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Appendix A Analytical Framework

As mentioned in the text, models of reallocation mechanisms among heterogeneous-productivity
producers have found applications in a number of fields, including industrial organization, trade,
and macroeconomics. While these models differ considerably in their specifics, they share an
archetypal mechanism that connects the extent of competition in the market (as reflected in con-
sumers’ willingness or ability to substitute among producers) to the shape of the productivity dis-
tribution among market producers. Here we sketch out a model with such a mechanism that fits
the specific feature of the healthcare sector that consumers bear little if any of the financial costs
of their firm choice.

We assume hospitals are heterogeneous in two dimensions: quality and costs. These two di-
mensions of heterogeneity may be correlated (e.g., higher quality hospitals might tend have higher
costs on average), but this is not necessary for our results. While both quality and costs are likely
to be at least in part affected by hospitals’ choices, we follow the majority of the productivity
literature and assume that they are exogenous and fixed.34

When choosing their hospital, we assume that patients care about quality but, conditional on
quality, do not care about costs. The assumption that patients are not sensitive to hospital costs
is a natural one, given that Medicare and supplemental insurance shields patients from paying for
most of the care they receive, and likely all of the incremental cost associated with their hospital
choice. Of course, while patients do not care about costs, a social planner does. A benevolent
social planner would desire both high quality and low costs. The social planner would trade off
between them based upon the parameters of the social welfare function. Thus there may be a
wedge between the privately and socially optimal hospital choice.

Producers (indexed by h) earn profits which depend positively on their idiosyncratic quality
levels qh (higher quality firms earn higher profits because they draw more patients), negatively on
their costs ch, and negatively on the number (or mass, in models with a continuum of firms) of
producers in the industry N.35 Hence ph = p (qh,ch,N), with ∂p

∂qh
> 0, ∂p

∂ch
< 0, and ∂p

∂N < 0. The
monotonic relationship between quality and profits implies that, for any given N, there is locus of

34This model is a more generic and looser version of the type of multidimensional-heterogeneity-producer model
in Foster, Haltiwanger and Syverson (2008).

35Standard presentations of these models consider profit-maximizing firms. Although we keep this terminology to
be more familiar relative to the existing literature, we note that in the context of hospitals, it might be more appro-
priate to consider firms as earning (and maximizing) “surplus” rather than “profits”. This more general terminology
recognizes that many hospitals are legally structured as nonprofits. All that is required for the conceptual framework
to carry over is for surplus to be increasing in quality (again because all else equal it increases the patient traffic at
a hospital). Nonprofit hospitals are often modeled in the literature as having an objective function that is a convex
combination of profits and other objectives; thus on the margin they should respond qualitatively the same way as
for-profit hospitals to factors like competition. And indeed a large empirical literature finds essentially no evidence of
differential behavior across for-profit and non-profit hospitals, calling into question whether the non-profit label has
any substantive meaning for behavioral responses (see Sloan, 2000 for a review of this literature).
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critical cutoff quality and cost levels at which hospital profits are zero. Along this locus, quality
is a monotonically increasing function of costs, because higher costs require a higher quality level
for a hospital to earn zero profit.

Call this locus q⇤ (c,N), where we have expressed it as the critical value of quality necessary
to earn zero profit as a function of costs and the number of hospitals in the market. Only producers
with quality levels at or above q⇤ (c,N) will operate in equilibrium.

The zero-profit cutoff locus is endogenously determined by a free entry condition, where ex-
ante identical potential entrants consider whether to pay a sunk cost s to take idiosyncratic quality
and cost draws from a known joint distribution of q and c, G(·), with an upper bound quality of q
and a lower and upper bound costs c and c, respectively. The expected value of entry, which equals
zero by the free entry condition, is:

V e =

ˆ c

c

ˆ q

q⇤(c,N)
p (q,c,N)g(q,c)dqdc�s = 0

The expected profits from entry depend upon the equilibrium number of entrants N in two
ways. First, an increase in N shifts upward the zero-profit cutoff quality level q⇤ (c,N), reducing
the probability that the entrant’s quality and cost draws are high and low enough (respectively) to
earn nonnegative profits, and thus making successful entry less likely. Second, a higher number of
firms N also reduces the producer’s profits if it does enter. Thus expected profits fall monotonically
in N. In equilibrium, the number of firms choosing to pay the entry cost yields a number of entrants
N that, through these two effects, exactly equates the expected profit from taking a quality and cost
draw to the sunk entry cost.

The endogeneity of q⇤ (c,N) means the industry quality and cost distribution observed in the
data is determined in equilibrium. Specifically, it is a truncation of G(·), the underlying distribution
from which potential entrants take quality and cost draws, where the truncation locus is q⇤ (c,N).
Changes in market primitives that shift the equilibrium location of q⇤ (c,N) therefore shift the
observed joint distribution of quality and costs.

The primitive that underlies these results is the extent to which patients are able or willing to
substitute to alternate hospitals in order to obtain higher quality. The specific mechanism through
which primitives map into substitutability may vary from, for example, the extent of information
available to patients or their surrogates, to differences in travel costs. The particulars of the mech-
anism aren’t important here; what matters are the effects on the equilibrium.

This framework has several predictions that we examine empirically. In equilibrium, if patients
have some ability to substitute across alternate producers (hospitals), there is a robust prediction
that the market will allocate patients to higher quality hospitals on average, so that there is a cor-
relation between quality and market share at a point in time (“static allocation”). In addition, over
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time higher quality hospitals will be more likely to grow in market share (“dynamic allocation”).
Our empirical work in Section III focuses on examining these static and dynamic equilibrium allo-
cations. The model also generates the comparative static prediction that these static and dynamic
equilibrium allocation results will be stronger where patients have greater ability to substitute to
alternate producers. In Section IV we test this comparative static prediction by comparing allo-
cation results for patients admitted through the emergency department and patients admitted as
non-emergency transfers from another hospital. Stratifying on the method of admission to the hos-
pital offers one way to distinguish among patients with different abilities to substitute to alternate
producers.36

Finally, we note that endogenous selection based on patients’ preferences for quality also has
implications for equilibrium cost levels. Even if quality and cost draws are uncorrelated in G(·),
factors that tend to truncate the equilibrium quality distribution at a higher level will also raise av-
erage observed costs, because hospitals with higher quality can have higher costs before becoming
unprofitable. Thus when patients are not sensitive to costs and choose based solely on quality, the
equilibrium will tend to allocate toward both higher quality and higher cost firms. As noted, there
may therefore be a wedge between the privately and socially optimal allocations.

36This model is static, so the effects of changes in competition on equilibrium should be thought of as comparing
two different markets or the same market across different long-run steady states. However, several of the models in
the literature are explicitly dynamic and have similar predictions about the effect of competition on the productivity of
entrants and growth of incumbents (e.g. Hopenhayn, 1992; Asplund and Nocke, 2006).
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Appendix B Quality Measures

This section provides details on the definition and construction of each of our four quality metrics.

B.1 Risk-adjusted survival

Risk-adjusted survival is arguably the key endpoint for emergent conditions and has been the health
outcome of choice for a large economics and medical literature. CMS publicly reports risk-adjusted
survival measures for heart attacks, heart failure and pneumonia for hospitals that treat at least
25 patients with the condition in the 3 year window it uses for the analysis. We calculate our
own risk-adjusted survival scores for these conditions in order to have control over the regression
model (we use a fixed effects linear regression while CMS uses a random effects logit), shrinkage
approach (we use empirical Bayes adjustment while CMS uses the best linear unbiased predictors,
or BLUPs, of the random effects), and risk adjustment (we test sensitivity to alternative sets of
risk-adjusters while CMS only publishes one approach). The CMS data are also reported as ratios
of observed mortality rates relative to expected mortality rates, which is a nonlinear transformation
of the hospital random effects – and one that is not designed to produce unbiased coefficients when
placed on the right-hand side of our allocation regressions.37

Mimicking the CMS measure, for each hospital with at least 25 patients with the condition
between 2006 and 2008, we estimate a risk-adjusted survival rate – the probability that a Medicare
patient would survive 30 days after being treated for the condition at the hospital. Specifically,
we start with the patient-level sample of initial hospitalizations for the condition, or index events,
from 2006-2008. Then, we regress 30-day survival (counting from the patient’s hospital admission
date) on a rich set of observable information about the patient, including age/race/sex interactions
and indicators for being hospitalized for 25 conditions in the past year, as well as hospital fixed
effects.38 The inclusion of risk-adjusters is standard practice in the literature and is designed to
minimize the impact of differences in patient health across hospitals on survival rates.

