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1 Sample Sensitivity with Perturbed Weight Matrix

Our discussion of sample sensitivity in section 5 of the main text assumes that the perturbation
parameter u affects the moments g (6, i) but not the weight matrix. This section provides a result
for the more general case where U also enters the weight matrix (for example through a first-stage
estimator), which nests the result stated in equation (5) in the main text.

Define a family of perturbed moments

g0, u)=8(0)+u-n,

where the scalar y and vector 1 control the magnitude and direction of the perturbation, respec-
tively. Note that the perturbations considered in the main text are of this form, with n = —g(a).
Correspondingly, define a perturbed weight matrix W (1) with 14 0) = W. Define the resulting

estimator 6 (1) to solve

(OA1) ming (6, 1)’ W (1) 2(6, 1)
(0]

We assume that g (0) is twice continuously differentiable in 6, and that W (1) is differentiable on

a ball %’u around zero. If we define

and

then we obtain the following result.

Online Appendix Proposition 1. Provided 0 lies in the interior of ® and is the unique solution to

(1) in the main text,

500 == (6(0) WG (8)+4) " (6(6)W5-2(0.0)+8).



whenever G (é),WG (é) + A is non-singular.

Proof. We know that ¢(6,u) — ¢(8) uniformly in 6 as u — 0. Thus g(8,u) W (u)g(0,u)
converges uniformly to g (6)' Wg(6) as u — 0. Since 8 is the unique solution to (1), this implies
that, for any € > 0, there exists u (€) > 0 such that Hé (u)—6 (0)|| < & whenever |u| < i (g),
where 6 () is the unique solution to .

For any i such that 6 (1) belongs to the interior of ®, @ (1) satisfies the first-order condition
(in 0)

Finally, note that

25 (B).a) = 6 (B () W () G (6 (1) +A(w),
for
Aw =] (6 EW))Wwe@w.n) . (560w))Wwedw.u) |,

where aa_e f (é(u), ,LL) has full rank for u sufficiently small. By the implicit function theorem, for
U in an open neighborhood of zero we can define a unique differentiable function 6 (1) such that
f (é (1), 1) = 0. By the argument at the beginning of this proof 6 (1) =6 (u) for u sufficiently
small. Thus, again by the implicit function theorem,

5200)=—(6(0)WG(0)+4) ' (6(0)W¢(0.0)+8).

for A = A (0), which establishes the claim. O

2 Results Under Non-Vanishing Misspecification

In section 3 of the main text, we showed that the sensitivity matrix A allows us to characterize
the first-order asymptotic bias of the estimator 8 under local perturbations to our data generating
process. In this section, we show that analogous results hold for the probability limit of 6 under

small, non-vanishing perturbations to the data generating process.



As in section 3 of the main text, we define a family of perturbed distributions F (-0, y, 1),
where u controls the degree of perturbation and F (-|0, y,0) = F (-|0, y). Let F, (1) = { xnF (|60, Yo, 1) } -
When 1 # 0, the model is misspecified in the sense that under F, (11), § (69) % 0. Online appendix
proposition [2] below shows that A relates changes in the population values of the moments to

changes in the probability limit of the estimator.

Online Appendix Assumption 1. For a ball %, around zero, we have that under F, (1) for
any w € By, (i) §(8) and G(0) converge uniformly in @ to functions g(0,1) and G(8,u) that
are continuously differentiable in (0, 1) on ® x %, and (ii) W LW () for W (1) continuously
differentiable on %,,.

Online Appendix Proposition 2. Under online appendix assumption I} there exists a ball #,, C
By, around zero such that for any U € %), 0 converges in probability under F, (1) to a continu-
ously differentiable function 0 (1), and

%9 (0) = A%g(@o,O) :
Proof. By the differentiability of g (0, ) in u, we know that g(6,u) — g(0) pointwise in 0 as
1 — 0. Moreover, since G (6, 1t) is continuous in (6, 1) € ® x B, for B, C P, a closed ball
around zero, we know that sup g )@ 3, Amax (G (6,11)' G (6, 1)) is bounded, where Amax (A) de-
notes the maximal eigenvalue of a matrix A. This implies that g (6, ) is uniformly Lipschitz in 6
for i € %, and thus that g (6, 1) — g () uniformly in 6 as g — 0. Thus, g (8, 1) W (1) g (6, 1)
converges uniformly to g ()’ Wg (8) as u — 0. Since 6 is the unique solution to ming g () Wg(6),
this implies that, for any € > 0, there exists u(€) > 0 such that |6 (1) — 6y|| < € whenever
|u| < p(g), where 8 (1) is the unique solution to

ming (6,11)'W (1)g (8, 1).

