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Abstract

This paper considers the problem of speci�cation testing in general parametric

models and shows that for a wide class of models the hypothesis of correct spec-

i�cation is equivalent to a continuum of moment equalities. Using these moment

equalities we construct a class of speci�cation tests that have correct asymptotic

size in general parametric models, including stationary time series models, and

that are consistent when the above equivalence holds. We show that the proposed

tests have power against
√
T -local alternatives and compare them to previously

proposed consistent tests of distributional speci�cation, both from a theoretical

perspective and in simulation.

JEL Classi�cation: C52

Keywords: Consistent Speci�cation Testing, Time Series

Speci�cation testing has long been a central topic of research in econometrics. Early work by

Hausman (1978) compares two di�erent estimators which have the same limit under the null of

correct speci�cation and rejects if they di�er by too large a margin. White (1980) and (1982)

both compare di�erent variance matrix estimators, the former to detect heteroskedasticity and

the latter to detect misspeci�cation in a general parametric setting. Newey (1985) considers

tests of conditional moment restrictions and shows that both the Hausman and White tests

can be considered as special cases of this larger class. More recently, Chesher et. al. (1999)

consider what they call Bartlett Identities Tests, analogs of the White (1982) Information
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Matrix test for parametric models which test higher order restrictions imposed by the null of

correct speci�cation.

All of these tests consider �nite collections of restrictions implied by the hypothesis of

correct speci�cation. None of these tests is consistent against all possible alternatives in

general models, since it is possible to �nd a data generating process which di�ers from the

null but still satis�es the tested restrictions. Motivated by this fact, we propose a test which

is consistent against �xed alternatives in models with independent observations and against

a broad class of alternatives in models with dependent observations, and which has power

against
√
T local alternatives. This test complements the existing econometric literature on

consistent tests of distributional speci�cation, including (D.) Andrews (1997), Zheng (2000),

and Bierens and Wang (2012).

Andrews (1997) proposes an extension of the classical Kolmogorov-Smirnov statistic for

testing conditional distributional speci�cation in independent data. The proposed test is

shown to be consistent against all �xed alternatives and to have nontrivial power against
√
T

local alternatives. Zheng (2000) o�ers an alternative approach to speci�cation testing, based

on an approximation to the average Kullback-Leibler divergence between the data and the

null parametric model. This approach requires that the modeled variable X be continuously

distributed and, due to its use of a kernel density estimator, has power against local alternatives

only if they approach the null at a rate slower than
√
T . A recent paper by Bierens and Wang

(2012) takes a di�erent approach to the problem, comparing the model implied characteristic

function with the characteristic function of the empirical distribution, which they show yields

a test that is consistent against �xed alternatives and has power against
√
T local alternatives.

A di�erence between the approach considered here and those of Andrews (1997), Zheng

(2000), and Bierens and Wang (2012) is that the statistic we consider can also be used to test

the null of correct speci�cation in contexts with dependent observations, such as time series.

The tests proposed by Hausman (1978), White (1982), and Newey (1985) can all be applied

to dependent data, as can more recent procedures by Inoue (1997), who considers testing

linear restrictions on the conditional distribution, and Bai (2003) who considers a test for

distributional speci�cation in general time series models. None of these procedures is consis-

tent, however, while our test is consistent provided both the null and alternative distributions

depend on the past only through a �nite-dimensional vector of state variables. The problem
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of consistent testing of distributional speci�cation with dependent data is considerably more

di�cult than in the independent case, however, and as discussed below the approach proposed

here is not in general consistent against unrestricted dependent alternatives.

For the remainder of the paper, we assume that we observe a sample {(Xt, Zt)}Tt=1 and

denote by Ft the σ−algebra generated by {(Xs, Zs+1)}ts=1 (so Zt is measurable with respect to

Ft−1). Suppose we think that conditional on Ft−1, Xt is distributed according to F (x|θ0,Ft−1)

for some (in general unknown) parameter θ0 in some parameter space Θ ⊂ Rk. We propose a

class of tests for the hypothesis of correct parametric speci�cation

Xt|Ft−1 ∼ F (x|θ0,Ft−1) a.s. for some θ0 ∈ Θ

and show that these tests control size (where a.s. stands for almost surely). We are particularly

interested in null hypotheses of the form H0 : Xt|Ft−1 ∼ F (x|θ0, Zt) a.s., where the distribu-

tion of Xt depends on the past only through a known, �nite-dimensional vector of conditioning

variables, as these are the null hypotheses for which we can obtain consistency results. For

this reason, and to simplify notation, we focus on the case F (x|θ0,Ft−1) = F (x|θ0, Zt) for

the remainder of the analysis, though our results concerning asymptotic size hold even for

F (x|θ0,Ft−1) 6= F (x|θ0, Zt).

We propose tests based on Mean Likelihood Ratio (MLR) statistics of the form

R(θ̂, λ, ξ) =
1

T

T∑
t=1

(
g(Xt|λ, Zt)
f(Xt|θ̂, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

where θ̂ is an estimator of θ0, g is a function (typically a density or probability mass function)

which integrates to one, f is the density or probability mass function of F , Φ is a bounded

one-to-one function, and ψ is a non-polynomial monotone analytic function. Under the null of

correct speci�cation and some further assumptions we show that R(θ̂, λ, ξ)→p 0 uniformly in

(λ, ξ) ∈ Λ×Ξ for Λ, Ξ compact, and so base our test on sup(λ,ξ)∈Λ×Ξ |R(θ̂, λ, ξ)|. We show that

statistics of this form have several interesting properties: �rst as mentioned above, they may

be used to construct tests in both independent and dependent data models. Moreover, the

resulting tests are consistent against all �xed (global) alternatives in independent models and

against alternatives which imply a di�erent stationary distribution of the modeled variables
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Xt and the (�nite) vector of conditioning variables Zt in dependent models. To clarify this

last point, consider the modi�ed null hypothesis

H∗0 : Xt|Zt ∼ F (x|θ0, Zt) a.s.

which restricts only the stationary distribution of (Xt, Zt), rather than the distribution of

Xt|Ft−1. We show that appropriately constructed MLR tests are consistent against alterna-

tives which violate H∗0 . In independent models (that is models where (Xt, Zt) is independent

of (Xs, Zs) ∀ t 6= s), H∗0 and H0 are equivalent so this implies the consistency of MLR tests

against all �xed alternatives in models with independent data. In dependent models, however,

H0 ⊂ H∗0 so while we prove consistency against alternatives which violate H∗0 , there are models

in H∗0\H0 which violate the tested null (H0) against which the MLR test is not consistent.

We show that like the tests proposed by Andrews (1997) and by Bierens and Wang (2012),

MLR tests have power against
√
T local alternatives. The proposed tests perform well in

simulation, controlling size in both independent and dependent models while o�ering power

competitive with that of existing procedures in independent models. Di�erent tests in the

family we consider have power against di�erent alternatives in �nite samples so, as we illustrate

in simulation, if one is especially concerned about particular forms of misspeci�cation one can

choose tests with more power in the appropriate directions.

We begin in Section 1 by showing that the restriction H∗0 : Xt|Zt ∼ F (x|θ0, Zt) a.s. is

equivalent to a continuum of conditional moment equalities, which are in turn equivalent

to a continuum of unconditional moment equalities that we use to construct our family of

speci�cation tests. In Section 2 we propose a test statistic for the hypothesis H0 : Xt|Ft−1 ∼

F (x|θ0, Zt) a.s., derive its limiting distribution and prove that tests based on bootstrap critical

values have correct asymptotic size. In Section 3 we prove that for appropriate choices of

g(x|λ, z), MLR tests of H0 are consistent against alternatives which violate H∗0 and have

nontrivial power against
√
T local alternatives. Section 4 compares the proposed tests to

others in the literature from a theoretical perspective, while simulation results are presented

in Section 5. All proofs may be found in the Appendix.
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1 Equivalence of Restrictions

We begin by observing that H∗0 : Xt|Zt ∼ F (x|θ0, Zt) a.s. is equivalent to a continuum of

moment conditions. For convenience (and without loss of generality), we assume that Zt

includes a constant term. Suppose that for all θ ∈ Θ and all values of Zt, F (x|θ, Zt) is

absolutely continuous with respect to some σ-�nite measure µ, and denote its Radon-Nikodym

derivative with respect to µ by f(x|θ, Zt).

Let {G(x|λ, z) : λ ∈ Λ, z ∈ Supp(Zt)}, for Supp(Zt) the support of Zt, be a family of (pos-

sibly signed) measures parametrized by λ ∈ Λ. We take Λ to be a compact set with a nonempty

interior and assume that G(x|λ, z) and F (x|θ, z) are mutually absolutely continuous for all

λ ∈ Λ, θ ∈ Θ, and z ∈ Supp(Zt). We denote the Radon-Nikodym derivative of G(x|λ, z) with

respect to µ by g(x|λ, z) and assume that
´
g(x|λ, z)dµ = 1.

We �rst show that for �xed z and appropriately chosen g, the restriction Xt|Zt = z ∼

F (x|θ0, z) is equivalent to a continuum of conditional moment equalities:

Ef0

[
g(Xt|λ, z)
f(Xt|θ0, z)

∣∣∣∣Zt = z

]
= 1 ∀λ ∈ Λ. (1)

Note that

Ef(θ0)

[
g(Xt|λ, z)
f(Xt|θ0, z)

∣∣∣∣Zt = z

]
=

ˆ
g(x|λ, z)
f(x|θ0, z)

f(x|θ0, z)dµ(x) = Eg(λ)

[
f(Xt|θ0, z)

f(Xt|θ0, z)

∣∣∣∣Zt = z

]
= 1,

so our distributional assumption implies a continuum of moment restrictions for each value

of z (i.e. a restriction for each λ ∈ Λ). We next show that if the family {G(x|λ, z) : λ ∈ Λ}

is complete for all z ∈ Supp(Zt), this continuum of moment conditions is also su�cient for

correct speci�cation. A family P of measures is called complete if for any measurable function

φ, EP [φ(x)] = 0 for all P ∈ P implies that φ(x) = 0 almost surely with respect to all

P ∈ P (see Lehman and Romano (2005), Section 4.3). The appropriate su�cient conditions

for completeness will depend on the context under consideration. A useful result in Lehman

and Romano (2005) (Theorem 4.3.1) is that it su�ces for g(x|λ, z) to be an exponential family

distribution such that g(x|λ, z) = h(x, z)a(λ, z) exp(m(λ, z)′T (x, z)) with T (x, z) a one-to-one

function of x and m a function such that the image of Λ under m(·, z) contains an open set.