We extract the hospital fixed effects, which become the risk-adjusted survival rate estimates
for the hospitals for a given condition. Since these estimates include measurement error, they may

37Since we use different regression models, shrinkage approaches, risk-adjustment approaches, and transformations
of hospital effects, we do not expect the correlations between our measures and the CMS measures to be 100%. Still,
in Appendix Table A19, we find that our risk-adjusted survival and readmission measures are highly correlated with
the CMS measures, with correlation coefficients ranging from 0.66 to 0.82.

38The age groups are 66-69, 70-74, 75-79, 80-84, 85-89, 90-94, and 95+. The race and age groups are white/non-
white and male/not male. The risk-adjusters are: heart failure, myocardial infarction, unstable angina, chronic
atherosclerosis, respiratory failure, hypertensive heart disease, valvular heart disease, arrhythmia, hypertension, stroke,
cerebrovascular disease, renal failure disease, dialysis, COPD, pneumonia, diabetes, protein calorie malnutrition, de-
mentia, paralysis and disability, peripheral vascular disease, metastatic cancer, trauma, substance abuse, major psychi-
atric disorder, and chronic liver disease.
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produce biased coefficients when included on the right hand side of our allocation regressions;
for example, classical measurement error will cause attenuation bias toward zero. In Appendix
C, we describe the empirical Bayes shrinkage approach we use to correct for measurement error
bias. We discuss and show how the shrinkage method affects our results in Appendix Section
C.5 and Appendix Table A2 – consistent with the presence of measurement error bias resulting in
attenuation, the correction expands nearly all of our allocation gradients.

In our analyses studying risk-adjusted survival over the long horizon, we calculate the measure
for 1996, 1999, 2002, and 2005 in addition to the baseline 2008 measure. As in the 2008 calcu-
lations, we aggregate over three years, e.g. the 1996 measure includes patients from 1994-1996.
Results using this longer sample of risk-adjusted survival rates are presented in Section III.B.2.

B.2 Risk-adjusted readmission

This measure, defined and estimated similarly to risk-adjusted survival, indicates the probability
that an average Medicare patient would be readmitted within 30 days after discharge from her
initial hospital stay. It is widely used as a proxy for medical errors and inappropriate discharge.
Mimicking the CMS measure, the sample of patients is the same as that for risk-adjusted survival,
with the addition of the following exclusion criteria: if the patient dies during the initial hospi-
tal stay, is transferred from her initial hospital to another inpatient facility, or leaves the hospital
against medical advice, the patient is removed from the sample. Per the CMS approach, these ex-
clusions help to remove patients who either could not be readmitted or whose readmissions might
not be due to the index hospital’s quality of care. We then use the same regression, risk adjust-
ment, and empirical Bayes method as in risk-adjusted survival. For hip and knee replacement, an
indicator for whether the patient received a hip replacement is also included as a risk-adjuster to
allow for differential readmission rates depending on which joint is being replaced.

B.3 Process of care

Publicly reported “process of care” measures give the shares of eligible patients who received cer-
tain evidence-based interventions. Hospitals report their utilization of these processes to CMS,
which publishes the information online and uses it to adjust hospital payments.39 The data pertain
to all eligible patients irrespective of their insurer, and are not limited to patients covered by Medi-
care. Patients for whom the interventions are contraindicated are not counted in the numerator or
denominator of the shares. We consider the process measures for specific inpatient conditions that
were reliably reported from 2006 through 2008: 6 AMI measures, 4 heart failure measures, and 7
pneumonia measures.

39These data can be downloaded at https://data.medicare.gov/data/hospital-compare
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The processes “were identified with respect to published scientific evidence and consistency
with established clinical-practice guidelines” (Williams et al., 2005). The AMI measures have
their origins in the Cooperative Cardiovascular Project, a large study of AMI among Medicare
beneficiaries that was conducted in the 1990s; the metrics for heart failure and pneumonia can
be traced back to the practice guidelines of professional organizations that focus on these condi-
tions (Jencks et al., 2000). The AMI processes cover the administering of aspirin (one measure
for arrival and another for discharge), ACE inhibitors, smoking cessation advice, b blockers, and
angioplasty (percutaneous coronary intervention, or PCI).40 The heart failure processes cover pro-
viding discharge instructions for care, evaluation of left ventricular systolic dysfunction, ACE
inhibitors, and smoking cessation advice. The pneumonia processes cover providing oxygenation
assessments, pneumococcal vaccines, blood cultures before antibiotics, smoking cessation advice,
timely antibiotics, the most appropriate antibiotics for the particular infection, and influenza vac-
cines.

To reduce the dimensionality of the process measures before including them in our regressions,
for each condition we generate a hospital-level composite measure of adherence to the condition’s
processes. We start with the publicly reported hospital-level data from 2006 to 2008; we combine 3
years to reduce measurement error. To further reduce measurement error in the composite score, we
remove any individual process score for which the hospital had fewer than 50 eligible patients over
the 3 year window (since each process has different contraindications, a hospital may have more
than 50 patients in one score for a condition and fewer than 50 patients in another). We use a higher
patient count threshold than for risk-adjusted survival and readmission because process scores are
not empirical-Bayes-adjusted by CMS to account for measurement error; since the scores have
all-payer coverage, the patient counts tend to be larger than for the risk-adjusted outcomes and this
threshold is therefore less restrictive.

We standardize each process score (among the set of hospitals that reported it for at least 50
patients over the 3 years) to have mean 0 and standard deviation 1. For each condition, we average
together the condition’s individual process standardized scores to create a composite score, then
standardize that composite score. The result is a condition-specific composite score with zero
mean and unit variance defined on the set of hospitals that reported 50 or more patients for at least
one process of care for that condition over 2006-2008.

The process of care data are only available at the hospital level so it is not possible to perform
the kind of detailed risk adjustment when generating these quality metrics that we could for sur-
vival or readmission. However, one advantage of these metrics is that they are designed to measure
interventions or experiences that the facility should deliver to essentially all of its patients; patients

40An additional AMI measure, Thrombolytics at Arrival, was missing for 60-80% of hospitals each year, and was
removed from the analysis.

A7



who are inappropriate for the intervention are excluded. As a result, risk adjustment is not ob-
viously relevant or required for the process of care measures – while it may not be possible for
a hospital to prevent all AMI deaths or readmissions, it is possible in theory for a facility to ad-
minister b blockers to all appropriate patients at discharge. Indeed, the study of processes of care
has been justified by hospitals’ ability to directly control these measures of quality, since quality
scores based on clinical outcomes include factors like the hospital’s patient population and patient
compliance with post-discharge care that hospitals are less able to manage (Donabedian, 1966).

B.4 Patient satisfaction

Patient satisfaction is measured by the 2008 HCAHPS (Hospital Consumer Assessment of Health-
care Providers and Systems), which hospitals administer to their patients after discharge.41 The
survey is given to a sample of all of the hospital’s patients, not just patients who were covered by
Medicare; unlike our other quality measures, the public data covers all patients, and is not offered
in a condition-specific manner. The survey results are processed and reported by CMS; the survey
instrument is condensed into ten measures of the patient’s experience and perceived quality of care.
The ten measures are: communication with nurses, communication with doctors, responsiveness
of hospital staff, pain management, communication about medicines, cleanliness of hospital en-
vironment, quietness of hospital environment, discharge information, overall hospital rating, and
recommend the hospital. The average hospital reports scores for all 10 survey questions. CMS ad-
justs the results for interview mode (e.g. mail, telephone, etc.) and a set of patient characteristics.
Its adjustment for mode uses data from a randomized trial comparing survey responses by mode,
while the adjustment for patient characteristics comes from a model that is estimated quarterly
from hospitals’ submissions (Giordano et al., 2010; Elliott et al., 2009).

We generate a composite score of hospital performance on the patient survey by aggregating
together the 10 questions into a measure with mean zero and unit variance. For all of the questions
but one, the publicly reported data indicates the share of patients responding that the hospital
provided high, medium or low quality. One question (discharge information) is reported as the
shares of patients responding yes or no. We assign these responses to numeric values (3/2/1 for the
three-level questions or 1/0 for the yes/no question, with higher values always better) and compute
an average response for each hospital. Then, following the same method we use for process of
care, we generate standardized scores for each question, average together the standardized scores,
and standardize the result.

41For an overview of the design and implementation of HCAHPS, see Giordano et al. (2010).
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Appendix C Empirical Bayes Adjustment

In this appendix we describe the empirical Bayes (EB) procedure we use to adjust our estimates
of risk-adjusted survival, risk-adjusted readmission, risk-adjusted inputs, and input-adjusted risk-
adjusted survival (which we call productivity) for measurement error. This procedure is based on
Morris (1983). For another example see Jacob and Lefgren (2007).