Moreover, standard consistency arguments (e.g., theorem 2.1 in Newey and McFadden 1994) imply
that & 2 6 (1) under F, (11).
Next, note that for any u such that 6 (i) belongs to the interior of ®, 6 (1) satisfies the first-

order condition (in )

Note that



A = | (FHCOW W)W ® W 1) . (5660w .1 )W w)e® W . |.

Since we have assumed that G'WG is non-singular and 3‘9—9 f(6,u) is continuous in 6 and u,
% f(6(u),u) has full rank for u sufficiently close to zero. By the implicit function theorem,
for p in an open neighborhood of zero we can define a unique differentiable function 6 (i) such
that £ (6 (1), 1) = 0. By the argument at the beginning of this proof 6 (1) = 6 (1) for u suffi-

ciently small. Thus, again by the implicit function theorem,

g, (COWRWWCE M H+AE)
Ju ><(G( (1), 1) W () aig(ﬂ(u>,u)+3(u)+C(u)) ’
for Py
B =GO ). (5 (1)) 20 u) )

d
Clw) = (5260 (W) )W ()26 ()10
Since 6 () = 0 (u) for u sufficiently small,  (0) = 6 (0) = 6y. Thus, since g (6 (0),0) =g (6p) =
0,A(0), B(0), and C(0) are all equal to zero, from which the conclusion follows immediately for
2, sufficiently small. ]

If we define F (-|0, y, 1) such that

%gwo,m — ¢(a)— g (av),

for g (a) the probability limit of g (6y) under assumptions a, then for 6 (a) the probability limit of

6 under assumption a, online appendix proposition [2implies the first-order approximation

6 (a) — 6o Alg(a)—g(ao)]

= Ag(a)

Q

discussed in section 3 of the main text.

Sections 4 and 6 of the main text develop sufficient conditions to apply our results and estimate
sensitivity for the case of local perturbations. We next develop analogous results for models with
a fixed degree of misspecification as studied in online appendix proposition [2| We first revisit the

special cases considered in section 4 and then consider estimation of A.



2.1 Special Cases

We begin by developing the analogue of lemma 1 in the appendix to the main text.

Online Appendix Lemma 1. Suppose that under F, (1L)
8(0)=a(6)+0b,

where the distribution of 4 (0) is the same under F, (0) and F,, ([t) for every n, @(0) converges to
a twice continuously differentiable function a(60), and b converges in probability to b (W), which
is continuously differentiable in |, and b (0) = 0. Suppose also that W either does not depend on
the data or is equal to w (éF S) forw(+) a continuously differentiable function and 0% a first-stage
estimator that solves (1) for a fixed positive semi-definite weight matrix WS not dependent on the

data. Then online appendix assumption 1 holds.

Proof. By assumption, under F, we have that ¢(0) = @(6) and G(6) = j—ea(e) converge uni-

formly to g (6) and G (). Since b does not depend on 6, g (6) converges uniformly to g (6, 1) =
g(6) +b(u) under F, (u), while G(6) converges uniformly to G(6,u) = G(8). As we have
assumed that b (u) is continuously differentiable, we see that g (6,u) and G (6, u) are continu-
ously differentiable in (6, 1), as we wanted to show. By applying online appendix proposition
with W = WFS (which satisfies the remaining condition of online appendix assumption |1/ by con-
struction), we can establish that, under F, (1), 67 25 6FS (1), which is differentiable in u in a
neighborhood of zero. Thus, W 2 W (i) = w (675 (1)), which is continuously differentiable in
U by the chain rule. [

Applying this result, we can extend proposition 2 of the main text to describe the behavior of

minimum distance estimators under a fixed level of misspecification.

Online Appendix Proposition 3. Suppose that 0 is a CMD estimator and, under F, (1), § =
§+ uf, where 1| converges in probability to a vector of constants 1 and the distribution of § does
not depend on 1. Suppose that W takes the form given in online appendix lemma|l| Then, for
0 (1) the probability limit of 6 under F, (1), we have that %9 (0) = An.

Proof. By online appendix lemma [ online appendix assumption [I] holds for CMD estimators.

