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a b s t r a c t

Psychological game theory (PGT), introduced by Geanakoplos et al. (1989) and significantly

generalized by Battigalli and Dufwenberg (2009), extends the standard game theoretic

framework by letting players’ utility at endnodes depend on their interactive beliefs. While

it is understood that a host of applications that model and/or test the role of emotional

and other psychological forces find their home in PGT, the framework is abstract and com-

prises complex mathematical objects, such as players’ infinite hierarchies of beliefs. Thus,

PGT provides little guidance on how to model specific belief-dependent motivations and

use them in game theoretic analysis. This paper takes steps to fill this gap. Some aspects

are simplified – e.g., which beliefs matter – but others are refined and brought closer to

applications by providing more structure. We start with belief-dependent motivations and

show how to embed them in game forms to obtain psychological games. We emphasize

the role of time and of the perception of players’ intentions. We take advantage of progress

made on the foundations of game theory to expand and improve on PGT solution concepts.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Following Elster (1998), economists have become increasingly aware that belief-dependent motivation is important to

decision making, and that this can have important economic consequences. Caplin and Leahy (2001, 2004), for instance,

propose a model where anxiety depends on the degree of uncertainty of an agent’s beliefs about his future health or wealth,

influencing his utility and behavior as well as how (concerned) others treat him.1 These phenomena cannot be examined
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1 A handful of other examples concern status and conformity (Bernheim, 1994), reciprocity and MOUs (Jang et al., 2018), guilt and tax evasion

(Dufwenberg and Nordblom, 2018), disappointment and savings (Koszegi and Rabin, 2009), anger and bargaining (Aina et al., 2018; Battigalli et al., 2019;

Dufwenberg et al., 2018a; 2018b), and deception (Battigalli et al., 2013b; Dufwenberg and Dufwenberg, 2018; Gneezy et al., 2018).
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using traditional game theory where utility depends only on material outcomes, hence on choices. One rather needs the

mathematical framework introduced and labeled psychological game theory (PGT) by Geanakoplos et al. (1989) (GP&S) and

further developed by Battigalli and Dufwenberg (2009) (B&D). The key objects, called psychological games (p-games), can

describe a variety of belief-dependent motivations including emotions, reciprocity, self-esteem, and caring about others’

opinions.

As developed so far, PGT is quite abstract, leaving implicit or unexplored important links between psychological assump-

tions and economic outcomes, on the one hand, and mathematical modeling on the other. It may not be easy for scholars

doing applied work to translate psychological and economic notions of interest into the formal framework, and it is not

obvious how to derive “solutions.” Furthermore, little has been said concerning the relationship between motivation and

time. For instance, in the case of frustration and anger, the phenomenon of cooling-off, whereby anger subsides over time,

is well known among psychologists, hence it should be explicitly modeled.

We provide a novel methodology to embed belief-dependent motivations in strategic analysis. Our approach has two

parts, generating p-games à la B&D and providing predictions:

The first part (=sections 2–6). We add psychological preferences to the rules of the game. The latter are represented by

game forms, providing an explicit role for time, and distinguishing periods from stages. The former have enough duration

to be relevant for discounting, decay, cooling-off, expectation-based reference points, etc.; the latter allow for modeling the

sequential moves taking place close in time, during each period, which in turn give rise to material outcomes. We explicitly

model incomplete and asymmetric information about personal traits (including psychological ones),2 and some features of

the environment.

The next key step addresses agents’ intertemporal psychological preferences. Absent belief-dependence, utility can be

defined over temporal sequences (streams) of material outcomes. To allow for belief-dependent motivations we let utility

depend also on temporal sequences of beliefs (own and others’) about outcomes and personal traits. Many forms of prefer-

ences (e.g. anxiety, disappointment, simple guilt) depend only on those sequences, and can then be modeled independently

of the game form in which they are embedded, much like standard preferences over lotteries and intertemporal preferences.

We describe the method to thus obtain a p-game in detail. To emphasize that the involved preferences can be discussed

without reference to any specific game form, we label them game-independent, and present them before our formal repre-

sentation of the rules of the game.

Other forms of belief-dependent motivation—e.g. reciprocity, regret, anger, perceived cheating aversion—are game-

dependent. They refer to players’ behavior, intentions, or inferences in particular game forms, and require more machinery.

We model them considering players’ beliefs about (traits and) actions, which we call first-order beliefs. Their description is

key to our analysis. They entail beliefs also of the sort described in the previous paragraph, but the added focus on actions is

central for describing game-dependent motivation. We let psychological utility depend on temporal sequences of first-order

beliefs. In principle, beliefs about beliefs—higher-order beliefs—may matter to utility too (e.g., Battigalli and Dufwenberg,

2007; guilt-from-blame), but we focus on utilities that depend on first-order beliefs (own & others’) because this simplifies

much and it is still enough to cover most applications.

In so far as a player i’s utility depends on the first-order beliefs of a co-player j, to compute the subjective value of his

actions and rank them, i still has to consult his second-order beliefs, i.e., his beliefs about j’s first-order beliefs. The expecta-

tion of belief-dependent utility according to second-order beliefs can be interpreted as a psychological utility “experienced”

by the players; we refer to it (nodding to the spirit of Kahneman, 1994 and Kahneman et al., 1997) as experience utility.

The maximization of expected experience utility covers many important applications and can also account for interesting

forms of dynamic inconsistency (e.g., Section 6 of B&D; Koszegi and Rabin, 2006; Koszegi and Rabin, 2009); but some

relevant action tendencies—such as the angry reaction of a frustrated agent—are not easily accommodated. Does this mean

that we must abandon the maximization paradigm? We argue that this is not necessary. Some action tendencies such as

anger and reciprocity can be accommodated by defining the expected decision utility of an action at a node as the sum of

the expected experience utility associated with that action and the expected value of a “distortion.” For example, following

Battigalli et al. (2019) (BD&S) work on frustration and anger in games, if the desire to maximize some kind of hedonic

utility clashes with the desire to punish blameworthy co-players (where who is blameworthy may depend on beliefs), the

distortion could be proportional to how much money is taken away, either destroyed or given to others. The choice at

the given node is then explained as the maximization of expected decision utility, which may differ from maximization of

expected experience utility.

The second part (= section 7). We turn to predictions. Our goal is to develop better founded solutions. Most importantly,

we believe it is high time to complement the usual approach of relying on standard equilibrium concepts (which assume—

without serious justification—that players’ beliefs are correct) with other approaches.

We first define and examine subjective rationality, and argue that the notion should be understood via properties of a

player’s beliefs, which can be decomposed into a plan—i.e., beliefs about own behavior—and beliefs about co-players.
2 Personal traits are exogenous personal features, such as general ability, or personality traits such as the “big five” (see Rothmann and Coetzer, 2003 and

references therein).
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Second, we put forward an operational version of (extensive-form) rationalizability, extending work by Pearce (1984) and

B&D, and using some results from the epistemic analysis of Battigalli et al. (2019) (BC&S).3 Our new formulation is more

flexible as we allow for some given and transparent restrictions on players’ beliefs. Rationalizability characterizes the be-

havioral and low-order belief implications of rationality and common strong belief in rationality, without any presumption

of equilibrium.

Third, we turn to a setting with recurrent play, where players may learn over time and adjust behaviors. No presumption

of equilibrium is made, but the implied forms of behavior satisfy an equilibrium property. The relevant notion, extended

to and stated for p-games for the first time, is self-confirming equilibrium (SCE). It is the appropriate concept whenever one

aims to analyze stable patterns of behavior in empirical data.4

Only thereafter do we turn to traditional equilibrium analysis. We argue that the extensions to PGT of traditional con-

cepts, à la GP&S and B&D, should be re-examined. Developing ideas of Attanasi et al. (2016) and BD&S, we propose a new

extension of Kreps and Wilson (1982) (K&W) sequential equilibrium (SE) concept called Bayesian SE (BSE). We point out that

there is no need to provide ad hoc extensions of traditional solution concepts for PGT: if we accept the (very questionable)

assumption that players’ conjectures about opponents’ decision rules are correct, then it is enough to carry out the logic of

Harsanyi (1967) Bayesian equilibrium concept, which “mechanically” yields the endogenous hierarchies of beliefs that enter

(expected) psychological utility.

Comparison with B&D. Our approach is technically mainly consistent with B&D, but involves three innovations. First, B&D

take as primitive utility functions that depend on the terminal node and players’ hierarchies of beliefs about behavior.

Instead, we start from belief-dependent motivations and embed them in a game form to obtain a dynamic p-game, taking

explicit account of time. Second, B&D rely on the assumption that the objective description of players’ contingent behavior

coincides with their plans and that this is transparent,5 which prevents the possibility to define events like “player i planned

to take action a but instead took action b”. Unlike B&D, we distinguish plans from actual behavior, allowing us to model

players who care about co-players’ intentions. Third, B&D allow utility to depend on beliefs of arbitrarily high order, whereas

we simplify and consider only the first and second order. This allows for an algorithmic characterization of rationalizability,

absent in B&D.

Rest of paper. Section 2 provides a heuristic introduction to our framework. Section 3 gives the basic ingredients for the

analysis of belief-dependent motivation developed in Section 4. Section 5 introduces game-forms and systems of condi-

tional beliefs. Section 6 defines our notion of dynamic p-game. Section 7 analyzes solution concepts. Finally, Section 8 offers

concluding remarks.

2. Heuristic examples

This section provides a gentle introduction to our conceptual framework and formalism, illustrating via examples the

relation between psychological preferences and rules of the game. Consider the interaction between two agents, Ann & Bob

(or A & B). A feasible allocation of monetary payoffs is a pair, or profile, y = (yA, yB) ∈ Y ⊆ R{A,B}. For now, we focus on a

one-period interaction, ruling out intertemporal phenomena like discounting, decay, or cooling-off. Yet, within the single

period, players may move sequentially.

Let us briefly describe the notation we use for probability measures and expectations. Given an arbitrary measurable

space (X,F ), we denote the set of probability measures defined on F with �(X), where the sigma-algebra is always taken

as understood. Given a probability measure μ∈�(X) and an integrable real function f : X → R, we denote by E[f, μ] the

expectation of f with respect to μ. When x ∈ X ⊆ R and f coincides with the identity function, we write E[x̃,μ] for the

expectation over X with respect to μ.

