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Abstract

When the overidentifying restrictions of the constant-effect linear instrumen-

tal variables model fail, common IV estimators converge to different probability

limits. I characterize the estimands of two stage least squares, two step GMM,

and limited information maximum likelihood as functions of the single-instrument

estimands from the just-identified IV regressions which consider each instrument

separately. The limited information maximum likelihood estimand is found to be

discontinuous on a set of dimension equal to the number of instruments minus

one, and to equal the full parameter space on a set of dimension equal to the

number of instruments minus two.
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1 Introduction

A wide variety of estimators have been proposed for the constant-effect linear instru-

mental variables (IV) model, all of which converge to the true parameter value when

the model is correctly specified and an instrument relevance condition holds. At the

same time, when the IV model is misspecified common IV estimators typically converge

to different probability limits.

The goal of this paper is to characterize the behavior of commonly-used estimators

under model misspecification in linear IV models with a single endogenous regressor.

In particular, the paper considers two-stage least squares (TSLS), two-step general-

ized method of moments (TSGMM), limited information maximum likelihood (LIML),

and continuous updating generalized method of moments (CUGMM). The probability

limits (estimands) of TSLS, TSGMM, and LIML are characterized as functions of the

estimands in the just-identified models that use one instrument at a time, holding other

features of the data generating process fixed. More limited results are derived for the

CUGMM estimand.

As is well understood, the TSLS estimand is linear in the single-instrument es-

timands with linear combination weights summing to one. By contrast, the TSGMM

estimand is generally nonlinear, though continuous, in the single-instrument estimands.

More surprisingly the LIML estimand is highly nonlinear in the single-instrument esti-

mands and is discontinuous on a set of dimension equal to the number of instruments

minus one. If the controls include a constant, I show that the LIML estimand is dis-

continuous if and only if the vector of single-instrument estimands is such that (a) the

TSLS estimand coincides with the ordinary least squares (OLS) estimand and (b) the

R2 from the reduced-form regression of the outcome on the instruments is greater than

the R2 from the first-stage regression of the endogenous regressor on the instruments.

As the TSLS estimand approaches the OLS estimand from above the LIML estimand

diverges to positive infinity, while as the TSLS estimand approaches the OLS estimand

from below the LIML estimand diverges to negative infinity. Moreover, when the TSLS
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and OLS estimands coincide and the reduced-form R2 is equal to the first-stage R2,

the population LIML objective function does not depend on the structural parameter

value considered, so the minimizer is the full parameter space.

Analytical results for the CUGMM estimand are more elusive, but the level sets of

this estimand (viewed as a function of the vector of single-instrument estimands) have

a structure similar to those of LIML, and I find similar behavior for the LIML and

CUGMM estimands in a calibration to data from Yogo (2004).

The approach taken in this paper is distinct from that in the literature on hetero-

geneous treatment effects. A large literature originating with Imbens & Angrist (1994)

characterizes the probability limits of IV estimators as combinations of heterogenous

treatment effects under exogeneity and monotonicity assumptions. By contrast my ap-

proach, based on single-instrument IV estimands, is agnostic about the source and form

of misspecification and so can accommodate heterogeneous treatment effects, invalidity

of the instruments, or misspecification of the linear functional form. Further, my results

apply directly to IV applications which are difficult to cast into the treatment effects

framework, for example Yogo (2004). At the same time, however, my results only relate

IV estimands to the single-instrument estimands and other statistical objects, rather

than to the causal or structural parameters of interest. Hence, by remaining agnos-

tic about the source of misspecification my approach accommodates models beyond

the scope of the heterogeneous treatment effect literature but obtains correspondingly

weaker results.

Two papers from the literature on heterogeneous treatment effects of particular rel-

evance to my results are Kolesar (2013) and Mogstad et al. (2016). Kolesar (2013)

shows that the LIML estimand can lie outside the convex hull of the individual treat-

ment effects in a heterogeneous treatment effect model. Kolesar’s results do not imply

the discontinuity of LIML estimand but do suggest peculiar behavior for this quantity,

which my results strongly confirm. Mogstad et al. (2016) derive expressions for a wide

variety of estimands in terms of the potential outcomes in the treated and untreated

states in a heterogenous treatment effect model with a binary treatment. Their results
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could be used to link the expressions in the present paper to causal effects in that

setting, though further exploration of this possibility is left for future work. Other

related work includes Hall & Inoue (2003), who examine the large-sample behavior of

GMM estimators under misspecification, and Lee (2016), who proposes an asymptotic

variance estimator for TSLS in models with heterogenous treatment effects.

In the next section I formally introduce the IV model and define the IV estimands.

Section 3 then presents analytical results on the structure of IV estimands, while Section

4 illustrates these results in a calibration to data from Yogo (2004). All proofs are given

in the appendix.

2 The Linear IV Model and Estimands

Suppose we observe a sample of T observations (Yt, Xt, Zt) drawn from distribution FT ,

where Yt is an outcome variable, Xt is a potentially endogenous regressor, and Zt is a

k×1 vector of instrumental variables. Let us stack these observations into T ×1 vectors

Y and X with row t equal to Yt and Xt respectively, and a T × k matrix Z with row t

equal to Z ′t. Suppose the data obey the linear model

Y = Xβ + ε,

where β is the scalar parameter of interest. Conventional IV methods impose two

further restrictions: the instrument relevance condition E [ZtXt] 6= 0, and the exclusion

restriction E [Ztεt] = 0. The model may accommodate additional exogenous regressors

Wt as well, but for simplicity I will assume any exogenous variables have already been

partialled out.1

A wide variety of estimation schemes have been proposed for linear IV. To accommo-

date different estimators in a unified framework while allowing the possibility of efficient

estimation in models with heteroskedastic, serially correlated, or clustered data, here I
1Thus, for Ỹ , X̃, W, and Z̃ matrices collecting observations of the base variables Ỹt, X̃t, Wt, and

Z̃t respectively, I define Y =MW Ỹ and so on for MW = IT −W (W ′W )
−1
W ′.
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treat linear IV as a special case of GMM. In particular, for gt (β) = (Yt −Xtβ)Zt note

that the usual IV identifying assumptions imply the moment restriction E [gt (β)] =

E [Ztεt] = 0. For gT (β) = 1
T

∑T
t=1 gt (β) = 1

T
Z ′ (Y −Xβ) and Ŵ (β) some (potentially

parameter-dependent) symmetric positive-definite k × k weighting matrix, a general

class of GMM estimators is defined by

β̂W = arg min
β
Q̂W (β) = arg min

β
gT (β)′ Ŵ (β) gT (β)

if this argmin exists and is unique. This paper focuses on four GMM estimators in

particular: TSLS, LIML, TSGMM, and CUGMM.