The result then follows from online appendix proposition [2| [

Next, we turn to nonlinear IV models and develop the analogue of lemma 2 in the appendix

to the main text. For clarity, here we make explicit the dependence of fi on the data D; and write
Gi(6) = ¢ (¥, Xi;0).



Online Appendix Assumption 2. The observed data D; = |Y;, X;| consist of i.i.d. draws of endoge-
nous variables Y; and exogenous variables X;, where Y; = h(X;,§;;0) is a continuous one-to-one
transformation of the vector of structural errors {; given X; and 0, with inverse ¢ (Y:,Xi;0) = ¢ (0).

There is also an unobserved (potentially omitted) variable V;. Under F,, for a ball %, around zero:

A A

() E (& (h(Xi, G-+ 1Vis00) X2 0) ) and E (55 (h(Xi, -+ 1Vis60) . X;: 8) ) are continuously dif-
ferentiable in (0, 11) € ® x B,,; (ii) there exists a random variable d (D;) such that both

sup ‘ Zi& (h(X;, G + 1Vi; 60) ;Xi;e)H <d(Dj)

(6,u)cOx A,
and

sup
(6,u)eOx A,

d &
zl.%g (h(Xi, G+ uVi; 60) 7Xi;9>H <d(Di)

with probability one, and E.(d (D;)) is finite; and (iii) W either does not depend on the data or
is equal to W (éFS), where, under F, (1), W (8) converges uniformly in 0 to W (0, 1) which is
differentiable in (0, 1), and 0FS is a first-stage estimator that solves (1) for WS which depends
on the data only through X;.

Online Appendix Lemma 2. Suppose that online appendix assumption 2| holds and that, under
F, (1) with u € %y, we have &(90) = §,~ + uV;, where the distribution of (é:i,Xi,V,) does not
depend on u. Then online appendix assumption[I| holds.

Proof. By assumption, the distribution of (¥;,X;) under F, () is the same as the distribution of
(h (X, &+ 1Vi; 60) ,X;) under Fy, (0). Thus, by the uniform law of large numbers (see lemma 2.4
of Newey and McFadden 1994), part (ii) of online appendix assumption [2] implies that, under
Fo(1),8(0) % g(0,1) and G(0) & G(6,u), both uniformly in 6. Part (i) of online appendix
assumption then implies that both of these limits are continuously differentiable in (6, ). Since
WS does not depend on i, we see that WS 2, WFS under F, (1) . Thus, for this weight matrix, we
have verified all the conditions of online appendix assumption|I] so online appendix proposition 2]
implies that 7S £ 675 (1), which is differentiable in i in some neighborhood of zero. Thus, we

see that
W=W (675 (u) D w (o)),

where the limit is differentiable in p. Thus, we have verified the conditions of online appendix

assumption [I]in a neighborhood of zero. [
Using this result, we can now develop the analogue of proposition 3 in the main text.

Online Appendix Proposition 4. Suppose that 0 is an 1V estimator satisfying online appendix
assumption @ and that, under F, (), we have QA} (60) = fi + uV;, where scalar V; is an omitted

7



variable with %Z’V 2, Qzyv # 0 and the distribution of 5,' does not depend on l. Then, for 6 (1)
the probability limit of @ under F, (1), we have %9 (0) = AQyzy.

Proof. By online appendix lemma[2] online appendix assumption[I|holds. Online appendix propo-
sition 2 thus implies that
d d

——6(0) = AW E (Ziéf (h(X;, 8+ 1V 60) aXi§6)> ‘

u =0

However, online appendix assumption 2| part (ii) implies that Z;{ (h(X;, &+ uVi; 60),X;; 0) is uni-
formly integrable for ¢ in a neighborhood of zero. Thus, we can exchange integration and differ-
entiation to obtain that

51 B (2 G v :0)) | = (25 L 0%, Gobo) X))

p=0 G
=E(ZV;) = Qzv,
since ¥; = h(X;, §;; 0) is a one-to-one function with inverse QA’ (Y;,X:;0). O

2.2 Estimation of Sensitivity Under Non-Vanishing Misspecification

This section considers estimation of sensitivity and develops results analogous to propositions 4

and 5 in the main text. We first consider plug-in sensitivity A.

Online Appendix Lemma 3. Under online appendix assumption AL A1) under F, (1) for
Le By, C B, where A(-) is continuous and A (0) = A.