Suppose that conditional on Zt = z the true distribution of Xt is F0(x|z) which is mutually
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absolutely continuous with respect to G(λ, z) for all λ ∈ Λ, with Radon-Nikodym derivative

f0(x|z) with respect to µ such that the continuum of moment conditions (1) holds. Hence,

Ef0

[
g(Xt|λ, z)
f(Xt|θ0, z)

∣∣∣∣Zt = z

]
− 1 =

ˆ
g(x|λ, z)
f(x|θ0, z)

f0(x|z)dµ− 1

=

ˆ (
f0(x|z)
f(x|θ0, z)

− 1

)
g(x|λ, z)dµ = 0.

If g(x|λ, z) is a complete family, however, this condition can be satis�ed for all λ if and only if

f0(Xt|z)
f(Xt|θ0,z) = 1 almost surely with respect to the true distribution F0(x|z). To state this formally,

we begin by requiring the stationarity of the process {(Xt, Zt)} so that we can meaningfully

discuss the stationary distributions FXZ , FX , and FZ :

Assumption 1 The process {(Xt, Zt)
∞
t=1} is stationary, with stationary distribution FXZ and

marginal distributions FX and FZ .

Assumption 2 {G(x|λ, z) : λ ∈ Λ} is a complete family for all �xed z and Ef0

[
g(Xt|λ,z)
f(Xt|θ0,z)

∣∣∣Zt = z
]

exists for all λ ∈ Λ and z ∈Supp(FZ).

Theorem 1 Under Assumptions 1 and 2, for any �xed z ∈Supp(Zt) Ef0

[
g(Xt|λ)
f(Xt|θ0,z) − 1

∣∣∣Zt = z
]

=

0 for all λ ∈ Λ if and only if f0(Xt|z) = f(Xt|θ0, z) almost surely (with respect to the true

measure F0(x|z)).

We've established that our original parametric restriction is equivalent to a continuum of

conditional moment restrictions. Since such restrictions are in general di�cult to test directly,

we next discuss an equivalent continuum of unconditional moment restrictions, derived as in

the literature on integrated conditional moment tests originated by Bierens (1982). Speci�cally,

we make the following assumption:

Assumption 3 Ef0

[
g(Xt|λ,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] is continuous in λ almost surely with respect to FZ .

Assumption 3 ensures that the conditional expectation Ef0

[
g(Xt|λ,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] is well-

behaved as a function of λ. Let ξ ∈ Ξ ⊂ Rl for some compact set Ξ with positive Lebesgue

measure. Combining the results of Stinchcombe and White (1997) with Theorem 1, we obtain

the following:
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Theorem 2 For Φ(z) a bounded one-to-one mapping, ψ(·) a non-polynomial real-valued mono-

tone analytic function, and g as de�ned above, provided that Ef0

[
g(Xt|λ,Zt)
f(Xt|θ0,Zt)

− 1
]
exists ∀λ ∈ Λ

and Assumptions 1-3 hold,

Ef0

[(
g(Xt|λ, Zt)
f(Xt|θ0, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

]
= 0 ∀(λ, ξ) ∈ Λ× Ξ, (2)

if and only if f0(Xt|Zt) = f(Xt|θ0, Zt) almost surely with respect to the true stationary distri-

bution FXZ .

As the results above establish, for g(x|λ) a complete family the restriction that f0(Xt|Zt) =

f(Xt|θ0, Zt) almost surely is equivalent to the restriction (2). Hence, to test model speci�cation

it su�ces to test this continuum of unconditional moment equalities.

2 The Proposed Test

In this section, we derive size results for tests of the null hypothesis

H0 : Xt|Ft−1 ∼ F (x|θ0, Zt) a.s. for some θ0 ∈ Θ.

To this end we consider the statistic

R(θ, λ, ξ) =
1

T

T∑
t=1

rt(θ, λ, ξ) =
1

T

T∑
t=1

(
g(Xt|λ, Zt)
f(Xt|θ, Zt)

− 1

)
ψ(Φ(Zt)

′ξ).

Below, we derive the limiting distribution of
√
TR(θ̂, λ, ξ) under the null of correct speci�ca-

tion, where θ̂ is a well-behaved estimator of θ (for example the maximum likelihood estimator

in most models). To test the null hypothesis we consider the largest value taken by this

statistic, ||
√
TR(θ̂, λ, ξ)||∞ = sup(λ,ξ)∈Λ×Ξ |

√
TR(θ̂, λ, ξ)|, which should be small if the null

hypothesis is correct.1

In our exposition we focus on testing null hypotheses of the formH0 : Xt|Ft−1 ∼ F (x|θ, Zt).

As noted in the introduction, however, the results of this section on the size of MLR tests

1While we focus on the sup norm of
√
TR(θ̂, λ, ξ), it is straightforward to adapt the results presented below

to other functionals, for example the L2-norm

(´ (√
TR(θ̂, λ, ξ)

)2

dH(λ, ξ)

) 1
2

for some measure H on Λ×Ξ.
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extend directly to tests of the broader class of null hypotheses Xt|Ft−1 ∼ F (x|θ,Ft−1) where

we allow the conditional distribution of Xt under the null to depend on all of Ft−1 rather than

just the �nite-dimensional vector Zt. In particular, by replacing F (x|θ, Zt) by F (x|θ,Ft−1),

E [·|Zt] by E [·|Ft−1] and so on, our proofs can easily be adapted to show that tests based on

1√
T

∑T
t=1

(
g(Xt|λ,Ft−1)
f(Xt|θ,Ft−1) − 1

)
ψ(Φ(Zt)

′ξ) will have correct asymptotic size, though they will not

be consistent without further restrictions.

2.1 Limiting Distribution

We begin by showing that under the null of correct speci�cation
√
TR

(
θ̂, λ, ξ

)
, viewed as a

random function of (λ, ξ), converges weakly to a mean-zero Gaussian process. In our anal-

ysis we allow for two distinct types of conditioning variables Zt, which we denote Z
(1)
t and

Z
(2)
t respectively. Z

(1)
t can be written in terms of past values of (Xs, Zs) (which to say it is

measurable with respect to Ft−1) while Z
(2)
t contains exogenous variables which evolve in-

dependently of Xt. In particular, we impose that conditional on
{
Z

(2)
1 , ...Z

(2)
t−2, Z

(2)
t−1, Z

(2)
t

}
,

{X1, ...Xt−2, Xt−1, Xt} and
{
Z

(2)
t+1, Z

(2)
t+2, Z

(2)
t+3...

}
are independent. Using this assumption, we

conduct our analysis conditional on
{
Z

(2)
t

}
=
{
Z

(2)
t

}∞
t=1

. Hence, for example, we will assume

that for some function h, 1
T

∑T
t=1 h(Xt, Zt) →p h

∗ where the convergence in probability is

with respect to the distribution of the process {(Xt, Zt)}Tt=1

∣∣∣ {Z(2)
t

}∞
t=1

. Likewise, many of

our assumptions will concern terms of the form E
[
h(Xt, Zt)|Zt,

{
Z

(2)
t

}]
, though since under

the null this is equal to E [h(Xt, Zt)|Zt], (see the proof of Lemma A.3 for further discussion of

this point) we will generally prefer the latter formulation for the sake of brevity. We condition

on
{
Z

(2)
t

}
for a number of reasons: �rst, it allows us to treat the independent and dependent

cases in a uni�ed fashion and to use the same bootstrap approach for both. Further, it greatly

simpli�es the exposition and allows us to cover a wide range of possibilities for the evolution

of the unmodeled conditioning variables Z
(2)
t . The cost of this approach is that we must state

our assumptions conditional on
{
Z

(2)
t

}
=
{
Z

(2)
t

}∞
t=1

, which may seem less intuitive. However,

in many contexts it is straightforward to give su�cient conditions to ensure that our assump-

tions hold conditional on
{
Z

(2)
t

}
with probability one, as is done in Andrews (1997) for the

independent case.

We begin by formalizing the exogenity assumption on Z
(2)
t :

8



Assumption 4 Under H0 we have that Z
(2)
t is exogenous: that is that conditional on

{
Z

(2)
s

}t
s=1

,

{Xs}ts=1and
{
Z

(2)
s

}∞
s=t+1

are independent.

Next, we assume that the conditional density of Xt given Zt is well behaved as a function

of θ:

Assumption 5 The conditional density f(Xt|θ, Zt) satis�es:

1. f(Xt|θ, z) di�erentiable in θ on a neighborhood N1 of θ0 for all (x, z) ∈ Supp (Xt, Zt) .

2. For all sequences of positive constants δT such that δT → 0, under the null we have that

conditional on
{
Z

(2)
t

}
,

sup
λ,ξ

sup
θ:||θ−θ0||<δT

∥∥∥∥∥ 1

T

T∑
t=1

∂

∂θ
f(Xt|θ, Zt)

g(Xt|λ, Zt)
f2(Xt|θ, Zt)

ψ(Φ(Zt)
′ξ)−∆0(ξ, λ)

∥∥∥∥∥→p 0.

where ∆0(λ, ξ) = E
[
∂
∂θf(Xt|θ0, Zt)

g(Xt|λ,Zt)
f2(Xt|θ0,Zt)

ψ(Φ(Zt)
′ξ)
]
.

3. supλ,ξ ||∆0(λ, ξ)|| <∞ and ∆0 is continuous on Λ× Ξ.

Assumption 5(1), di�erentiability of f(Xt|Zt, θ), is generally innocuous and is satis�ed

in a wide range of models. Assumption 5(2) is somewhat stronger but again is not usually

problematic, provided that the family {G(x|λ, z) : λ ∈ Λ} which we choose is well-behaved.

If Assumption 5(2) is satis�ed then 5(3) is, again, fairly weak. In particular, if ∆0(λ, ξ) is

continuous in (λ, ξ) by the compactness of Λ× Ξ Assumption 5(3) is equivalent to point-wise

�niteness of ||∆0(λ, ξ)||.

Our next assumption formalizes the requirement that θ̂ be �well-behaved�, in particular

requiring that it have a linear asymptotic expansion:

Assumption 6 Conditional on
{
Z

(2)
t

}
the estimator θ̂ satis�es:

1. Under the null Xt|Ft−1 ∼ F (x|Zt, θ0),
√
T (θ̂−θ0) = 1√

T

∑
t I0γ(Xt, Zt, θ0)+op(1) where

I0 is a k-dimensional nonrandom matrix which may depend on θ0.