2.1. Game-independent psychological utilities

Each player i ∈ {A, B} starts with an initial belief μi,0 ∈�(Y) about material outcomes and ends the interaction with a

terminal realized belief μi,1 ∈�(Y) that depends on what i observed.6 We allow i’s utility to depend, in principle, on the
3 Also Jagau and Perea (2018) and Bjorndahl et al. (2013) provide an epistemic analysis of rationalizability in p-games (Bjorndahl et al. focus on depen-

dence of utility on coarse features of beliefs). They consider one-stage games where psychological utility depends only on initial beliefs while BC&S give

the epistemic foundation of strong rationalizability as defined in this paper for dynamic psychological games.
4 As regards SCE in standard games, see Fudenberg and Levine (1993) and the survey by Battigalli et al. (1992).
5 B&D write (p. 11): “our specification of the conditioning events relies on interpreting [j’s strategy] sj as an objective description of how j would behave

at each decision node. However, we will also interpret sj as a plan in the mind of player j. The implicit assumption [...] is that each player has correct

beliefs, given by his plan of action, about how he would choose at different histories”.
6 If i could either directly observe, or indirectly infer the realized outcome y, then his terminal belief about the outcome would be trivial; this fits many

situations we study. But we are also going to consider situations where y is not perfectly observable, or i also cares about unknown personal traits of his

co-players, which are only imperfectly revealed by their actions. See the end of this subsection for a simple illustrative example.
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Fig. 1. Dictator Minigame with material payoffs.
initial and terminal beliefs of both Ann and Bob, i.e., on the following temporal sequence of belief profiles about Y:

μ = (μ0,μ1) =
(

μA,0 μA,1

μB,0 μB,1

)
∈ [�(Y)]

{A,B}×{0,1}
.

Thus, the abstract form of i’s utility is

vi : Y × [�(Y)]{A,B}×{0,1} → R.

From now on, assume that Ann holds standard preferences over material outcomes. Bob, however, has belief-dependent

motivations, which, for now, we assume to be commonly known. Later on we remove this assumption. Note, following B&D,

that we allow Bob’s utility to depend on something he cannot observe: Ann’s beliefs. This is in the spirit of the state-

dependent utility functions often used in standard economics. Of course, to determine his subjectively optimal behavior,

Bob has to consult his beliefs over the beliefs of Ann.

The nature of Bob’s utility will vary depending on the sentiment that affects him. First, assume it depends negatively

on Ann’s disappointment (Battigalli and Dufwenberg, 2007 call this “simple guilt”),7 defined by the difference, if positive,

between the payoff Ann initially expected to receive and her actual payoff at the end of the period. Formally, players’ utilities

are given by

vA(y,μ) = yA, (1)

vB(y,μ) = yB − θBD
A [yA,μA,0] := yB − θB max {E[ỹA,μA,0] − yA, 0},

where θB is a personal trait of Bob measuring how much money he would be willing to give up to reduce Ann’s disappoint-

ment by $1. With this, we can embed the psychological preferences just described in any situation of one-period strategic

interaction. Such situations, determined by the rules of the game, are called game forms. Recall that even one-period game

forms may have a multistage structure. Technically, a game form comprises a game tree, specifying a set Z of complete paths

of the game, and an outcome function π: Z → Y that associates each complete path z (equivalently, terminal node) with a

corresponding profile of material outcomes: (yA, yB) = π(z) = (πA(z), πB(z)).

We assume that the game form is commonly known. Players’ utility functions are notably absent from game forms. Thus

(somewhat confusingly and unfortunately) game forms correspond to the notion of “game” in the natural language: a set of

rules, not the personal traits of the agents who happen to be players of the game. Of course, such personal traits are crucial,

but—for conceptual clarity—we analyze them separately.

Fig. 1 depicts a Dictator Minigame.8 In its unique stage, the only active player is Bob, who can either Take (or Tk) $4

or Share (Sh) that amount evenly. Even if Ann is not active, at the beginning (root) of the game she has a first-order belief

αA ∈�({Tk, Sh}) over Bob’s choices. Let αA(Sh) ∈ [0, 1] denote the subjective probability assigned by Ann to Bob choosing

Share. Ann’s initial beliefs about outcomes are easily derived:

μA,0

(
$2, $2
)

= αA(Sh) and μA,0

(
$0, $4
)

= 1 − αA(Sh) = 1 − μA,0

(
$2, $2
)
. (2)

Embedding the utilities of Eq. (1) and using (2) we obtain the p-game of Fig. 2.

Bob consults his second-order belief in order to attach expected value to his actions: let β̄B ∈ [0, 1] denote Bob’s subjec-

tive expectation of αA(Sh) (which he does not know). We obtain the alternative representation of Fig. 3, where each endnode

is associated with Bob’s “experienced” utility, which is his subjectively expected psychological utility (exp-utility) given his

action. Share is a best-reply for Bob if and only if θBβ̄B ≥ 1.

The utilities of Eq. (1) can be embedded in any other game form. Consider, e.g., the Trust Minigame in Fig. 4, a two-stage

game. Ann’s beliefs about outcomes now depend on her plan to “Trust” (or not) and her expectation of Bob’s reply. We

represent both these expectations as (first-order) beliefs of Ann about how the game will be played, namely, a system of

conditional (and unconditional) beliefs about actions

(αA(·|∅), αA(·|In)) ∈ �({In, Out}) × �({Tk, Sh}),
7 See also Huang and Wu (1994), Dufwenberg and Gneezy (2000), Dufwenberg (2002) and Charness and Dufwenberg (2006).
8 Note, we give names like “Dictator Minigame” to game forms (usually with monetary outcomes), not to games with (standard, or psychological) utility

functions.
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Fig. 2. Dictator Minigame with psy-utility (guilt).

Fig. 3. Dictator Minigame with exp-utility (guilt).

Fig. 4. Trust Minigame with material payoffs.

Fig. 5. Trust Minigame with psy-utility (guilt).
where Ann’s belief at the root (denoted ∅) about her own action represents her plan. Note, Ann’s plan is logically distinct

from her behavior. We say that she is consistent if she carries out her plan. Analogous considerations apply to Bob.

We derive Ann’s initial beliefs about outcomes from her beliefs about behavior as follows:

μA,0

(
$1, $1
)

= 1 − αA(In|∅),

μA,0

(
$2, $2
)

= αA(Sh|In)αA(In|∅),

μA,0

(
$0, $4
)

= αA(Tk|In)αA(In|∅) = (1 − αA(Sh|In))αA(In|∅).

We use obvious abbreviations like αIn
A

:= αA(In|∅) and αSh
A

:= αA(Sh|In). When we embed the psychological utilities of

Eq. (1) in the Trust Minigame we obtain the p-game in Fig. 5, which assumes that Ann is commonly known to be self-

ish (and risk neutral). Unlike the game in Fig. 2, Bob’s utility depends on Ann’s plan on top of her beliefs about Bob’s

choice. In particular, given the equations relating μA with αA, Ann’s disappointment at terminal history z = (In, Tk) is

DA

(
$0,μA,0

)
= max {E[ỹA,μA,0] − 0, 0} = E[ỹA,μA,0]

= 1 ×
(
1 − αIn

A

)
+
[
2 × αSh

A + 0 ×
(
1 − αSh

A

)]
× αIn

A .

For simplicity, here (and similarly later) we do not specify Bob’s psychological utility given Out as it is irrelevant for his

decision.

Letting E[DA, βB|In] denote Bob’s subjective expectations of Ann’s disappointment according to his updated second-order

belief βB( · |In), we obtain the alternative representation of Fig. 6, where each endnode is associated with Bob’s experienced

utility. Share is a best-reply for all (updated) second-order beliefs βB( · |In) such that θBE[DA, βB|In] ≥ 2. For example, if Bob

is certain, upon observing “In,” that Ann truly planned to play “In” (an assumption that we do not take for granted, see
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Fig. 6. Trust Minigame with exp-utility (guilt).
Section 7), then E[DA, βB|In] = 2β̄Sh
B

, where β̄Sh
B

denotes Bob’s subjective expectation of Ann’s first-order belief.9 With this,

we obtain the same condition as in the Dictator Minigame: θBβ̄
Sh
B

≥ 1.

In general, we allow for incomplete information, i.e., that players’ utilities and outcome functions depend on a parameter

θ ∈� which is not perfectly known to all. Players may have different exogenous information regarding θ. Each i forms beliefs

about paths z ∈ Z and about θ given private information and conditional on reaching each node (partial or complete path) of

the game tree. Such beliefs include i’s plan how to play and form i’s system of first-order (conditional) beliefs, denoted αi. In

the previous examples, we informally referred to the first-order conditional beliefs of Ann in order to derive her plan and

her initial beliefs over profiles of monetary payoffs. Formally, systems of first-order conditional beliefs are defined as maps

from histories (nodes) to probability distributions on complete paths (terminal nodes) and θ. As we show in Section 5, for

each i and z, one can derive from αi a temporal sequence of realized beliefs about behavior, outcomes, and θ. With complete

information, terminal beliefs are point beliefs that assign probability 1 to outcomes. This is not the case with incomplete

information.

To illustrate, we embed different utilities in the game of Fig. 1. Drop the assumption of complete information and con-

sider a finite set of parameters �B := �al
B

× �rep
B

⊆ R
2+ spanning Bob’s personal traits: θ al

B
measures Bob’s altruism while

θ rep
B

measures a “reputation concern,” i.e., a concern for the opinion of Ann about his altruism (cf. Ellingsen and Johan-

nesson, 2008). Since
(
θ al

B
, θ rep

B

)
is unknown to Ann, her initial beliefs and terminal realized beliefs will be defined on

the product space of personal traits of Bob and monetary payoffs, i.e., �B × Y. The sequence of belief profiles is a vec-

tor μ =
((

μA,0,μA,1

)
,
(
μB,0,μB,1

))
, where μA,0, μA,1 ∈�(�B × Y), μB,0($2, $2) is the probability with which Bob’s plans to

Share, and μB,1 is trivial. The players’ utility functions are as follows:

vA(y,μ) = yA,

vB(θB, y,μ) = yB + θ al
B yA + θ rep

B
E
[
θ̃ al

B ,μA,1

]
,

where E
[
θ̃ al

B
,μA,1

]
is Ann’s terminal estimate of Bob’s altruism. Thus, θ rep

B
measures how much money Bob would be willing

to give up to increase Ann’s estimate of his altruism by one unit. The main difference with respect to Bob’s psychological

utility of Eq. (1) is that here he cares about the terminal beliefs of Ann.

To embed the modified psychological utility of Bob in the Dictator Minigame we need to specify the entire system of

conditional first-order beliefs of Ann. This is a function

αA : {∅, Sh, Tk} → �({Sh, Tk} × �B)

that associates each history in {∅, Sh, Tk} with a belief about paths and Bob’s personal traits. Of course, αA cannot be

exogenously given; it is determined by Ann’s strategic reasoning. Furthermore, at least one of the two terminal beliefs

αA( · |Sh) and αA( · |Tk) is pinned down by the initial belief αA(·|∅) and the rules of conditional probabilities.10 For each

z ∈ {Sh, Tk}, Ann’s system of first-order beliefs αA determines (μA,0, μA,1) as follows:

μA,0

((
θ al

B , θ rep
B

)
, y
)

= αA

(
π−1(y),

(
θ al

B , θ rep
B

)|∅),
μA,1

((
θ al

B , θ rep
B

))
= αA

(
θ al

B , θ rep
B

|z)
for every

((
θ al

B
, θ rep

B

)
, y
)

∈ �B × Y.11 For example, suppose that �B =
{

0, θ̄ al
B

}
×
{

0, θ̄ rep
B

}
and that Ann (reasonably) believes

that Bob is more likely to Share if θ al
B

or θ rep
B

are high. Then μA,1

((
θ̄ al

B
, θ̄ rep

B

))
is larger after Share than after Take. It follows

that Bob has a greater incentive to Share.