The TSLS estimator is the simplest, and takes Ŵ (β) =
(

1
T
Z ′Z

)−1. This estimator

is asymptotically efficient if the IV model is correctly specified and the errors εt are

homoskedastic and independent across t, but may otherwise be inefficient. The LIML

estimator is likewise efficient under correct specification and homoskedasticity but takes

Ŵ (β) = σ̂−2 (β)
(

1
T
Z ′Z

)−1 for

σ̂2 (β) =
1

T
(Y −Xβ)′MZ (Y −Xβ) = σ̂2

Y − 2βσ̂XY + β2σ̂2
X .

whereMZ = IT−Z (Z ′Z)−1 Z ′, σ̂2
Y = 1

T
Y ′MZY , σ̂XY = 1

T
Y ′MZX, and σ̂2

X = 1
T
X ′MZX.

For brevity of notation I write β̂TSLS and Q̂TSLS (β) for the TSLS estimator and objec-

tive, respectively, and do the same for the other estimators considered.

TSGMM attempts to improve efficiency by taking into account the asymptotic

variance matrix of the moment vector. In particular, for a given first step estima-

tor β̂1 of β, which for concreteness I will take to be the TSLS estimator, TSGMM sets

Ŵ (β) = Σ̂
(
β̂1

)−1

for Σ̂ (β) an estimator of the asymptotic variance of
√
TgT (β). Such

variance estimators can typically be decomposed as

Σ̂ (β) = Γ̂11 − β
(

Γ̂12 + Γ̂′12

)
+ β2Γ̂22

for some k × k matrix-valued estimators
(

Γ̂11, Γ̂12, Γ̂22

)
. I limit attention to variance

estimators Σ̂ (β) of this form. Finally CUGMM bears the same relationship to TSGMM

as TSLS does to LIML and takes Ŵ (β) = Σ̂ (β)−1 .
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2.1 Linear IV Estimands

I am interested in the asymptotic behavior of IV estimators, and in particular their

estimands. As a starting point I assume that the terms which enter the GMM objective

function all tend to well-defined probability limits.

Assumption 1 As the sample size T tends to infinity,(
1

T
Z ′Y,

1

T
Z ′X

)
→p (E [ZtYt] , E [ZtXt]) .

Moreover,
1

T
Z ′Z →p E [ZtZ

′
t] , (1) σ̂2

Y σ̂XY

σ̂XY σ̂2
X

→p

 σ2
Y σXY

σXY σ2
X

 (2)

=

 E [Y 2
t ]− E [ZtYt]

′E [ZtZ
′
t]
−1E [ZtYt] E [XtYt]− E [ZtYt]

′E [ZtZ
′
t]
−1E [ZtXt]

E [XtYt]− E [ZtYt]
′E [ZtZ

′
t]
−1E [ZtXt] E [X2

t ]− E [ZtXt]
′E [ZtZ

′
t]
−1E [ZtXt]


and  Γ̂11 Γ̂12

Γ̂′12 Γ̂22

→p

 Γ11 Γ12

Γ′12 Γ22

 (3)

where the limits in (1)-(3) are all full rank. For convenience I further assume that

σXY 6= 0.

2.1.1 Parameter Space

The IV estimands considered in this paper can be expressed as functions of

ψ =
(
E [ZtYt] , E [ZtXt] , E [ZtZ

′
t] , σ

2
Y , σXY , σ

2
X ,Γ11,Γ12,Γ22

)
. (4)

It is natural to ask what set of values Ψ for ψ can arise in practice. To explore this

question, it is helpful to consider the characterization of the IV model in terms of the

reduced-form and first-stage regressions

Yt = Ztδ + UY,t, (5)
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Xt = Ztπ + UX,t, (6)

where δ and π are the OLS regression coefficients of Yt and Xt on Zt, respectively.

To relate this model to ψ, note that E [ZtYt] = E [ZtZ
′
t] δ and E [ZtXt] = E [ZtZ

′
t] π.

Assumption 1 implies that σ2
Y σXY

σXY σ2
X

 = E

 U2
Y,t UY,tUX,t

UY,tUX,t U2
X,t

 ,
so the LIML estimator depends on the second-moment matrix of the residuals from

the reduced-form and first-stage regressions. Analogously, depending on the estima-

tor used (Γ11,Γ12,Γ22) will typically correspond to the asymptotic variance of either(
1√
T
Z ′Y, 1√

T
Z ′X

)
or
(

1√
T
Z ′UY,t,

1√
T
Z ′UX,t

)
.

The constant-effect linear instrumental variables model implies that δ = πβ, but

this restriction may fail for a variety of reasons. For example, while we treat Zt as an

instrument some elements of Zt may in fact be exogenous variables which should be

included as controls (that is, these elements should be included in Wt). Alternatively,

it may be that Zt is a valid instrument but the true structural relationship is nonlinear,

Yt = g (Xt) + εt. In this case

δ = E [ZtZ
′
t]
−1
E [Ztg (Xt)] ,

so δ will depend on the true functional form g (Xt). Finally, we may have δ 6= πβ due to

heterogenous treatment effects. The exact relationship between the coefficients δ and

the underlying heterogeneous effects in such cases is beyond the scope of this paper,

but can be derived using the results of Mogstad et al. (2016).

