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p M M2

1+M2

1 4.317 0.949
2 2.008 0.801
4 1.418 0.668
8 0.981 0.490

12 0.529 0.218
20 0.126 0.016
40 0.007 0.000

Table D.1: M and M2

1+M2 as a function of p in the structural model of Smets and Wouters (2007),
with the researcher observing the monetary policy shock and output, and estimating a VAR(p).

Appendix D Further simulation results

We report results for two further sets of simulations from the structural model Smets and
Wouters (2007): an observed monetary shock in Supplemental Appendix D.1, and recursive
monetary shock identification in Supplemental Appendix D.2. This choice of shock of in-
terest and shock identification schemes mimics much applied practice in macroeconometrics
(e.g., see the review in Ramey, 2016). Finally, in Supplemental Appendix D.3, we present
simulations with a larger sample size, which show that the headline simulation findings in
Section 5.3 are consistent with our asymptotic results.

D.1 Observed monetary shock

We again consider the model of Smets and Wouters. The econometrician now observes the
monetary policy shock and total output, and the impulse response function of interest is
that of output with respect to the monetary shock.

Results. We begin by quantifying the amount of misspecification, with Table D.1 showing
the total degree of misspecification M as well as the minimax MSE-optimal weight M2/(1 +
M2) on LP in Corollary 4.2 as a function of the VAR lag length p. The value of M is
calculated for T = 240 and ζ = 1/2 as in Section 5.3. As expected and as in our main
exercise we see that larger p give smaller M . Compared to our analysis in Section 5.3, M

now declines somewhat faster with the lag length p. However, for lag lengths typical in
applied practice (for quarterly data), misspecification is still material, with M ≈ 1.42 for a
standard lag length of p = 4.

Next, Figure D.1 shows that, just as in our main exercise, VAR confidence intervals can
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Lag length via AIC

Lag length p = 4

Worst-case α†(L; 4)

Figure D.1: See Figure 5.2. The DGP is the model of Smets and Wouters, and the researcher
estimates the response of output to an observed monetary policy shock. Lag length p is selected
using the AIC for the top panel and set to p = 4 for the middle panel. The bottom panel changes
the MA polynomial in the VARMA representation to the worst-case α†(L; 4) at horizon h = 4.
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severely undercover, while LP intervals remain robust. As in Section 5.3 we set T = 240,
simulate 5,000 samples, and construct delta method and bootstrap confidence intervals. For
the top panel lag length is selected using the AIC, giving a median selected lag length of
p = 2. We see that VAR confidence intervals materially undercover, while LP attains close to
the nominal coverage level, yet again consistent with our theoretical results. For the middle
panel we instead set p = 4, again illustrating the “no free lunch” result: as the lag length is
increased, VAR coverage gets closer to the nominal level for short and intermediate horizons,
but at the same time confidence intervals become essentially as wide as for LP. Finally, in
the bottom panel, we show what happens if the actual lag polynomial α(L) is replaced by
the horizon-4 worst-case one, α†(L; 4).D.1 VAR undercoverage is now severe even at shorter
horizons. Overall, however, the magnitudes of undercoverage at medium and long horizons
are broadly comparable with those obtained under the actual α(L) implied by the Smets and
Wouters (2007) model, revealing that the least favorable MA polynomial α†(L, •) is again
not particularly pathological.

Taken together, the results presented here and in Section 5.3 reveal that, in a typical
macroeconomic data-generating process, our theoretical results have bite for a menu of dif-
ferent (and widely studied) structural shocks.

D.2 Recursively identified monetary shock

For our final exercise we consider an alternative shock identification scheme—identification of
a monetary policy shock through a recursive ordering (plus the assumption of invertibility).
The data-generating process is yet again the structural model of Smets and Wouters, and
the researcher observes output, inflation, and the short-term nominal rate of interest. She
identifies a monetary shock as the last innovation in that system under a recursive ordering, as
in much of the traditional monetary policy shock literature (e.g., see Christiano, Eichenbaum,
and Evans, 1999, and the references therein). We note that, while this identification scheme
fails to exactly recover the model’s true monetary shock, it does in population yield impulse
responses that are qualitatively and quantitatively similar to the effects of a true monetary
shock (see the discussion in Wolf, 2020).

D.1To be precise, we first set p = 1, derive the VARMA(1,∞) as discussed in Section 5.1, and then switch
out the implied lag polynomial α(L). The estimation lag length is selected by AIC.
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p M M2

1+M2

1 6.973 0.980
2 3.780 0.935
4 2.558 0.867
8 1.613 0.722

12 1.117 0.555
20 0.611 0.272
40 0.230 0.050

Table D.2: M and M2

1+M2 as a function of p in the structural model of Smets and Wouters (2007),
with the researcher observing output, inflation, and interest rates, and estimating a VAR(p).

Results. Our findings in this third application largely echo those of the previous two, so
our discussion here will be brief. First, Table D.2 reveals that the degree of misspecification
is again material for lag lengths typical in applied work (e.g., M ≈ 2.56 for p = 4). Second,
Figure D.2 shows that VAR undercoverage can yet again be material, while LP robustly
achieves coverage close to the nominal level. In the top panel lag length is selected using the
AIC (delivering a median lag length of p = 2), which as before results in VAR undercoverage.
Finally, we in the bottom panel replace the model-implied lag polynomial α(L) by the worst-
case one (with the same amount of overall misspecification), and now yet again find very
material VAR undercoverage.

D.3 Further results on the cost-push shock

To complement our simulation evidence in Section 5.3, we here repeat the cost-push shock
exercise of that section for a larger sample size, now setting T = 2,000. We fix p = 2, in line
with the median AIC lag length selection in our main exercise.