2.2. Game-dependent psychological utilities

The previous examples tempt us to try and describe all the possible belief-dependent motivations with psychological

utilities that do not depend on the game situation. This would be similar to the standard approach in economic theory
9 Indeed, given that Bob has a degenerate belief concerning Ann’s plan, from his point of view the random variables α̃In
A

and α̃Sh
A

are stochastically

independent.
10 We use obvious abbreviation for marginal probabilities. Both probabilities are determined by αA(·|∅) if 0 < αA({Sh} × �B|∅) < 1.
11 In the Dictator Minigame, and in all the simple examples considered, the outcome function π: Z → Y is injective and therefore, for every y ∈π(Z),

π−1(y) is a well defined terminal path in Z.
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Fig. 7. Trust Minigame with psy-utility (reciprocity).

Fig. 8. Trust Minigame with exp-utility (reciprocity).
where attitudes toward risk and the timing of consumption are modeled as personal traits of agents, and then embedded

in the games they play. However, some forms of belief-dependent motivations depend on the players’ feasible choices. Since

those are described by the game form, there is a class of psychological preferences which cannot be formally represented

without reference to a given game form.

For example, in reciprocity theory, the kindness of an action is assessed with reference to the (expected) payoff distribu-

tions associated with other feasible actions, given by the game form (and players’ beliefs). We illustrate this with the game

of Fig. 4. Let α = (αA, αB) denote a generic profile of systems of first-order conditional beliefs (which also encodes the plans

of Ann and Bob). In the spirit of Dufwenberg and Kirchsteiger (2004) (D&K),12 define the kindness of Ann toward Bob as the

difference between Ann’s initial subjective expectation of Bob’s monetary payoff and an “equitable” payoff of Bob according

to Ann’s beliefs:

KA,B(αA) := E[πB, αA|∅] − 1

2

[
max

aA∈{Out,In}
E[πB, αA|aA] + min

aA∈{Out,In}
E[πB, αA|aA]

]
.

Bob’s utility is then

vB(z,α) = πB(z) + θBKA,B(αA)πA(z).

Assuming that Ann is selfish, we obtain the p-game in Fig. 7.

As before, we can use Bob’s updated second-order beliefs to specify the (expected) utilities he would “experience” at

each endnode. If Bob interprets the observed action In as evidence that Ann planned to play In with probability 1, we obtain

the p-game of Fig. 8.

This illustrates how utilities may depend on the game form analyzed. Ann’s action shapes her kindness toward Bob. The

degree of kindness depends on the set of alternatives and the material payoff functions (and Ann’s beliefs), hence, on the

game form.

2.3. Psychological preferences and time

In standard economic theory, time and agents’ intertemporal preferences are often relevant: present consumption is dif-

ferent from future consumption. Belief-dependent motivation makes time even more important. For instance, when we get

frustrated due to an unforeseen loss, we feel angry and our actions are distorted by emotion. However, the time elapsed

between the feeling of unexpected loss and the actual decision affects the intensity of anger. This is the so-called cooling-off

effect. Other examples concern decay of past emotions, and discounting of future (expected) emotions.

We need to clarify how we model time. In particular, we distinguish between periods and stages. Periods are the units of

time that denote the duration of the interaction among agents: each period is a constant-length interval of time between

two successive dates. Importantly, periods affect the psychological utilities of agents through the effects described above. On

the other hand, stages denote the moments, within each period, at which agents acquire new information and take actions

(which, for simplicity, we also assume are observable). The interpretation is that, in each period, stages unfold in quick

succession; hence, they do not affect intertemporal belief-dependent motivations.13 Given this, we treat emotions such as

anxiety, suspense, frustration, regret, etc. as an “asset” measured at each point in time, stocked in the agent’s mind. That

stock, like physical capital, is potentially subject to decay. Anticipated future emotions may be discounted.
12 Our account of D&K’s approach differs from their own; it is an adaptation that easily fits our framework, which is equivalent to D&K’s approach. On

belief-dependent reciprocity in games, see also Rabin (1993) and Falk and Fischbacher (2006).
13 Such timing of actions and outcomes within a period is—of course—a simplifying assumption.
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Fig. 9. One-period Ultimatum Minigame with material payoffs.

Fig. 10. One-period ultimatum Minigame with decision utilities.

Fig. 11. Two-period ultimatum Minigame with material payoffs.
To illustrate, consider the Ultimatum Minigame in Fig. 9, explored extensively by BD&S to study frustration and anger.

We first analyze a scenario with one period and two stages. In the first stage, Ann has to make a Fair (Fa) or a Greedy (Gr)

offer to Bob. In the second stage, if the fair offer was made, then Bob must accept it, else, Bob has to decide whether to

Accept (Ac) or to Reject (Rj) the greedy offer made by Ann. Monetary payoffs are as seen. We assume that Ann holds risk-

neutral standard preferences over monetary payoffs, while Bob holds psychological preferences affected by frustration and

anger, as in BD&S.

The frustration of Bob, given that Ann made the greedy offer is the difference, if positive, between the amount of money

he expected to get at the root and the maximum amount he can get given the offer. Formally, given Bob’s first-order belief

αB, his frustration after Greedy is

FB[αB, Gr] = max

{
0, E[πB,αB|∅] − max

aB∈{Ac,R j}
E[πB,αB|(Gr, aB)]

}
= [2αB(Fa|∅) + αB(Gr, Ac|∅) − 1]

+

where, for every w ∈ R, [w]
+ := max {0, w}. Frustration triggers anger, which here is considered as something that does not

contribute to experience utility, here identified with expected monetary payoff. In other words, we interpret anger as mod-

eled by BD&S as a distortion affecting the decision utility of actions compared to the expectation of the induced experience

utility (in this case, monetary payoff, but, of course in other examples it could be anything, e.g. distributional preferences

or guilt aversion). With this, we define the distortion function

dB,Gr(z,α) = −θBπA(z)FB[αB, Gr]

where θB is, for simplicity, a commonly known personal trait of Bob measuring the intensity with which his anger dis-

torts his incentives away from material payoff maximization. Thus, the decision utility Bob attaches to each reply is the

summation of the experienced utility and the expected distortion (see Fig. 10). Bob accepts the greedy offer if

θB · 3[2αB(Fa|∅) + αB(Gr, Ac|∅) − 1]
+

< 1.

In the second scenario, we consider a game with two periods such that each period has only one stage (see Fig. 11).

Whenever we analyze the interplay between emotions and time we treat the former as a “stock” subject to decay. In this

case, the frustration of Bob, right after Ann made the greedy offer is

FB[αB, Gr] = [2αB(Fa|∅) + αB(Gr, Ac|∅) − 1]
+
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as before. However, in this scenario Bob takes his decision one period later and we consider a cooling-off effect: the distor-

tion function is

dB,Gr(z,α) = −δBθBπA(z)FB[αB, Gr],

where decay factor δB ∈ (0, 1) is a personal trait of Bob’s. He accepts the greedy offer if

δBθB · 3[2αB(Fa|∅) + αB(Gr, Ac|∅) − 1]
+

< 1,

which allows for a higher θB-threshold compared to the one-period scenario.

3. Basic ingredients: agents, periods, outcomes and beliefs

We now present basic elements of our framework and corresponding mathematical notation. For every set X and t ∈ N,

Xt is the t-fold product of X with generic element xt = (x1, . . . , xt ).14

Individual agents. Consider a finite index set I of individual agents with generic elements i or j. These can be thought of as

roles in a game, e.g., buyer or seller. We also consider a fictitious entity called chance denoted c.15 To ease notation, we let

Ic := I ∪ {c}, −i := Ic\{i} and −i, c := Ic\{i, c}, that is, −i denotes all individuals different from i, including the pseudo-agent c,

whereas −i, c denotes all “real” agents different from i.16

Profiles. Denote functions from I (or Ic) to a generic codomain K with bold letters: k ∈ KI, where KI is the set of functions

from I to K. We often consider selections from nonempty-valued correspondences associating each i with a nonempty subset

Ki⊆K, such as the set of types of i. A profile of elements of K based on such a correspondence is a |I|-tuple k = (ki)i∈I, where

ki ∈ Ki for each i ∈ I. The set of such profiles (functions) is denoted K :=∏i ∈ IKi⊆KI. We use similar notation for Ic. When, for

j ∈ Ic, Kj is a singleton, we may omit it from our notation, because in this case K is isomorphic to
∏

i ∈ I\{j}Ki.

Periods. We model time explicitly. Consider a set T := {1, . . . , T} ⊆ N of time periods, with the interpretation that all the

actions take place at the beginning of each period possibly in a multistage fashion, as in, e.g., alternating-offers bargaining

models.17 The generic time period is denoted t, while T ∈ N∪{∞} denotes the horizon (i.e., the maximum duration). If T = ∞
(infinite horizon), we have T = N. A period represents the time between consecutive dates. In particular, the first period

starts with date 0 and ends with date 1. Thus, the set of dates corresponds to T0 := {0} ∪ T. Whenever T = 1, we get an

interesting special case, one period and two dates, which we often consider to simplify aspects of the analysis.

Consequences. Consider a space Y of collective material outcomes or consequences, e.g. the profiles of agents’ monetary pay-

offs. It is natural to assume an agent-by-agent factorization of the space of material outcomes. For each i ∈ I, Yi denotes

the space of personal outcomes for i, and Yc denotes the space of outcomes for chance. Often, Yi represents the space of

monetary payoffs of i, while elements of Yc may represent quantities of a public good. We let Y :=∏i∈Ic
Yi and assume for

simplicity that each i observes only yi ∈ Yi, as soon as it is realized, and, for every t ∈ T, i recalls the temporal sequence of

his personal outcomes already realized. No agent observes yc ∈ Yc. Note that agents may care about the outcomes of other

agents.

With more than one period, agents face temporal sequences of outcomes rather than single realizations. If there is a fixed

duration T, as in many economic models, an agent’s utility may be affected by the whole temporal sequence, or stream, of

outcomes yT ∈ YT.18 More generally, if the duration is not fixed, we need to consider the set Y≤T :=⋃T
t=1 Yt of all (finite and,

possibly, infinite) streams of outcomes. For every t ∈ T, we denote by yt (respectively, yt
i
) the stream of the first t profiles of

realized outcomes (respectively, realized personal outcomes of i).