When misspecification is due to misclassification of exogenous variables as instru-

ments we can obtain any value for (δ, π, σ2
Y , σXY , σ

2
X , E [ZtZ

′
t]) such that E [ZtZ

′
t] and

the variance matrix for (UY,t, UX,t) are positive semi-definite.2 Many cases of functional

form misspecification and treatment effect heterogeneity, by contrast, will impose addi-

tional restrictions on the possible values of ψ. The possible values of (Γ11,Γ12,Γ22) are
2In particular, Zt is an exogenous control that we have misclassified as an instrument, for β = 0 we

can obtain any values of
(
δ, π, σ2

Y , σXY , σ
2
X

)
in (5) and (6).
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also restricted, where the exact restrictions depend on the setting and the estimator

used. Most of the results of this paper focus on varying E [ZtYt] , or equivalently δ,

while holding the remaining elements of ψ constant, but in settings that imply addi-

tional restrictions one can limit attention the the corresponding parameter space Ψ.

2.1.2 Consistency and Estimands

If we define g (β;ψ) = E [ZtYt] − E [ZtXt] β as the probability limit of gT (β) and let

W (β;ψ) denote the probability limit of Ŵ (β) ,3 then for the four GMM objective

functions discussed above Assumption 1 implies that

Q̂W (β)→p QW (β;ψ) = g (β;ψ)′W (β;ψ) g (β;ψ)

for each fixed β. I define IV the estimand βW (ψ) to be the minimizer of QW (·;ψ).

Definition 1 Define the IV estimand for weight matrix Ŵ as

βW (ψ) = arg min
β∈R

QW (β;ψ) .

Note that βW (ψ) may be set-valued if QW (β;ψ) has multiple minimizers. If limβ→±∞QW (β;ψ) =

infβ QW (β;ψ) then {−∞,+∞} ⊆ βW (ψ) .

To connect βW (ψ) to the asymptotic behavior of β̂W , note that if we define

ψ̂ =

(
1

T
Z ′Y,

1

T
Z ′X,

1

T
Z ′Z, σ̂2

Y , σ̂XY , σ̂
2
X , Γ̂11, Γ̂12, Γ̂22

)
then for the estimators discussed here β̂W = βW

(
ψ̂
)
. Thus β̂W →p βW (ψ) provided

βW (ψ) is a singleton and ψ is a continuity point of βW (·). Formally:

Lemma 1 If βW (ψ) is a singleton and βW (·) is continuous on an open neighborhood

of ψ, Assumption 1 implies that β̂W = βW

(
ψ̂
)
→p βW (ψ) .

3If E [ZtXt] = 0 the weighting matrix Ŵ used by TSGMM typically will not tend to a fixed

probability limit, so it will not in general be the case that Q̂TSGMM (β) converges. Assumption 2

below rules out this case.
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The focus of this paper is on characterizing the behavior of βW (ψ) as ψ varies. A

well-understood pathology of IV estimators arises when the instrument relevance condi-

tion fails and the instruments are orthogonal to the endogenous regressor, E [ZtXt] = 0.

For completeness I briefly discuss this case, but will rule it out for the remainder of the

paper.

Irrelevant Instruments When E [ZtXt] = 0 the parameter β is not identified even

if we assume the exclusion restriction holds. Correspondingly neither QTSLS (β) nor

QTSGMM (β) depends on β,4 with the result that βTSLS (ψ) = βTSGMM (ψ) = R ∪

{−∞,+∞} . Under the IV exclusion restriction, E [ZtXt] = 0 implies E [ZtYt] = 0

since this is the only way the IV moment condition E [Ztεt] = 0 can hold. In this case

we can see that βLIML (ψ) = βCUGMM (ψ) = R ∪ {−∞,+∞} as well. If, on the other

hand, the IV model is misspecified so E [ZtXt] = 0 but E [ZtYt] 6= 0, one can show that

βLIML (ψ) = βCUGMM (ψ) = {−∞,+∞} . To avoid these pathologies, for the remainder

of the paper I maintain the instrument relevance assumption. Further, for convenience

I assume that each instrument is non-othogonal to Xt.5

Assumption 2 For each element Zi,t of Zt, E [Zi,tXt] 6= 0.

2.2 Single-Instrument IV Estimands

To study the behavior of IV estimands βW (ψ) under model misspecification it is helpful

to have a concise representation for the degree and form of misspecification. One

convenient such representation is based on the single-instrument IV estimands.

Note that in a just-identified IV model with k = 1, provided the instrument relevance

condition holds all of the estimands discussed above reduce to βW (ψ) = E [ZtYt] /E [ZtXt] .

Even when k > 1 we can obtain a just-identified system by restricting attention to the
4Here I define β1 (ψ) to be an arbitrary finite singleton so that QTSGMM (β) is well-defined.
5While this is stronger than E [ZtXt] 6= 0, given an instrument vector Z∗t such that E [Z∗tXt] 6= 0

we can always define a rotation of the instruments Zt = OZ∗t such that Assumption 2 holds.
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ith instrument Zi,t, yielding IV estimand

bi =
E [Zi,tYt]

E [Zi,tXt]
.

The IV exclusion restriction

E [ZtYt]− βE [ZtXt] = 0

holds for some value β if and only if bi = β for all i. Hence, the IV model’s over-

identifying restrictions hold if and only if bi = bj for all i and j. Denote the set of

b = (b1, ..., bk)
′ such that the IV over-identifying restrictions hold by

B = {b : bi = bj for all i and j} . (7)

Note that since b = D (E [ZtXt])
−1E [ZtYt] for D (V ) which maps the k × 1 vector

V to a k × k diagonal matrix with the elements of V along the diagonal and zeros

elsewhere, we can write

QW (β;ψ) = (b− ιβ)′Ω (β) (b− ιβ)

for Ω (β) = D (E [ZtXt])
′W (β)D (E [ZtXt]) and ι the k × 1 vector of ones. Since

correct specification of the IV model restricts only the vector b, to understand the

effect of misspecification on IV estimands I will consider behavior as b varies, holding

the other elements of ψ (i.e. E [ZtXt] , E [ZtZ
′
t] , σ

2
Y , σXY , σ

2
X ,Γ11,Γ12,Γ22) fixed. See

Section 2.1.1 above for further discussion. To emphasize this focus on the behavior

of QW and βW in b, I abbreviate QW (β;ψ) = QW (β; b) and βW (ψ) = βW (b) for the

remainder of the paper.