For hospital h, its quality measure (risk-adjusted survival, risk-adjusted readmission, or input-
adjusted risk adjusted survival; we also will refer to risk-adjusted inputs in this manner) is called
qh. These objects are the “true” quality values and their distribution is the “underlying” distribution
of quality. We denote by q̂h the estimate of quality; it equals quality plus an error term hh:

q̂h = qh +hh

The goal of the EB procedure is to adjust the estimates of quality so that the presence of the
error term does not introduce bias when the quality estimates are included as regressors in our
allocation regressions (see equations 1 and 2). The procedure adjusts the estimates by shrinking
them toward the mean of the true, underlying distribution. True quality is not observable, but we
show in this appendix that its distribution is estimable. We also show how this shrinkage estimator
fixes the attenuation bias that measurement error could otherwise introduce into our regressions.

In this appendix we use bold lowercase greek and roman letters to refer to vectors and uppercase
greek and roman letters for matrices. Non-bold lowercase letters refer to scalars.

C.1 Background on Empirical Bayes Procedure

C.1.1 Statistical Background

We start with an overview of the EB procedure assuming that all parameters of the distributions
are known, and refer to the EB-adjusted estimated quality as qEB

h . We then describe the feasible
EB-adjusted estimate, which we denote qEB( f )

h .
Suppose that the estimated quality is independently normally distributed around the true quality

with known variance p

2
h :

q̂h|qh,p
2
h ⇠ N

�

qh,p
2
h
�

independently

One can think of p

2
h as the variance of the measurement error of the estimate.

We also assume that the true quality qh is independently normal with underlying mean x0hl

l

l

(a known, linear function of the hospital’s covariates) and underlying variance s

2 (known and
common across hospitals).

The prior distribution of quality qh – the distribution before conditioning on the estimated
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quality – is therefore:
qh|xh,lll ,s

2 ⇠ N
�

x0hl

l

l ,s2� independently

Conditioning on the estimated quality q̂h produces the posterior distribution of qh:

(A1) qh|q̂h,xh,lll ,s
2,p2

h ⇠ N
�

qEB
h ,p2

h (1�bh)
�

qEB
h denotes the EB-adjusted quality. This object is the expected value of qh conditional on the

estimated value q̂h and the parameters l

l

l ,s2, and p

2
h and is given by the formula:

qEB
h = (1�bh) q̂h +bhx0hl

l

l(A2)

bh = p

2
h/
�

p

2
h +s

2�(A3)

The adjustment amounts to attenuating the estimate q̂h toward the prior mean x0hl

l

l . As the
variance of the measurement error p

2
h rises, the EB correction increasingly disregards the value of

the estimate and closes in on the prior mean.

C.1.2 Feasible Version of Procedure

This section describes how we implement the EB procedure when parameters must be estimated.
The value q̂h is the estimated hospital fixed effect from the regression used to estimate qual-

ity (see Appendix B for a description of the regressions used to estimate risk-adjusted survival
and readmission; see equation 9 for the regression used to estimate input-adjusted risk-adjusted
survival, a.k.a. “productivity”). We estimate a standard error for the fixed effect assuming ho-
moscedastic disturbances in the first-step patient-level regression; under the homoscedasticity as-
sumption, the standard error is our estimate of the standard deviation of the asymptotic distribution
of q̂h. We estimate p

2
h by squaring the standard error and call this value p̂

2
h .

We estimate the underlying parameters of the quality distribution, l

l

l and s

2, using the method
outlined in section 5 of Morris (1983). We fix yearly estimates:

l̂

l

l :=
�

X 0WX
��1 X 0WQ

ŝ

2 = max

8

<

:

0,
ÂhWh

n⇣

nH
nH�nX

⌘

�

q̂h �x0hl

l

l

�2 � p̂

2
h

o

Âh wh

9

=

;

wh =
1

p̂

2
h + ŝ

2

where X is the stacked x0h, W is a diagonal matrix of the wh, and Q is the stacked q̂h for year
t. nH is the number of hospitals, or equivalently the number of q̂h. nX is the number of regressors,
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i.e. the dimensionality of xh.
l̂

l

l is a WLS regression of the q̂h on xh. ŝ

2 is the weighted average of the squared deviations
of q̂h from x0hl̂

l

l less the weighted average of p̂

2
h . The weights are wh, giving more weight to

observations with less measurement error. The max operator ensures that ŝ

2 is always nonnegative
in finite samples.

l̂

l

l and ŝ

2 are simultaneously determined in these equations, so they are estimated by the fol-
lowing iterative procedure. We start by fixing wh = 18h, then iterate the following to convergence:

1. Compute l̂

l

l and then a new estimate ŝ

2

2. If this is the second or greater iteration and ŝ

2 has converged, exit. Otherwise, fix new
weights wh and return to step 1

The (feasible) best estimate of the posterior mean qEB( f )
h is given in Morris (1983) by the formula

of equations (A2) and (A3) with a degrees of freedom adjustment :

qEB( f )
h =

�

1� b̂h
�

q̂h + b̂hx0hl̂

l

l

b̂h =

✓

nH �nX �2
nH �nX

◆✓

p̂

2
h

p̂

2
h + ŝ

2

◆

The variance of the quality distribution unconditional on covariates, called V̂

2, is given by the
following formula:

V̂

2 = max

8

<

:

0,
Âh wh

n⇣

nH
nH�1

⌘

(q̂h � q̄)� p̂

2
h

o

Âh wh

9

=

;

(A4)

q̄ =
Âh whq̂h

Âh wh
(A5)

Where q̄ is the weighted mean quality.

C.2 Implementation of Empirical Bayes Adjustment

We assume that the underlying mean of quality is equal to a market fixed effect, i.e. x0hl

l

l = tM,
where M indexes markets. Thus xh becomes a vector of 306 indicators for whether hospital h was
in each of the 306 markets and l

l

l is a vector of the 306 market fixed effects. We then perform
the EB procedure, producing estimates of the underlying market means l̂

l

l and conditional – i.e.
within-market – variance ŝ

2. Running the procedure also yields EB-adjusted estimated quality
measures qEB( f )

h and also can be used to produce the unconditional – i.e. national – estimated

A11



variance V̂

2, as described above. When we compute quality metrics for multiple years, for example
in the case of Appendix Table A13, we perform the EB adjustment separately for each year. That
is, we allow each year to have its own market means l̂

l

l and conditional variance ŝ

2.
Our procedure ensures that when the EB-adjusted quality is used in our main regressions (equa-

tions 1 and 2 in the main text), which have market fixed effects, all regressors are orthogonal to the
measurement error term.

C.3 Reported Statistics Involving Quality Metrics

C.3.1 Standard Deviation

To estimate the standard deviation of quality in Table 2, we rely on the estimates of the underlying
national variance of quality V̂

2 that the procedure computes.42 The root of these estimates is taken,
forming V̂ .

The EB adjustment produces V̂

2 by taking the weighted empirical variance of the q̂h and sub-
tracting the weighted average squared standard error p̂

2
h (see equations A4 and A5). Hospitals with

larger standard errors receive lower weights. In effect, this process takes the variance of the noisy
quality estimates and subtracts off the variance due to measurement error.

C.3.2 Correlations

In Table 3 and Appendix Table A4 we report correlations adjusted for measurement error. The
raw correlation between two quality measures potentially suffers from two sources of bias. First,
the variance terms in the denominator are upward-biased if either quality measure is estimated
with measurement error, as in the fixed effects approach that we use for risk-adjusted survival
and readmission. Second, the covariance term in the numerator may also be biased if the two
quality metrics were estimated using the same samples of patients (e.g. risk-adjusted survival and
readmission for the same condition), since the sampling error in one fixed effect may be correlated
with the sampling error in the other.

Our empirical correlation estimate corrects for these two sources of bias, and is calculated as
the following:

42While it might seem natural to instead estimate the standard deviation of the EB-adjusted values, this would cause
us to erroneously under-estimate dispersion. True quality is composed of a best prediction (the EB-adjusted quality)
and the prediction error. These two components are orthogonal. The variance of true quality is thus strictly greater
than the variance of EB-adjusted quality (see Jacob and Lefgren, 2007).
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˜Corh
�

q̂A,h, q̂B,h
�

=
˜Covh
�

q̂A,h, q̂B,h
�

q

Ṽarh
�

q̂A,h
�

Ṽarh
�

q̂B,h
�

˜Covh
�

q̂A,h, q̂B,h
�

= ˆCovh
�

q̂A,h, q̂B,h
�

� Êh
⇥

pAB,h
⇤

Ṽarh
�

q̂X ,h
�

= V̂arh
�

q̂X ,h
�

� Êh
⇥

p

2
X ,h
⇤

where q̂A,h is one estimated quality score for hospital h and q̂B,h is another, pAB,h is the estimate
of the measurement error covariance between the two quality scores, and p

2
X ,h is the estimate of

the measurement error variance for measure X 2 {A,B}. Tildes indicate estimates that have been
adjusted for measurement error and hats indicate raw sample averages and variances. In other
words, we take the covariance of the two raw quality scores and subtract the average covariance
of the measurement error, and we take the variance of each quality score and subtract its average
measurement error variance.