The results shown in Figure D.3 are similar both qualitatively and quantitatively to our
main findings in the top panel of Figure 5.3, especially for the bootstrap confidence intervals.
Hence, our results with T = 240 in Section 5.3 are not driven by small-sample phenomena.
Figure D.3 also plots the theoretically predicted VAR coverage probability (orange dashed
line), computed following Corollary 3.2. We see that this asymptotic coverage is very close
to the actual one.
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Lag length via AIC

Worst-case α†(L; 4)

Figure D.2: See Figure 5.2. The DGP is the model of Smets and Wouters, and the researcher
estimates the impulse response of output to a monetary policy shock identified through a recursive
ordering in a trivariate system with output, inflation, and interest rates. Lag length p is selected
using the AIC for both panels. The bottom panel changes the MA polynomial in the VARMA
representation to the worst-case α†(L; 4) at horizon h = 4.
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Lag length p = 2, larger sample

Figure D.3: See Figure 5.2. The DGP is the model of Smets and Wouters, and the researcher
estimates the response of inflation to an observed cost-push shock. We set T = 2,000 and p = 2, in
line with the AIC selection in Supplemental Appendix D.3. The orange dashed line indicates the
asymptotic VAR coverage predicted by Corollary 3.2.
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Appendix E Proof details

We impose Assumption 3.1 throughout. Let ∥B∥ denote the Frobenius norm of any matrix
B. It is well known that this norm is sub-multiplicative: ∥BC∥ ≤ ∥B∥ · ∥C∥. Let In denote
the n × n identity matrix, 0m×n the m × n matrix of zeros, and ei,n the n-dimensional
unit vector with a 1 in the i-th position. Recall from Assumption 3.1 the definitions D ≡
Var(εt) = diag(σ2

1, . . . , σ2
m), ỹt ≡ (In − AL)−1Hεt = ∑∞

s=0 AsHεt−s, and S ≡ Var(ỹt).

E.1 Main lemmas

Lemma E.1. For any i∗ ∈ {1, . . . , n} and j∗ ∈ {1, . . . , m}, we have

yi∗,t+h = θh,T εj∗,t + B′
h,i∗,j∗y

j∗,t
+ B′

h,i∗,j∗yt−1 + ξh,i∗,t + T −ζΘh(L)εt,

where

θh,T ≡ e′
i∗,n(AhH + T −ζ

h∑
ℓ=1

Ah−ℓHαℓ)ej∗,m,

B′
h,i∗,j∗ ≡ e′

i∗,nAhHj∗H−1
11 ,

B′
h,i∗,j∗ ≡ e′

i∗,n

[
Ah+1 − AhHj∗H−1

11 Ij∗A
]

,

ξh,i∗,t ≡ e′
i∗,nAhHj∗εj∗,t +

h∑
ℓ=1

e′
i∗,nAh−ℓHεt+ℓ,

and Θh(L) = ∑∞
ℓ=−∞ Θh,ℓL

ℓ is an absolutely summable, 1 × n two-sided lag polynomial with
the j∗-th element of Θh,0 equal to zero. Moreover,

T −1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T −1/2).

Proof. Iteration on the model in Equation (3.1) yields

yt+h = Ah+1yt−1 +
h∑

ℓ=0
Ah−ℓ(Hεt+ℓ + T −ζHα(L)εt+ℓ). (E.1)

As in Section 3.2, let y
j∗,t

≡ (y1,t, . . . , yj∗−1,t)′ denote the variables ordered before yj∗,t (if
any). Analogously, let yj∗,t ≡ (yj∗+1,t, . . . yn,t)′ denote the variables ordered after yj∗,t.
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Using Assumption 3.1(iii), partition

H = (Hj∗ , H•,j∗ , Hj∗) =


H11 0 0
H21 H22 0
H31 H32 H33


conformably with the vector yt = (y′

j∗,t
, yj∗,t, y′

j∗,t)′. Let Ij∗ denote the first j∗ − 1 rows of
the n × n identity matrix. Using the definition of yt in Equation (3.1),

y
j∗,t

= Ij∗Ayt−1 + H11εj∗,t + T −ζH11Ij∗α(L)εt,

where εj∗,t = Ij∗εt. Using the previous equation to solve for εj∗,t we get

εj∗,t = H−1
11 (y

j∗,t
− Ij∗Ayt−1 − T −ζH11Ij∗α(L)εt). (E.2)

Expanding the terms in (E.1) we get:

yt+h = Ah+1yt−1 + AhHεt + T −ζAhHα(L)εt +
h∑

ℓ=1
Ah−ℓ(Hεt+ℓ + T −ζHα(L)εt+ℓ)

= Ah+1yt−1 +
(
AhHj∗εj∗,t + AhH•,j∗εj∗,t + AhHj∗εj∗,t

)
+ T −ζAhHα(L)εt +

h∑
ℓ=1

Ah−ℓ(Hεt+ℓ + T −ζHα(L)εt+ℓ)