3 The Structure of IV Estimands

As noted in the previous section, all IV estimands coincide in just-identified model,

provided the instrument relevance condition holds. In over-identified models, by con-

trast, each instrument implies a corresponding IV estimand and the question is how
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to combine the single-instrument estimands into an overall estimate. The different IV

estimators discussed above imply different answers to this question, and the goal of

this section is to characterize the behavior of the IV estimands βW as functions of the

single-instrument estimands b.

3.1 TSLS

The two stage least squares objective QTSLS (β) is quadratic in β, so under Assumption

2 we can solve analytically for

βTSLS (b) =
E [ZtXt]

′E [ZtZ
′
t]
−1E [ZtYt]

E [ZtXt]
′E [ZtZ ′t]

−1E [ZtXt]
=

k∑
i=1

wibi

where

wi =
E [ZtXt]

′E [ZtZ
′
t]
−1 eie

′
iE [ZtXt]

E [ZtXt]
′E [ZtZ ′t]

−1E [ZtXt]

for ei the ith standard basis vector. Note that
∑

iwi = 1 so the TSLS estimand is a

linear combination of the single-instrument estimands with weights summing to one.

The weights wi are not necessarily positive, however, so we cannot in general interpret

βTSLS (b) as a weighted average of the single-instrument estimands.6

3.2 TSGMM

The TSGMM objective is again quadratic in β, so we can solve for

βTSGMM (b) =
k∑
i=1

wi (b) bi

where

wi (b) =
E [ZtXt]

′Σ−1 (βTSLS (b)) eie
′
iE [ZtXt]

E [ZtXt]
′Σ−1 (βTSLS (b))E [ZtXt]

.

6In models with heterogenous treatment effects, Angrist & Imbens (1995) and Kolesar (2013) give

results which characterize the TSLS estimand as a weighted average of particular causal effects under

monotonicity conditions. Their results do not imply, however, that the weights wi above are positive.
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Thus for a given weight matrix the TSGMM estimand is a linear combination of the

single-instrument estimands with weights which sum to one, where the weights them-

selves now depend on b through the first-stage estimand. The TSGMM estimand will

generally be nonlinear in the single-instrument estimands, except in the homoskedastic

case where it coincides with TSLS. Assumption 1 implies that Σ (β) is everywhere full

rank, and thus that βTSGMM (b) is a continuous (and, in fact, differentiable) function

of b.

3.3 LIML

Matters become more interesting when we consider LIML. The well-known characteri-

zation of LIML as a k-class estimator (see e.g. Hausman 1983) implies the following,

Lemma 2 Let

Λ (b) =

 λ1 (b) λ2 (b)

λ2 (b) λ3

 =

 E [ZtYt]
′E [ZtZ

′
t]
−1E [ZtYt] E [ZtYt]

′E [ZtZ
′
t]
−1E [ZtXt]

E [ZtYt]
′E [ZtZ

′
t]
−1E [ZtXt] E [ZtXt]

′E [ZtZ
′
t]
−1E [ZtXt]

 =

 b′Ξb b′Ξι

ι′Ξb ι′Ξι


for Ξ = D (E [ZtXt])E [ZtZ

′
t]
−1D (E [ZtXt]). For ϕ (b) the largest root of the quadratic

equation (
λ1 (b) + φσ2

Y

) (
λ3 + φσ2

X

)
− (λ2 (b) + φσXY )2 = 0,

the LIML estimand βLIML (b) is given by

βLIML (b) =
λ2 (b) + ϕ (b)σXY
λ3 + ϕ (b)σ2

X

(8)

whenever the denominator is nonzero.

The only terms in βLIML (b) which depend on b are λ2 and ϕ, both of which change

continuously in b. Thus, over most of the parameter space βLIML will be continuous in

b. As might be expected, however, βLIML behaves strangely when the denominator in

(8) crosses zero.
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To formally discuss this issue, define the irregular set

I =
{
b : λ3 + ϕ(b)σ2

X = 0
}

(9)

as the set of values b such that the denominator in (8) is zero.

Proposition 1 For the irregular set I defined in (9):

1. b ∈ I if and only if
λ1 (b)

σ2
Y

≥ λ2 (b)

σXY
=
λ3

σ2
X

.

2. For B the set of single-instrument estimands b such that the IV over-identifying

restrictions hold (defined in (7)), B ∩ I = ∅.

3. For b ∈ I,

βLIML (b) =

{−∞,+∞} if λ1(b)

σ2
Y
> λ2(b)

σXY
,

R ∪ {−∞,+∞} if λ1(b)

σ2
Y

= λ2(b)
σXY

= λ3
σ2
X
.

Note that λ2 (b) and λ1 (b) are linear and quadratic in b, respectively. Consequently I

consists of the set of points on the (k − 1)-dimensional hyperplane
{
b : λ2 (b) = σXY

λ3
σ2
X

}
lying weakly outside the ellipsoid

{
b : λ1 (b) = σ2

Y
λ3
σ2
X

}
centered at the origin. The

exclusion of the interior of this ellipsoid ensures that the irregular set does not intersect

the parameter space B for the correctly specified IV model, and so reconciles the peculiar

behavior of the LIML estimand on I with its well-understood behavior under correct

specification. Note that on the set

S =

{
b :

λ1 (b)

σ2
Y

=
λ2 (b)

σXY
=
λ3

σ2
X

}
,

βLIML (b) is the full extended real line. Hence even though I consider a fixed non-zero

value of E [ZtXt], and thus the instrument relevance condition holds, the minimizer of

the LIML population objective QLIML is not uniquely defined for b ∈ S.
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Interpreting I and S To better understand the irregular set I, note that λ2(b)
σXY

= λ3
σ2
X

if and only if
b′Ξι

ι′Ξι
=
E [ZtXt]

′E [ZtZ
′
t]
−1E [ZtYt]

E [ZtXt]
′E [ZtZ ′t]

−1E [ZtXt]
=
σXY
σ2
X

. (10)

From the results of Section 3.1 above, however, the left hand side is equal to the TSLS

estimand. Using the definitions of σXY and σ2
X , however, the OLS estimand from

regressing Yt on Xt can be written as

βOLS (b) =
E [XtYt]

E [X2
t ]

=
b′Ξι+ σXY
ι′Ξι+ σ2

X

.