When the two quality scores come from the same patient sample, pAB,h is derived by making a
homoscedasticity assumption on the covariance of the error terms in the two first-step regressions
that produce the quality measures. Each pair of patient error terms, one for each regression, is
assumed to be drawn from a distribution with a common variance-covariance matrix; error terms
across patients are uncorrelated. We then estimate the variance-covariance matrix of the two hos-
pital fixed effects and pAB,h is set to the covariance. If the two quality scores are derived from
different patient samples (i.e. risk-adjusted survival for AMI and heart failure) or if only one is
estimated by us from patient data (i.e. risk-adjusted survival for AMI and process of care for AMI)
pAB,h is set to 0.

p

2
X ,h is the squared standard error of the fixed effect for measure X , described in Appendix

Section C.1.2. It is set to 0 if the measure is not estimated by us from patient data, like for process
of care scores or the patient survey.

C.3.3 Static and Dynamic Allocation Regressions

The allocation metrics use noisy estimates of quality on the right-hand side of regressions, and
they rely on EB adjustment to correct for measurement error. Jacob and Lefgren (2007) show that
with the adjustment, these regressions are estimated consistently.

Suppose that there is a relationship between growth Dh, market fixed effects gM, and quality qh:

Dh = gM +dqh + eh

where E [eh|xh,qh] = 0 (xh is a vector of indicators for the markets – the design matrix for the
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market fixed effects). The left-hand side variable could alternatively be the number of patients as
in the static allocation regression.

Since we do not observe true quality qh, we use the estimate q̂h = qh +hh, where hh is mea-
surement error. Then substituting into the equation:

Dh = gM +d q̂h +(eh �dhh)

This regression generally produces a biased estimate of d due to the correlation between q̂h and
hh in the error term. We use the EB-adjusted quality qEB

h to eliminate this correlation. Equation
(A1) implies:

E
⇥

qh|q̂h,xh,lll ,s
2,p2

h
⇤

= qEB
h

We represent the prediction error of the EB procedure as vh:

qh = qEB
h + vh

By construction the prediction error is orthogonal to qEB
h and any regressor included in xh – i.e.

the market fixed effects:
E
⇥

vh|qEB
h ,xh,lll ,s

2,p2
h
⇤

= 0

(q̂ht is replaced by qEB
h because given the parameters, knowing one determines the other)

The regression of Dh on market effects and qEB
h adds only dvh to the original error term eh:

Dh = gM +dqEB
h +(eh �dvh)

Therefore there is no correlation between any of the regressors and the new error term. The unbi-
asedness of d follows.

C.4 Multivariate Empirical Bayes Procedure

In some cases we run regressions with multiple imprecisely measured quality metrics on the right-
hand side, each estimated from the same sample of patients. In these cases, the measurement
error across the quality metrics is likely to be correlated, making the EB procedure we used for
a single quality metric insufficient to restore unbiasedness to the regression estimates – one EB-
adjusted quality metric is uncorrelated with its own prediction error, but it may be correlated with
the prediction error of the other EB-adjusted quality metric. For these regressions, the quality
metrics must be EB-adjusted jointly.

Let qh be the “true” vector of quality for hospital h and let q̂h be the estimate of the vector. The
multivariate method assumes that the two quality estimates are distributed jointly normal around
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true quality with covariance matrix Ph:

(A6) q̂h|qh,Ph ⇠ N(qh,Ph) independently

The underlying, or prior, distribution of quality is also jointly normal:

(A7) qh|xh,L,S ⇠ N(Lxh,S) independently

Conditioning on the estimated quality vector yields the posterior distribution (we present the
formula given in Murphy, 2007 after some algebraic manipulation):

(A8) qh|q̂h,xh,L,S ⇠ N
�

qEB
h ,(I �Bh)Ph

�

Where:

qEB
h = (I �Bh) q̂h +BhLxh(A9)

Bh = Ph (Ph +S)�1(A10)

One can think of qh as the hyperparameter for the mean of q̂h. The above formulas give the
posterior distribution of the hyperparameter after conditioning on realization q̂h.

C.4.1 Feasible Version of Procedure

To implement the EB adjustment, we begin by fixing values of q̂h. Each member of the vector
equals the estimated fixed effect from a patient-level quality regression, e.g. for q̂h =

�

q̂A,h, q̂B,h
�0,

q̂A,h could be hospital h’s fixed effect from the risk-adjusted survival patient-level regression while
q̂B,h could be the fixed effect from the readmission regression.

To construct P̂h (the estimate of Ph), we assume homoscedastic disturbances in each first-step
quality regression, but we extend the assumptions to account for multiple measures. We treat the
set of first-step regressions as a SUR and assume that each patient’s disturbances are drawn from
a distribution with a common covariance matrix. That is, we allow a patient’s disturbance term in
one quality regression to be correlated with her disturbance term in another. Disturbances across
patients are assumed to be uncorrelated. (We make the same assumption in Appendix Section
C.3.2 to estimate correlations between quality measures.)

Under these assumptions, we extract hospital-level estimates of the covariance of the measure-
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ment error between the quality measures, for example between the hospital’s risk-adjusted survival
score and its risk-adjusted readmission score. These estimates become the off diagonal values of
P̂h. We also estimate standard errors on the hospital fixed effects in each regression – under our
homoscedasticity assumption these standard errors are the same as in the single quality-metric ap-
proach. The squared standard errors are estimates of the variance of the measurement error of each
quality metric; these values become the diagonals of P̂h.

Next we must estimate S and L. Combining equations (A6) and (A7) we have the distribution
of q̂h unconditional on qh (in Bayesian terms called the prior predictive distribution):

q̂h|xh,L,S,Ph ⇠ N(Lxh,S+Ph) independently

The full vector of measured quality q̂ – the stacked q̂h – therefore follows a multivariate normal
distribution as well. We now show how to represent this joint distribution so that we can build its
likelihood function.

For the simultaneous EB adjustment of k quality measures at once, we define X as the stacked
Ik ⌦ x0h, l

l

l as the rows of L transposed to column vectors and stacked to create one vector of
coefficients, and P as the block diagonal matrix formed with Ph on the diagonals. Then q̂ is
distributed:

q̂|X ,L,S,P ⇠ N(Xl

l

l , Inh ⌦S+P)

In our model, the number of parameters in l

l

l is large relative to the sample size – 306 market
fixed effects per quality measure and about 3,000 hospitals per measure. An ML estimate of S
would therefore have significant bias in finite samples due to the loss of degrees of freedom from
estimating l

l

l . We estimate S by REML instead of MLE to avoid this bias.
The REML likelihood function is:43

L
�

S̃;P
�

= �1
2

ln
�

�Q̃
�

�� 1
2

ln
�

�X 0Q̃�1X
�

�� 1
2

⇣

q̂�X l̃

l

l

⌘0
Q̃�1

⇣

q̂�X l̃

l

l

⌘

(A11)

l̃

l

l

�

Q̃
�

=
�

X 0Q̃�1X
��1 X 0Q̃�1q̂(A12)

Q̃
�

S̃;P
�

= Inh ⌦ S̃+P(A13)

Ŝ is the maximizer of the likelihood function (with unknown P replaced by the known P̂) and
l̂

l

l is given by equation (A12):
43This likelihood function is derived and given in Diggle et al. (2002). The MLE likelihood function is defined

identically but omits the 1
2 ln
�

�X 0Q̃�1X
�

� term. Maximizing this likelihood would yield unbiased estimates of l but not
S.
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Ŝ = argS̃ maxL
�

S̃;P̂
�

l̂

l

l = l̃

l

l

�

Q̃
�

Ŝ;P̂
��

The feasible estimate of the posterior quality vector is given by equations (A9) and (A10) with
unknown parameters replaced by their estimates (L̂ is constructed from l̂

l

l by splicing the vector
back into matrix form):

qEB( f )
h =

�

I � B̂h
�

q̂h + B̂hL̂xh

B̂h = P̂h
�

P̂h + Ŝ
��1

C.4.2 Implementation

We perform bivariate EB adjustment in two cases. The first is our multivariate allocation re-
gressions, where we regress hospital size and growth on risk-adjusted survival and readmission
simultaneously (see the discussion of Section III.A and Appendix Table A6). The second is our re-
gressions that study allocation with respect to productivity decomposed into risk-adjusted survival
and risk-adjusted spending (see Section III.C and Table 7). In these cases, we allow the underlying

mean of each quality measure to equal a market fixed effect, so e.g. Lxh =

 

t

1
M

t

2
M

!