Exogenous information & personal traits. We allow for incomplete information about agents’ traits and, possibly, some fea-

tures of the environment. This is done by letting the outcome of the game and/or agents’ utility depend on a profile of

parameters comprising exogenously given personal features of each agent, concerning e.g., guilt, disappointment aversion, or

altruism, or other characteristics like intelligence or strength. We refer to such features as personal traits. The relevant profile

of parameters is (θ i)i ∈ I ∈
∏

i ∈ I�i, assumed finite for simplicity . The parameter θ i represents exogenous features known to i.19

There may be also some relevant exogenous features of the environment and/or of the agents that are unknown to everybody.
14 We use standard “blackboard bold” notation for numerical fields, such as the natural numbers N.
15 In this paper, we do not have numerical, or parameterized illustrative examples featuring chance. Yet, given the methodological nature of this contri-

bution, we think it is important to have it in the general framework.
16 We often write j 
= i and j 
= i, c in unions or products of sets indexed by agents to denote respectively the subsets of agents Ic\{i} and Ic\{i, c}.
17 In the standard alternating-offer bargaining model (e.g., Osborne and Rubinstein, 1994, Ch. 7), each period t ∈ N features two stages: offer and response.

If the latter is positive, the surplus implied by the agreement just reached is consumed, otherwise—with a one-period delay—play proceeds to the next

offer.
18 Note, we implicitly assume that the space of outcomes Yi of each i ∈ Ic is time invariant.
19 More precisely, i ∈ I knows θ i ∈�i and this is common knowledge. In principle, θ i may contain private information about others’ traits, e.g., a teacher

may know a pupil’s intelligence better than the pupil does.



194 P. Battigalli, R. Corrao and M. Dufwenberg / Journal of Economic Behavior and Organization 167 (2019) 185–218
For example, some traits of i such as his intelligence may be unknown to i, and i’s beliefs about them may be relevant for

the psychological utility of some agent j (possibly i himself, as in the case of self-esteem). We let θc =
(
θc,i

)
i∈Ic

∈ �c denote

the vector of features unknown to every “real” agent, where θ c,i (i ∈ I) represents traits of i unknown to i (and everybody

else), and θ c,c represents aspects of the external environment that nobody knows. The set �c (again, finite) is called the

space of residual uncertainty. Thus, � :=�c ×∏i ∈ I�i defines the space of exogenous uncertainty.

Beliefs. Utilities are characterized by their dependence on agents’ beliefs. Following B&D, we allow them to be potentially

affected by own beliefs as well as the beliefs of other agents. On the one hand, what is truly relevant for agents’ preferences

are so-called psychological or mental states (we borrow these terms from Caplin and Leahy, 2001) such as anxiety, shame,

guilt, anger, etc., felt by agents during their interaction. On the other hand, many of such mental states are triggered by

beliefs, including beliefs about beliefs.

Some questions naturally arise: What may agents form beliefs about? Which beliefs are relevant for their utilities? In

principle, everything agents may form beliefs about can matter. Each i is uncertain about the profile of parameters θ−i of

exogenous uncertainty concerning others and about the prevailing stream of material outcomes yt ∈ Y≤T. Thus, for every

t ∈ T0, each i forms a belief over �−i × Y≤T, called i’s space of material uncertainty. We let Mi := �
(
�−i × Y≤T

)
denote the

space of i’s beliefs about material uncertainty or space of material beliefs of i. For each i ∈ I, we consider streams of material

beliefs
(
μi,0,μt

i

)
=
(
μi,k

)t
k=0

∈ Mi × Mt
i

for the first t + 1 dates, i.e., for the first t periods. In particular, μi,0 ∈ Mi denotes the

belief of i at date 0, i.e., his initial belief, while each μi,t (t ∈ T) denotes i’s belief at the end of period t. When we consider

the simple case of a unique period, a generic stream of material beliefs of i is given by the pair
(
μi,0,μi,1

)
∈ M2

i
of initial

and terminal material beliefs. When the duration is not fixed, we need to consider generic streams
(
μi,0,μt

i

)
∈ M

≤T0
i

:=⋃T
t=1 Mi × Mt

i
of material beliefs of i. For every t ∈ T0, denote by μt ∈ M :=∏i ∈ IMi a generic profile of material beliefs at date

t and by
(
μ0,μt
)

∈ M≤T0 :=⋃T
t=1 M × Mt a generic stream of profiles of material beliefs for the first t + 1 dates. For each i ∈ I

and t ∈ T, sets M−i, Mt
−i

and M
≤T0
−i

are similarly defined. When convenient, we let Mi,k denote the set of date-k material

beliefs. Note that, at each t ∈ T0, agent i knows his current material belief μi,t and recalls his own previous material beliefs

μt−1
i

, but is uncertain about the streams μt
−i

∈ M
≤T0
−i

of material beliefs of others and about his own future material beliefs

(μi,k)k > t, which will depend on yet unobserved information.20

4. Psychological utilities without games

We call utilities that are independent of the rules of the specific game forms in which they are embedded “game-

independent” (short for “game-form-independent”). They are shaped, in a state-dependent fashion, by the exogenous uncer-

tainty, the (streams of) outcomes, and (streams of) profiles of material beliefs. In Section 6, such utilities are embedded in

a game form to obtain a p-game. In particular, we emphasize the role of anticipated and anticipatory feelings:21 The date-t

stream of outcomes and beliefs (yt, μ0, μt) determine date-t psychological states that may have negative valence (e.g., dis-

appointment) or positive valence (e.g., surprise). The anticipation of such date-t feelings—that is, anticipated feelings—may

affect behavior before t, as when we choose a safe option to avoid possible disappointment. In particular, date-t beliefs about

future outcomes (more generally, about yet unresolved uncertainty) may cause date-t psychological states, called anticipatory

feelings, with negative valence (e.g., anxiety) or positive valence (e.g., suspense). Thus, the anticipation of such anticipatory

feelings, may in turn affect behavior earlier. Mere anticipated feelings, such as disappointment, can be behaviorally relevant

with just two dates and one period, whereas the anticipation of anticipatory feelings can be behaviorally relevant with at

least three dates and two periods (e.g., the anticipation at date 0 of a possible feeling of anxiety at date 1 concerning a

date-2 health outcome). So, we illustrate anticipated feelings in the simple one-period case, and anticipatory feelings in a

more complex multi-period case.

One-period case. First consider one-period environments (T = 1). In this case, the space of streams of outcomes is just Y and

the space of streams of material beliefs is M2 :=∏i ∈ I(Mi,0 × Mi,1) with generic element denoted (μ0, μ1). For i ∈ Ic, define

Xi := �i × Yi × M2
i

and X :=∏i∈Ic
Xi.

22 In words, each x ∈ X describes all relevant material and mental aspects. Each xi ∈ Xi

describes i’s features (i.e., personal traits and beliefs) and outcome, including i’s initial and terminal beliefs about exogenous

uncertainty and collective outcomes. The one-period psychological utility of i is defined as vi : X → R. We can interpret this

functional form as a case of state-dependent utility, where the state is given by (θ, μ0, μ1). This belief-dependent utility

makes no reference to the rules of the game. However, as we show in Section 6, it can be easily embedded in any given

one-period game form (described in Section 5).

At date 0, each agent i knows θ i and his initial belief μi,0, but is uncertain about all the other elements of the utility

relevant state x: The initial uncertainty space of i is X−i × Mi,1, where Mi,1 represents i’s uncertainty about his own terminal

belief, and X−i := �−i × Y × M2
−i

, with generic element denoted by x−i, represents the uncertainty about other agents and
20 This implies that, at date 0, each agent i knows his own initial material belief μi,0.
21 See Loewenstein et al. (2001).
22 Notice that, by assumption, Xc is isomorphic to �c × Yc , as if chance could hold just one (trivial) belief.
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Y

outcomes. Given his known personal trait θ i and his initial belief μi,0, agent i forms a belief about X−i × Mi,1 in order to

compute the expectation of his experience utility vi, which we interpret as i’s “experienced” utility.23

We now present examples of vi for the one-period case. We assume that, for every i ∈ I, the space of personal outcomes

i ⊂ R is a space of monetary payoffs. The psychological utility of i will be determined by means of real-valued functions

of the form fi : Q × �i → R, where Q ⊆ R is usually (although not always) a set of “psychological states” of i or some

other agent j, such that the section fi(·, θi) : R → R is increasing and normalized to satisfy fi(0, θi) = 0, for each θ i ∈�i. The

interpretation: we first map the stream of beliefs of each agent to psychological states, which—for simplicity—we summarize

with real numbers. Function fi captures how the state q of i or another agent j affects i’s utility. Common examples of

psychological states are disappointment, anxiety or regret. We do not assume that all fi have the same form. The only

further restriction we impose is that, whenever �i is an ordered set, section fi(q, · ) is increasing, for every q. Denote

generic elements of the class of functions just described by fi or gi. For simplicity, one can always assume the following

form: fi(q, θi) = θi · q.

Anticipated feelings: disappointment, surprise and guilt. In case of disappointment and guilt, outcomes may trigger negative

feelings given the initial beliefs of the agents. The anticipation and expectation of such negative feelings affect behavior. Let

�c be a singleton, and �i an ordered set for each i. Agent i is disappointed if his monetary payoff is less than he initially

expected: Formally, define the disappointment operator of i as

Di[·, ·] : Yi × Mi → R,

(yi,μi) �→ [E[ỹi,μi] − yi]
+
.

For each pair (yi, μi,0) ∈ Yi × Mi,0 of i ’s outcome and initial belief, Di(yi, μi,0) measures i’s disappointment. The anticipation

of disappointment affects behavior if Di enters i’s utility function, as—for example—in

vi(θ, y,μ0,μ1) = yi − fi(Di[yi,μi,0], θi), (3)

where q �→fi(q, θ i) maps disappointment to “utils” according to parameter θ i.
24 Here i’s utility depends only on his own

monetary outcome yi, trait θ i, and material belief μi,0.

Differently, agent i might be (positively) surprised if his monetary payoff is higher than he expected.25 Similarly, we

define the surprise operator of agent i as

Si[·, ·] : Yi × Mi → R,

(yi,μi) �→ [yi − E[ỹi,μi]]
+
.

and consider the following formula for i’s psychological utility:

vi

(
θ, y,μ0,μ1

)
= yi + gi(Si[yi,μi,0], θi).

We can consider both disappointment and surprise with the formula (cf. Khalmetski et al., 2015):

vi

(
θ, y,μ0,μ1

)
= yi + gi(Si[yi,μi,0], θi) − fi(Di[yi,μi,0], θi). (4)

Note that, by definition of fi and of the operators Di, Si, it follows that, for every θ i ∈�i,

gi(Si[yi,μi,0], θi) > 0 ⇒ fi(Di[yi,μi,0], θi) = 0

and vice versa. As in the general case, we can compute the initial expectation of (4) as

E[̃vi,μi,0] = E[ỹi,μi,0] + E[gi(Si[·,μi,0], θi),μi,0] − E[ fi(Di[·,μi,0], θi),μi,0].