= Ah+1yt−1 + AhHj∗H−1
11 (y

j∗,t
− Ij∗Ayt−1 − T −ζH11Ij∗α(L)εt) + AhH•,j∗εj∗,t + AhHj∗εj∗,t

+ T −ζAhHα(L)εt +
h∑

ℓ=1
Ah−ℓ(Hεt+ℓ + T −ζHα(L)εt+ℓ),

where the last equality follows from substituting (E.2). Re-arranging terms we get

yi∗,t+h =
(
e′

i∗,nAhH•,j∗

)
εj∗,t +

(
e′

i∗,nAhHj∗H−1
11

)
︸ ︷︷ ︸

≡B′
h,i∗,j∗

y
j∗,t

+
(
e′

i∗,n

[
Ah+1 − AhHj∗H−1

11 Ij∗A
])

︸ ︷︷ ︸
≡B′

h,i∗,j∗

yt−1

+ e′
i∗,n

(
AhHj∗εj∗,t +

h∑
ℓ=1

Ah−ℓHεt+ℓ

)
︸ ︷︷ ︸

=ξh,i∗,t

+ T −ζe′
i∗,n

(
−AhHj∗H−1

11 H11Ij∗α(L)εt +
h∑

ℓ=0
Ah−ℓHα(L)εt+ℓ

)
, (E.3)
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Using the definition of θh,T ≡ e′
i∗,n(AhH +T −ζ ∑h

ℓ=1 Ah−ℓHαℓ)ej∗,m and adding and subtract-
ing e′

i∗,n

(
T −ζ ∑h

ℓ=1 Ah−ℓHαℓ

)
ej∗,mεj∗,t to (E.3), gives a representation of the form

yi∗,t+h = θh,T εj∗,t + B′
h,i∗,j∗y

j∗,t
+ B′

h,i∗,j∗yt−1 + ξh,i∗,t + T −ζ ũt, (E.4)

where

ũt ≡ e′
i∗,n

(
−AhHj∗Ij∗α(L)εt +

h∑
ℓ=0

Ah−ℓHα(L)εt+ℓ −
(

h∑
ℓ=1

Ah−ℓHαℓej∗,me′
j∗,m

)
εt

)
. (E.5)

Algebra shows that ũt can be written as a two-sided lag polynomial, Θh(L) = ∑∞
ℓ=−∞ Θh,ℓL

ℓ,
with coefficients of dimension 1 × n given by the following formulae:

1. For ℓ ≥ 1:

Θh,ℓ = −e′
i∗,nAhHj∗Ij∗αℓ +

h∑
s=0

e′
i∗,nAh−sHαℓ+s.

2. For ℓ = 0:
Θh,0 =

h∑
s=1

e′
i∗,nAh−sHαs −

h∑
s=1

e′
i∗,nAh−sHαsej∗,me′

j∗,m,

and, consequently, Θh,0,j∗ ≡ Θh,0ej∗,m = 0.

3. For ℓ ∈ {−(h − 1), . . . , −1}:
h−1∑

s=−ℓ

e′
i∗,nAh−s+ℓHαs.

4. For ℓ ≤ −h, Θh,ℓ = 01×n.

We next show that Θh(L) is absolutely summable, that is

∞∑
ℓ=−∞

∥Θh,l∥ < ∞.

To do this, it suffices to show that

∞∑
ℓ=1

∥Θh,l∥ < ∞,

since all the coefficients with index ℓ ≤ −h are 0. Note that, by definition, for any ℓ ≥ 1:

∥Θh,ℓ∥ ≤ ∥Ah∥∥Hj∗Ij∗∥∥αℓ∥ +
h∑

s=0
∥Ah−s∥∥H∥∥αℓ+s∥.
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Thus,
∞∑

ℓ=1
∥Θh,ℓ∥ ≤ ∥Ah∥∥Hj∗Ij∗∥

∞∑
ℓ=1

∥αℓ∥ + ∥H∥
∞∑

ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥.

Let λ ∈ [0, 1) and C > 0 be chosen such that ∥Aℓ∥ ≤ Cλℓ for all ℓ ≥ 0 (such constants exists
by Assumption 3.1(ii)). Then

∞∑
ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥ ≤ C
∞∑

ℓ=1

h∑
s=1

λh−s∥αℓ+s∥

≤ C
∞∑

ℓ=1

h∑
s=1

∥αℓ+s∥

≤ Ch
∞∑

ℓ=1
∥αℓ∥

< ∞,

where the last inequality holds because the coefficients of α(L) are summable. We thus
conclude that

yi∗,t+h = θh,T εj∗,t + B′
h,yy

j∗,t
+ B′

h,yyt−1 + ξh,i∗,t + T −ζΘh(L)εt,

where Θh(L) is a two-sided lag-polynomial with summable coefficients.
Finally, we show that

T −1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T −1/2).

To do this, we write

Θh(L)εt =
∞∑

ℓ=1
Θh,ℓεt−ℓ + Θh,0εt +

−1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ.

1. Note first that the process
{( ∞∑

ℓ=1
Θh,ℓεt−ℓ

)
εj∗,t

}∞

t=1

is white noise (mean-zero and serially uncorrelated components). The summability of
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coefficients of Θh(L) further implies that

Var
(

1√
T

T −h∑
t=1

( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t

)
= T − h

T
Var

(( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t

)
< ∞.

Thus, by Markov’s inequality, we have that

1
T

T −h∑
t=1

( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t = Op(T −1/2).

2. Note second that the process
{(Θh,0εt) εj∗,t}∞

t=1

is i.i.d. with mean zero (since εt has independent components and Θ0,ℓ,j∗ = 0). Since
the process has finite variance, we conclude that

1
T

T −h∑
t=1

( ∞∑
ℓ=1

Θh,0εt

)
εj∗,t = Op(T −1/2).

3. Finally, note that the process
 −1∑

ℓ=−(h−1)
Θh,ℓεt−ℓ

 εj∗,t


∞

t=1

is white noise (mean-zero and serially uncorrelated components). Therefore,

Var
 1√

T

T −h∑
t=1

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t

 = T − h

T
Var

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t

 < ∞.