Thus, we see that (10) is equivalent to

βTSLS (b) =
b′Ξι

ι′Ξι
=
b′Ξι+ σXY
ι′Ξι+ σ2

X

= βOLS (b) .

Hence, λ2(b)
σXY

= λ3
σ2
X

if and only if the TSLS and OLS estimands coincide.

Turning next to the condition that λ1(b)

σ2
Y
≥ λ2(b)

σXY
, note that we can re-write this

inequality as
b′Ξb

σ2
Y

≥ ι′Ξι

σ2
X

,

which, using the definitions of σ2
Y and σ2

X , is equivalent to

E [ZtYt]
′E [ZtZ

′
t]
−1E [ZtYt]

E [Y 2
t ]

≥ E [ZtXt]
′E [ZtZ

′
t]
−1E [ZtXt]

E [X2
t ]

.

If the vector of controls Wt includes a constant, however, (Xt, Yt, Zt) all have mean

zero, and the left hand side is the R2 from the reduced-form regression of Yt on Zt.

Likewise, the right hand side is the R2 from the first-stage regression of Xt on Zt.

Thus, if the vector of controls includes a constant, λ1(b)

σ2
Y
≥ λ2(b)

σXY
if and only if the R2 for

the reduced-form exceeds that for the first-stage.

Summing up, if the vector of controlsWt includes a constant we see that b ∈ I if and

only if (i) βTSLS (b) = βOLS (b) and (ii) the reduced-form R2 exceeds the first-stage R2.

Likewise, b ∈ S if and only if βTSLS (b) = βOLS (b) and the reduced-form and first-stage

have the same R2.
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Behavior Outside of I It is also interesting to understand the behavior of βLIML

when b 6∈ I. To do so, it is helpful to consider the structure of the first-order conditions
∂
∂β
QLIML (β; b) = 0. We know that if βLIML (b) = β ∈ R we must have ∂

∂β
QLIML (β; b) =

0, so if we define

FLIML (β) =

{
b :

∂

∂β
QLIML (β; b) = 0

}
to be the set of values b such that the LIML first order conditions are satisfied for a

given β, then the set of b such that βLIML (b) = β must be a subset of FLIML (β),

{b : βLIML (b) = β} ⊆ FLIML (β) . (11)

The next lemma characterizes FLIML (β).

Proposition 2 FLIML (β) is an ellipsoid,

FLIML (β) =
{
b : (b− A (β))′ Ξ (b− A (β)) = C (β)

}
where

A (β) =
β2σ2

X − σ2
Y

−2σXY + 2βσ2
X

ι

and

C (β) =
(
σ2
Y − 2βσ2

XY + β2σ2
X

)2
ι′Ξι.

Thus, the set of values b satisfying the LIML first order condition is a ellipsoid with

center A (β). Consequently, by (11) the level sets of βLIML (b) are subsets of ellipsoids.

One can confirm that S ⊂ FLIML (β) for all β, as must be the case given (11) together

with the result in part (3) of Proposition 1. Moreover, one can show that any b ∈ I \S

must lie outside of FLIML (β) in the sense that

(b− A (β))′ Ξ (b− A (β)) > C (β) .

Indeed, for any sequence of single-instrument IV estimands approaching a point in I\S,

the LIML estimand βLIML (b) diverges.

Corollary 1 For any sequence bn → b ∈ I \ S such that bn 6∈ I for all n:

15



1. limn→∞ |βLIML (bn)| → +∞

2. If λ2 (bn) > σXY

σ2
X
λ3 for all n then βLIML (bn)→ +∞, while if λ2 (bn) < σXY

σ2
X
λ3 for

all n then βLIML (bn)→ −∞.

To interpret this result, note that λ2 (b) > σXY

σ2
X
λ3 implies β2SLS (b) > βOLS (b) , while

the reverse holds for λ2 (b) < σXY

σ2
X
λ3. Thus, when the TSLS estimand approaches the

OLS estimand from above the LIML estimand diverges to +∞, while when the TSLS

estimand approaches from below the LIML estimand diverges to −∞.

3.4 CUGMM

There is no known closed-form expression for the continuous updating GMM estimator

β̂CUGMM in non-homoskedastic IV models, and the behavior of βCUGMM (b) is corre-

spondingly harder to characterize. Nonetheless, if one considers the set on which the

CUGMM first order conditions are satisfied for a given β

FCUGMM (β) =

{
b :

∂

∂β
Q (β; b) = 0

}
one can show that these sets are again ellipsoids. Thus, since for β ∈ R,

{b : βCUGMM (b) = β} ⊆ FCUGMM (β) ,

the level sets of βCUGMM are again subsets of ellipsoids.

Proposition 3 FCUGMM (β) is an ellipsoid

FCUGMM (β) =
{
b : (b− A∗ (β))′B∗ (β) (b− A∗ (β)) = C∗ (β)

}
where

A∗ (β) =

(
Ikβ − Ω−1 (β)

(
−Γ̃12 − Γ̃′12 + 2βΓ̃22

)−1
)
ι

B∗ (β) = Ω (β)
(
−Γ̃12 − Γ̃′12 + 2βΓ̃22

)
Ω (β)

and

C∗ (β) = ι′
(
−Γ̃12 − Γ̃′12 + 2βΓ̃22

)−1

ι

for Γ̃ij = D (E [ZXt])
−1 ΓijD (E [ZXt])

−1 .
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As Proposition 3 highlights, the CUGMM estimand has a structure similar to the

LIML estimand, in that the contours of the CUGMM estimand are again subsets of

ellipsoids. Unlike in the case of LIML, however, the matrix B∗ (β) which defines the

“shape” of these ellipsoids now depends on β. Moreover, there is not in general a point

where all of the sets FCUGMM (β) intersect, and thus there does not in general exist a

value b such that βCUGMM (b) is equal to the extended real line. Nonetheless, in the

next section I find that the CUGMM estimand βCUGMM (b) exhibits behavior similar

to the LIML estimand βLIML (b) in an example calibrated to data.