2. γ(x, z, θ) is a measurable function satisfying

(a) E [γ(Xt, z, θ0)|Zt = z] = 0 ∀z ∈Supp(Zt).
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(b) For all ζ > 0, 1√
T

∑
E
[
|γ(Xt, Zt, θ0)|1

{
|γ(Xt, Zt, θ0)| >

√
Tζ
}∣∣∣Zt]→p 0.

Assumption 6(1) is a standard asymptotic linearity assumption, and the main requirement

is that θ̂ be
√
T consistent, as is usually the case in the stationary parametric context we

consider. In particular, if we take θ̂ to be the ML estimator for θ then we can take γ(x, z, θ0)

and I0 to be the score of the log conditional likelihood and the inverse Fisher Information,

respectively, i.e. γ(x, z, θ0) = ∂
∂θ log f(x|θ0, z) and I0 = −E

[
∂2

∂θ2
log f(Xt|θ0, Zt)

]−1
. For this

choice, su�cient conditions for Assumptions 6(2a) and 6(2b) are that we be able to twice

di�erentiate the log likelihood under an expectation and that the score have 2 + ε moments

under the null for ε > 0.

Finally, to derive the limiting distribution of
√
TR(θ̂, λ, ξ) we need to ensure that the class

of functions RT = {rt(θ, λ, ξ) : (λ, ξ) ∈ Λ× Ξ} is well-behaved. Taking

C (ξ, λ, ξ∗, λ∗, θ, FZ) =

ˆ ˆ  rt(θ, λ, ξ)

γ(x, z, θ)

 rt(θ, λ
∗, ξ∗)

γ(x, z, θ)


′

dF (x|z, θ)dFZ(z) (3)

we make the following assumption:

Assumption 7 Conditional on
{
Z

(2)
t

}
, for any deterministic sequence θT → θ0:

1. If we de�ne RT as

RT = {rt(θT , λ, ξ)|(λ, ξ) ∈ Λ× Ξ} =

{(
g(Xt|λ, Zt)
f(Xt|θT , Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

∣∣∣∣ (λ, ξ) ∈ Λ× Ξ

}

then there exists a random variable HT such that HT ≥ |rt(θT , λ, ξ)| ∀rt(θT , λ, ξ) ∈ RT

and, for all ζ > 0,

1√
T

T∑
t=1

EθT

[
|HT |1

{
|HT | >

√
Tζ
}∣∣∣Zt]→p 0.

2. For all (x, z) ∈ Supp(Xt, Zt), g(x|λ, z) is Lipshitz in λ with Lipshitz constant M1(x, z).

Further, for M2(x, z) = supλ |g(x|λ, z)| we have

1

T

T∑
t=1

EθT

[(
M1(Xt, Zt) +M2(Xt, Zt)

f(Xt|θT , Zt)

)2
∣∣∣∣∣Zt
]

= Op(1).
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3. For all (λ, ξ), (λ∗, ξ∗) ∈ Λ× Ξ,

1

T

T∑
t=1

 rt(θT , λ, ξ)

γ(Xt, Zt, θT )

 rt(θT , λ
∗, ξ∗)

γ(Xt, Zt, θT )


′

→p C (λ, ξ, λ∗, ξ∗, θ0, FZ)

where C is as de�ned in (3) and is nonsingular almost everywhere (in (λ, ξ)× (λ∗, ξ∗)).

Assumption 7(1) requires that RT have a well-behaved envelope function which satis�es

a uniform integrability condition. Assumption 7(2) is used to obtain a bound on the entropy

of the class RT and apply a uniform central limit theorem. In particular, 7(2) imposes a

Lipshitz condition on this class, together with a restriction that the Lipshitz constants not be

excessively volatile. One unfortunate aspect of this condition is that it rules out g(x|λ, z) which

are discontinuous in λ: since the condition is su�cient but not necessary for the results that

follow, for particular functions of interest that are discontinuous in λ one could likely obtain

alternative convergence results. Finally, 7(3) requires the point-wise convergence of the sample

covariance function to the limiting covariance function C (λ, ξ, λ∗, ξ∗, θ0, FZ). This is needed to

obtain �nite-dimensional convergence in distribution of
√
TR(θ̂, λ, ξ). Under Assumptions 4-7

we can derive the limiting distribution of
√
TR(θ̂, λ, ξ) under the null of correct speci�cation.

Theorem 3 Under Assumption 1 and Assumptions 4-7, under H0 we have that conditional

on
{
Z

(2)
t

}
√
TR(θ̂, λ, ξ)⇒ G−∆0(λ, ξ)′I0η0 = G∗

where ⇒ denotes weak convergence (see Van der Vaart and Wellner (1996)) and

 G

η0

 is a

Gaussian process with covariance function C (ξ, λ, ξ∗, λ∗, θ0, FZ).

The proof for this result, which can be found in the Appendix, �rst shows that

 √TR(θ0, λ, ξ)
√
T (θ̂ − θ0)

⇒
 G

I0η0


using Assumptions 1, 4, 6, and 7, and then uses Assumption 5 together with the Continuous

Mapping Theorem to obtain the result.
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By Theorem 3, we know that the statistic
√
TR(θ̂, λ, ξ) has a well-de�ned limiting dis-

tribution and hence, by the Continuous Mapping Theorem, that under the null of correct

speci�cation ||
√
TR(θ̂, λ, ξ)||∞ ⇒ ||G∗||∞, justifying the use of this statistic as the basis of a

test. A problem, however, is that the distribution of G∗ under the null generally depends on θ0

as well as on the unmodeled distribution of Z
(2)
t . Hence, while we know that ||

√
TR(θ̂, λ, ξ)||∞

converges to a well-de�ned limiting distribution under the null, this statistic is not asymptoti-

cally pivotal and we must �nd critical values on a case-by-case basis. To address this challenge

we propose a semi-parametric bootstrap approach.

2.2 Bootstrap Critical Values

To calculate critical values we adapt the semi-parametric bootstrap used by Andrews (1997).

As noted in that paper, to obtain valid bootstrap critical values we need to impose the null

hypothesis in our bootstrap samples, which in our case means imposing that conditional on

Zt, Xt is distributed according to F (x|Zt, θ) for some θ ∈ Θ. Since we do not model the

distribution of Z
(2)
t we condition on the realized

{
Z

(2)
t

}T
t=1

in calculating bootstrap critical

values. Formally, our bootstrap algorithm is as follows.

1. Given a sample {(Xt, Zt)}Tt=1, calculate ||
√
TR(θ̂, λ, ξ)||∞ as described above and let

b = 1.

2. In bootstrap iteration b, for t = 1, ..., T draw X∗t,b from F (x|Z∗t,b, θ̂). For each t calculate

Z
(1)∗
t,b using

(
X∗1,b, Z

∗
1,b

)
, ...
(
, X∗t−1,b, Z

∗
t−1,b

)
and let Z∗t,b = (Z

(1)∗
t,b , Z

(2)
t ) (taking Z∗1 =

Z1).

3. Based on bootstrap sample
{

(X∗t,b, Z
∗
t,b)
}T
t=1

, calculate estimator θ̂∗b for θ and use this

to calculate ||
√
TR∗b(θ̂

∗
b , λ, ξ)||∞ for

√
TR∗b(θ, λ, ξ) =

1√
T

T∑
t=1

(
g(X∗t,b|λ, Z∗t,b)
f(X∗t,b|θ, Z∗t,b)

− 1

)
ψ(Φ(Z∗t,b)

′ξ).

Store the resulting value. If b < B, let b = b+ 1 and return to step 2.

4. After B iterations, let cαTB(θ̂) be the 1 − α quantile of
{
||
√
TR∗b(θ̂

∗
b , λ, ξ)||∞

}B
b=1

. We

reject the null hypothesis if and only if cαTB(θ̂) < ||
√
TR(θ̂, λ, ξ)||∞.
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To prove the validity of this bootstrap approach we need to show that for cα(θ0) the 1 − α

quantile of G∗ conditional on
{
Z

(2)
t

}
we have that cαTB(θ̂) →p cα(θ0) (while the bootstrap

algorithm given above uses only
{
Z

(2)
t

}T
t=1

, from the perspective of asymptotic theory we

condition on the in�nite sequence
{
Z

(2)
t

}
=
{
Z

(2)
t

}∞
t=1

). To do this, we show that conditional

on
{
Z

(2)
t

}
for nonrandom sequences θT → θ0 we have that under θT ,

√
TR(θ̂, λ, ξ) ⇒ G∗,

where �under θT � means that the data {(Xt, Zt)}Tt=1 of sample size T are generated from the

DGP with true parameter value θT (i.e. Xt|Zt ∼ F (x|θT , Zt)). If we let cαT (θT ) be the 1− α

quantile of ||
√
TR(θ̂, λ, ξ)||∞ under θT for sample size T , the fact that

PrθT

{
||
√
TR(θ̂, λ, ξ)||∞ > cαT (θT )

∣∣∣ {Z(2)
t

}}
= α

and
√
TR(θ̂, λ, ξ) ⇒ G∗ implies that, since ||G∗||∞ has an absolutely continuous distribution

by Tsirelson (1976), PrθT

{
||
√
TR(θ̂, λ, ξ)||∞ > cα(θ0)

∣∣∣ {Z(2)
t

}}
→ α and hence cαT (θT ) →

cα(θ0) conditional on
{
Z

(2)
t

}
.

The discussion above was all based on the assumption that we had a �xed sequence θT →

θ0, while in practice we have only that θ̂ →p θ0. However, the Almost Sure Representation

Theorem (see Theorem 1.10.4 in Van der Vaart and Wellner (1996)) implies that if θ̂ is weakly

consistent conditional on
{
Z

(2)
t

}
we have that cαTB(θ̂) →p cα(θ0) conditional on

{
Z

(2)
t

}
provided B → ∞ as T → ∞- see also Section 4.1 in Andrews 1997. Summing up, under

the null the fact that cαTB(θ̂) →p cα(θ0) conditional on
{
Z

(2)
t

}
together with the absolute

continuity of ||G∗||∞ yields that Pr
{
||
√
TR(θ̂, λ, ξ)||∞ > cαTB(θ̂)

∣∣∣ {Z(2)
t

}}
→ α. Provided

Assumptions 5-8 hold for all θ ∈ Θ, this implies that

sup
θ0∈Θ

lim
T→∞

Prθ0

{
||
√
TR(θ̂, λ, ξ)||∞ > cαTB(θ̂)

∣∣∣ {Z(2)
t

}}
= α

and hence that tests constructed with bootstrap critical values have correct asymptotic size

conditional on
{
Z

(2)
t

}
. Interestingly, and importantly for power considerations, if θ̂ →p θ1 ∈ Θ

(and Assumptions 5-8 hold for all θ ∈ Θ), the same argument implies that cαTB(θ̂)→p cα(θ1)

conditional on
{
Z

(2)
t

}
regardless of whether or not the null is true.