We conclude that

1
T

T −h∑
t=1

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t = Op(T −1/2).

Consequently,

T −1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T −1/2).
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Lemma E.2.

Â − A = T −ζH
∞∑

ℓ=1
αℓDH ′(A′)ℓ−1S−1 + T −1

T∑
t=1

Hεtỹ
′
t−1S

−1 + op(T −ζ).

In particular, Â − A = Op(T −ζ + T −1/2).

Proof. Since,

Â − A =
(

T −1
T −h∑
t=1

uty
′
t−1

)(
T −1

T −h∑
t=1

yt−1y
′
t−1

)−1

,

the result follows from Lemmas E.7 and E.8.

Lemma E.3.
ν̂ − H•,j∗ = 1

σ2
j∗

T −1
T∑

t=1
ξ0,tεj∗,t + op(T −1/2).

Proof. By Lemma E.5, ν̂ = (01×(j∗−1), 1, ν̂
′), where the j-th element of ν̂ equals the on-impact

local projection of yi∗+j,t on yj∗,t, controlling for y
j∗,t

and yt−1. The statement of the lemma
is therefore a direct consequence of Proposition 3.1 and the fact that (by definition) ξ0,i,t = 0
for i ≤ j∗.

Lemma E.4. Fix h ≥ 0. Consider the regression of yj∗,t on qj∗,t ≡ (y′
j∗,t

, y′
t−1)′, using the

observations t = 1, 2, . . . , T − h:

yj∗,t = ϑ̂′
hqj∗,t + x̂h,t.

Note that the residuals x̂h,t are consistent with the earlier definition in the proof of Propo-
sition 3.1. Let λ′

j∗ be the row vector containing the first j∗ − 1 elements of the last row
of −H̃−1 (where H̃ is defined in Assumption 3.1(iii)). Let λ′

j∗ ≡ (−λ′
j∗ , 1, 01×(n−j∗)) and

ϑ ≡ (λ′
j∗ , (λ′

j∗A))′. Then:

i) ϑ̂h − ϑ = Op(T −ζ + T −1/2).

ii) T −1∑T −h
t=1 (x̂h,t − εj∗,t)εj∗,t = op(T −1/2).

iii) For ℓ ≥ 1, T −1∑T −h
t=1 (x̂h,t − εj∗,t)εt+ℓ = op(T −1/2).

iv) T −1∑T −h
t=1 (x̂h,t − εj∗,t)x̂h,t = op(T −1/2).

v) T −1∑T −h
t=1 x̂2

h,t

p→ σ2
j∗.

13



vi) For any absolutely summable two-sided lag polynomial B(L), T −1∑T −h
t=1 (x̂h,t−εj∗,t)B(L)εt =

Op(T −ζ + T −1/2).

Proof. By Equation (3.1), the outcome variables in the model satisfy

yt = Ayt−1 + H[Im + T −ζα(L)]εt, t = 1, 2, . . . , T.

By Assumption 3.1(iii), the first j∗ rows of the matrix H above are of the form (H̃, 0j∗×(j∗−m)),
where m is the number of shocks and H̃ is a j∗ × j∗ lower triangular matrix with 1’s on the
diagonal.

H̃ is invertible, which means we can premultiply the first j∗ equations of (3.1) by H̃−1

to obtain:

[H̃−1, 0j∗×(n−j∗)]yt = [H̃−1, 0j∗×(n−j∗)]Ayt−1 + [Ij∗ , 0j∗×(m−j∗)][Im + T −ζα(L)]εt.

By definition, −λ′
j∗ is the row vector containing the first j∗ − 1 elements of the last row of

H̃−1 and λ′
j∗ ≡ (−λ′

j∗ , 1, 01×(n−j∗)). Thus, we can re-write the j∗-th equation above as

[−λ′
j∗ , 1, 0j∗×(n−j∗)]yt = λ′

j∗Ayt−1 + εj∗,t + T −ζαj∗(L)εt,

where αj∗(L) is the j∗-th row of α(L). Re-arranging terms we get

yj∗,t = ϑ′qj∗,t + εj∗,t + T −ζαj∗(L)εt,

where ϑ ≡ (λ′
j∗ , (λ′

j∗A))′ and qj∗,t ≡ (y′
j∗,t

, y′
t−1)′. In a slight abuse of notation, and for

notational simplicity, we henceforth replace qj∗,t by qt.
Statement (i) follows from standard OLS algebra if we can show that a) T −1∑T −h

t=1 qtεj∗,t =
Op(T −ζ + T −1/2), b) (T −1∑T −h

t=1 qtq
′
t)−1 = Op(1), and c) T −ζ−1∑T −h

t=1 qt(αj∗(L)εt) = Op(T −ζ).
Lemma E.9 establishes these results.

Statements (ii)–(iii) are proved in Lemma E.10 below.
For statement (iv), note that

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)x̂h,t = T −1
T −h∑
t=1

(x̂h,t − εj∗,t)2 + T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εj∗,t.

Lemma E.11 shows that T −1∑T −h
t=1 (x̂h,t −εj∗,t)2 = op(T −1/2). This result, combined with (ii),

implies that statement (iv) holds.
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For statement (v), note that

T −1
T −h∑
t=1

(x̂h,t)2 = T −1
T −h∑
t=1

(x̂h,t − εj∗,t + εj∗,t)2

= T −1
T −h∑
t=1

(x̂h,t − εj∗,t)2 − 2T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εj∗,t + T −1
T −h∑
t=1

ε2
j∗,t.