4 IV Estimands in an Example

To illustrate the analytic results above, Figures 1-4 plot the contours of the IV esti-

mands βW as functions of single-instrument estimands b in a calibration based on Yogo

(2004). Yogo studies the effect of weak instruments on estimation of the elasticity of

intertemporal substitution using a linear Euler equation model and data from a number

of countries. Here I calibrate all elements of ψ other than E [ZtYt] to values estimated

from the quarterly US data series used by Yogo, which covers the period from the third

quarter of 1947 to the last quarter of 1998. Yogo considers a number of specifications,

and here I take the outcome variable Yt to be real consumption growth and the en-

dogenous regressor Xt to be the real interest rate. Yogo finds that identification-robust

Anderson-Rubin confidence sets for the coefficient on the real interest rate are empty in

this dataset, suggesting model misspecification.7 See Yogo (2004) for further discussion

of the data.

Yogo’s analysis uses four instruments, namely the two-period lags of consumption
7The Anderson-Rubin confidence set considered by Yogo assumes the data are homoskedastic, and

Yogo finds non-empty confidence sets when instead considering the S statistic of Stock & Wright (2000)

which relaxes this homoskedasticity assumption. S statistic confidence sets are, however, found to be

empty in a linear GMM specification which treats both real interest rates and real equity returns as

endogenous regressors.
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growth, the dividend-price ratio, the nominal interest rate, and inflation. In order to

plot the contours of βW (b) here I restrict attention to two instruments, specifically

lagged consumption growth and the dividend-price ratio, which I select because they

yield easy-to-read plots. Note that while Yogo’s analysis is motivated by a concern with

weak instruments, here I fix E [ZtXt] at its (non-zero) estimate from the data so weak

instruments do not drive the results.

Figures 1-4 bear out the analytical results of the previous section. In particular,

we see that the TSLS estimand βTSLS (b) is linear in b, while the TSGMM estimand

is continuous in b but nonlinear. The contours of the LIML estimand are subsets

of ellipsoids, and all contours intersect at two points. The CUGMM estimand is in

many ways similar to the LIML estimand but its behavior is somewhat more irregular,

particularly for small β.

5 Conclusion

When the over-identifying restrictions of the classical IV model fail, common IV esti-

mators converge to distinct probability limits. Characterizing these limits as a function

of the single-instrument IV estimands, I find that the LIML estimand is discontinuous

and, further, is sometimes equal to the full parameter space. If the set of controls in-

cludes a constant, these issues arise when the OLS and TSLS estimands are equal and

the reduced-form R2 is weakly larger than the first-stage R2. While complete analytical

results for CUGMM are more elusive, the contours of the CUGMM estimator resemble

those of LIML, and the two estimands display similar behavior in a calibration to data

from Yogo (2004).

These results do not necessarily imply that we ought to favor one estimator over

another: when single-instrument IV estimands differ, the choice among different IV

estimators amounts to a choice of how best to summarize these disparate estimands.

Moreover, one might argue that the extreme behavior observed for the LIML estimand

is in part an artifact how we have parameterized the model. If one instead considers

18



the circular parametrization of the IV model as in Chamberlain (2007), for example,

then the LIML estimand is continuous on I \ S. Even with this reparameterization,

however, the LIML estimand is not uniquely defined on S. Overall, the highly nonlinear

and discontinuous behavior of the LIML estimand suggests that caution is warranted

when interpreting LIML estimates in misspecified models.
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Figure 1: Contours of two-stage least squares estimand βTSLS (b) as a function of single-instrument

estimands b in calibration to US quarterly data from Yogo (2004).
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Figure 2: Contours of two-step GMM estimand βTSGMM (b) as a function of single-instrument esti-

mands b in calibration to US quarterly data from Yogo (2004).
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Figure 3: Contours of limited information maximum likelihood estimand βLIML (b) as a function of

single-instrument estimands b in calibration to US quarterly data from Yogo (2004).
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Figure 4: Contours of continuously updating GMM estimand βCUGMM (b) as a function of single-

instrument estimands b in calibration to US quarterly data from Yogo (2004).
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Appendix

Proof of Lemma 1: Follows immediately from the Continuous Mapping Theorem,

see e.g. Theorem 2.3 of van der Vaart (2000).�

Proof of Lemma 2: One may note that the same argument which allows us to

derive the expression for β̂LIML from the objective function Q̂LIML (·) likewise allows

us to derive the expression for βLIML (ψ) from the objective function Q (·;ψ) . For

completeness, however, I provide a direct proof.

One can express the LIML estimator as

β̂LIML =
X ′Y − k̂LIMLX

′MZY

X ′X − k̂LIMLX ′MZX
=
X ′PZY +

(
1− k̂LIML

)
X ′MZY

X ′PZX +
(

1− k̂LIML

)
X ′MZX

for k̂LIML the smallest root of

det

 Y ′Y Y ′X

Y ′X X ′X

− k
 Y ′MZY Y ′MZX

Y ′MZX X ′MZX

 = 0

or, equivalently, ϕ̂ =
(

1− k̂LIML

)
the largest root of

det

 Y ′PZY Y ′PZX

Y ′PZX X ′PZX

+ φ

 Y ′MZY Y ′MZX

Y ′MZX X ′MZX

 =

(
Y ′PZY + φT σ̂2

Y

) (
X ′PZX + φT σ̂2

X

)
− (Y ′PZX + φT σ̂XY )

2
= 0.