Proof. We have assumed that () 2 g(6,u) and G(8) & G(6,u), both uniformly in 6. By
online appendix proposition we know that & 2 6 (1) for u € %, where 6 (1) is continuous in
(. We have assumed, moreover, that g (0, 1), G(6,1), and W (1) are continuous in (6, 1), so

G(6 (), 1) W ()G(6 (u),p)

is continuous in y as well. Thus, since G'WG has full rank, (G (6 (1), 1)’ W () G (6 (1) ,,u))_1

is continuous for i € ;. Define %7’,1 C %), to be a ball of sufficiently small radius and note that,

for
A() =—(G(8,1)'W ()G (8,1) " G (8, 1) W (1),

A(-) is continuous on %y, A(0) = A, and by the continuous mapping theorem A 2, A(u) under
E (1) O



Analogous to proposition 5, we thus see that plug-in sensitivity is consistent under the as-
sumptions of online appendix proposition[2] By contrast, we require an additional assumption to

establish consistency of sample sensitivity Ag for A.

Online Appendix Assumption 3. For 1 < p < P, under F, (1) for any u € %, 8%]’@(9) con-
verges to %G (8, 1) uniformly in 0 on a ball By around 6y.
P

Online Appendix Lemma 4. Suppose that online appendix assumption |I| and online appendix
assumption |3| are satisfied. Then there exists a ball 93# around zero such that, under F, (l) for
ue By, As B As (1) with Ag (0) = A.

Proof. By online appendix proposition we know that & 2 6 (1) under F;, (i), and that 0 (1) €
B for u sufficiently small. Thus, since we have assumed that ¢ (0), G (), and %6(9) con-
/4

verge uniformly to g (0,u), G(0,u), and aieG (0, 1) on By, we see that, for u sufficiently small,
P

AN A A A JAN d
P P
Thus, by the continuous mapping theorem, we see that, for u sufficiently small,
G(8) WG () +AL G (6 (1), )W (1)G (O (), 1) +A(u),

where since G'WG is non-singular and 6 () — 6y, A(u) — 0 as g — 0, the right hand side is
non-singular for u sufficiently small. Applying the continuous mapping theorem thus yields the

result for %’u a ball of sufficiently small radius. [

Overall, we see that the results under a fixed degree of misspecification agree with the results
under local perturbations: A is consistent for sensitivity under the assumptions of online appendix
proposition [2, while an additional assumption is required to establish consistency of Ag for sensi-

tivity.

3 Results for Non-Smooth Moments

As noted in section 3 of the main text, many of our results on sensitivity extend to models where
£(0) is not differentiable in 6, allowing us to accommodate a range of additional estimators in-
cluding quantile regression and many simulation-based approaches. To formalize this, following

section 7.1 of Newey and McFadden (1994) we assume that the estimator 0 satisfies



Thus, 6 need not exactly minimize the objective function (which may be impossible in some
models with non-smooth moments), but should come close. We further assume that under F;(0),
(i) v/ng (60) 4N (0,9); (ii) W converges in probability to a positive semi-definite matrix W (iii)
there is a differentiable function g (0) with derivative G (0) such that g(6) = 0 only at 6 = 6 and
8(0) converges to g(0) uniformly in 0; (iv) GWG is nonsingular with G = G (6p); and (v) for

any sequence k; — 0,

wp  VElE®)—2(8) —2(O)]
lo—ap|<x, 1+ vnll6—6o

See section 7 of Newey and McFadden (1994) for a discussion of sufficient conditions for (v).

Under these assumptions, theorems 2.1 and 7.2 of Newey and McFadden (1994) imply that
6 is consistent and asymptotically normal with variance ¥ = (GWG)™' GWQWG (GWG) .
Since the moments are non-smooth the results on sensitivity derived in the main text no longer
directly apply, but it is still interesting to relate perturbations of the moments to perturbations of
the parameter estimates.

The approach based on sample sensitivity is no longer feasible for non-smooth moments, since
the estimates will not in general change smoothly with the moments when the moments are non-
smooth. Our results under non-vanishing misspecification, on the other hand, go through nearly

unchanged in this case.

Online Appendix Assumption 4. For a ball %, around zero, we have that under F, (L) for any
u e By, §(0) converges uniformly in 0 to a function g (0, 1) with %g (6,u) =G (0,u) such that
both g(0,1) and G (0,) are continuously differentiable in (6,1) on © x %y, and W 2w (u)
for W (W) continuously differentiable on %,,.