To formalize the discussion above, we make the following additional assumption:

Assumption 8 Conditional on
{
Z

(2)
t

}
, for all nonrandom sequences with θT → θ0:

13



1. Under Xt|Ft−1 ∼ F (x|Zt, θT ),
√
T (θ̂ − θT ) = 1√

T

∑
t I0γ(Xt, Zt, θT ) + op(1) where I0 is

a k-dimensional nonrandom matrix which may depend on θ0.

2. γ(x, z, θ) is a measurable function satisfying:

(a) Under Xt ∼ F (x|z, θT ), E [γ(Xt, z, θT )|Zt = z] = 0 ∀z ∈Supp(Zt).

(b) For all ζ > 0, 1√
T

∑
E
[
|γ(Xt, Zt, θT )|1

{
|γ(Xt, Zt, θT )| >

√
Tζ
}∣∣∣Zt]→p 0.

This assumption is a straightforward extension of Assumption 6 above and requires that

the estimator θ̂ have an linear asymptotic representation under sequences of true parameter

values θT → θ0. As with Assumption 6, this is not a substantial restriction and generally

holds for reasonable estimators. Under these conditions, we obtain the following theorem:

Theorem 4 Suppose that Assumptions 1, 4, 5, 7, and 8 hold. Then conditional on
{
Z

(2)
t

}
under H0 under any nonrandom sequence θT → θ0 we have

√
TR(θ̂, λ, ξ)⇒ G∗.

To obtain formal semi-parametric bootstrap results when the null is violated we require

that for a given alternative the estimator converge in probability to some value as the sample

grows:

Assumption 9 Conditional on
{
Z

(2)
t

}
, θ̂ →p θ1 ∈ Θ.

Note that this assumption does not require correct speci�cation. Indeed, results of this

sort have been shown to hold in many contexts when the model is misspeci�ed (i.e. when

F0(·|z) 6= F (·|z, θ) for all θ ∈ Θ). For examples and general conditions under which the MLE

satis�es Assumption 9, see White (1982). Based on these assumptions, we obtain the following

result concerning bootstrap critical values:

Corollary 1 Denote by cαTB(θ̂) the 1−α quantile of the bootstrap distribution of
√
TR(θ̂, λ, ξ),

and by cα(θ0) the 1− α quantile of the distribution of ||G∗||∞. Then conditional on
{
Z

(2)
t

}
:

1. Under Assumptions 1, 4, 5, 7, and 8 and B → ∞ as T → ∞, we have that under H0

cαTB(θ̂)→p cα(θ0) and Prθ0

(
||
√
TR(θ̂, λ, ξ)||∞ > cαTB(θ̂)

∣∣∣ {Z(2)
t

})
→ α.

2. Suppose that Assumptions 1, 4 and 9 hold, that Assumptions 5, 7, and 8 hold at θ1, and

that B →∞ as T →∞. Then cαTB(θ̂)→p cα(θ1).
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Corollary 1(1) formalizes the statement that the test with bootstrap critical values has

correct asymptotic size conditional on
{
Z

(2)
t

}
, while (2) states that, provided our estimator

θ̂ converges to some value θ1 which satis�es our assumptions, we have that the bootstrap

critical value converges to some constant (which may be a function of the true DGP) whether

or not the null hypothesis is correct. This re�ects the fact that we impose the null of correct

speci�cation in our bootstrap samples and plays an important role in the power analysis in

the next section.

3 Power of the Proposed Test

Above, we established that tests of H0 : Xt|Ft−1 ∼ F (x|θ0, Zt) based on ||
√
TR(θ̂, λ, ξ)||∞ and

bootstrap critical values have correct asymptotic size. What, then, can we say about their

power properties? In this section we discuss two results, the �rst concerning the power of the

test against �xed (global) alternatives as the sample size grows and the second concerning the

local power of the test.

For questions of both local and global power we will assume that θ̂ →p θ1 for some value θ1.

The key issue in determining whether tests based on ||
√
TR(θ̂, λ, ξ)||∞ have nontrivial power

is the behavior of supξ,λ |E [rt(θ1, λ, ξ)] |. In particular, if E [rt(θ1, λ, ξ)] ≡ 0, it is clear that

tests based on ||
√
TR(θ̂, λ, ξ)||∞ will not necessarily be consistent. Hence, in our discussion of

power we primarily focus on alternatives which violate the tested moment conditions:

Assumption 10 The true distribution is such that supξ,λ |Ef0 [rt(θ1, λ, ξ)] | > 0.

From Theorems 1 and 2, we know that by choosing {G(x|λ, z) : λ ∈ Λ} to be a complete

family we can ensure that Assumption 10 holds whenever Pr {f0(Xt|Zt) 6= f(Xt|θ1, Zt)} > 0,

which implies consistency against �xed alternatives which violate H∗0 . In some cases, however,

we may not be primarily concerned with consistency and may instead prefer to focus on

particular types of deviation from the null. In that case we can choose {G(x|λ, z) : λ ∈ Λ}

such that supξ,λ |EF0 [rt(θ1, λ, ξ)] | is large for true distributions F0 which deviate from the null

in the direction of interest, but {G(x|λ, z) : λ ∈ Λ} may or may not be a complete family. For

such a choice Assumption 10 continues to hold for the alternatives of interest and the power

results of this section remain valid.
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3.1 Power Against Fixed Alternatives

We �rst consider the global power properties of the test, i.e. the power when the data is drawn

from some �xed alternative distribution and the sample size is taken to in�nity. To do this,

we make the following assumption:

Assumption 11 Conditional on
{
Z

(2)
t

}
, for any sequence θT → θ1 we have that for all �xed

(λ, ξ)
1

T

∑
t

rt(θT , λ, ξ)→p E [rt(θ1, λ, ξ)] .

Under this assumption MLR tests are consistent:

Theorem 5 Under Assumptions 1, 4, 9 and 11, together with Assumptions 5, 7, and 8 (re-

placing θ0 with θ1), if Assumption 10 holds we have that conditional on
{
Z

(2)
t

}
lim
T→∞

Pr
{
||
√
TR(θ̂, λ, ξ)||∞ > cαTB(θ̂)

∣∣∣ {Z(2)
t

}}
= 1.

The proof of this result is very straightforward, since by Corollary 1 we have that cαTB(θ̂)→p

cα(θ1) <∞, while by Assumption 11 and the Almost Sure Representation Theorem

||
√
TR(θ̂, λ, ξ)||∞ →p ∞, delivering the desired result.

By the results of Section 1, we know that if {G(x|λ, z) : λ ∈ Λ} is a complete family we

have that supλ,ξ |E [rt(θ1, λ, ξ)] | > 0 whenever H∗0 is violated. Note, however, that the null

hypothesis of interest is H0 : Xt|Ft−1 ∼ F (x|θ0, Zt), so if we consider alternatives in which

Xt depends on Ft−1 as a whole rather than just Zt we can �nd distributions (in H∗0\H0)

such that supλ,ξ |E [rt(θ1, λ, ξ)] | = 0, against which the MLR test will not necessarily be

consistent. This result is entirely intuitive: if we consider an alternative which implies that

the distribution of Xt|Zt is correctly speci�ed but that Xt also depends on some other variable

Wt ∈ Ft−1 which is excluded from our test statistic, the MLR test will not in general detect

this. Hence, while the MLR test is consistent against general �xed alternatives in independent

models (where H0 and H∗0 are equivalent), in the dependent case it is consistent only against

alternatives which imply misspeci�cation in the stationary conditional distribution Xt|Zt (that

is alternatives which violate H∗0 ). Nonetheless, if we are interested in a particular collection of

alternatives we can always add elements to Zt to ensure consistency of the MLR test against

these alternatives.
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3.2 Power Against Local Alternatives

Next, we consider the asymptotic power of the test against local alternatives, i.e. sequences of

alternatives which drift closer to the null as the sample size grows. There are two purposes of

this exercise: �rst, it allows us to show that the proposed test has power against alternatives

which approach the null at rate
√
T and, second, it gives some intuition for how the choice of

g(·), ψ(·), and Φ(·) a�ects the power of the test against di�erent alternatives.

To derive the power of the test against
√
T local alternatives, we follow the approach of

Andrews (1997). In particular, consider a �xed alternative F0 which has density f0(x|z) with

respect to the dominating measure µ. Let d(x, z) =
√
T 0 (f0(x|z)− f(x|z, θ0)) for some value

θ0 ∈ Θ and constant T0, and consider the sequence of alternative densities

fT (x|z) = f(x|θ0, z) +
1√
T
d(x, z).

Note that, by construction, fT is a valid density for T ≥ T0 and fT0 = f0. For the purpose of

local power calculations, we consider a sequence of local alternatives where the sample of size

T is generated by Xt|Ft−1 ∼ FT (x|Zt) with density fT (x|Zt). To ensure that the sequence of

local alternatives FT is contiguous to F (x|θ0, z), we make the following assumption:

Assumption 12 f0 is such that the following conditions hold conditional on
{
Z

(2)
t

}
:

1. Under F (x|θ0, z),
∑T

t=1Eθ0

[
d(Xt,Zt)
f(Xt|θ0,Zt)

1
{

d(Xt,Zt)
f(Xt|θ0,Zt)

>
√
Tζ
}∣∣∣Zt]→p 0 ∀ζ > 0.

2. Under F (x|θ0, z),
1
T

∑T
t=1

d(Xt,Zt)2

f(Xt|θ0,Zt)2
→p Eθ0

[
d(Xt,Zt)2

f(Xt|θ0,Zt)2

]
.

3. Under F (x|θ0, z), there exists δ > 0 such that

sup
0<ε<δ

{
1

T
3
2

∑ |d(Xt, Zt)|3

|f(Xt|θ0, Zt) + εd(Xt, Zt)|3

}
→p 0.