Assumption 1 implies that

1

T

 Y ′PZY Y ′PZX

Y ′PZX X ′PZX

→p Λ (b)

for Λ (b) as defined in the text, while

1

T

 Y ′MZY Y ′MZX

Y ′MZX X ′MZX

→p

 σ2
Y σXY

σXY σ2
X

 .
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Thus, for all φ

1

T 2

(
Y ′PZY + φT σ̂2

Y

) (
X ′PZX + φT σ̂2

X

)
− 1

T 2
(Y ′PZX + φT σ̂XY )

2 →p(
λ1 + φσ2

Y

) (
λ3 + φσ2

X

)
− (λ2 + φσXY )2 . (12)

Since the largest root of a quadratic equation (when it exists) is a continuous function

of the coefficients, and the structure of the problem implies that such a root always

exists in the present setting, the Continuous Mapping Theorem implies that ϕ̂ →p ϕ

for ϕ the largest root of (12). Thus, again applying the Continuous Mapping Theorem,

β̂LIML →p βLIML (b) =
λ2 (b) + ϕ (b)σXY
λ3 + ϕ (b)σ2

X

provided the denominator λ3 + ϕ (b)σ2
X is nonzero. �

Proof of Proposition 1: I first prove part (1). Suppose that λ3 +ϕ (b)σ2
X = 0. Since

ϕ (b) is the largest root of (12),

(
λ1 (b) + ϕ (b)σ2

Y

) (
λ3 + ϕ (b)σ2

X

)
− (λ2 (b) + ϕ (b)σXY )2 = 0.

It must therefore be the case that λ2 (b)+ϕ (b)σXY = 0 as well, implying that λ2(b)
σXY

= λ3
σ2
X
.

Note, further, that (12) is quadratic in φ and tends to infinity as φ → ±∞ (since

positive-definiteness of the limit in (2) implies that σ2
XY < σ2

Xσ
2
Y ), and thus that a

necessary and sufficient condition for a root φ∗ of (12) to be the largest root (or one of

the largest roots if the roots are equal) is that the derivative of (12) at φ∗ is non-negative.

Thus, since the derivative of (12) with respect to φ is

σ2
Y

(
λ3 + φσ2

X

)
+ σ2

X

(
λ1 (b) + φσ2

Y

)
− 2σXY (λ2 (b) + φσXY ) ,

a value φ∗ with

λ3 + φ∗σ2
X = λ2 (b) + φ∗σXY = 0

is the largest root (or one of the largest roots, if the roots are equal) if and only if

λ1 (b) + φ∗σ2
Y = λ1 (b)− λ3

σ2
X

σ2
Y ≥ 0.
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Hence the necessary and sufficient condition for λ3 + ϕ (b)σ2
X = 0 is that λ2(b)

σXY
= λ3

σ2
X

and λ1(b)

σ2
Y
≥ λ3

σ2
X
.

I next prove part (2). For b ∈ B, bi = β̃ for all i which implies that λ1 (b) = β̃2λ3

and λ2 (b) = β̃λ3 for all i, so λ2(b)
σXY

= λ3
σ2
X

for b ∈ B if and only if β̃ = σXY

σ2
X

= ρ σY
σX

(for

ρ = σXY

σXσY
). On the other hand λ1(b)

σ2
Y
≥ λ2(b)

σXY
for b ∈ B requires that β̃ ≥ σY

ρσX
if ρ > 0,

and that β̃ ≤ σY
ρσX

if ρ < 0. Since I have assumed ρ 6= 0, these requirements can be

satisfied only if ρ = 1 or ρ = −1 which would imply that the right hand side in (2) has

reduced rank and so is ruled out by Assumption 1.

Finally, I prove part (3). Note that

QLIML (β; b) =
λ1 (b)− 2βλ2 (b) + β2λ3

σ2
Y − 2βσXY + β2σ2

X

.

Taking the first order condition with respect to β yields that at any local minimum β̃

of QLIML,

−2λ2 (b) + 2λ3β̃

σ2
Y − 2β̃σXY + β̃2σ2

X

−
(
−2σXY + 2σ2

X β̃
) λ1 (b)− 2β̃λ2 (b) + β̃2λ3(

σ2
Y − 2β̃σXY + β̃2σ2

X

)2 = 0

which, with some algebra, can be shown to hold if and only if

σ2
Y

(
−2λ2 (b) + 2λ3β̃

)
−λ1 (b)

(
−2σXY + 2σ2

X β̃
)

+2β̃2λ2 (b)σ2
X−2β̃2λ3σXY = 0. (13)

For b ∈ I, λ2(b)
σXY

= λ3
σ2
X

so (13) becomes

σ2
Y

λ3

σ2
X

(
−2σXY + 2σ2

X β̃
)
− λ1 (b)

(
−2σXY + 2σ2

X β̃
)

=

(
σ2
Y

λ3

σ2
X

− λ1 (b)

)(
−2σXY + 2σ2

X β̃
)

= 0.

If σ2
Y
λ3
σ2
X
− λ1 (b) = 0 (so λ1(b)

σ2
Y

= λ3
σ2
X
), then this condition holds for all β and

QLIML (β; b) does not depend on β, implying that βLIML (b) = R ∪ {−∞,∞} . If,

on the other hand, σ2
Y
λ3
σ2
X
− λ1 (b) 6= 0 then the unique solution to (13) is β̃ = σXY

σ2
X
.

Plugging this back into the LIML objective gives

QLIML (β; b) =
λ1 (b)− 2σXY

σ2
X
λ2 (b) +

σ2
XY

σ4
X
λ3

σ2
Y − 2σXY

σ2
X
σXY +

σ2
XY

σ4
X
σ2
X

=
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λ1 (b)− σXY

σ2
X
λ2 (b)

σ2
Y −

σXY

σ2
X
σXY

>
λ2 (b)

σXY
=
λ3

σ2
X

where the second equality uses that λ2(b)
σXY

= λ3
σ2
X

for b ∈ I, and the last inequality

follows from the fact that λ1(b)

σ2
Y

> λ2(b)
σXY

whenever σ2
Y
λ3
σ2
X
− λ1 (b) 6= 0 and b ∈ I.