Online Appendix Proposition 5. Under online appendix assumption 4, there exists a ball #,, C
By around zero such that for any u € %), 0 converges in probability under F, (1) to a continu-
ously differentiable function 0 (), and

d d

EQ (0) ZAﬁg(Go,O)-

Proof. The proof is exactly the same as that of online appendix proposition 0

Thus, even when the moments are non-smooth, sensitivity characterizes the derivative of the
probability limit of 8 with respect to perturbations of the moments. The results in online appendix
section [2.2] can likewise be extended to the case with non-smooth moments, but we instead follow
the main text and focus on results under local perturbations.

In particular, for models with non-smooth moments we say that a sequence {l, }, _, is a local

perturbation if under F, (it,): () 6 2 6y; (i) /ng(6y) converges in distribution to a random

10



variable g; (iii) ¢ (@) converges uniformly in probability to g(8); (iv) W £ W; and (v) for any

sequence k;, — 0,
6(0)—2(6p) —g(0
wp  YELEO)—2(8) —2(O)]
16—60]| <K, 14/n||6 -6

As before, any sequence of alternatives , such that F;, (i, ) is contiguous to F;, (0) and under which

v/ng (6p) has a well-defined limiting distribution will be a local perturbation. As in proposition 1

of the main text, we can derive the asymptotic distribution of 6 under local perturbations.

Online Appendix Proposition 6. For any local perturbation {u,},,_, V/n (é — 69) converges in

distribution under F, (U,) to a random variable 0 with
0 =Ag

almost surely. This implies in particular that the first-order asymptotic bias E (é) is equal to
AE ().

Proof. By the same argument as in the proofs of theorems 7.1 and 7.2 of Newey and McFadden
(1994) applied under F, (1),

Vi (0-60+(GWG) ' GWg(en)) Do,

and thus

Vit (8= 80) = AV (6) +0, (1)

Consequently, by the continuous mapping theorem,

which proves the claim. [

As in the case with smooth moments, we next give sufficient conditions for a sequence of data

generating processes to be a local perturbation.

3.1 Special Cases

We first consider additive perturbations of the moments as in lemma 1 in the appendix to the main
text. The statement of the resulting lemma is the same as that of lemma 1 in the appendix to the

main text, but the proof differs slightly so we re-state the result for completeness.

11



Online Appendix Lemma 5. Consider a sequence {l,},_,. Suppose that under F, (1)

where the distribution of () is the same under F, (0) and F, () for every n and \/nb converges
in probability. Also, W 2> W under F, (1t,). Then {1, Yoy s a local perturbation.

Proof. Uniform convergence of g (0) follows from uniform convergence of @ (0) and the fact that
b 25 0. Convergence in distribution of /ng (6y) follows from the fact that \/nd (6y) converges in
distribution and /nb converges in probability. That 6 2, @y then follows from the observation that
¢(0)'Wg (0) converges uniformly to g (6)' Wg(8). Finally, that

vn|8(6)—2(6o) —g(0)l| »

sup =0
lo-tl<x, L+ vnll6—6l

follows from the fact that b differences out of this expression, and we have assumed that this holds
under F;, (0). O

Applying online appendix lemma [5] and online appendix proposition [6| again yields a sim-
ple characterization of the first-order asymptotic bias of misspecified CMD estimators with non-
smooth moments, which is again the same as the corresponding result for the case with differen-

tiable moments (proposition 2 in the main text).

Online Appendix Proposition 7. Suppose that 0 is a CMD estimator and, under F, (i), § =
§4 uf, where | converges in probability to a vector of constants 1 and the distribution of § does
not depend on U. Take U, = \/Lﬁ and suppose that W Ly W under F, (Wy). Then taking y, = \/iﬁ

we have E (é) =An.

Proof. That {u,},._, is a local perturbation follows from online appendix lemma with 4 (6) =

n—=

§—s(6) and b= WM. The expression for E (é) then follows by online appendix proposition
6l O

To extend the results of lemma 2 to the case with non-smooth moments, we need to incorpo-
rate the definition of local perturbations for the non-smooth case, but we don’t need to modify

assumption 1 in the main text at all.

Online Appendix Lemma 6. Consider a sequence {l,}, | with |, = % for a constant U*.

Suppose that assumption 1 in the main text holds and that, under F,, (), we have i:’i (60) = 5,- +uv;
where the distribution of (@,Xi, V,-) does not depend on |. Then {1, },._, is a local perturbation.