4. For all (λ, ξ) ∈ Λ× Ξ:

(a) Under F0,
1
T

∑T
t=1Ef0 [rt(θ0, λ, ξ)|Zt]→p

´
Ef0 [rt(θ0, λ, ξ)|Zt = z] dFZ .

(b) Under F0,
1
T

∑T
t=1Ef0 [γ(Xt, Zt, θ0)|Zt]→p

´
Ef0 [γ(Xt, z, θ0)|Zt = z] dFZ .
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These conditions require that the distribution f0 not behave in too extreme a fashion

relative to f(θ0). In particular, (1) and (2) are what we need in order to apply a martingale

central limit theorem to d(Xt,Zt)
f(Xt|θ0,Zt)

, while (3) e�ectively imposes a restriction on the higher

moments of this ratio (which is not terribly demanding, since the T−
3
2 normalization in (3) is

quite strong). Together with our earlier assumptions, we obtain the following theorem:

Theorem 6 Suppose that Assumptions 1 and 4-8 hold at θ0 and that Assumption 12 is satis-

�ed. Then under {FT (·|·)} we have that conditional on
{
Z

(2)
t

}
√
TR(θ̂, λ, ξ)⇒ G∗ +

√
T0ν(λ, ξ)

where

ν(λ, ξ) =

ˆ
Ef0 [rt(θ0, λ, ξ)] dFZ −∆0(λ, ξ)′I0

ˆ ˆ
γ(x, z, θ0)f0(x|z)dµ(x)dFZ .

Since one can show that under {FT (·|·)} θ̂ →p θ0, bootstrap critical values will converge

to quantiles of G∗ and hence the test will have non-trivial power whenever ν(λ, ξ) is not

identically equal to zero.

Note that the limit of
√
TR(θ̂, λ, ξ), and in particular ν(λ, ξ), depends on the value of θ0,

and hence on the point towards which we shrink the sequence of alternatives FT as the sample

size grows. An important question, then, is how we should think about this value θ0. While

the local power results stated above are valid for any value of θ0 satisfying Assumptions 4-8

and 12, the value of these results (beyond establishing that the test has power against
√
T -

local alternatives) is to give us tools for thinking about the power of the test, and in particular

thinking about how the power of the test di�ers across di�erent alternatives. Formally, local

power results are useful for this purpose because they allow us to address the case where the

sample is �large� (and hence Gaussian approximations to the behavior of
√
TR(θ̂, λ, ξ) are

reasonable) without immediately yielding rejection for any violation of the null on the basis

of consistency results like Theorem 5. For this purpose, as argued in Andrews (1997) it is

natural to let θ0 be the �quasi-true� value under F0, since (i) this is the value of θ which

makes F (θ) as �close� as possible the F0 in the sense of Kullback Leibler divergence, (ii) this

choice ensures that
√
T (θ̂ − θ0) has the same behavior under {FT } as under Fθ0 , and (iii)
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for this choice of θ0, θ̂ has the same probability limit under F0 and F (θ0). Happily, for this

choice of θ0 we have that
´ ´

γ(x, z, θ0)f0(x|z)dµ(x)dFZ = 0, and hence that ν simpli�es to´
Ef0 [rt(θ0, λ, ξ)|zt] dFZ . This means that if supλ,ξ |Ef0 [rt(θ0, λ, ξ)] | 6= 0 (as is always the

case if {G(x|λ) : λ ∈ Λ} is a complete family and ψ, Φ satisfy the conditions of Theorem 2)

then tests based on ||
√
TR(θ̂, λ, ξ)||∞ have nontrivial power against

√
T local alternatives of

this form.

The term
´
Ef0 [rt(θ0, λ, ξ)|z] dFZ can be interpreted as an L2 inner product. In particular,

recall that

ˆ
Ef0 [rt(θ0, λ, ξ)|z] dFZ =

ˆ 〈(
f0(x|z)
f(x|θ0, z)

− 1

)
, g(x|λ, z)ψ(Φ(z)′ξ)

〉
dFZ ,

the integral over distribution of the conditioning variable of the L2 inner product of the re-

centered likelihood ratio
(

f0(x|z)
f(x|θ0,z) − 1

)
and g(x|λ, z)ψ(Φ(z)′ξ) viewed as functions of x. From

this perspective, the test is based on checking orthogonality conditions between the re-centered

likelihood ratio
(

f0(x|z)
f(x|θ0,z) − 1

)
(which is identically zero under correct speci�cation) and the

continuum of functions g(x|λ, z). The test has non-trivial local power against sequences of

alternatives such that for some value λ the orthogonality condition

〈(
f0(x|Zt)
f(x|θ0, Zt)

− 1

)
, g(x|λ, Zt)ψ(Φ(Zt)

′ξ)

〉
= 0

is violated with positive probability (with respect to FZ), and the virtue of complete families

{G(x|λ, z) : λ ∈ Λ} is that they ensure that such a violation occurs whenever H∗0 is violated.

Given this interpretation, if we are interested in a particular alternative F ∗(x|z) one reasonable

choice for {G(x|λ, z) : λ ∈ Λ} is a complete family that includes F ∗(x|z), though many other

choices may also make sense.

4 Theoretical Comparison with Previous Literature

The family of tests proposed here and the tests of Andrews (1997) and Bierens andWang (2012)

can all be viewed as extensions of the literature on speci�cation testing using �nite-dimensional

collections of moment equalities (as in e.g. Newey (1985)) to particular in�nite collections

chosen to deliver consistent tests (the consistent test of Zheng (2000) is of a somewhat di�erent
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sort). In particular, Andrews (1997) bases his approach on the statistic

A(x, z) =
1√
T

T∑
t=1

(
1 {Xt ≤ x} − F (x|θ̂, Zt)

)
1 {Zt ≤ z}

while Bierens and Wang base their test on

B(τ, ξ) =
1√
T

T∑
t=1

(
exp

(
iτ ′Xt

)
−
ˆ

exp
(
iτ ′x

)
dF (x|θ̂, Zt)

)
exp

(
iξ′Zt

)
.

While Andrews considers ||A(x, z)||∞ and Bierens and Wang consider ||B(τ, ξ)||2 (that is, the

L2 norm of B) Andrews notes that, as with the tests proposed here, one could also consider a

version of his test based on the L2 norm so we do not consider this di�erence to be essential.

Instead, the key di�erence between these statistics and those proposed here is in the contin-

uum of moment equalities being tested. In particular, testing that E [A(x, z)] ≡ 0 is the same

(asymptotically) as testing that the function E [(1 {Xt ≤ x} − F (x|θ1, Zt)) 1 {Zt ≤ z}] is iden-

tically equal to zero for θ1 = plim(θ̂). Likewise, testing that E [B(τ, ξ)] ≡ 0 is asymptotically

equivalent to testing that E
[(

exp (iτ ′Xt)−
´

exp (iτ ′x) dF (x|θ1, Zt)
)

exp (iξ′Zt)
]
≡ 0. The

consistency of both tests, and of the MLR tests proposed here, follows from the equivalence

of their chosen continuum of moment conditions and the null of correct model speci�cation.

An appealing aspect of the approach taken in this paper (based on testing (2)) relative to

those of Andrews (1997) and Bierens and Wang (2012) is that we have a great deal of freedom

in choosing g, ψ and Φ, so if we are concerned with alternatives that imply particular behavior

for the likelihood ratio f0(Xt|Zt)
f(Xt|θ1,Zt)

− 1 we can construct tests that have higher power in those

directions while maintaining consistency against global alternatives. Moreover, the class of

functions
{(

g(Xt|λ,Zt)
f(Xt|θ0,Zt)

− 1
)
ψ(Φ(Zt)

′ξ) : (λ, ξ) ∈ Λ× Ξ
}
are martingale di�erences under the

null of correct speci�cation, greatly simplifying the problem of testing under dependence and

allowing treatment of the independent and dependent cases in a uni�ed manner.2

2Note that the statistics considered by Andrews (1997) and Bierens andWang (2012) also result in collections
martingales under the null of correct speci�cation, and hence it may be possible to extend their results to
dependent models by arguments analogous to those in the present paper, though we do not pursue such
extensions here.
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4.1 Relation to Bartlett Identities Tests

Certain MLR tests are closely related to the Information Matrix test proposed by White (1982)

and the Bartlett Identities tests proposed by Chesher et. al. (1999). In particular Chesher

et. al. consider generalizations of White's Information Matrix test based on the observation

that if the true conditional density is f(x|θ0, z), then so long as we can exchange integration

and di�erentiation of the log likelihood k times we have that E
[
∂kf(Xt|θ0,Zt)/∂θk

f(Xt|θ0,Zt)

]
= 0 (for

ease of exposition we will treat θ as scalar, but all results extend directly to the general

case). To exploit this relationship, they propose tests based on �nite collections of statistics

1
T

∑T
t=1

∂kf(Xt|θ̂,Zt)/∂θk

f(Xt|θ̂,Xt)
, while White's Information Matrix test considers these statistics for

k=2. Note, however, that if the density f(x|θ, z) admits a Taylor series representation on some

open neighborhood Θ̃ of θ0 then for θ ∈ Θ̃ we have f(x|θ, z) =
∑∞

k=0
1
k!
∂kf(Xt|θ̂,Zt)

∂θk
(θ − θ0)k

and if we can exchange an expectation with the in�nite sum we have that the restriction

E
[
∂kf(Xt|θ0,Zt)/∂θk

f(Xt|θ0,Zt)

]
= 0 ∀k ∈ N is equivalent to

E

[ ∞∑
k=0

1

k!

∂kf(Xt|θ0, Zt)/∂θ
k

f(Xt|θ0, Zt)
(θ − θ0)k

]
= E

[
f(Xt|θ, Zt)
f(Xt|θ0, Zt)

]
= 1 ∀θ ∈ Θ̃.