Lemma E.11 and statement (ii) imply that the first two terms converge in probability to
zero. Since T −1∑T −h

t=1 ε2
j∗,t

p→ σ2
j∗ (by the Law of Large Numbers), statement (v) holds.

Finally, statement (vi) obtains by decomposing

T −1
T −h∑
t=1

B(L)εt(x̂h,t − εj∗,t) = T −1
T −h∑
t=1

B(L)εtq
′
t(ϑ − ϑ̂h) + T −ζT −1

T −h∑
t=1

B(L)εt[αj∗(L)εt]′

= Op(1) × Op(T −ζ + T −1/2) + T −ζ × Op(1),

where the last line follows from statement (i), Lemma E.6, and moment calculations.

E.2 Auxiliary numerical lemma

Lemma E.5. Define yi,t ≡ (yi+1,t, yi+2,t, . . . , ynt)′ to be the (possibly empty) vector of vari-
ables that are ordered after yi,t in yt. Partition

Σ̂ =


Σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33

 , Ĉ =


Ĉ11 0 0
Ĉ21 Ĉ22 0
Ĉ31 Ĉ32 Ĉ33

 ,

conformably with yt = (y′
j∗,t

, yj∗,t, y′
j∗,t)′, where Σ̂ = ĈĈ ′ (in particular, Ĉ22 = Ĉj∗,j∗). Then

(Σ̂31, Σ̂32)
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = Ĉ−1
22 Ĉ32. (E.6)

Note that the lemma implies β̂0 = δ̂0: If i∗ < j∗ or i∗ = j∗, then both estimators equal 0
or 1 (by definition), respectively; if i∗ > j∗, then β̂0 is defined as the i∗ − j∗ element of the
left-hand side of (E.6) (by Frisch-Waugh), while δ̂0 is defined as the i∗ − j∗ element of the
right-hand side of (E.6).
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Proof. From the relationship Σ̂ = ĈĈ ′, we get
Σ̂11 Σ̂12

Σ̂21 Σ̂22

Σ̂31 Σ̂32

 =


Ĉ11Ĉ

′
11 Ĉ11Ĉ

′
21

Ĉ21Ĉ
′
11 Ĉ21Ĉ

′
21 + Ĉ2

22

Ĉ31Ĉ
′
11 Ĉ31Ĉ

′
21 + Ĉ32Ĉ22

 .

The partitioned inverse formula implies
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = 1
Ĉ21Ĉ ′

21 + Ĉ2
22 − Ĉ21Ĉ ′

11(Ĉ11Ĉ ′
11)−1Ĉ11Ĉ ′

21

−(Ĉ11Ĉ
′
11)−1Ĉ11Ĉ

′
21

1


= 1

Ĉ2
22

−Ĉ−1′
11 Ĉ ′

21

1

 ,

so

(Σ̂31, Σ̂32)
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = 1
Ĉ2

22

(
−Ĉ31Ĉ

′
11Ĉ

−1′
11 Ĉ ′

21 + Ĉ31Ĉ
′
21 + Ĉ32Ĉ22

)
= 1

Ĉ22
Ĉ32.

E.3 Auxiliary asymptotic lemmas

Lemma E.6. T −1∑T
t=1 ∥yt − ỹt∥2 = Op(T −2ζ) and T −1∑T

t=1 ut(yt−1 − ỹt−1)′ = Op(T −2ζ +
T −ζ−1/2), where ut ≡ yt − Ayt−1.

Proof. Using Equation (3.1), write yt as

yt =
∞∑

s=0
AsH(Im + T −ζα(L))εt−s

=
∞∑

s=0
AsHεt−s︸ ︷︷ ︸

≡ỹt

+T −ζ
∞∑

s=0
AsHα(L)εt−s.

Thus, the definition of ỹt implies

yt − ỹt = T −ζ
∞∑

s=0
AsHα(L)εt−s.

Lemma E.12 below shows that, under Assumption 3.1, T −1∑T
t=1 E [∥yt − ỹt∥2] = O(T −2ζ).

Consequently, the first part of Lemma E.6 follows from Markov’s inequality.
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In order to establish the second part of Lemma E.6, note that

ut (yt−1 − ỹt−1)′ = H[Im + T −ζα(L)]εt (yt−1 − ỹt−1)′ .

Lemma E.13 below implies that

1
T

T∑
t=1

εt(yt−1 − ỹt−1)′ = Op

(
T −ζ−1/2

)
. (E.7)

Finally, Lemma E.14 below implies that

1
T

T∑
t=1

α(L)εt(yt−1 − ỹt−1)′ = Op(T −ζ). (E.8)

Equations (E.7) and (E.8) imply

1
T

T∑
t=1

ut(yt−1 − ỹt−1)′ = Op(T −2ζ + T −ζ−1/2).

Lemma E.7.

T −1
T∑

t=1
uty

′
t−1 = T −ζH

∞∑
ℓ=1

αℓDH ′(A′)ℓ−1 + T −1
T∑

t=1
Hεtỹ

′
t−1 + op(T −ζ).

Proof.

T −1
T∑

t=1
uty

′
t−1 = T −1

T∑
t=1

utỹ
′
t−1 + T −1

T∑
t=1

ut(yt−1 − ỹt−1)′

︸ ︷︷ ︸
=op(T −ζ) by Lemma E.6

= T −1
T∑

t=1
Hεtỹ

′
t−1 + T −ζ−1

T∑
t=1

Hα(L)εtỹ
′
t−1 + op(T −ζ)

= T −1
T∑

t=1
Hεtỹ

′
t−1 + T −ζH

(
T −1

T∑
t=1

E[α(L)εtỹ
′
t−1] + op(1)

)
+ op(T −ζ),

where the last equality follows from Lemma E.15 below. Finally, note that

E[α(L)εtỹ
′
t−1] =

∞∑
ℓ=1

∞∑
s=0

αℓE[εt−ℓε
′
t−s−1]H ′(A′)s =

∞∑
ℓ=1

αℓDH ′(A′)ℓ−1.