12



Proof. By the proof of lemma 2 in the appendix to the main text, the sequence of data generating

processes F, (W) is contiguous to F, (0), and
A d -
Vng(60) = N (1'E,Q)

under F, (W,) . Here, as in the proof of lemma 2 in the appendix to the main text, t*Z is the asymp-

totic covariance between the moments ¢(6p) and the log-likelihood ratio log Cﬁn—(élon))' By contiguity,
convergence in probability under F;, (0) implies convergence in probability to the same limit under

Fy, (1n) , which suffices to verify the other conditions for {u,},”_; to be a local perturbation. [

Analogous to proposition 3, applying online appendix lemma [6] and online appendix proposi-
tion[6|allows us to characterize the effects of misspecification in the class of nonlinear IV estimators

where ¢ (6) may be non-smooth in 6.

Online Appendix Proposition 8. Suppose that 8 is an IV estimator satisfying assumption 1 in the
main text and that, under F, (1), we have Z:’i (6p) = éi + uV;, where V; is an omitted variable with
%Z,Zi QV; LN Qzy # 0 and the distribution of (f,- does not depend on . Then taking W, = \/%7 we
have E (é) = AQyy.

Proof. That {u,},_; is alocal perturbation follows from online appendix lemmal|6] The expression
for E () then follows from online appendix proposition @ O

Thus, we see that the sufficient conditions for local perturbations developed in section 3 of
the main text extend to non-smooth models. We next show that our results on the estimation of
sensitivity can likewise be extended.

3.2 Estimation of Sensitivity with Non-Smooth Moments

To estimate sensitivity, we require an estimator of G = G (6p). Unlike in the case with smooth
moments, we cannot simply differentiate g (é) Instead, we follow section 7.3 of Newey and
McFadden (1994) and consider an estimator based on numerical derivatives. In particular, consider

the matrix G (0) of numerical derivatives with j* column

(8(0+ejen) —8(0—ej&n)) /(2€n),

where ¢ is the j'" standard basis vector and &, is a nonzero scalar. As in the smooth case, we can

use this to define plug-in sensitivity.

13



Definition. Define plug-in sensitivity as
A=—(G(8)WG(8))
Online Appendix Lemma 7. Assuming €, — 0 and &,\/n — o as n — oo, A 2> A under F,(11,)

for any local perturbation {u,}, ;.

Proof. The proof of theorem 7.4 of Newey and McFadden (1994) implies that G (é) 2, G. Since
G'WG has full rank by assumption the result follows by the continuous mapping theorem. 0

While this result is obtained for a particular numerical derivative estimator G (6), analogous
results can be established for alternative estimators (and a derivative estimator is usually required

to compute standard errors in models with non-smooth moments).

14



Online Appendix Table 1: Standard deviations of excluded instruments in BLP (1995)

Standard
deviation
Demand-side instruments
Other cars by same firm:
Number of cars 11.9210
Sum of horsepower/weight 4.7548
Number of cars with AC standard  4.4708
Sum of miles/dollar 27.0197
Other cars by rival firms:
Number of cars 23.5870
Sum of horsepower/weight 11.7205
Number of cars with AC standard 21.3580
Sum of miles/dollar 90.8318

Supply-side instruments

Other cars by same firm:
Number of cars 11.9210
Sum of log horsepower/weight 11.6288
Number of cars with AC standard  4.4708

Sum of log miles/gallon 8.4861

Sum of log size 4.1672

Sum of time trend 181.5812
Other cars by rival firms:

Number of cars 23.5870

Sum of log horsepower/weight 19.5929
Number of cars with AC standard 21.3580

Sum of log miles/gallon 24.9750

Sum of log size 4.6629
This car:

Miles/dollar 0.6981

Note: Table shows the standard deviation, across the entire sample, of the excluded instruments Zg, Z;.
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Online Appendix Figure 1: Sensitivity of La Rabida social pressure cost in DellaVigna et al. (2012)
to local violations of identifying assumptions
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Notes: The plot shows one-hundredth of the absolute value of plug-in sensitivity of the social pressure
cost of soliciting a donation for the La Rabida Children’s Hospital (LLa Rabida) with respect to the vector of
estimation moments, with the sign of sensitivity in parentheses. While sensitivity is computed with respect to
the complete set of estimation moments, the plot only shows those corresponding to the La Rabida treatment.
Each moment is the observed probability of a response for the given treatment group. The leftmost axis
labels in larger font describe the response; the axis labels in smaller font describe the treatment group.
Filled circles correspond to moments that DellaVigna et al. (2012) highlight as important for the parameter.
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