1
‘̂s

BÕ

.

Taking ‘t to be normally distributed, to conduct our simulations we then generate
samples of 100 observations from the the model with true parameter values

1
Ï̃, ◊̃

2

and true covariance matrix V̂‘ for ‘t.

For computational purposes, when calculating PI tests and simulating coverage
probabilities we discretize the parameter space, considering grids of values in both ‹

and fl. For both parameters we consider grids ranging from 0.005 to 0.995, with grid
points spaced 0.03 apart.
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