Lemma E.8. T −1∑T
t=1 yt−1y

′
t−1

p→ S.
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Proof. By Lemma E.6 and Cauchy-Schwarz, T −1∑T
t=1 yt−1y

′
t−1 = T −1∑T

t=1 ỹt−1ỹ
′
t−1 + op(1).

The rest of the proof is standard.

Lemma E.9. Fix h ≥ 0 and j∗ ∈ {1, . . . , n}. In a slight abuse of notation, let qt ≡
(y′

j∗,t
, y′

t−1)′. Then

i) T −1∑T −h
t=1 qtεj∗,t = Op(T −ζ + T −1/2),

ii) (T −1∑T −h
t=1 qtq

′
t)−1 = Op(1),

iii) T −1∑T −h
t=1 qt(αj∗(L)εt) = Op(1),

where αj∗(L) is the j∗-th row of α(L).

Proof. Let q̃t ≡ (ỹ′
j∗,t

, ỹ′
t−1)′ and ∆t ≡ qt − q̃t. Note that

T −1
T −h∑
t=1

qtεj∗,t = T −1
T −h∑
t=1

∆tεj∗,t + T −1
T −h∑
t=1

q̃tεj∗,t. (E.9)

Cauchy-Schwarz implies

∥∥∥∥∥T −1
T −h∑
t=1

∆tεj∗,t

∥∥∥∥∥ ≤
(

1
T

T −h∑
t=1

∥∆t∥2
)1/2 ( 1

T

T −h∑
t=1

ε2
j∗,t

)1/2

.

Lemma E.6 implies the first term to the right of the inequality is Op(T −ζ). Assumption 3.1(i)
implies that the second term to the right of the inequality is Op(1). Thus, from (E.9) we
have

T −1
T −h∑
t=1

qtεj∗,t = Op

(
T −ζ

)
+ T −1

T −h∑
t=1

q̃tεj∗,t.

Direct second-moment calculations imply that the last term is Op

(
T −1/2

)
. This establishes

part (i) of the lemma.
For part (ii) of the lemma, note that

1
T

T −h∑
t=1

qtq
′
t = 1

T

T −h∑
t=1

∆t∆′
t + 1

T

T −h∑
t=1

q̃t∆′
t + 1

T

T −h∑
t=1

∆tq̃
′
t + 1

T

T −h∑
t=1

q̃tq̃
′
t. (E.10)

Lemma E.6 implies that the first term is Op

(
T −2ζ

)
. Cauchy-Schwarz, along with Assump-

tion 3.1 and Lemma E.6, imply that the second and third terms are Op(T −ζ). The last
term converges in probability to Var(q̃t). This matrix is non-singular, since q̃t = (ỹ′

j∗,t
, ỹ′

t−1)′,

18



where Var(ỹt−1) = S is non-singular by Assumption 3.1(iv), and Assumption 3.1(iii) implies
that ỹ

j∗,t
equals a linear transformation of ỹt−1 plus a non-singular independent noise term.

For part (iii) of the lemma, note that

1
T

T −h∑
t=1

qt(αj∗(L)εt) = 1
T

T −h∑
t=1

∆t(αj∗(L)εt) + 1
T

T −h∑
t=1

q̃t(αj∗(L)εt). (E.11)

Assumption 3.1(i) and (v) and Lemma E.6 imply that the first term is Op(T −ζ). Markov’s
inequality and a moment calculation imply that the last term is Op(1).

Lemma E.10. Fix h ≥ 0 and j∗ ∈ {1, . . . , n}. Then

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εj∗,t = op(T −1/2). (E.12)

Moreover, for ℓ ≥ 1,

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = op(T −1/2). (E.13)

Proof. In a slight abuse of notation, let qt ≡ (y′
j∗,t

, y′
t−1)′. We first establish (E.13). By

definition of x̂h,t, we have x̂h,t − εj∗,t = (ϑ − ϑ̂h)′qt + T −ζαj∗(L)εt. As in Lemma E.6 define
ỹt = ∑∞

s=0 AsHεt−s. Let q̃t ≡ (ỹ′
j∗,t

, ỹ′
t−1)′ and ∆t ≡ qt − q̃t. Thus,

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = (ϑ − ϑ̂h)′
(

1
T

T −h∑
t=1

∆tεt+ℓ

)
(E.14)

+ (ϑ − ϑ̂h)′
(

1
T

T −h∑
t=1

q̃tεt+ℓ

)
(E.15)

+ 1
T ζ

(
1
T

T −h∑
t=1

(αj∗(L)εt) εt+ℓ

)
. (E.16)

By Lemma E.9, (ϑ − ϑ̂h) = Op(T −ζ + T −1/2). Direct second-moment calculations can be
used to show that the terms in (E.15)–(E.16) are of order

Op(T −ζ + T −1/2)Op(T −1/2) and Op(T −ζ−1/2),

respectively. This implies that both terms are op(T −1/2).
Finally, note that Lemma E.6 and Assumption 3.1(i) imply that the sum in (E.14) is
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Op

(
T −ζ

)
. Thus, (E.14) is of order

Op(T −ζ + T −1/2)Op(T −ζ) = op

(
T −1/2

)
,

using ζ > 1/4. Since we have shown that (E.14)–(E.16) are op(T −1/2), then for ℓ ≥ 1,

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = op(T −1/2).