Following Battigalli and Dufwenberg (2007), simple guilt can be modeled as the negative feeling of i triggered by the

belief that j is disappointed. In two-person games, aversion to guilt can be captured by a utility function of the form:

vi(θ, y,μ0,μ1) = yi − fi(Dj

[
yj,μ j,0

]
, θi).

Here the state-dependent utility of i depends on the (initial) beliefs of j.
23 Beliefs about X−i are called “second-order beliefs” because X−i comprises the space of material beliefs of other agents.
24 In Eq. (3) and in the rest of the article we adopt the following convention: on the left-hand side we write the general expression of the function as

presented in its definition, on the right-hand side we write the particular expression of the case under consideration. For example, in Eq. (3), on the left

hand side we wrote the general form of the psychological utility of i, which potentially depends on all the elements of x, while on the right hand side we

wrote the specific form of vi in the example described.
25 See Ely et al. (2015) and references therein.
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Intrinsic reputation. In many social interactions, agents are concerned about the opinion of others and are willing to give

up some material payoff (or make a costly effort) in order to improve such opinions, even if this is not expected to yield

material benefits in the future. We refer to such concern as “intrinsic reputation.”26 Let us consider two-person interactions

for simplicity, i.e., I = {i, j}. The opinion of j about i can be modeled as j’s expectation of i’s “goodness” which, being a per-

sonal trait of i, we parametrize through θG
i

∈ �G
i

⊆ R. The parameter θG
i

may measure i’s ability or “goodness of character,”

e.g., his altruism or propensity to pro-social behavior. In the first case, θG
i

will show up in the outcome functions of the

game form (see Section 5), as an increase in θG
i

increases i’s performance. However, we interpret θG
i

as part of i’s hedonistic

preferences, i.e., an argument of vi. Therefore we can capture this kind of belief-dependent preferences with no reference to

the game form. In particular, θG
i

measures the intensity of i’s other-regarding motivations, such as i’s willingness to increase

j’s material payoff.27 Moreover, we parametrize the intensity with which i cares about the opinion of j through θO
i

∈ �O
i

⊆ R.

Also, θO
i

is a personal trait, describing the degree of i’s concern for the opinion of others. With this, let �i = �G
i

× �O
i

be

the parameter space for i’s personal traits. Assuming for simplicity that only the terminal beliefs of j matter to i, we capture

the belief-dependent motivations of i with the following utility:

vi

(
θ, y,μ0,μ1

)
= yi + fi(yj, θ

G
i ) + gi

(
E
[
θ̃G

i ,μ j,1

]
, θO

i

)
. (5)

Maps y j �→ fi(y j, θ
G
i
) and E

[
θ̃G

i
,μ j,1

]
�→ gi(E

[
θ̃G

i
,μ j,1

]
, θO

i
) measure the dependence of i’s utility on, respectively the mate-

rial payoff of j and on j’s estimate of i’s goodness, given θi =
(
θG

i
, θO

i

)
. For example, the prospect of a high (low) value of

E
[
θ̃G

i
,μ j,1

]
may induce pride (shame). Eq. (5) generalizes Ellingsen and Johannesson (2008), who consider a linear two-type

version.28 Agents’ utilities may depend on the personal traits of other agents. In a variation of the previous model, we can

replace θO
i

with the product θG
j
θO

i
in the gi function of Eq. (5) so that the more altruistic j is the higher will be the concern

of i for the opinion of j; that is, i would not care about j’s opinion if he knew that j were a bad guy.29

Multiperiod case. For the general case with multiple periods (T ∈ N∪{∞}), for every t ∈ T, define Xt :=�× Yt × M0 × Mt and

X≤T:=⋃T
t=1 Xt . Each xt =

(
θ, yt ,μ0,μt

)
∈ X≤T describes all the relevant material and mental aspects of our model, taking

periods into account. Assuming additive separability and exponential discounting, we posit the following functional form for

the intertemporal psychological utility of i

Vi : X≤T → R(
θ, yt ,μ0,μt

)
�→

t∑
k=1

γ k−1
i

vk
i

(
θ, yk,μ0,μk

)
, (6)

where t ∈ T, vk
i

: Xk → R is the bounded period-k psy-utility, and the discount factor is such that γ i ∈ (0, 1] if T < ∞ and

γ i ∈ (0, 1) if T = ∞. Complete impatience is approximated as γ i → 0. We assume exponential discounting for the sake of

simplicity, because we focus on “exotic” preferences (Loewenstein, 2007) due to belief-dependence. As we will show in

Section 6, belief-dependence may cause dynamic inconsistency even with exponential discounting. Additional forms of dy-

namic inconsistency such as present bias can be accounted for by allowing for non-exponential (e.g., quasi-hyperbolic) dis-

counting (Laibson, 1997; Phelps and Pollak, 1968).

As in the one-period case, agent i is uncertain about all features concerning other agents as well as about his future

material outcomes and realized beliefs. Thus, in order to assess the value of his actions he has to consult his belief about

such uncertainties, i.e., his second-order belief. We address this in Sections 5 and 6. We next illustrate the interplay of time

and psychological utility through some known examples.

Anticipatory feelings: anxiety. Caplin and Leahy (2001) argue that interim beliefs about the final outcome may trigger

(positive or) negative anticipatory feelings. In turn, the anticipation of such feelings may affect earlier behavior. For example,

the negative feeling of anxiety can be modeled as an increasing function of the variance of the material payoff. Formally,

assume that �c is a singleton, and �i =
{

0, θ̄i

}
⊆ R, for each i ∈ I, with 0 < θ̄i, and Yi ⊆ R (monetary consequences, or any

scalar index of material well-being). On top of this, assume that there is a commonly known fixed duration T <∞, and that

all the feasible streams of profiles of outcomes yT ∈ YT have the form yT = (0, . . . , 0, y) for some y =(yi)i∈Ic
, that is, all the

feasible streams of outcomes deliver a non-zero monetary payoff only in the last period. Thus, we can identify the space of

feasible streams of outcomes with Y, with generic element denoted by yT. For every (squared-integrable) function ϕ : Y → R,

define the variance operator of ϕ by
26 See the comments in B&D (Section 6.2) about the dependence of psy-utility on terminal beliefs of others, and the relevant references therein.
27 If agent i is also concerned about agent j’s feelings, as in the case of guilt aversion, then also this component may depend on agent j’s beliefs.
28 B&D cite several papers on belief-dependent concern for the opinion of others. Furthermore, introspection and experimental evidence suggest that

self-esteem, i.e., the estimate of own ability, or ability relative to others, affects “ego-utility,” and that the anticipation of such feelings affects behavior (e.g.,

Kuhnen and Tymula, 2012). In this case, vi depends on i’s updated belief about θ c,i , an exogenous feature of i unknown to i.
29 This is somewhat related to the interdependent preference model of Levine (1998), generalized by Gul and Pesendorfer (2016), but these models do

not feature belief-dependent utilities.
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Var[ϕ, ·] : �(Y) → R,

μi �→ E
[
(ϕ − E[ϕ,μi])

2
,μi

]
.

We can capture anxiety via the following intertemporal utility of i:

Vi

(
θ, yT ,μT

)
= γ T

i yi,T −
T∑

k=1

γ k−1
i

fi,k(Var
[
·,μi,k

]
, θi),

where, for every k ∈ T, fi,k : R+ × �i → R+ is the k-period version of the functions already defined for the one-period case.

Note that the non-linearity of i ’s psy-utility in his own beliefs typically induces dynamic inconsistencies (cf. Section 7.1).

An agent might also be concerned about the anxiety of others. For example, Caplin and Leahy (2004) analyze a model

where a concern for patients’ anxiety affects the disclosure policy of doctors. Furthermore, variability of own monetary

outcomes (computed with respect to agents’ subjective beliefs) do not always cause negative utility: the emotional state of

suspense may have positive valence (e.g., Ely et al., 2015 and the references therein).

Section summary. We have analyzed game-independent utilities. In our framework, differently from the standard theory of

intertemporal decisions, the utility of i potentially depends on the streams of realized beliefs about (external uncertainty

and) material outcomes. This may help calibrate agents’ utilities by data concerning relatively simple decision situations and

then plug them into any game form. Two points are worth noting:

1. First, so far we have treated the streams of realized beliefs of agents as given. However, as it is standard in many applica-

tions, such streams of beliefs are the result of processes of belief updating given the acquisition of new information. For

example, a rational agent would start the game with a prior belief over his space of uncertainty and would sequentially

update that belief according to the new information he acquires through the chain rule of probabilities. Therefore, once

an information structure has been defined, the stream of realized beliefs of agent i is pinned down by his initial belief

and by the information he sequentially acquires.

2. Second, in many applications, agents’ utilities, by their intrinsic nature, cannot be independent of the game form. For

example, whenever one aims to model a preference over streams of consequences which takes into account regret for

past choices then utility will depend on the feasible alternative actions that the agent could have taken and the corre-

sponding material payoffs. Such a model would include in utility regret for past choices through a comparison between

realized and (expected) counterfactual outcomes.

The bottom line is clear: several examples of psy-utilities cannot dispense with a game form. We will next describe in

detail the rules of the game (Section 5). This is necessary to incorporate belief-dependent motivations into strategic thinking

even with game-independent psy-utilities; for other psy-utilities, like regret avoidance, the description of belief-dependent

motivations start directly from the game form (Section 6).

5. Games and beliefs

In this section, we introduce the rules of the game mathematically described by the game form (Section 5.1), which in-

cludes the timing of play, the information flow between stages in each period and between periods, the feasible actions, and

outcome functions for each period. Given the information structure, we define conditional probability systems (CPSs), i.e.,

maps from observable histories to probabilistic beliefs about behavior, and personal traits and beliefs of others (Section 5.2).

A state of the game is described by a profile of personal traits θ, a path of play (complete history of actions) z, a profile

of first-order CPSs α, and a profile of second-order CPSs β (with β i consistent with αi for each i). Each first-order CPS αi

comprises both beliefs about the behavior of others and i’s plan, that is, how i predicts his own behavior. Path z determines

a stream of outcomes (y1, y2, . . .) and—given profile α—a stream of realized beliefs (μ0,μ1,μ2, . . .) about θ and outcomes.

These primitive and derived elements will be used in Section 6 to define dynamic p-games.

5.1. Game form

We describe a game form with finite or infinite horizon and observable actions. We begin from a set T = {1, . . . , T} ⊆ N of

periods as in Section 3, and, within each period t ∈ T, a sequence of L ∈ N stages, with L assumed to be fixed for each period.