Note, however, that the restriction E
[
f(Xt|θ,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] = 0 a.s. which is tested by the MLR

test with {G(x|λ, z)|λ ∈ Λ} =
{
F (x|λ, z)|λ ∈ Θ̃

}
(i.e. taking g to be a density from the same

parametric family assumed to generate the data) implies the restriction E
[
f(Xt|θ,Zt)
f(Xt|θ0,Zt)

]
= 1

∀θ ∈ Θ̃. Hence, MLR tests based on this choice of G (setting ψ(·) ≡ 1) can be viewed as tests

of all the Bartlett Identities jointly. Alternatively, the Bartlett Identities can also be shown to

hold conditionally, E
[
∂kf(Xt|θ0,Zt)/∂θk

f(Xt|θ0,Zt)
|Zt
]

= 0 a.s., and MLR tests with {G(x|λ, z)|λ ∈ Λ} ={
F (x|λ, z)|λ ∈ Θ̃

}
and ψ chosen to yield consistency can be viewed as tests of this stronger set

of restrictions. As discussed by Chesher et. al., tests of the Bartlett Identities can be viewed

as tests for unobserved parameter heterogeneity, extending the interpretation suggested by

Chesher (1984) for White's Information Matrix test. In cases where the above assumptions

regarding Taylor expansion and interchange of di�erentiation and integration hold, this inter-

pretation applies to MLR tests for this choice of G as well.
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5 Simulation Results

In this section, we provide simulation evidence on the �nite-sample size and power of particular

MLR tests relative to the tests proposed by Andrews (1997), Zheng (2000), and Bierens and

Wang (2012). For ease of comparison, in most of our simulations we follow the simulation

design of Bierens and Wang (2012) and reproduce some of their tables. Unlike the other tests

considered we've proved that the MLR tests are also applicable to dependent data, which we

illustrate with an application to an AR(1) model. In each simulation design we consider a

number of di�erent choices for g(x|λ, z), demonstrating that di�erent choices yield tests with

power in di�erent directions.

5.1 Independent Case

5.1.1 Linear Regression Model

Following the simulation design of Zheng (2000) and Bierens and Wang (2012) we begin

by considering a linear regression model with Xt = Z1,t + Z2,t + Ut, where Z1,t ≡ 1 and

Z2,t ∼ N(0, 1), and consider a number of of di�erent distributions for the error term Ut:

H
(0)
Z : Ut|Zt ∼ N(0, 1)

H
(1)
Z : Ut|Zt ∼ Standard Logistic

H
(2)
Z : Ut|Zt ∼ t5

H
(3)
Z : Ut|Zt ∼ N(0, Z2

t )

(4)

For each true error distribution, we test the null hypothesis H0 : Xt = Ztβ + Ut for Ut|Zt ∼

N(0, σ2). Again following Bierens and Wang (2012), we simulate the performance of our

proposed test based on 1000 samples of size 200 and 500 bootstrap replications, taking ψ(·) =

exp(·) and Φ(z) = (FN (z1), FN (z2))′ for FN the normal CDF. We consider �ve di�erent choices

for g(x|λ, z), yielding �ve di�erent MLR tests which we label MLR
(N)
Z and MLR

(0)
Z −MLR

(3)
Z .

MLR
(N)
Z takes g(x|λ, z) = φ(x−λ) where φ is a standard normal pdf, while for i ∈ {0, 1, 2, 3},

MLR
(i)
Z takes g(x|λ, z) = f(x − z2 − λ) where f(u) is the density of U corresponding to

H(i). For example MLR
(0)
Z takes g(x|λ, z) = φ (x− z2 − λ). In all cases we set Λ = [−2, 2]

and Ξ = [−2, 2]2. We consider tests with nominal size 1%, 5%, and 10% and compare the
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performance of our proposed procedures to that of the tests reported in Table 1 in Bierens and

Wang (2012). Table 1 reports the simulation results for the MLR tests together with results

(from Bierens and Wang (2012)) for the CK test (1) from Andrews (1997), Zheng's test for

three di�erent bandwidth choices (0.5, 1.0, and 2.0), and the Bierens and Wang tests for c=5

(generally among the cases with the highest power) and their Max test.

These results show that all of the MLR tests considered control size reasonably well,

though many of the tests are somewhat undersized. For i ∈ {1, 2, 3} MLR
(i)
Z has reasonably

good power against alternative H
(i)
Z con�rming that, as suggested at the end of Section 3, if

we're interested in tests with good power against a particular alternative F ∗(x|z) one option

is to choose g(x|λ, z) so that {G(x|λ, z) : λ ∈ Λ} includes F ∗(x|z). Relative to previously

proposed tests the MLR tests perform fairly well: against H(1) and H(2), the most powerful

MLR test (in both cases MLR
(1)
Z ) has power competitive with most powerful alternative test

(in both cases Z(2.0)). Against H(3) the MLR tests are less powerful than the tests proposed

by Andrews and Bierens and Wang but the MLR
(1)
Z test still does reasonably well.

5.1.2 Poisson Regression Model

We next consider the discrete simulation example discussed in Bierens and Wang (2012). In

that example, we test the null that H0 : Xt|Zt ∼ Poisson (exp (Ztβ)) where we again have

Z1,t ≡ 1, Z2,t ∼ N(0, 1) and the true conditional DGP is one of:

H
(0)
P : Xt|Zt ∼ Poisson (exp (Z2,t))

H
(1)
P : Xt|Zt ∼ NB (1, p(Z2,t))

H
(2)
P : Xt|Zt ∼ NB (5, p(Z2,t))

H
(3)
P : Xt|Zt ∼ NB (10, p(Z2,t))

(5)

where NB denotes the negative binomial distribution and p(z2) = 1
1+e−z2

is the Logit function.

Note that the mean of an NB (r, p(z2)) distribution is rez2 while the mean of a Poisson (exp (zβ))

is ez1β1ez2β2 , so all of the alternatives imply that the conditional mean of Xt|Zt is correctly

speci�ed (i.e. consistent with H0). To construct mean likelihood ratio tests we again take

ψ(·) = exp(·) and Φ(z) = (FN (z1), FN (z2))′. As in the linear regression case we consider �ve

di�erent choices for g(x|λ, z) and label the resulting tests MLR
(N)
P and MLR

(0)
P − MLR

(3)
P .
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MLR
(N)
P and MLR

(0)
P take g(x|λ, z) to be the probability mass function for a Poisson(exp(λ))

and a Poisson (exp (z2 · λ)) distribution, respectively, while for i ∈ {1, 2, 3} MLR
(i)
P takes

g(x|λ, z) to be the probability mass function for a NB (ki, p(z2 + λ)) distribution, where ki

is as in H
(i)
p . We again take Λ = [−2, 2] and Ξ = [−2, 2]2 in all cases. Results from these

simulations are reported in Table 2, where the results for the non-MLR tests are taken from

Table 2 in Bierens and Wang (2012).

We can see that the MLR tests again control size reasonably well, thoughMLR
(3)
P appears

to be slightly oversized. For i ∈ {1, 2, 3} we again have that the test MLR
(i)
P provides good

power against alternative H
(i)
P , and in all cases the MLRP tests have power which is quite

competitive with that of existing procedures. In particular, against H
(1)
p the MLR

(1)
P −MLR

(3)
P

tests have power close to that of the most powerful test considered (the CK test of Andrews

1997), while against H
(2)
P and H

(3)
P the power of the MLR

(1)
P −MLR

(3)
P tests everywhere exceeds

that of the competing tests, often by a substantial margin.

5.2 Dependent Case

Unlike the other consistent tests available in the literature, mean likelihood ratio tests can also

be applied in contexts with dependent data. To illustrate this point, we consider an AR(1)

variant of the regression model considered above. In particular, we simulate tests of the null

H0 : Xt = α + βXt−1 + Ut for Ut ∼ N(0, σ2) when the true DGP is Xt = 1 + .7 ·Xt−1 + Ut

and Ut|Xt−1 has one of the following distributions:

H
(0)
AR : Ut|Xt−1 ∼ N(0, 1)

H
(1)
AR : Ut|Xt−1 ∼ Standard Logistic

H
(2)
AR : Ut|Xt−1 ∼ t5

H
(3)
AR : U |Xt−1 ∼ N(0, X2

t−1)

(6)

We take Z1,t ≡ 1, Z2,t = Xt−1, ψ(·) = exp(·) and Φ(z) = (FN (z1), FN (z2))′. As before we

consider a number of choices for g(x|λ, z), yielding tests MLR
(N)
AR and MLR

(0)
AR − MLR

(3)
AR.

MLR
(N)
AR takes g(x|λ, z) = φ (x− λ), while for i ∈ {0, 1, 2, 3} MLR

(i)
AR takes g(x|λ, z) =

f (i) (x− .7 · z2 − λ) where f (i)(u) is the density of Ut implied by H
(i)
AR. Results from this

simulation are reported in Table 3. From these results, we again see that for i ∈ {1, 2, 3} the
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MLR(i) test, while not always the most powerful test considered, has reasonably good power

against H
(i)
AR.

6 Conclusion

In this paper we introduce a novel class of speci�cation tests for general parametric models.

We show that the hypothesis of correct speci�cation is equivalent to a continuum of moment

conditions, and use this to prove that the proposed tests are consistent against �xed alterna-

tives in independent models and against alternatives which depend on the past only through

a known �nite vector of state variables in dependent models. We further show that these tests

are have power against
√
T local alternatives. In simulation, we show that these tests control

size well in �nite samples and have power competitive with existing tests in independent mod-

els while also performing well in a dependent example. The family of proposed tests is quite

broad, and as we illustrate one can choose di�erent tests from this family to increase power

against particular alternatives when desired.

Appendix

Proof of Theorem 1 Proof given in text preceding Theorem 1.�

Proof of Theorem 2 Note that since Φ is bounded and Ξ is compact, the existence of

Ef0

[(
g(Xt|λ, Zt)
f(Xt|θ0, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

]

follows immediately from the assumption that Ef0

[
g(Xt|λ,Z)
f(Xt|θ0,Zt)

− 1
]
exists. One direction of

the result is immediate: if f0(Xt|Zt) = f(Xt|θ0, Zt) almost surely with respect to the true

probability measure FXZ , then Ef0

[
g(Xt|λ,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] = 0 almost surely. Hence, (2) holds.

To obtain the converse, suppose that f0(Xt|Zt) and f(Xt|θ0, Zt) di�er with positive prob-

ability (with respect to FXZ). Then there exists a set A such that Pr{Zt ∈ A} > 0 and for

z ∈ A, f0(x|z) 6= f(x|θ0, z). By the result of Theorem 1, we know that for each such z ∈ A

there exists λ(z) such that Ef0

[
g(Xt|λ(z),z)
f(Xt|θ0,z) − 1

∣∣∣Zt = z
]
6= 0.
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Consider �rst the case in which there exists some z∗ such that Pr{Zt = z∗} > 0 and

Ef0

[
g(Xt|λ(z∗),z∗)
f(Xt|θ0,z∗) − 1

∣∣∣Zt = z∗
]
6= 0. Since z∗ is observed with positive probability, by Theo-

rem 2.3 of Stinchcombe andWhite (1997) the set of ξ such thatEf0

[(
g(Xt|λ∗,Zt)
f(Xt|θ0,Zt)

− 1
)
ψ(Φ(Zt)

′ξ)
]

=

0 is of Lebesgue measure zero (and is not dense in Rl), so there exists ξ∗ ∈ Ξ such that

Ef0

[(
g(Xt|λ(z∗),Zt)
f(Xt|θ0,Zt)

− 1
)
ψ(Φ(Zt)

′ξ∗)
]
6= 0, proving the result.