. As in the

approach with a single quality metric, xh is a vector of 306 indicators for whether a hospital is in
each of the 306 markets.

We perform the EB procedure, extracting the matrix of underlying market means L̂ and under-
lying variance Ŝ, then producing EB-adjusted quality vectors qEB( f )

h . The qEB( f )
h become regres-

sors in the multivariate allocation and decomposed productivity regressions replacing the noisy
estimates q̂h. By the result given in section C.3.3 (replacing scalars qh and hh with vectors qh and
h

h

hh), the EB adjustment restores consistency to the coefficients of interest in these regressions.

C.5 Comparison of estimates

We run all of our baseline regression analyses with the EB-adjusted productivities qEB( f )
h . Ap-

pendix Table A2 explores the impact of the EB correction on our main results, reproducing the
EB-adjusted main results from Table 4 without the EB correction.

To produce the uncorrected allocation metrics, we use the estimates q̂h rather than qEB( f )
h in

our regressions. Due to measurement error in the estimates, we generally expect the allocation
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metrics computed without the EB correction to be attenuated. The attenuation result is well-known
under classical measurement error, though when measurement error is non-classical it is possible
for coefficients to be expanded rather than attenuated. Our EB approach allows each hospital’s
measurement error to be different (based on the squared standard error of the hospital fixed effect
from the first-step regression), so it is robust to this violation of the classical measurement error
assumption.

The results show that the EB correction has a substantial effect on our baseline estimates, and
our findings are consistent with measurement error causing attenuation. Comparing our base-
line (EB-adjusted) estimates to the un-adjusted versions, we see that the allocation gradients are
substantially greater with the correction. For example, in column 1 of Appendix Table A2, a 1 per-
centage point rise in risk-adjusted AMI survival is associated with 17% more patients when the EB
correction is used, but only 7% more patients when we use the raw quality metric. The expansion
of the coefficient is more substantial for some of the other metrics – e.g. a 1 percentage point fall
in risk-adjusted HF readmission is associated with 10% more patients in our baseline analysis, but
only 1% more patients when we drop the EB correction.

A quantitatively large impact of the EB correction (i.e. a large amount of measurement error,
to the extent that it is classical) is not surprising in light of results from other applications. For
example, looking at estimates of teacher fixed effects in value added regressions, Jacob and Lefgren
(2007) estimate a ratio of the unadjusted standard deviation to the EB-adjusted estimate of the
standard deviation of about 1.3 to 1.6. We find ratios ranging from 1.5 to 2.1.
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee

Baseline (EB-Adjusted) 17.496 15.360 5.140 1.533 0.774 1.220

(0.995) (1.320) (0.777) (0.379) (0.501) (0.354)

Raw (No EB Adjustment) 6.833 3.761 1.957 0.645 0.084 0.340

(0.342) (0.425) (0.403) (0.175) (0.199) (0.175)

Hospitals 2,890 4,023 4,325 2,890 4,023 4,325

Raw SD / Corrected SD 1.597 1.788 1.547 1.597 1.788 1.547

Baseline (EB-Adjusted) -9.162 -10.346 0.499 -21.037 -1.428 -2.300 -1.138 -1.112

(1.621) (1.782) (1.575) (2.027) (0.611) (0.651) (0.679) (0.836)

Raw (No EB Adjustment) -1.699 -1.043 0.755 -6.492 -0.307 -0.217 -0.189 -0.431

(0.395) (0.346) (0.427) (0.727) (0.197) (0.162) (0.195) (0.382)

Hospitals 2,322 3,904 4,264 2,632 2,322 3,904 4,264 2,632

Raw SD / Corrected SD 1.870 2.132 1.864 1.794 1.870 2.132 1.864 1.794

Table A2 - Sensitivity of Allocation Results to Empirical Bayes Adjustment

Static Allocation Dynamic Allocation

This table shows the sensitivity of the allocation results of Table 4 to the empirical Bayes adjustment procedure. In 

each panel, we first repeat the baseline allocation results in which the quality metric is empirical-Bayes-adjusted. We 

then show the same allocation models using the raw quality metric without empirical Bayes adjustment. Lastly, we 

show the ratio of the raw standard deviation of the quality measure to its standard deviation after correcting for 

measurement error (see Appendix Section C.3.1). Standard errors are bootstrapped with 300 replications and are 

clustered at the market level.

Panel A - Risk-Adjusted Survival

Panel B - Risk-Adjusted Readmission

(1) (2) (3) (5)

Condition AMI Heart Failure Pneumonia Hip Fracture

Median miles traveled 7.0 5.4 5.2 9.1

Mean miles traveled 45.0 33.7 35.8 41.9

Share treated at nearest hospital 0.43 0.52 0.56 0.38

Share staying in market 0.87 0.89 0.90 0.84

Index Events 190,189 308,122 354,319 267,557

Hospitals 2,890 4,023 4,325 2,632

Table A3 - Distance Traveled across Conditions

Distances are miles from the centroid of the patient's ZIP code to the centroid of the hospital's 

ZIP code. The sample is patients in 2008 at hospitals that had a valid risk-adjusted survival rate 

(risk-adjusted readmission for hip/knee replacement).
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(1) (2) (3) (4) (5) (6) (7)

Condition AMI HF Pneu AMI HF Pneu Hip/Knee

AMI 1.00 1.00

[2,890] [2,322]

HF 0.58 1.00 0.76 1.00

[2,888] [4,023] [2,320] [3,904]

Pneumonia 0.45 0.70 1.00 0.66 0.94 1.00

[2,883] [4,006] [4,325] [2,313] [3,880] [4,264]

Hip/Knee Replacement 0.44 0.51 0.44 1.00

[2,020] [2,524] [2,544] [2,632]

Condition AMI HF Pneu

AMI 1.00

[2,398]

HF 0.59 1.00

[2,397] [3,666]

Pneumonia 0.44 0.63 1.00

[2,386] [3,637] [3,920]

Table A4 - Correlation of Measures Across Conditions

Risk-Adjusted Survival Risk-Adjusted Readmission

Hospitals used to calculate correlation in brackets. Correlations involving survival or readmission are 

adjusted for measurement error (see Appendix Section C.3.2).

Process of Care

A22



(1) (2) (3) (4)

Measure \ Condition AMI HF Pneu Hip/Knee

Risk-Adjusted Survival 0.19 0.21 0.17

[198] [274] [289]

Risk-Adjusted Readmission 0.09 -0.09 0.45 0.21

[158] [267] [288] [190]

Process of Care Z-Score 0.12 0.35 0.28

[162] [244] [263]

Patient Survey Z-Score -0.01 -0.02 -0.02 0.05

[227] [233] [233] [202]

Each cell shows the correlation between our measure and the Bloom-

Van Reenen average management score at the hospital. Hospitals 

used to calculate correlation in brackets. Correlations involving 

survival or readmission are adjusted for measurement error (see 

Appendix Section C.3.2).