As shown in Section 4, the explicit formalization of the role of time is more important when agents have belief-dependent

motivations than in the standard case. Since most textbooks descriptions of games in extensive form do not model time

explicitly,30 we do it here with some care. Formally, we add the following concepts to the ones of Section 3.
30 For example, the general definition of extensive form in Osborne and Rubinstein (1994), (Chs. 6, 11), which is close to ours, does not mention time

explicitly. Time enters in specific classes of games, such as bargaining and or repeated games (Chs. 7, 8) by means of special expressions for the utility of

terminal histories.
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Stages and actions. Each period t ∈ T is divided into L stages of arbitrarily short duration, indexed by � ∈ {1, . . . , L}. Outcomes

obtain after the last stage of each period. The sequence of periods represents the passage of time, which affects decay and

discounting. Stages, instead, are very short and the unfolding of play in them within a period affects only the flow of

information. In each stage, each i takes an action from a (possibly) history-dependent feasible subset of a finite set Ai. An

inactive player is represented as one whose feasible subset consists of just one (pseudo) action denoted by w (for “wait”),

assumed to belong to Ai, i ∈ I. Let A := ×i∈Ic Ai denote the set of action profiles a = (ai)i∈Ic
and, for each i ∈ Ic, let A−i :=∏

j∈Ic\{i} A j .

Histories. First, consider generic sequences of action profiles, that is, elements of A≤LT0 :=⋃LT
�=0 A�, with A0 := {∅}.31 We

also write A<LT0 to denote
⋃

0≤�<LT A�. We use the standard operation of concatenation of a finite sequence with another

finite or infinite sequence, from which we define the (weak, hence reflexive) “prefix of” relation �, whose irreflexive part

is denoted ≺. Thus, histories are incompletely ordered by � and this makes the set A≤LT0 a tree with root ∅. Since action

profiles are selected in each stage, a history that ends at some stage of period t is a sequence of (t − 1) subsequences of

length L, possibly followed by a subsequence of length � ≤ L. We let ai,�,t denote the action of player i in stage � of period t,

and a�,t denotes the action profile selected in stage � of period t. For every t ∈ T, define:

• incomplete “within-period” histories of length � < L, h�
t = (as,t )

�
s=1 ∈ A�, i.e., h�

t is the sequence of the first � profiles of

actions played in period t;

• complete “within-period” histories (of length L) ht = (a�,t )
L
�=1 ∈ AL, i.e., ht is the sequence of all the profiles of actions

played in period t;32

• t-period histories of length Lt, ht = (h1, . . . , ht ) ∈ ALt , i.e., ht is the sequence of profiles of actions that have been played

since the beginning of the game to the end of period t;

• incomplete (t + 1)-period histories of length Lt + �, ht,� =
(
ht , h�

t+1

)
∈ ALt+�, i.e., ht,� is the concatenation of ht with the

first � action profiles played in period t + 1;

• for infinite-horizon games (T = ∞) consider complete infinite histories h∞ = (ht )
∞
t=1.

The rules of the game determine a subset H̄ ⊆ A≤LT0 of feasible sequences of action profiles with the following properties:

for all h̄ ∈ H̄ and h ∈ A≤LT0 ,

• (closure with respect to prefixes) if h ≺ h̄, then h ∈ H̄; hence, the restriction of � to H̄ makes H̄ a tree with root ∅;

• (period completion) if the length of h̄ is Lt + � for some � ∈ {1, . . . , L − 1}, t ∈ T0, then h̄ ≺ h̄t+1 for some h̄t+1 ∈ H̄ ∩ AL(t+1)

(periods are always completed, possibly by taking “waiting” action profiles w ∈ A at each remaining stage of the period);

• (independent actions) for each h̄ ∈ H̄, the set A
(
h̄
)

of feasible action profiles is a Cartesian product: A
(
h̄
)

=∏i∈Ic
Ai

(
h̄
)
.

We adopt the convention that A
(
h̄
)

= ∅ if and only if Ai

(
h̄
)

= ∅ for every i ∈ Ic; A
(
h̄
)

= ∅ means “game over.” If T = ∞
and h̄ ∈ H̄ is an infinite history, then A

(
h̄
)

= ∅ as we do not allow the concatenation of an infinite sequence with an-

other sequence. We let Z :=
{

h̄ ∈ H̄ : A
(
h̄
)

= ∅
}

denote the set of terminal histories with generic element z. Note, the period-

completion property implies that each finite-length z is a sequence of complete within-period histories. Also, we let H and Ĥ

respectively denote the sets of non-terminal and finite histories. Set H contains all the (necessarily finite) histories after which

players take an action (although the feasible set may be a singleton); thus, H ⊆ Ĥ. Set Ĥ contains the non-terminal histories

and the finite terminal histories. Set Ĥ corresponds to the set of “observables” events upon which each player conditions

his beliefs. Finally, we let Z(h) := {z ∈ Z: h�z} denote the set of terminal histories consistent with h ∈ H.

Outcome functions. We now relate players’ personal traits and actions to corresponding streams of material outcomes. As

in Section 3, let Y =∏i∈Ic
Yi be the set of collective material outcomes, i.e., consequences potentially affecting all the players.

At the end of the play of period t, an outcome y = (yi)i∈Ic
∈ Y materializes as a function of the history of actions profiles

ht ∈ ALt and of the parameter profile θ ∈�. Formally, for every t ∈ T, we posit a period-t outcome function πt: ALt ×�→ Y.

We allow outcomes to depend on θ because the parameter profile may specify players’ abilities.33 However, to simplify

the analysis, we assume that yi (e.g., i’s monetary payoff) depends only on θ i. Since each i knows θ i and the parametrized

outcome function, and observes past actions, we implicitly assume that each i observes the realized yi; but our simplifying

assumption rules out the possibility that i can obtain information about the personal traits of others from observing yi.

Formally, for each i ∈ I and t ∈ T, there exists a personal period-t outcome function π i,t: ALt ×�i → Yi and the period-t

collective outcome function has the following form:

πt : ALt × � → Y,(
aLt , θ
)

�→
(
πc,t

(
aLt , θ
)
,
(
πi,t

(
aLt , θi

))
i∈I

)
,

31 Recall that ∅ denotes the empty sequence.
32 Thus, the length of each ht is L. This is a convention, as players may be inactive in some stages.
33 Note that we are not restricting the domain of the outcome function to the feasible histories. This is innocuous and it also makes sense: the rules of

the game may specify “input–output” functions that are logically independent of what actions are feasible under different contingencies.
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where yc = πc,t

(
aLt , θ
)

is a component nobody directly observes that may depend on θ.

With this, it is convenient to define, for each t ∈ N, a t-cumulative outcome function that keeps track of the entire stream

of collective material outcomes through period t:

πt : ALt × � → Yt ,(
aLt , θ
)

�→
(
πk

(
aLk, θ
))t

k=1
.

Similarly, the t-cumulative outcome function of i ∈ I is defined by

π t
i : ALt × �i → Yi,(

aLt , θi

)
�→
(
πi,k

(
aLk, θi

))t
k=1

and records all personal outcomes that i has observed until t. The cumulative outcome function of c is defined similarly, but

may depend on θ. By definition, for all t ∈ T and (aLt, θ) ∈ ALt ×�,

πt
(
aLt , θ
)

:=
(
π t

c

(
aLt , θ
)
,
(
π t

i

(
aLt , θi

))
i∈I

)
.

Finally, define

π : A≤LT × � → Y≤T,(
aLt , θ
)

�→ πt
(
aLt , θ
)

and denote with π = π|Z×� the restriction of π to Z ×�, i.e., π : Z × � → Y≤T is the (θ-dependent) outcome function which

assigns a (possibly infinite) stream of outcomes to each (possibly infinite) terminal history z ∈ Z.

5.2. Conditional beliefs

Z-based conditional beliefs. We assume that, as a result of strategic reasoning, each i ∈ I is characterized by a CPS about paths

z ∈ Z (i.e., the actual behavior of everybody), unknown parameters θ−i ∈ �−i, and other players’ beliefs about behavior and

parameters.34 This approach is different from B&D’s where conditional beliefs were defined over the space of others’ strate-

gies. The most important difference is that, here, we include a representation of each player’s conditional beliefs about his

own behavior. These beliefs are interpreted as i’s contingent plan, or strategy. Also, we model conditional beliefs about actual

behavior, rather than conditional beliefs about contingent behavior (what a player would do if a history were reached). This

deserves discussion.

There are at least two advantages of this Z-based approach. The most important one is conceptual: As in many papers

in the epistemic game theory literature, in B&D there is a(n) (explicitly acknowledged) conflation between the objective de-

scription of how a player would behave at each contingency, which is part of the external (non-mental) state of the world,

and the description of how a player plans to choose as a function of what he may observe, which is a mental aspect of

the world. This is appropriate if and only if it is assumed to be transparent (i.e., true and always commonly believed) that

players carry out their plans. This assumption is restrictive because it rules out the possibility that unexpected moves be

interpreted as unintentional mistakes, as in Selten (1975) “trembling-hand” story, which is also implicit in K&W’s SE con-

cept. Such conflation can be avoided without adopting the Z-based approach of this paper. One can posit that each player

has a CPS about everybody’s contingent behavior, including his own.35 Yet, if the external state describes players’ contingent

behavior and mental states describe players’ contingent plans, the overall state specifies two versions of each player’s “strat-

egy,” an objective one and a subjective one. This is conceptually legitimate, but may cause confusion. The present approach

instead has the pedagogical advantage of featuring, for each player, just one variable that fits the mathematical definition of

“strategy” : his subjective plan. There is also a technical advantage of the Z-based approach: the set of pure strategy profiles

is exponentially larger than the set of paths.

How do we model players’ beliefs about contingent behavior? The answer is implicit in our heuristic analysis of

Section 2: we model the probability of a conditional event as a conditional probability. For example, consider the Trust

Minigame of Fig. 4. Player i (Ann or Bob) assigns probability p to the conditional “Were Ann to go In, Bob would Share”

if and only if i assigns probability p to Share conditional on In, i.e., if and only if αi(Sh|In) = p. This is analogous to the

connection between mixed and behavior strategies.

We specify players’ conditional beliefs so that we can represent what they would believe upon reaching any finite (ter-

minal or non-terminal) history and how they would assess the expected utility of feasible actions at non-terminal histories.

With this in mind, we enrich the set of finite histories by adding what a player knows after he has just taken an action, but

play has not yet moved to the next stage. The set of personal histories of i ∈ I is

Hi := Ĥ ∪ {(h, ai) ∈ H × Ai : ai ∈ Ai(h)}.
34 See Battigalli et al. (2013a) and BD&S.
35 See, for example, Battigalli and Siniscalchi (1999) and Battigalli and De Vito (2018).
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Note that we include in Hi also the finite terminal histories because—as explained in Section 4—terminal information may

be important for psychological reasons, such as a concern for the opinion of others. We let

Z(hi) := {z ∈ Z : ∃a−i ∈ A−i(h), (h, (ai, a−i)) � z}
denote the set of terminal histories consistent with any personal history hi = (h, ai) ∈ Hi. We also define the set Z(h, a−i) in

a similar way, for all h ∈ H and a−i ∈ A−i(h).