Consider next the case in which no such z∗ occurs with positive probability. Nonetheless,

there exists some λ∗ ∈ Λ such that Pr
{
Ef0

[
g(Xt|λ∗,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] 6= 0

}
> 0. To see that this is

the case, note that since Ef0

[
g(x|λ,Zt)
f(x|θ0,Zt)

− 1
∣∣∣Zt] is continuous in λ almost surely by Assumption

3, Assumption 2 implies that for almost every z ∈ A the set

B(z) =

{
λ : Ef0

[
g(x|λ(z), z)

f(x|θ0, z)
− 1

∣∣∣∣Zt = z

]
6= 0

}

contains a nonempty open set. To prove the theorem it su�ces to show that there exists

λ∗ ∈ Λ such that Pr {λ∗ ∈ B(Zt)} > 0. Let D be a countable dense subset of Λ, and note that

the event {D ∩ int(B(z)) 6= ∅} (where int(B) denotes the interior of the set B) is equivalent to

the event int(B(z)) 6= ∅. Moreover, D ∩ int(B(z)) 6= ∅ implies that λ ∈ B(z) for some λ ∈ D.

By countable additivity,

Pr {Zt ∈ A} = Pr {D ∩ int(B(Zt)) 6= ∅} ≤
∑
λ∈D

Pr {λ ∩ int(B(Zt)) 6= ∅} .

Hence, since we have that Pr {int(B(Zt)) 6= ∅} > 0, it must be the case that there is some

λ∗ ∈ D such that

Pr {λ∗ ∩ int(B(Zt)) 6= ∅} = Pr

{
Ef0

[
g(Xt|λ∗, Zt)
f(Xt|θ0, Zt)

− 1

∣∣∣∣Zt] 6= 0

}
> 0,

as we wanted to show.

Now that we've established that for some λ∗, Pr
{
Ef0

[
g(Xt|λ∗,Zt)
f(Xt|θ0,Zt)

− 1
∣∣∣Zt] 6= 0

}
> 0, we

can apply Theorem 2.3 of Stinchcombe and White (1997), obtaining that

Ef0

[(
g(Xt|λ∗, Zt)
f(Xt|θ0, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

]
6= 0

except for a set of ξ of Lebesgue measure zero. This concludes the proof.�
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Proof of Theorem 3: This is a special case of Theorem 4, with Assumption 6 everywhere

replacing Assumption 8.�

Proof of Theorem 4: By Lemma A.1 we have that for γT = 1
T

∑
γ(Xt, Zt, θT )

√
T sup

λ,ξ
|R(θ̂, λ, ξ)−R(θT , λ, ξ) + ∆0(λ, ξ)′I0γT | = op(1)

while by Lemma A.4 we have

 √TR(θT , λ, ξ)
√
TγT

⇒
 G1

η0

 .

Hence, the conclusion follows by the Continuous Mapping Theorem.�

Lemma A.1 Under the assumptions of Theorem 4, we have that under θT

√
T sup

λ,ξ
|R(θ̂, λ, ξ)−R(θT , λ, ξ) + ∆0(λ, ξ)′I0γT | = op(1).

Proof: Note that under Assumption 8 we have that
√
T (θ̂ − θT ) = Op(1) under θT . Next,

by Assumption 5 we can use a mean-value expansion

√
TR(θ̂, λ, ξ) =

√
TR(θT , λ, ξ)−

1

T

T∑
t=1

∂

∂θ
f(θ∗(λ, ξ))

g(Xt|λ, Zt)
f2(θ∗(λ, ξ))

ψ(Φ(Zt)
′ξ)
√
T (θ̂ − θT )

where θ∗(λ, ξ) lies between θ̂ and θT . However, Assumption 8 implies that θ̂− θ0 = op(1), and

hence that there exists a sequence of constants δ∗T → 0 such that Pr
{

supλ,ξ ||θ∗(λ, ξ)− θ0|| > δ∗T
}
→

0. De�ne

N1,T = sup
ξ,λ
| 1
T

∑ ∂

∂θ
f(θ∗(λ, ξ))

g(Xt|λ, Zt)
f2(θ∗(λ, ξ))

ψ(Φ(Zt)
′ξ)−∆0(λ, ξ)|

N2,T = sup
ξ,λ

sup
θ:||θ−θ0||≤δ∗T

| 1
T

∑ ∂

∂θ
f(θ)

g(Xt|λ, Zt)
f2(θ)

ψ(Φ(Zt)
′ξ)−∆0(λ, ξ)|.
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By construction, Pr {N2,T ≥ N1,T } → 1 , but we know by Assumption 5 that N2,T → 0, so

N1,T = op(1). Note, however, that

√
T sup

λ,ξ
|R(θ̂, λ, ξ)−R(θT , λ, ξ) + ∆0(λ, ξ)′I0γT |

=
√
T sup

ξ,λ
| 1
T

T∑
t=1

∂

∂θ
f(θ∗(λ, ξ))

g(Xt|λ, Zt)
f2(θ∗(λ, ξ))

ψ(Φ(Zt)
′ξ)(θ̂ − θT )−∆0(λ, ξ)′I0γT |

≤ N1,T

√
T ||θ̂ − θT ||+ sup

λ,ξ
|∆0(λ, ξ)′

(√
T (θ̂ − θT )−

√
TI0γT

)
| = op(1)

where the �nal term is op(1) by Assumptions 5(3) and 8(1).�

Lemma A.2 Assumption 7(2) implies that g(x|λ,z)
f(x|θ,z)ψ(Φ(z)′ξ) is Lipshitz in (λ, ξ) with Lip-

shitz constants K(x, z, θ) which satisfy 1
T

∑∞
t=1E

[
K(Xt, Zt, θT )2|Zt

]
= Op(1).

Proof: From Assumption 7(2) we have that g(x|λ,z)
f(x|θ,z)ψ(Φ(z)′ξ) is Lipshitz in λ with Lipshitz

constant bounded by M1(x,z)
f(x|z,θ)B1 for some constant B1 (using the boundedness of ψ(Φ(z)′ξ)).

Further, since Φ is a bounded function and ψ is continuously di�erentiable we have that

ψ (Φ(zt)
′ξ) is Lipshitz in ξ with a Lipshitz constant bounded by some B2, so

g(x|λ,z)
f(x|θ,z)ψ(Φ(z)′ξ)

is Lipshitz in ξ with Lipshitz constant bounded by M2(x,z)
f(x|θ,z)B2. Combining these results and

applying the triangle inequality, we have that g(x|λ,z)
f(x|θ,z)ψ(Φ(z)′ξ) is Lipshitz in (λ, ξ) with Lip-

shitz constant bounded above by K(x, z, θ) = M1(x,z)
f(x|θ,z)B1 + M2(x,z)

f(x|θ,z)B2. Assumption 7(2) gives

us that 1
T

∑T
t=1EθT

[(
M1(x,Zt)+M2(x,Zt)

f(Xt|θT ,Zt)

)2
∣∣∣∣Zt] = Op(1), which implies the result.�

Lemma A.3 Under Assumption 4 andH0 : Xt|Ft−1 ∼ F (x|θ, Zt) we have that for all (λ, ξ) ∈

Λ × Ξ,
∑T

t=1

(
g(Xt|λ,Zt)
f(Xt|θ,Zt)

− 1
)
ψ(Φ(Zt)

′ξ) is a martingale with respect to {Ft}Tt=1 conditional

on
{
Z

(2)
t

}
.

Proof: As argued in the text, we know that Eθ

[(
g(Xt|λ,Zt)
f(Xt|θ,Zt)

− 1
)
ψ(Φ(Zt)

′ξ)
∣∣∣Zt] = 0. Next,

note that by Assumption 4:

E

[(
g(Xt|λ, Zt)
f(Xt|θ, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

∣∣∣∣Ft−1,
{
Z

(2)
t

}]
= E

[(
g(Xt|λ, Zt)
f(Xt|θ, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

∣∣∣∣Ft−1

]
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since conditional on the values of Z
(2)
t up to time t, Xt and all future values of Z

(2)
t are

independent. However, under H0 the distribution of Xt depends on Ft−1 only through Zt and

hence

E

[(
g(Xt|λ, Zt)
f(Xt|θ, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

∣∣∣∣Ft−1

]
= E

[(
g(Xt|λ, Zt)
f(Xt|θ, Zt)

− 1

)
ψ(Φ(Zt)

′ξ)

∣∣∣∣Zt] = 0

which proves the result.�

Lemma A.4 Under Assumptions 1, 4, 7, 8, and θT → θ0 we have that under H0 :

 √TR(θT , λ, ξ)
√
TγT

⇒
 G1

η0


in the usual sense of weak convergence.

Proof: For any �nite collection collection of elements (λ1, ξ1),...(λk, ξk) of Λ × Ξ, we know

that the elements of 

√
TR(θT , λ1, ξ1)

...
√
TR(θT , λk, ξk)
√
TγT

 (7)

satisfy a Lindeberg condition under Assumptions 7(1) and 8(2b) and hence, by repeated ap-

plication of the triangle inequality, that they satisfy a joint Lindeberg condition as well. By As-

sumption 7(3), we know that the sample covariances 1
T

∑T
t=1

 rt(θT , λ, ξ)

γ(Xt, Zt, θT )

 rt(θT , λ
′, ξ′)

γ(Xt, Zt, θ)


′

converge to C as in (1). By Lemma A.3 we know that T (R(θT , λ, ξ), γT ) is a martingale with

respect to {Ft}, so by the Martingale Central Limit Theorem for triangular arrays (see e.g.