Table A5 - Correlation of Management Scores and Quality

(1) (2) (3) (4) (5) (6) (7) (8)

Measure \ Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee

Risk-Adjusted Survival 12.866 17.839 4.237 0.217 1.827 1.269

(1.421) (1.902) (0.764) (0.600) (0.586) (0.357)

Risk-Adjusted Readmission -6.108 -14.155 -1.120 -20.716 -0.814 -2.264 -0.580 -0.757

(1.983) (2.214) (1.552) (2.108) (0.745) (0.668) (0.644) (0.845)

Process of Care Z-Score 0.196 0.188 0.196 0.036 0.014 0.015

(0.027) (0.022) (0.014) (0.011) (0.010) (0.009)

Patient Survey Z-Score -0.113 -0.292 -0.166 -0.022 0.002 -0.014 -0.004 0.025

(0.040) (0.028) (0.022) (0.034) (0.013) (0.009) (0.009) (0.016)

Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542

Table A6 - Allocation across Conditions - Multivariate Approach to Measuring Quality

Static Allocation Dynamic Allocation

This table repeats the analysis of Table 4 but uses all available quality measures for the condition at once (plus the 

patient survey, which is not condition-specific). The allocation sample for each regression is all hospitals with the 

displayed quality measures and at least one patient in 2008. Standard errors are bootstrapped with 300 replications 

and are clustered at the market level.
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(1) (2) (3) (4) (5) (6) (7) (8)

Measure \ Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee

Risk-Adjusted Survival 12.082 13.870 4.192 0.526 1.364 1.170

(0.929) (1.296) (0.745) (0.401) (0.452) (0.323)

Hospitals 2,193 3,316 3,454 2,193 3,316 3,454

Risk-Adjusted Readmission -9.909 -10.519 -1.372 -20.742 -1.127 -1.969 -0.733 -0.988

(1.600) (1.686) (1.562) (2.097) (0.567) (0.531) (0.561) (0.835)

Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542

Process of Care Z-Score 0.327 0.300 0.185 0.045 0.030 0.018

(0.023) (0.018) (0.015) (0.009) (0.008) (0.008)

Hospitals 2,193 3,316 3,454 2,193 3,316 3,454

Patient Survey Z-Score 0.074 -0.172 -0.121 0.068 0.017 0.004 0.004 0.029

(0.030) (0.031) (0.028) (0.035) (0.012) (0.007) (0.008) (0.015)

Hospitals 2,193 3,316 3,454 2,542 2,193 3,316 3,454 2,542

Table A7 - Allocation across Conditions - Constant Sample

Static Allocation Dynamic Allocation

This table repeats the analysis of Table 4 but uses a constant sample of hospitals across the quality metrics. The 

sample for each regression is all hospitals with a risk-adjusted survival rate (if calculated for that condition), risk-

adjusted readmission rate, process of care score (if calculated for that condition), patient survey score, and at least 

one patient in 2008. Standard errors are bootstrapped with 300 replications and are clustered at the market level.
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(1) (2) (3) (4) (5) (6) (7) (8)

Measure \ Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee

AMI 0.553 0.335 0.183 0.048 0.014 0.031

(0.030) (0.022) (0.021) (0.014) (0.009) (0.010)

HF 0.198 0.124 0.031 -0.001 0.010 0.004

(0.036) (0.030) (0.026) (0.017) (0.011) (0.012)

Pneumonia 0.034 0.080 0.052 0.014 0.010 0.032

(0.034) (0.024) (0.019) (0.014) (0.013) (0.011)

Hospitals 2,882 2,882 2,882 2,882 2,882 2,882

AMI -0.171 -0.112 -0.122 -0.265 -0.031 -0.035 -0.018 -0.001

(0.047) (0.038) (0.035) (0.056) (0.019) (0.014) (0.015) (0.023)

HF -0.215 -0.146 -0.086 -0.282 -0.027 -0.043 -0.028 -0.007

(0.044) (0.031) (0.030) (0.054) (0.019) (0.017) (0.015) (0.021)

Pneumonia 0.104 0.084 0.041 -0.055 -0.006 -0.014 -0.018 -0.008

(0.042) (0.031) (0.027) (0.050) (0.019) (0.017) (0.015) (0.024)

Hip/Knee Replacement -0.079 -0.067 -0.086 -0.284 -0.010 -0.016 0.002 -0.024

(0.034) (0.024) (0.021) (0.041) (0.013) (0.012) (0.012) (0.016)

Hospitals 2,018 2,018 2,018 2,018 2,018 2,018 2,018 2,018

AMI 0.336 0.209 0.165 0.058 0.046 0.014

(0.031) (0.021) (0.020) (0.013) (0.011) (0.011)

HF -0.054 -0.103 -0.219 -0.061 -0.027 0.001

(0.049) (0.040) (0.042) (0.025) (0.020) (0.018)

Pneumonia 0.001 0.094 0.205 0.036 0.026 0.025

(0.051) (0.041) (0.037) (0.020) (0.020) (0.016)

Hospitals 2,386 2,389 2,390 2,386 2,389 2,390

This table repeats the analyses of Table 4 but rather than using the one (non-standardized, except for process of 

care) quality measure for the left-hand side condition, it uses Z-scores of all condition specific quality measures. 

Each column in a panel represents one regression, e.g. the top panel of column (1) regresses hospital size for AMI 

on risk-adjusted survival Z-scores for AMI, HF, and pneumonia. Standard errors are analytic and clustered at the 

market level.

Table A8 - Allocation with Respect to All Condition-Specific Quality Measures

Static Allocation Dynamic Allocation

Risk-Adjusted Survival Z-Score

Risk-Adjusted Readmission Z-Score

Process of Care Z-Score
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition

Measure \ Model Baseline Poisson Baseline Poisson Baseline Poisson Baseline Poisson

Risk-Adjusted Survival 17.496 18.631 15.360 17.532 5.140 6.478

(0.995) (1.109) (1.320) (1.504) (0.777) (0.829)

Hospitals 2,890 2,881 4,023 4,023 4,325 4,325

Risk-Adjusted Readmission -9.162 -10.685 -10.346 -13.145 0.499 -1.922 -21.037 -25.811

(1.621) (2.086) (1.782) (2.175) (1.575) (1.756) (2.027) (3.466)

Hospitals 2,322 2,304 3,904 3,903 4,264 4,264 2,632 2,626

Process of Care Z-Score 0.319 0.422 0.332 0.332 0.211 0.199

(0.026) (0.024) (0.016) (0.020) (0.015) (0.014)

Hospitals 2,398 2,379 3,666 3,665 3,920 3,920

Patient Survey Z-Score -0.321 -0.131 -0.252 -0.123 -0.210 -0.114 0.057 0.130

(0.052) (0.035) (0.038) (0.030) (0.030) (0.023) (0.051) (0.057)

Hospitals 3,498 3,498 3,598 3,598 3,610 3,610 3,061 3,059

This table shows the baseline static allocation results of Table 4 in comparison to the same model run as a fixed 

effects Poisson regression. To make the models analogous, the Poisson regressand is the count of patients, not its 

logarithm. Standard errors are bootstrapped with 300 replications and are clustered at the market level.

The baseline sample is used; hospital counts can be smaller for the Poisson models because they exclude markets 

with only one hospital.

Table A9 - Sensitivity of Static Allocation to Poisson Regression Model

AMI HF Pneumonia Hip/Knee
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition AMI HF Pneu Hip/Knee AMI HF Pneu Hip/Knee

Baseline Risk-Adjustment 17.496 15.360 5.140 1.533 0.774 1.220

(0.995) (1.320) (0.777) (0.379) (0.501) (0.354)

Age/Race/Sex Only 16.898 14.798 3.209 1.565 0.654 1.065

(0.847) (1.377) (0.764) (0.337) (0.508) (0.361)

No Risk Adjustment 14.896 13.763 3.625 1.520 0.765 1.315

(0.571) (1.192) (0.713) (0.241) (0.420) (0.332)

Hospitals 2,890 4,023 4,325 2,890 4,023 4,325

Baseline Risk-Adjustment -9.162 -10.346 0.499 -21.037 -1.428 -2.300 -1.138 -1.112

(1.621) (1.782) (1.575) (2.027) (0.611) (0.651) (0.679) (0.836)

Age/Race/Sex Only -10.358 -6.466 3.152 -20.023 -1.556 -1.621 -0.547 -1.048

(1.212) (1.457) (1.280) (1.859) (0.475) (0.528) (0.482) (0.767)

No Risk Adjustment -10.909 -5.596 2.753 -20.710 -1.601 -1.514 -0.585 -1.140

(1.096) (1.441) (1.272) (1.819) (0.435) (0.511) (0.465) (0.732)

Hospitals 2,322 3,904 4,264 2,632 2,322 3,904 4,264 2,632

Table A10 - Sensitivity of Allocation Results to Risk Adjustment

Static Allocation Dynamic Allocation

This table shows the sensitivity of the allocation results of Table 4 to the risk-adjustment procedure. In each panel, we 

repeat the baseline allocation results with full risk adjustment, followed by identical specifications under two alternative 

measures. First, we risk-adjust using only age-race-sex interactions. Second, we perform no risk-adjustment. Standard errors 

are bootstrapped with 300 replications and are clustered at the market level.