As seen in Section 4, each i is uncertain about the streams of profiles of outcomes yt =
(
yt

i

)
i∈Ic

∈ Y≤T and his co-players’

traits θ−i ∈ �−i. Given a game form, terminal history z and parameter θ uniquely determine the corresponding stream of

collective consequences as yT (z) = π
(
z, θ
)
, where T(z) is the duration implied by z. Therefore, we define the primitive uncer-

tainty space for i as the product set Z × �−i with generic element denoted by the pair
(
z, θ−i

)
. A first-order belief of i is an

element of �(Z × �−i). Note that each element of �(Z × �−i) uniquely determines a corresponding belief in �
(
�−i × Y≤T

)
implied by outcome functions π.

To represent players’ strategic reasoning in a dynamic game, we specify their beliefs conditional on each personal history.

The set of pairs
(
z, θ−i

)
consistent with a personal history hi ∈ Hi is Z(hi) × �−i. The latter is the event “hi occurred” repre-

sented in the primitive uncertainty space Z × �−i. Thus, to ease notation, we let αi(E|hi) denote the probability of an event

E ⊆ Z × �−i conditional on Z(hi) × �−i; similarly, given hi � h′
i
, αi

(
h′

i
|hi

)
denotes the probability of Z

(
h′

i

)
× �−i conditional

on Z(hi) × �−i. The set of all maps from Hi to the belief set �(Z × �−i) is [�(Z × �−i)]
Hi . We consider the subset of such

maps that satisfy natural cognitive rationality properties.36

Definition 1. We say that αi ∈ [�(Z × �−i)]
Hi is a first-order conditional probability system (CPS) of i if:

1. Knowledge implies belief: for every hi ∈ Hi, αi(hi|hi) = 1;

2. Chain rule: For all hi, h
′
i
∈ Hi and F ⊆ Z

(
h′

i

)
× �−i,

hi � h
′
i ⇒ αi(F |hi) = αi

(
F |h′

i

)
αi

(
h′

i|hi

)
. (7)

3. Own-action independence (OAI): for all h ∈ H, ai, a′
i
∈ Ai(h), a−i =

(
a j

)
j∈Ic\{i} ∈ A−i(h) and G ⊆ �−i,

αi(Z(h, a−i) × G|h, ai) = αi

(
Z(h, a−i) × G|h, a′

i

)
.

Property 1 requires that, upon observing hi, player i assign probability 1 to Z(hi) × �−i. Property 2 requires that player

i update his beliefs according to the standard rules of conditional probability. Indeed, if αi

(
h′

i
|hi

)
> 0 then Eq. (7) can be

written as

hi � h
′
i ⇒ αi

(
F |h′

i

)
= αi(F |hi)

αi

(
h′

i
|hi

) .
Property 3 requires that i’s beliefs about events that cannot be affected by his action (co-players’ traits and simultaneous

actions) do not change before and after i played his action.

We let �i,1 ⊆ [�(Z × �−i)]
Hi denote the space of i’s first-order CPSs. With this, �−i,1 :=∏ j∈I\{i} � j,1 and �1 :=∏j ∈ I�j,1

respectively denote the spaces of co-players’ and all players’ profiles of first-order CPS. A triple (z, θ, α) ∈ Z ×�×�1 com-

pletely describes players’ actual behavior, their personal traits and their first-order CPSs. Borrowing from Battigalli and Sinis-

calchi (1999), it can be shown that these spaces have convenient regularity properties (see BC&S for a general treatment).37

Player i is uncertain about
(
z, θ−i,α−i

)
, i.e., how the game is going to be played, his co-players’ personal traits, and

what first-order conditional beliefs his co-players would hold upon observing any finite history. We assume, however, that

he is certain that the co-players are cognitively rational, i.e., that each αj (j 
= i) satisfies 1–2–3 of Definition 1. Hence, he

forms second-order beliefs over the space Z × �−i × �−i,1 conditional on the occurrence of any personal history hi ∈ Hi. The

occurrence of hi represented in the first-order uncertainty space Z × �−i × �−i,1 corresponds to event Z(hi) × �−i × �−i,1.

Let βi(·|hi) ∈ �
(
Z × �−i × �−i,1

)
denote a generic second-order belief of i conditional on Z(hi) × �−i × �−i,1. A system

of second-order beliefs of i is denoted βi = (βi(·|hi))hi∈Hi
and we assume that β i satisfies cognitive rationality properties

similar to 1–2–3 of Definition 1. Such systems of beliefs are called second-order CPSs. Let �i,2 ⊆
[
�
(
Z × �−i × �−i,1

)]Hi

denote the space of i’s second-order CPSs. Let �−i,2 :=∏ j∈I\{i} � j,2 and �2 :=∏j ∈ I�j,2 denote the spaces of profiles of

second-order CPSs of, respectively, i’s co-players’ and all players. As mentioned in Sections 2 and 4, we do not consider

higher-order beliefs, because we assume that expected utilities depend only on (first- or) second-order beliefs.

Given a second-order CPS, it is always possible to obtain a first-order CPS by marginalization. In particular, we can define

the marginalization map
36 See Battigalli et al. (2013a) and BC&S.
37 In particular, for each i ∈ I, Z × �−i is compact, metrizable and each set Z(hi) × �−i (hi ∈ Hi) is clopen (closed and open). It follows that �i,1 , �−i,1 (i ∈ I),

and Z ×�×�1 are compact metrizable.
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margi : �i,2 → [�(Z × �−i)]
Hi ,

βi �→
(
margZ×�−i

βi(·|hi)
)

hi∈Hi

.

For each second-order CPS β i, margi(β i) corresponds to the first-order CPS obtained by marginalization of β i( · |hi) for every

hi ∈ Hi. One can show that margi

(
�i,2

)
= �i,1, i.e., for every β i ∈�i,2,

(
margZ×�−i

βi(·|hi)
)

hi∈Hi

is a first-order CPS.

Realized beliefs. Strategic reasoning affects what any given player i would believe conditional on each personal history, i.e.,

his CPS. We assume, however, that the utility attached by i to any terminal history z depends only on realized beliefs. Here

we derive the realized beliefs implied by a player’s first-order CPS and a terminal history. Fix i ∈ I. Every pair (αi, z) ∈�i,1 × Z

yields a stream of realized first-order beliefs(
αi

(
·|ht (z)
))T (z)

t=0
∈
⋃
t∈T

[�(Z × �−i)]
t
,

where, T (z) ∈ T is the (possibly infinite) duration implied by z, ht(z) is the unique complete t-period history weakly preced-

ing z, and h0(z) = ∅. This in turn—for every θ i ∈�i—yields a stream of material beliefs
(
μi,t

)T (z)

t=0
, i.e., beliefs about streams

of material outcomes and co-players’ traits. To see this in detail, recall that π : Z × � → Y≤T is the outcome function that as-

sociates each pair (z, θ) with the corresponding stream of outcomes. For each measurable set F ⊆ �−i × Y≤T, the probability

of F implied by (z, θ i, αi) is

ψi,t (z, θi,αi)(F ) := αi

({(
z′, θ′

−i

)
∈ Z × �−i :

(
θ′

−i,π
(
z′, θi, θ

′
−i

))
∈ F
}|ht (z)

)
.

Thus, we obtain a t-period realized (or on-path) material-belief function ψ i,t: Z ×�i ×�i,1 → Mi, and we define the realized-

belief function of i as

ψi : Z × �i × �i,1 → M≤T0

i
,

(z, θi,αi) �→ (ψi,t (z, θi,αi))
T (z)
t=0 .

Let ψ := (ψi)i∈I . Thus,
(
θ,π
(
z, θ
)
,ψ
(
z, θ,α
))

∈ X≤T is the stream of realized (on path) outcomes and beliefs induced by (z,

θ, α).

Belief factorization. For every i ∈ I, define 
i :=∏h∈H �(Ai(h)) and 	−i :=∏h∈H �(A−i(h)). Technically, each σ i ∈
i is a be-

havior strategy, whereas σ−i ∈ 	−i is a kind of “correlated” behavior strategy of the co-players (including c) that we interpret

as a conjecture of i about others’ history-dependent behavior. Recalling that, αi(Z(h, ai) × �−i|h) is the conditional probabil-

ity of action ai given h (αi(Z(h, a−i) × �−i|h) has a similar meaning), we obtain i’s plan and his conjecture about co-players’

behavior as follows:

σ̂i : �i,1 → 
i,

αi �→
(
(αi(Z(h, ai) × �−i|h))ai∈Ai(h)

)
h∈H

,

σ̂−i : �i,1 → 	−i,

αi �→
(
(αi(Z(h, a−i) × �−i|h))a−i∈A−i(h)

)
h∈H

.

OAI implies that, for all h ∈ H, ai ∈ Ai(h), and a−i ∈ A−i(h),

σ̂−i(αi)(a−i|h) = αi(Z(h, a−i) × �−i|h, ai),

which yields the following natural factorization: for every a ∈ A(h),

σ̂i,I(αi)(a|h) := αi(Z(h, a) × �−i|h) = σ̂i(αi)(ai|h) × σ̂−i(αi)(a−i|h).

We have completed the description of the primitive and main derived elements of our analysis. Next, we will put them

together to incorporate belief-dependent motivations into game forms to obtain p-games.

6. Dynamic p-games

In previous sections, we presented game-independent psychological utilities, multiperiod game forms, and systems of

conditional beliefs based on such game forms. Here we use these ingredients to obtain the full specification of a dynamic p-

game. We focus on first-order p-games, i.e., the utility of each i potentially depends only on i’s and his co-players’ first-order

beliefs.38 We start with the simple case of one-period multistage p-games (T = 1 according to the notation of Section 5) and

then move on to multiperiod games (T ∈ N ∪ {∞}). To obtain a p-game, we either embed game-independent psychological

utility functions (Section 4) in a game form (Section 5), or—for game dependent preferences—directly define on the game

form the belief-dependent “experience utility” of a terminal history and “decision utility” of actions.
38 For a general treatment of kth order psychological games, see BC&S.
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6.1. One-period p-games

Suppose that there is only one period. Within this period there are L stages; thus, if L > 1, players make sequential

choices. The set of terminal histories comprises sequences of action profiles of length L: Z⊆AL.39 Moreover, outcomes (con-

sequences) materialize at the end of the game, and streams of beliefs consist of an initial and a terminal belief for each

player.