Lipster and Shirayev, Chapter 5, Theorem 8) we have that all �nite-dimensional vectors of

the form (7) converge to normal distributions with covariance matrix given by C. To ob-

tain functional convergence we combine this �nite-dimensional result with Corollary 4.3 in

Nishiyama (2000). In particular, note that Assumption 7(1) implies Nishiyama's Assumption

[L1']. Further, by Lemma A.2, RT consists of a set of Lipshitz functions indexed by Λ × Ξ

with Lipshitz constant K satisfying 1
T

∑∞
t=1E

[
K(Xt, Zt, θT )2|Zt

]
= Op(1). Note, however,
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that Λ×Ξ is a compact subset of Euclidean space, and hence for ρ the usual Euclidean metric

trivially satis�es entropy condition
´ 1

0

√
N (Λ× Ξ, ρ, ε)dε <∞. Hence, by Proposition 4.5 of

Nishiyama (2000), condition [PE'] holds and we can apply Corollary 4.3 to obtain the desired

result.�

Proof of Corollary 1: Given in text preceding Assumption 9.

Proof of Theorem 5: By Assumptions 9 and 11, we have that sup(λ,ξ) ||
√
TR(θ̂, λ, ξ)||∞ →p

∞ by the Almost-Sure Representation Theorem (Theorem 1.10.4 in Van der Vaart andWellner,

(1996)), which together with Corollary 1 proves the result.

Proof of Theorem 6: As a �rst step, we need to prove that, conditional on
{
Z

(2)
t

}
, the

distribution of {(Xt, Zt) : t ≤ T} where the Xt's have conditional distribution FT (·|Zt), is con-

tiguous to the distribution of {(Xt, Zt) : t ≤ T} where the Xt's are have conditional distribu-

tion F (·|Zt, θ0). To do so, consider the log-likelihood ratio log

(∏T
t=1

f(Xt|θ0,Zt)+
1√
T
d(Xt,Zt)

f(Xt|θ0,Zt)

)
.

Following Andrews (1997), third-order Taylor expansion of log
(
f(Xt|θ0, Zt) + 1√

T
d(Xt, Zt)

)
around f(Xt|θ0, Zt) yields that with probability tending to one

∣∣∣∣∣log

(
T∏
t=1

f(Xt|θ0, Zt) + 1√
T
d(Xt, Zt)

f(Xt|θ0, Zt)

)
− 1√

T

T∑
t=1

d(Xt, Zt)

f(Xt|θ0, Zt)
+

1

2T

T∑
t=1

d(Xt, Zt)
2

f(Xt|θ0, Zt)2

∣∣∣∣∣
≤ 1

6
sup

0<ε<δ

{
1

T
3
2

∑ |d(Xt, Zt)|3

|f(Xt|θ0, Zt) + εd(Xt, Zt)|3

}
.

Note, further, that by Assumption 12(3) the last term is op(1) under F (x|θ0, z). As a result the

limiting behavior of the log likelihood ratio is determined by the �rst two terms of its Taylor

expansion. Note, however, that under F (x|θ0, z)
d(Xt,Zt)
f(Xt|θ0,Zt)

is a martingale di�erence. Hence,

using Assumption 12 parts (1) and (2) we can apply the martingale central limit theorem and

obtain that under F (x|θ0, z),

1√
T

T∑
t=1

d(Xt, Zt)

f(Xt|θ0, Zt)
− 1

2T

T∑
t=1

d(Xt, Zt)
2

f(Xt|θ0, Zt)2
→d N

(
−1

2
Eθ0

[
d(Xt, Zt)

2

f(Xt|θ0, Zt)2

]
, Eθ0

[
d(Xt, Zt)

2

f(Xt|θ0, Zt)2

])

where we have applied Slutsky's lemma after using Assumption 12(2) to control the second

term. By the result of example 3.10.6 in Van der Vaart and Wellner (1996) this means that the
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desired contiguity result holds, and we have that for LR = log

(∏T
t=1

f(Xt|θ0,Zt)+
1√
T
d(Xt,Zt)

f(Xt|θ0,Zt)

)
,

LR →d N
(
−1

2Eθ0

[
d(Xt,Zt)2

f(Xt|θ0,Zt)2

]
, Eθ0

[
d(Xt,Zt)2

f(Xt|θ0,Zt)2

])
. By another application of the Martin-

gale Central Limit Theorem, under Assumption 7 this implies that for any �nite collection

(λ1, ξ1)...., (λk, ξk) ∈ Λ×Ξ, we have that the vector (
√
TR(θ0, λ1, ξ1), ...,

√
TR(θ0, λk, ξk), γ0, LR)

converges jointly to a normal distribution under F (x|θ0, z). By an application of Le Cam's

third lemma and Assumption 12(4), this implies that under FT (·|Zt) we have �nite-dimensional

convergence

 √TR(θ0, λj , ξj)
√
Tγ0

⇒
 G1(λj , ξj) +

√
T0Ef0

[(
g(Xt|λj ,Zt)
f(x|θ0,Zt)

− 1
)
ψ(Φ(Zt)

′ξj)
]

η0 +
√
T0

´ ´
γ(x, z, θ0)f0(x|z)dµ(x)dFZ

 .

To extend this to functional convergence, we need only prove that

 √TR(θ0, λ, ξ)
√
Tγ0

 is asymp-

totically tight under FT (·|Zt). This follows from another application of Le Cam's Third Lemma

(see Theorem 3.10.7 in Van der Vaart and Wellner (1996)). Finally, note that the result of

Lemma A.1 holds under FT (·|Zt) by contiguity. Combined with the result above, this yields

that
√
TR(θ̂, λ, ξ)⇒ G∗ +

√
T0ν(λ, ξ)

as desired.�
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Tests H
(0)
Z H

(1)
Z H

(2)
Z H

(3)
Z

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MLR
(N)
Z 1.2 4.1 7.2 3.3 10.3 17.1 18.6 34.8 41.1 59.4 82.1 87.2

MLR
(0)
Z 1 4.3 7.4 6.1 14.9 25.2 24.9 43.7 50 55.8 75.5 78.8

MLR
(1)
Z 1.2 4.3 7.2 16 28.5 33.7 46.5 68.1 73.8 77.2 95.4 96.4

MLR
(2)
Z 1 4.4 7.4 9.7 17.9 26.2 41.6 58.9 63.6 73 90.7 93.2

MLR
(3)
Z 0.5 5.1 9 2 6 11.5 11.4 19.3 27.2 73.4 90.8 96.1

CK 1.2 5.7 10.6 3.7 11.2 20.0 6.4 19.8 28.5 99.8 100 100

Z(0.5) 1.3 2.2 4.6 12.4 15.1 17.2 31.6 40.2 46.1 95.1 95.3 95.3

Z(1.0) 1.7 2.5 4.0 12.1 14.2 16.7 43.7 55 59.5 96.3 96.6 96.7

Z(2.0) 2.8 3 4.7 18.7 22.8 25.6 55.5 66.6 74 89.8 93.1 94

BW c=5 1.5 4.8 10.5 2.1 8.2 15.1 6.6 17.5 26.6 100 100 100

BW Max 1.6 5.2 9.7 1.8 6.9 13.7 5.4 16 22.7 100 100 100

Table 1: Simulation results in linear regression model. The �rst three columns report size in percent of nominal
1%, 5%, and 10% tests, while remaining columns report power against alternatives H

(1)
Z −H

(3)
Z speci�ed in (4).

MLR
(i)
Z denotes the mean likelihood ratio tests, CK is Conditional Kolmogorov Test of Andrews (1997), Z(b)

is Zheng (2000)'s test with bandwidth choice b, BW c=5 is Bierens and Wang (2012) test with integration
domain equal to a cube around zero with side length 10, and BW Max is Bierens and Wang test maximized
over the integration domain. Results for the non-MLR tests are taken from Bierens and Wang (2012).
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Tests H
(0)
P H

(1)
P H

(2)
P H

(3)
P

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MLR
(N)
P 0.6 3.1 8.2 54.1 63.9 65.7 77.9 94 96.4 45.8 65.7 67.6

MLR
(0)
P 0.7 3.4 6.9 64.5 78.8 79.4 91.6 98.5 98.5 70.9 76 76.7

MLR
(1)
P 0.9 3.3 7.4 97.7 99.2 99.2 97.6 100 100 93.4 96.9 97.1

MLR
(2)
P 0.7 4.8 8.9 95.6 98.4 98.4 98.6 99.6 99.6 96.4 99.6 100

MLR
(3)
P 0.8 6.3 11.8 95.1 97.4 97.4 97.9 99.3 99.3 98.5 99.7 99.7

CK 0.5 5.6 11.4 98.3 99.3 99.6 53.6 74.3 83.7 21.1 47.5 61.8

BW c=5 1.7 6.0 10.7 75.3 89.8 94.8 69.2 88.9 94.3 47.0 76.9 88.4

BW Max 1.0 5.2 9.6 57.8 77.7 85.4 36.5 55.9 67.2 29.1 55.6 68.7

Table 2: Simulation results in Poisson regression model. First three columns report size in percent of nominal
1%, 5%, and 10% tests, while remaining columns report power against alternatives H

(1)
Z −H

(3)
Z speci�ed in (5).

MLR
(i)
P denotes the mean likelihood ratio tests, CK is Conditional Kolmogorov Test of Andrews (1997), BW

c=5 is Bierens and Wang (2012) test with integration domain equal to a cube around zero with side length
10, and BW Max is Bierens and Wang test maximized over the integration domain. Results for the non-MLR
tests are taken from Bierens and Wang (2012).
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Tests H
(0)
AR H

(1)
AR H

(2)
AR H

(3)
AR

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MLR
(N)
AR 0.9 4.4 7.8 7 17.9 27.1 26.5 43.2 53.8 94.1 98.1 99.3

MLR
(0)
AR 1.1 4.3 9.1 7 16.9 25.3 9.5 19.7 25.6 99.1 99.9 99.9

MLR
(1)
AR 0.8 4 7.1 21.1 37 41.9 53.4 72.8 75.5 95.8 96 96.1

MLR
(2)
AR 1.1 4.1 7.8 14.7 26.5 34.1 51.5 63.3 66.4 99.2 99.4 99.8

MLR
(3)
AR 1.2 5.7 11.4 14.2 29.1 32.7 46.8 61.6 63.8 99.9 99.9 99.9

Table 3: Simulation results in autoregressive model. First three columns report size in percent of nominal 1%,
5%, and 10% tests, while remaining columns report power against alternatives H

(1)
Z − H(3)

Z speci�ed in (6).

MLR
(i)
AR denotes the mean likelihood ratio tests.
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