Panel A - Risk-Adjusted Survival

Panel B - Risk-Adjusted Readmission
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(1) (2) (4) (5) (7) (8) (10) (11)

Condition

Sample Baseline Choice Baseline Choice Baseline Choice Baseline Choice

Share Baseline Patients in Sample 1.00 0.87 1.00 0.89 1.00 0.90 1.00 0.84

Risk-Adjusted Survival 17.496 16.769 15.360 15.184 5.140 5.402

(0.995) (0.988) (1.320) (1.341) (0.777) (0.808)

Hospitals 2,890 2,889 4,023 4,023 4,325 4,324

Risk-Adjusted Readmission -9.162 -9.447 -10.346 -10.561 0.499 -0.233 -21.037 -20.794

(1.621) (1.600) (1.782) (1.823) (1.575) (1.590) (2.027) (2.014)

Hospitals 2,322 2,322 3,904 3,904 4,264 4,263 2,632 2,632

Process of Care Z-Score 0.319 0.317 0.332 0.332 0.211 0.210

(0.026) (0.026) (0.016) (0.016) (0.015) (0.016)

Hospitals 2,398 2,397 3,666 3,662 3,920 3,918

Patient Survey Z-Score -0.321 -0.316 -0.252 -0.261 -0.210 -0.217 0.057 0.041

(0.052) (0.051) (0.038) (0.039) (0.030) (0.030) (0.051) (0.048)

Hospitals 3,498 3,480 3,598 3,594 3,610 3,608 3,061 3,046

This table repeats the static allocation analysis of Table 4 and shows how it is affected by restricting to patients who 

were treated in their market of residence, which is the patients who were included in the choice model. For each 

condition, the left column (Baseline) repeats our baseline results. The right column (Choice) runs the same regression but 

only counts patients residing in the hospital's market. Standard errors are bootstrapped with 300 replications and are 

clustered at the market level.

Table A11 - Static Allocation Restricted to Patients Treated in Market of Residence (Choice Model Subsample)

AMI Heart Failure Pneumonia Hip/Knee
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition AMI AMI AMI AMI HF HF HF HF

Mean miles to chosen hospital 12.48 12.67 12.65 12.45 8.27 8.27 8.30 8.35

SD miles to chosen hospital 20.06 20.27 20.27 20.31 13.25 13.25 13.27 13.33

Distance -0.111 -0.128 -0.137 -0.099 -0.159 -0.163 -0.160 -0.159

(0.006) (0.007) (0.007) (0.005) (0.006) (0.007) (0.007) (0.007)

Distance2 0.00019 0.00032 0.00034 0.00012 0.00018 0.00026 0.00013 0.00013

(0.00003) (0.00003) (0.00003) (0.00001) (0.00001) (0.00002) (0.00001) (0.00001)

Risk-Adjusted Survival 19.004 16.041

(1.147) (1.728)

Risk-Adjusted Readmission -13.626 -16.491

(2.007) (1.808)

Process of Care Z-Score 0.568 0.353

(0.036) (0.028)

Patient Survey Z-Score -0.031 0.015

(0.037) (0.032)

Patients 165,005 158,086 158,032 167,429 275,671 274,667 270,773 266,915

Observations 2,869,091 2,321,684 2,427,869 3,359,387 6,241,586 6,103,120 5,811,375 5,532,403

Avg Hospital Choices/Patient 17.39 14.69 15.36 20.06 22.64 22.22 21.46 20.73

Table A12 - Choice Model of Patient Allocation - Raw Logit Coefficients

This table shows the raw logit coefficients (log odds ratios) from the models of Table 5. See that table for sample restrictions. Standard 

errors are analytic and clustered at the market level.
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(9) (10) (11) (12) (13) (14)

Condition Pneu Pneu Pneu Pneu Hip/Knee Hip/Knee

Mean miles to chosen hospital 7.49 7.49 7.50 7.54 13.16 13.09

SD miles to chosen hospital 11.92 11.91 11.77 11.77 18.85 18.80

Distance -0.178 -0.178 -0.181 -0.185 -0.105 -0.101

(0.006) (0.006) (0.006) (0.007) (0.004) (0.004)

Distance2 0.00013 0.00013 0.00013 0.00013 0.00017 0.00012

(0.00001) (0.00001) (0.00001) (0.00001) (0.00002) (0.00001)

Risk-Adjusted Survival 6.647

(0.962)

Risk-Adjusted Readmission -7.927 -24.091

(1.979) (2.570)

Process of Care Z-Score 0.238

(0.018)

Patient Survey Z-Score -0.007 0.157

(0.028) (0.039)

Patients 317,904 317,374 309,623 298,185 222,673 224,451

Observations 7,766,357 7,666,146 6,997,264 6,233,133 3,422,903 4,017,558

Avg Hospital Choices/Patient 24.43 24.15 22.60 20.90 15.37 17.90

Table A12 Continued - Choice Model of Patient Allocation - Raw Logit Coefficients

This table shows the raw logit coefficients (log odds ratios) from the models of Table 5. See that table for sample 

restrictions. Standard errors are analytic and clustered at the market level.
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(1) (2) (3) (4) (5) (6)

Measure \ Condition AMI HF Pneu AMI HF Pneu

Risk-Adjusted Survival 14.840 19.870 3.440 5.381 -0.125 0.637

(1.215) (2.093) (1.159) (1.071) (0.993) (0.720)

Hospitals 2,879 4,023 4,325 2,320 3,924 4,246

Risk-Adjusted Readmission -6.086 -17.273 -3.285 -6.180 -0.828 0.330

(3.831) (2.469) (1.900) (1.695) (1.324) (1.173)

Hospitals 2,302 3,903 4,264 1,953 3,811 4,191

Process of Care Z-Score 0.317 0.173 0.015 0.151 0.038 0.023

(0.046) (0.018) (0.017) (0.028) (0.015) (0.012)

Hospitals 2,377 3,665 3,920 1,944 3,541 3,819

Patient Survey Z-Score -0.039 -0.057 0.001 -0.103 0.001 -0.001

(0.037) (0.027) (0.023) (0.035) (0.020) (0.018)

Hospitals 3,498 3,598 3,610 2,653 3,472 3,513

Table A14 - Allocation for Non-ED Non-Transfer Patients across Conditions

Static Allocation Dynamic Allocation

This table repeats the analysis of Table 4 but considers hospital size and growth counting only 

non-ED non-transfer patients (the omitted category of patients from the analysis of Table 9). 

Static allocation uses the Poisson model (see Appendix Table A9) and the baseline allocation 

sample. Dynamic allocation uses the subset of hospitals with at least one non-ED non-transfer 

patient in 2008. Standard errors are bootstrapped with 300 replications and are clustered at 

the market level.
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(1) (2) (3) (4) (5) (6)

Condition

Source of Admission ED Transfer ED Transfer ED Transfer

Baseline Static Allocation 14.377 29.264 15.254 24.036 7.720 5.658

(0.878) (2.184) (1.693) (2.566) (1.387) (1.658)

P-value of test for equality

Hospitals 2,742 1,408 3,329 1,563 3,513 1,601

Poisson Static Allocation 14.489 42.532 15.727 50.673 7.168 14.049

(1.022) (2.609) (1.586) (4.664) (0.983) (2.941)

P-value of test for equality

Hospitals 2,881 2,881 4,023 4,011 4,325 4,275

Baseline Static Allocation -7.903 -13.315 -10.690 -16.527 0.204 2.008

(1.295) (3.904) (1.775) (3.483) (2.314) (3.107)

P-value of test for equality

Hospitals 2,276 1,361 3,277 1,550 3,488 1,592

Poisson Static Allocation -8.128 -25.550 -11.265 -37.988 -1.647 1.089

(1.730) (5.921) (2.329) (6.744) (2.021) (6.252)

P-value of test for equality

Hospitals 2,304 2,304 3,903 3,892 4,264 4,214

Baseline Static Allocation 0.272 0.874 0.370 0.325 0.307 0.078

(0.023) (0.062) (0.024) (0.036) (0.030) (0.035)

P-value of test for equality

Hospitals 2,369 1,376 3,245 1,520 3,389 1,548

Poisson Static Allocation 0.326 1.179 0.377 0.754 0.262 0.214

(0.021) (0.090) (0.025) (0.058) (0.018) (0.043)

P-value of test for equality

Hospitals 2,379 2,379 3,665 3,653 3,920 3,869

Baseline Static Allocation -0.234 0.232 -0.227 0.045 -0.218 -0.087

(0.049) (0.067) (0.041) (0.046) (0.041) (0.039)

P-value of test for equality

Hospitals 3,116 1,438 3,214 1,496 3,257 1,484

Poisson Static Allocation -0.157 -0.034 -0.141 -0.090 -0.137 -0.203

(0.035) (0.072) (0.032) (0.060) (0.028) (0.057)

P-value of test for equality

Hospitals 3,498 3,498 3,598 3,586 3,610 3,559

Risk-Adjusted Survival

Table A15 - Sensitivity of ED and Non-ED Transfer Patient Static Allocation to Poisson Regression Model

AMI Heart Failure Pneumonia

0.001 0.000 0.653

0.000 0.001 0.222

0.000 0.000 0.009

Risk-Adjusted Readmission

0.109 0.062 0.585

0.000 0.000 0.008

Process of Care Z-Score

0.000 0.233 0.000

0.000 0.000

This table shows the static allocation results for ED and non-ED transferred patients using Poisson 

regression (as in Table 9) and linear regression. The left hand side of these regressions considers hospital 

size counting only ED patients in the odd-numbered columns and only non-ED transferred patients in the 

even-numbered columns. To make the linear and Poisson models analogous, the Poisson regressand is the 

count of patients, not its logarithm. Both approaches include market fixed effects. Hospital counts can be 

smaller for the Poisson models because they exclude markets with only one hospital. In addition, in the 

Poisson models, hospital counts may differ between ED and non-ED transfers for the same condition and 

quality measure because the counts also exclude markets with no variation in the outcome (e.g. all zeroes). 