The proof of (E.12) is entirely analogous.

Lemma E.11. Fix h ≥ 0 and j∗ ∈ {1, . . . , n}. In a slight abuse of notation, let qt ≡
(y′

j∗,t
, y′

t−1)′ and
x̂h,t ≡ (ϑ − ϑ̂h)′qt + εj∗,t + T −ζαj∗(L)εt,

where αj∗(L) is the j∗-th row of α(L). Then

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)2 = op(T −1/2). (E.17)

Proof. Let q̃t ≡ (ỹ′
j∗,t

, ỹ′
t−1)′ and ∆t ≡ qt − q̃t. Then

T −1
T −h∑
t=1

(x̂h,t − εj∗,t)2 = T −1
T −h∑
t=1

(
(ϑ − ϑ̂h)′∆t + (ϑ − ϑ̂h)′q̃t + T −ζαj∗(L)εt

)2
.

To establish (E.17), it suffices by the cr-inequality to show that

a) T −1∑T −h
t=1

(
(ϑ − ϑ̂h)′∆t

)2
= op

(
T −1/2

)
,

b) T −1∑T −h
t=1

(
(ϑ − ϑ̂h)′q̃t

)2
= op

(
T −1/2

)
,

c) T −1∑T −h
t=1 (αj∗(L)εt)2 = Op (1).

To establish (a), note first that Cauchy-Schwarz implies

1
T

T −h∑
t=1

(
(ϑ − ϑ̂h)′∆t

)2
≤
∥∥∥ϑ − ϑ̂h

∥∥∥2
(

1
T

T −h∑
t=1

∥∆t∥2
)

.

Lemma E.6 implies that the term inside the parenthesis is Op(T −2ζ). Lemma E.9 implies
(ϑ − ϑ̂h) = Op

(
T −ζ + T −1/2

)
. Since ζ > 1/4, statement (a) follows.
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To establish (b), we apply Cauchy-Schwarz to obtain

1
T

T −h∑
t=1

(
(ϑ − ϑ̂h)′q̃t

)2
≤
∥∥∥ϑ − ϑ̂h

∥∥∥2
(

1
T

T −h∑
t=1

q̃2
t

)
.

Assumption 3.1 implies that the term inside the parenthesis is Op(1). As in the previous
paragraph, ∥ϑ − ϑ̂h∥2 = Op

(
(T −ζ + T −1/2)2

)
. Since ζ > 1/4, statement (b) follows.

Finally, statement (c) follows from Assumption 3.1(i) and (v).

E.4 Auxiliary lemmas to the auxiliary lemmas

Lemma E.12. There exists a constant C̃ ∈ (0, ∞) such that

E
[
∥yt − ỹt∥2

]
≤ C̃T −2ζ . (E.18)

Proof. The definition of ỹt implies

yt − ỹt = T −ζ
∞∑

s=0
AsHα(L)εt−s.

Expanding α(L) = ∑∞
ℓ=1 αℓL

ℓ, we obtain

yt − ỹt = T −ζ
∞∑

s=1
Bsεt−s, where Bs ≡

s∑
ℓ=1

As−ℓHαℓ. (E.19)

By the independence assumption on εt in Assumption 3.1(i),

E
[
∥yt − ỹt∥2

]
= T −2ζ

∞∑
s=1

trace (BsDB′
s) .

Expanding Bs and changing the summation indices shows that E [∥yt − ỹt∥2] equals

T −2ζ
∞∑

s=1

s∑
ℓ1=1

s∑
ℓ2=1

trace
(
As−ℓ1Hαℓ1Dα′

ℓ2H ′(A′)s−ℓ2
)

.

Moreover, since for any two matrices M1, M2 of conformable dimensions trace(M1M2) ≤
∥M1∥∥M2∥, then

trace
(
As−ℓ1Hαℓ1Dα′

ℓ2H ′(A′)s−ℓ2
)

≤ ∥H∥2 · ∥D∥ · ∥As−ℓ1∥ · ∥(A′)s−ℓ2∥ · ∥αℓ1∥ · ∥αℓ2∥.
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Let λ ∈ [0, 1) and C > 0 be chosen such that ∥Aℓ∥ ≤ Cλℓ for all ℓ ≥ 0 (such constants exists
by Assumption 3.1(ii)). Then

E
[
∥yt − ỹt∥2

]
≤ T −2ζC2∥H∥2∥D∥

( ∞∑
τ=0

λ2τ

) ∞∑
ℓ1=1

∥αℓ1∥

 ∞∑
ℓ2=1

∥αℓ2∥

 ,

≤ T −2ζC2∥H∥2∥D∥
( ∞∑

τ=0
λ2τ

)( ∞∑
ℓ=1

∥αℓ∥
)2

,

= T −2ζ C2∥H∥2∥D∥
1 − λ2

( ∞∑
ℓ=1

∥αℓ∥
)2

.

Lemma E.13.
1√
T

T∑
t=1

εt (yt−1 − ỹt−1)′ = Op

(
T −ζ

)
.

Proof. By Markov’s inequality, we need to show that the following expression is bounded:

T 2ζE

∥∥∥∥∥ 1√
T

T∑
t=1

εt (yt−1 − ỹt−1)′
∥∥∥∥∥

2 .