Since limβ→±∞QLIML (β; b) = λ3
σ2
X
, this implies that the unique interior solution to

the first order conditions is not a global minimum. Since QLIML (β; b) is continuous

and everywhere differentiable in β, this is only possible if limβ→±∞QLIML (β; b) =

infβ QLIML (β; b) , from which it follows that βLIML (b) = {−∞,+∞} .�

Proof of Proposition 2: This follows immediately from Lemma 3, using that fact

that we can recover LIML as a special case of CUGMM by setting

(Γ11,Γ12,Γ22) =
(
σ2
YE [ZtZ

′
t] , σXYE [ZtZ

′
t] , σ

2
XE [ZtZ

′
t]
)
.

In this case

−Γ̃12 − Γ̃′12 + 2βΓ̃22 =
(
−2σXY + 2βσ2

X

)
Ξ

and

Ω (β) =
1

σ2
Y − 2βσXY + β2σ2

X

Ξ.

Plugging these expressions into the result of Proposition 3 and dividing through by
−2σXY +2βσ2

X

σ2
Y −2βσXY +β2σ2

X
completes the proof.�

Proof of Corollary 1: Fix a point b ∈ I \ S. Suppose we have a sequence of points

bn → b, where bn 6∈ I for all n. I first show that |βLIML (bn) | → ∞.

Define

R (β; b) = (b− A (β))′ Ξ (b− A (β)) = λ1 (b)− 2a (β)λ2 (b) + a (β)2 λ3 (14)

for a (β) =
β2σ2

X−σ
2
Y

−2σXY +2βσ2
X
, and recall that by Proposition 2, b̃ ∈ F (β) if and only if

R
(
β; b̃
)

= C (β) . Let b∗ be an arbitrary point in S, where the proof of part (3) of

Proposition 1 establishes that b∗ ∈ F (β) for all β. Note that since b ∈ I \ S

R (β; b)−R (β; b∗) = λ1 (b)− λ1 (b∗) > 0. (15)
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where we have used that b, b∗ ∈ I implies λ2 (b) = λ2 (b∗) , and that b∗ ∈ S, b 6∈ S

implies λ1 (b) > λ1 (b∗).

Thus, the point b lies outside F (β) for all β. Indeed, since (under the norm ‖x‖Ξ =
√
x′Ξx) F (β) is a circle centered at A (β), the distance from b to F (β) is

d (b,F (β)) = infb∈F(β) ‖b− b̃‖Ξ =√
R (β; b)−

√
R (β; b∗) =

√
R (β; b)−

√
C (β)

where the final equality follows by the definition of F (β) .

Note that d (b,F (β)) is a continuous function of β. Thus, for any L > 0

inf
β∈[−L,L]

d (b,F (β)) = ε (L) > 0 (16)

since otherwise there must exist some β̃ ∈ [−L,L] with d
(
b;F

(
β̃
))

= 0, which would

contradict (15). Note, further, that ε (L) is decreasing in L by definition. Since bn → b,

we know that ‖b− bn‖Ξ → 0. Thus, since bn ∈ F (βLIML (bn)) by Lemma 2 along with

(11), we know that d (b,F (βLIML (bn))) → 0 as n → ∞. Given (16), however, this

implies that |βLIML (bn) | → ∞.

Finally, suppose the sequence of points bn satisfies λ2 (bn) > σXY

σ2
X
λ3 for all n. I claim

that in this case βLIML (bn) → +∞. The proof proceeds by contradiction: in partic-

ular, suppose βLIML (bn) 66→ +∞. Then by the argument in the previous paragraph

there exists a subsequence bnr such that bnr → b as r → ∞, λ2 (bnr) >
σXY

σ2
X
λ3, and

βLIML (bnr)→ −∞. To simplify notation I assume bnr ≡ bn.

Using (14), for b∗ ∈ S we have that for βn = βLIML (bn)

R (βn; bn)−R (βn, b
∗) = λ1 (bn)− λ1 (b∗)− 2a (βn) (λ2 (bn)− λ2 (b∗)) .

Since bn → b and λ1 (b) > λ1 (b∗), there exists an N1 such that for n > N1, λ1 (bn) >

λ1 (b∗). Likewise, since a (β) < 0 for β < − σY
σX

, there exists N2 such that for n > N2,

a (βn) < 0. Thus, since we assumed that λ2 (bn) > σXY

σ2
X
λ3 = λ (b∗) ,

−2a (βn) (λ2 (bn)− λ2 (b∗)) > 0
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which implies that R (βn; bn) − R (βn, b
∗) > 0 for n ≥ max {N1, N2} . This implies

that bn 6∈ F (βn) , so we have reached a contradiction. Thus, βLIML (bn) → +∞. An

argument along the same lines establishes that if λ2 (bn) < σXY

σ2
X
λ3 then βLIML (bn) →

−∞, and so completes the proof. �

Proof of Proposition 3: Note that

QCUGMM (β; b) = (b− ιβ)′Ω (β) (b− ιβ)

where

Ω (β) =
(

Γ̃11 − β
(

Γ̃12 + Γ̃′12

)
+ β2Γ̃22

)−1

and Γ̃ij = D (E [ZXt])
−1 ΓijD (E [ZXt])

−1 . Thus,

∂
∂β
QCUGMM (β; b) =

−2ι′Ω (β) (b− ιβ)− (b− ιβ)′Ω (β)
(
−Γ̃12 − Γ̃′12 + 2βΓ̃22

)
Ω (β) (b− ιβ) .

Defining

Ψ (β) = Ω (β)
(
−Γ̃12 − Γ̃′12 + 2βΓ̃22

)
Ω (β)

and completing the square in b yields

∂

∂β
QCUGMM (β; b) =

−
(
b− ιβ + Ψ (β)−1 Ω (β) ι

)′
Ψ (β)

(
b− ιβ + Ψ (β)−1 Ω (β) ι

)
+ ι′Ω (β) Ψ (β)−1 Ω (β) ι =

−
(
b+

(
Ikβ −Ψ (β)−1 Ω (β)

)
ι
)′

Ψ (β)
(
b+

(
Ikβ −Ψ (β)−1 Ω (β)

)
ι
)
+ι′
(
−Γ̃12 − Γ̃21 + 2βΓ̃22

)−1

ι

which immediately implies the result.�
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