Standard errors are bootstrapped with 300 replications and are clustered at the market level.

0.261

Patient Survey Z-Score

0.051 0.349 0.170
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(1) (2) (3) (4) (5) (6)

Condition

Source of Admission ED Transfer ED Transfer ED Transfer

Share of patients in 2008 0.79 0.14 0.76 0.02 0.77 0.01

Median miles to chosen hospital 4.7 29.8 4.4 26.3 4.4 21.1

Mean miles to chosen hospital 8.2 36.8 7.1 32.3 7.1 27.7

Share treated at nearest hospital 0.57 0.04 0.58 0.09 0.60 0.15

MRS(1 pp risk-adjusted survival, miles) -0.744 -16.061 -0.623 -16.642 -0.317 -4.014

(0.075) (1.423) (0.103) (1.601) (0.054) (0.777)

P-value of test for equality

Patients 129,889 23,185 209,094 6,130 244,358 4,097

MRS(1 pp risk-adjusted readmission, miles) 0.527 10.818 0.734 12.774 0.410 1.303

(0.086) (2.097) (0.104) (2.193) (0.102) (1.713)

P-value of test for equality

Patients 124,707 22,947 208,842 6,115 244,181 4,088

MRS(1 SD process of care, miles) -2.024 -36.431 -1.712 -25.332 -1.392 -6.321

(0.191) (3.468) (0.212) (2.521) (0.122) (1.545)

P-value of test for equality

Patients 124,989 22,913 208,503 6,083 243,368 4,025

MRS(1 SD patient survey, miles) -0.052 0.090 -0.179 2.178 -0.024 4.896

(0.217) (3.591) (0.172) (2.092) (0.144) (1.682)

P-value of test for equality

Patients 131,603 23,281 207,472 6,059 241,158 3,948

Distance MRSs were evaluated at 12.48 12.48 8.27 8.27 7.49 7.49

Risk-Adjusted Survival

Risk-Adjusted Readmission

Process of Care Z-Score

Patient Survey Z-Score

0.968 0.250 0.002

Table A16 - Choice Model of Patient Allocation for ED and Non-ED Transfer Patients across Conditions

These regressions repeat the conditional logit choice models of Table 5 but are restricted to ED patients (in odd 

columns) and non-ED transfer patients (in even columns). Standard errors are analytic and clustered at the market 

level.

This table reports the marginal rates of substitution (MRSs) of quality for distance derived from the conditional logit 

model (see equation 6). For the survival and readmission rates, the MRS given by equation (6) is divided by 100 to 

put it into percentage point terms. MRSs for a condition are evaluated at the same distance that was used for the 

condition in Table 5.

The sample is ED patients (odd columns) or non-ED transfer patients (even columns) with the condition in 2008 who 

stayed in their market of residence for treatment. The choice set for a patient is all hospitals in his market with the 

quality measure available that treated at least one patient in 2008.

AMI Heart Failure Pneumonia

0.000 0.000 0.001

0.000 0.000 0.000

0.000 0.000 0.598
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition

Measure \ Method Baseline Mech Baseline Mech Baseline Mech Baseline Mech

Share truly going to closest

Risk-Adjusted Survival 17.496 2.309 15.360 2.507 5.140 0.685

(0.995) (0.577) (1.320) (1.115) (0.777) (0.653)

Hospitals 2,890 2,888 4,023 4,021 4,325 4,322

Risk-Adjusted Readmission -9.162 -0.470 -10.346 -0.660 0.499 -0.328 -21.037 -2.783

(1.621) (1.111) (1.782) (1.305) (1.575) (1.130) (2.027) (1.140)

Hospitals 2,322 2,320 3,904 3,902 4,264 4,261 2,632 2,630

Process of Care Z-Score 0.319 0.018 0.332 0.158 0.211 0.099

(0.026) (0.015) (0.016) (0.012) (0.015) (0.010)

Hospitals 2,398 2,396 3,666 3,664 3,920 3,918

Patient Survey Z-Score -0.321 -0.203 -0.252 -0.238 -0.210 -0.182 0.057 -0.101

(0.052) (0.024) (0.038) (0.023) (0.030) (0.021) (0.051) (0.018)

Hospitals 3,498 3,496 3,598 3,595 3,610 3,607 3,061 3,058

Table A17 - Static Allocation with Patients Mechanically Allocated to Nearest Hospital

This table shows our baseline static allocation results from Table 4 in comparison to an alternative allocation 

constructed by mechanically assigning each patient to his closest hospital. Only hospitals that treated at least 

one patient with the condition in 2008 are eligible for mechanical assignment. Distance is measured from the 

ZIP code centroid of the patient's residence to the ZIP code centroid of the hospital. The sample for each 

regression is all hospitals with the relevant quality measure and at least one mechanically allocated patient in 

2008. Standard errors are bootstrapped with 300 replications and are clustered at the market level.

AMI HF Pneumonia Hip/Knee

0.44 0.52 0.56 0.38
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(1) (2) (3) (4) (5) (6) (7) (8)

Condition

Measure \ Method Baseline Mech Baseline Mech Baseline Mech Baseline Mech

Share truly going to closest

Risk-Adjusted Survival 1.533 -0.297 0.774 0.378 1.220 0.842

(0.379) (0.250) (0.501) (0.497) (0.354) (0.356)

Hospitals 2,890 2,888 4,023 4,021 4,325 4,322

Risk-Adjusted Readmission -1.428 -0.076 -2.300 -1.358 -1.138 -0.988 -1.112 -0.378

(0.611) (0.585) (0.651) (0.565) (0.679) (0.562) (0.836) (0.747)

Hospitals 2,322 2,320 3,904 3,902 4,264 4,261 2,632 2,630

Process of Care Z-Score 0.048 0.015 0.043 0.027 0.026 0.019

(0.010) (0.010) (0.009) (0.008) (0.009) (0.009)

Hospitals 2,398 2,396 3,666 3,664 3,920 3,918

Patient Survey Z-Score -0.065 -0.041 -0.003 0.000 0.007 -0.004 0.037 0.014

(0.015) (0.012) (0.011) (0.009) (0.011) (0.008) (0.022) (0.016)

Hospitals 3,498 3,496 3,598 3,595 3,610 3,607 3,061 3,058

This table shows our baseline dynamic allocation results from Table 4 in comparison to an alternative 

allocation constructed by mechanically assigning each patient to his closest hospital. Only hospitals that 

treated at least one patient with the condition in 2008 are eligible for mechanical assignment. Distance is 

measured from the ZIP code centroid of the patient's residence to the ZIP code centroid of the hospital. The 

sample for each regression is all hospitals with the relevant quality measure and at least one mechanically 

allocated patient in 2008. Standard errors are bootstrapped with 300 replications and are clustered at the 

market level.

Table A18 - Dynamic Allocation with Patients Mechanically Allocated to Nearest Hospital

AMI HF Pneumonia Hip/Knee

0.44 0.52 0.56 0.38
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(1) (2) (3)

Measure \ Condition AMI HF Pneu

Risk-Adjusted Mortality 0.79 0.73 0.82

[2,802] [3,788] [3,994]

Risk-Adjusted Readmission 0.66 0.67 0.71

[2,254] [3,681] [3,924]

Table A19 - Correlation with CMS Quality Measures

Each cell shows the correlation between our 2008 empirical-

Bayes-adjusted quality measure and the CMS 2008 risk-

standardized quality measure. We produce our risk-adjusted 

survival measure as risk-adjusted mortality to match the 

CMS measure. Hospitals used to calculate correlation in 

brackets.
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