Equation (E.19) in the proof of Lemma E.12 and Assumption 3.1(i) imply that the summands
are serially uncorrelated, so the above expression equals

T 2ζ 1
T

T∑
t=1

E
[
∥εt (yt−1 − ỹt−1)′ ∥2

]

≤ T 2ζ 1
T

T∑
t=1

E
[
∥εt∥2∥yt−1 − ỹt−1∥2

]
,

= T 2ζ 1
T

T∑
t=1

E
[
∥εt∥2

]
E
[
∥yt−1 − ỹt−1∥2

]
,

= T 2ζ trace (D) E
[
∥yt−1 − ỹt−1∥2

]
.

The third line follows from Assumption 3.1(i), while the last line follows from stationarity.
Lemma E.12 implies that the final expression is bounded.

Lemma E.14.
1
T

T∑
t=1

α(L)εt(yt−1 − ỹt−1)′ = Op(T −ζ).
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Proof. By Markov’s inequality, we need to show that

T ζE

[∥∥∥∥∥ 1
T

T∑
t=1

α(L)εt (yt−1 − ỹt−1)′
∥∥∥∥∥
]

is bounded. By stationarity and Cauchy-Schwarz, the expression is bounded above by

T ζE [∥α(L)εt∥ ∥yt−1 − ỹt−1∥]

≤ T ζ
(
E
[
∥α(L)εt∥2

])1/2 (
E
[
∥(yt − ỹt−1)∥2

])1/2
.

The first expectation on the right-hand side is bounded due to Assumption 3.1(v). Hence,
Lemma E.12 implies that the entire final expression is bounded.

Lemma E.15.
T −1

T∑
t=1

(
α(L)εtỹ

′
t−1 − E[α(L)εtỹ

′
t−1]

)
= op(1).

Proof. For an arbitrary i ∈ {1, . . . , n} and s ≥ 1, define

Γs ≡ Cov(α(L)εtỹi,t−1, α(L)εt−sỹi,t−s−1)

= Cov
 ∞∑

ℓ1=1
αℓ1εt−ℓ1 ỹi,t−1,

∞∑
ℓ2=1

αℓ2εt−s−ℓ2 ỹi,t−s−1


=

∞∑
ℓ1=1

∞∑
ℓ2=1

αℓ1 Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)α′
ℓ2 .

By Theorem 7.1.1 in Brockwell and Davis (1991), the statement of the lemma follows if we
can show that Γs → 0 as s → ∞.

Decompose

ỹi,t−1 = E[ỹi,t−1 | {εt−s}ℓ1−1
s=1 ]︸ ︷︷ ︸

≡ỹ
(−)
i,t−1

+ E[ỹi,t−1 | εt−ℓ1 ]︸ ︷︷ ︸
≡ỹ

(0)
i,t−1

+ E[ỹi,t−1 | {εt−s}∞
s=ℓ1+1]︸ ︷︷ ︸

≡ỹ
(+)
i,t−1

.

For ℓ1 ≤ s, the serial independence of εt implies that

Cov(εt−ℓ1 ỹ
(−)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = E[ỹ(−)

i,t−1]E[εt−ℓ1ε′
t−s−ℓ2 ỹi,t−s−1] = 0,

Cov(εt−ℓ1 ỹ
(0)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = 0,

Cov(εt−ℓ1 ỹ
(+)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = E[εt−ℓ1 ]E[ỹ(+)

i,t−1ε
′
t−s−ℓ2 ỹi,t−s−1] = 0,
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and therefore
Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1) = 0.

Inserting this result back into the earlier expression for Γs, we get

|Γs| =

∣∣∣∣∣∣
∞∑

ℓ1=s+1

∞∑
ℓ2=1

αℓ1 Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)α′
ℓ2

∣∣∣∣∣∣
≤

∞∑
ℓ1=s+1

∞∑
ℓ2=1

∥αℓ1∥ · ∥αℓ2∥ · ∥ Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)∥

≤
∞∑

ℓ1=s+1

∞∑
ℓ2=1

∥αℓ1∥ · ∥αℓ2∥ · sup
ℓ≥1

∥ Var(εt−ℓỹi,t−1)∥

≤
(
E[∥ε4

t ∥] · E[ỹ4
i,t]
)1/2

 ∞∑
ℓ2=1

∥αℓ2∥


︸ ︷︷ ︸

<∞

 ∞∑
ℓ1=s+1

∥αℓ1∥



→ 0 as s → ∞,

where the last line uses absolute summability of α(L).

24



References

Brockwell, P. J., and R. A. Davis (1991): Time Series: Theory and Methods, Springer
Series in Statistics. Springer, 2nd edn.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999): “Monetary policy shocks:
What have we learned and to what end?,” in Handbook of Macroeconomics, ed. by J. Tay-
lor, and M. Woodford, vol. 1, chap. 2, pp. 65–148. Elsevier.

Ramey, V. A. (2016): “Macroeconomic Shocks and Their Propagation,” in Handbook of
Macroeconomics, ed. by J. B. Taylor, and H. Uhlig, vol. 2, chap. 2, pp. 71–162. Elsevier.

Smets, F., and R. Wouters (2007): “Shocks and frictions in US business cycles: A
Bayesian DSGE approach,” American Economic Review, 97(3), 586–606.

Wolf, C. K. (2020): “SVAR (Mis)Identification and the Real Effects of Monetary Policy
Shocks,” American Economic Journal: Macroeconomics, 12(4), 1–32.

25


	Further simulation results
	Observed monetary shock
	Recursively identified monetary shock
	Further results on the cost-push shock

	Proof details
	Main lemmas
	Auxiliary numerical lemma
	Auxiliary asymptotic lemmas
	Auxiliary lemmas to the auxiliary lemmas

	References