Belief-dependent utility of paths. Start with a game-independent “experience” utility function as in Section 4. In the one-

period case, the utility of i has the form vi : � × Y × M2 → R, where M =∏i∈I �(�−i × Y). Section 5 shows how to map

terminal histories and first-order conditional beliefs (CPSs) of players to the corresponding outcomes and realized beliefs

by means of the outcome functions π = (πi : Z × �i → Yi)i∈Ic
and realized-belief functions ψ =

(
ψi : Z × �i × �i,1 → M2

i

)
i∈I

.

Plugging π and ψ into vi we obtain a reduced-form function that gives the parameterized belief-dependent utility of

paths:

ui : Z × � × �1 → R,(
z, θ,α
)

�→ vi

(
θ,π
(
z, θ
)
,ψ
(
z, θ,α
))

. (8)

We illustrate Eq. (8) with reference-dependence à la Koszegi and Rabin (2006).

Reference-dependent utility. Fix any player i and let Yi be a closed interval in R+, with the interpretation that yi ∈ Yi is i’s

consumption. Assuming that θ is common knowledge, and given that we are not making comparative static exercises, we

need not make the dependence of utilities or outcomes on θ explicit. Let

vi(y,μ0,μ1) = yi + fi(yi − E[ỹi,μi,0])

where the increasing function fi captures how much i cares about the difference between his actual consumption yi and

the reference point E
[
ỹi,μi,0

]
, his initially expected consumption. Given a one-period game form with the corresponding

outcome and realized beliefs functions, we obtain the belief-dependent utility of paths

ui(z,α) = πi(z) + fi(πi(z) − E[ỹi,ψi,0(z, αi)])

= πi(z) + fi(πi(z) − E[πi, αi|∅]).

In game-dependent cases, we define ui : Z × � × �1 → R directly on the game form to model the relevant belief-

dependent motivation as we did in Section 2 for reciprocity in the Trust Minigame. From now on, we take the profile

of game-based utility functions (ui)i ∈ I as a primitive of the analysis. These functions are similar to those in B&D. The most

important differences are that (i) B&D allow for dependence on higher-order beliefs, and (ii) B&D do not consider beliefs

about own behavior (see related comments in Section 1).

Decision utility, experienced utility, distortion, and action tendency. Consider player i at the beginning of stage �, hence, after

he observed a nonterminal history h = (as)
�−1
s=1 of length � − 1. His goal is to choose an action with the highest expected

utility. Since ui (typically) depends on unknown co-players’ beliefs, i consults his conditional second-order beliefs to deter-

mine the expected utility of actions. We first derive the expectation of i’s experience utility given h and his action. Then we

argue that his actual action tendencies may be described by the maximization of a different “decision utility” obtained by

“distorting” the expectation of ui.

The expected experience utility of action ai ∈ Ai(h) given h and personal features (θ i, β i) (expressed as a Lebesgue

integral) is

E[ui(·, θi, αi), βi|h, ai] =
∫

Z×�−i×�−i,1

ui

(
z, θi, θ−i, αi,α−i

)
βi

(
dz, dθ−i, dα−i|h

)
(with αi =margi(β i)).

In some applications, the choice of player i at history h is also driven by some “local” effects, like the urge to

harm others caused by frustration at h due to perceived goal obstruction (BD&S), the desire to repair harm caused by

a guilt-eliciting event, to insulate oneself from negative evaluation when ashamed (Tangney, 1995), or to reciprocate

(un)kind behavior (Dufwenberg and Kirchsteiger, 2004). We abstractly model such effects by means of distortion functions(
di,h : Z × � × �1 → R

)
h∈H

. The expectation of di,h given h, ai, and (θ i, β i) is

E
[
di,h(·, θi, αi), βi|h, ai

]
=
∫

Z×�−i×�−i,1

di,h

(
z, θi, θ−i, αi,α−i

)
βi

(
dz, dθ−i, dα−i|h

)
(with αi =margi(β i)).
39 If the actual game being represented has also shorter terminal histories, they appear in our notation with players being forced to “wait” in later stages

of the game.
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With this, we obtain the “local” decision utility functions
(
ūi,h : Ai(h) × �i × �i,2 → R

)
h∈H

such that, for all h ∈ H, ai ∈
Ai(h), θ i ∈�i, β i ∈�i,2,

ūi,h(ai, θi, βi) = E[ui(·, θi, αi), βi|h, ai] + E
[
di,h(·, θi, αi), βi|h, ai

]
.

We assume that i at h maximizes his decision utility ūi,h(·, θi, βi). Thus, we define, for each h ∈ H, the best reply correspon-

dence

ri,h : �i × �i,2 ⇒ Ai(h),

(θi, βi) �→ arg max
ai∈Ai(h)

ūi,h(ai, θi, βi).

Since Ai(h) is assumed to be finite, ri,h(θ i, β i) is nonempty for all θ i and β i.

To sum up, a one-period multistage p-game is a structure〈
I, Ac,�c, H̄,

(
Ai,�i, ui,

(
di,h

)
h∈H

)
i∈I

〉
,

where H̄ ⊆ AL satisfies the properties described in Section 5, and, for all i ∈ I and h ∈ H, the functions ui and di,h are respec-

tively the experience utility function and the local distortion function (at h) of i.

In some interesting applications preferences in p-games can be represented by “almost standard” expected utility formu-

las. Suppose that there are no distortions (di,h ≡ 0 for all i and h) and that the experience utility function ui is derived from a

game-independent one vi, as per Eq. (8), that does not depend on i’s own beliefs about material outcomes, as in models of

simple guilt aversion and intrinsic reputational concerns (but unlike models of expectation-based reference dependence, or

anticipatory feelings, see Section 4). Then player i maximizes the expected value of ui, which does not depend on his beliefs

αi. In this case ui, looks just like a classical state-dependent utility, that is, a utility that depends on paths (or outcomes),

parameters known to i (θ i and αi), and some parameters or variables unknown to i (θ−i and α−i). This implies that all the

standard properties of subjective expected utility hold. In particular, preferences are dynamically consistent and randomization

is superfluous, i.e., optimal planning can be restricted to pure strategies. The same conclusion can be reached under a weaker

assumption. Since i’s beliefs about co-players are a known given for his planning process, ui may depend on such beliefs;

the key assumption (besides no distortions) is that ui does not depend on i’s plan. Let αi,−i denote i’s system of conditional

beliefs about others.40 If αi and α′
i

are such that αi 
= α′
i
, but αi,−i = α′

i,−i
, then the only relevant difference between these

two CPSs is that they yield different plans for i, that is, σ̂i(αi) 
= σ̂i

(
α′

i

)
. If i’s plan does not affect his preferences, then his

experience utility is unaffected by such change.

Definition 2. The preferences of player i satisfy own-plan independence (OPI) if there are no distortions and, for all z ∈ Z,

θ ∈�, αi, α
′
i
∈ �i,1, α−i ∈ �−i,1,

αi,−i = α′
i,−i ⇒ ui

(
z, θ, αi,α−i

)
= ui

(
z, θ, α′

i ,α−i

)
.

6.2. Examples of game-dependent psychological utilities (one period)

Some belief-dependent preferences are derived within the context of a specific causal structure captured by the game

tree and the outcome functions. Regret and anger are cases in point. We now present some examples which show how

to model these aspects through game-form-dependent psychological preferences. For the sake of simplicity, we consider

monetary outcomes (Y ⊆ R
Ic ) and let the outcome functions depend only on the sequence (of length L) of actions chosen by

players, that is, π i,1: AL → Yi, for every i ∈ Ic.41

One-period regret. Assume that player i primarily cares about his monetary outcome yi ∈ Yi and that he experiences regret

at the end of the game if he obtains material payoff yi = πi(z) and believes that he could have done better. For every (z,

αi) ∈ Z ×�i,1 define the ex post belief σi,−i(z, αi) ∈ 	−i of i as

σi,−i(z, αi)(a−i|h) :=
{

1 i f (h, a−i) � z
σ̂i,−i(αi)(a−i|h) else

for all h ∈ H and a−i ∈ A−i(h). We interpret σi,−i(z, αi) as the ex post belief of i concerning his co-players’ contingent behav-

ior given that he observed z and that his first-order belief is αi. Also, we define the function ζ : 
i × 
−i → �(Z) that maps

plans of i and his beliefs about his co-players’ behavior to subjective probability distributions over terminal paths. With this,

the regret of i given (z, αi) is defined as

Rei[z, αi] := max
σi∈
i

{E[πi,1, ζ (σi,σi,−i(z, αi))] − πi,1(z)}.
40 Formally, αi,−i = (αi(Z(h, a−i) × {θ−i}|h))h∈H,a−i∈A−i (h),θ−i∈�−i
.

41 Despite this, the utility of terminal histories may depend on θ.



204 P. Battigalli, R. Corrao and M. Dufwenberg / Journal of Economic Behavior and Organization 167 (2019) 185–218
In words, the regret of player i at terminal history z given αi is equal to the difference between the maximum monetary

payoff he could have reached given the ex post belief σi,−i(z, αi) and the actual monetary payoff he received, i.e., π i,1(z). In

particular, the maximum is taken over all the feasible plans σ i ∈
i of player i.42 By definition, regret is non-negative.

The psychological utility of i at (z, θ, α) is

ui

(
z, θ,α
)

= πi,1(z) − fi(Rei[z, αi], θi).

Note that the definition of Rei cannot dispense with the given game form. Indeed, both the outcome function of i and

the feasible actions of players play a fundamental role establishing the extent of the regret of i. Finally, for all pairs (θ i,

β i) ∈�i ×�i,2, nonterminal histories h ∈ H, and actions ai ∈ Ai(h), we obtain that the decision utility of ai given (θ i, β i) at

h:

ūi,h(ai; θi, βi) = E[πi,1, αi|h, ai] − E[ fi(Rei[·, αi], θi), αi|h, ai]

(with αi = margi(βi)). Note that we assumed no distortion here, and that—by definition—regret does not depend on σ̂i(αi).

Therefore ui satisfies own-plan independence.

It also makes sense to consider players that are concerned with others’ regret (e.g., parents may dislike regret of their

children). For example, let �i =∏ j∈I �i, j, where, for every j ∈ I, θ i,j ∈�i,j represents the intensity of i’s concern for j’s regret.

In this case ui is defined as

ui

(
z, θ,α
)

= πi,1(z) −
∑
j∈I

fi

(
Re j

[
z, α j

]
, θi, j

)
and the resulting decision utility at any h ∈ H is defined by

ūi,h(ai; θi, βi) = E[πi,1, αi|h, ai] −
∑
j∈I

E
[

fi

(
Re j[·], θi, j

)
, βi|h, ai

]
(with αi = margi(βi)). This is a belief-dependent form of other-regarding preferences and decision utility crucially depends

on second-order beliefs.

One-period frustration and anger. Following BD&S, we assume for simplicity that the experience utility of each player i

coincides with his monetary payoff: ui

(
z, θ,α
)

= πi,1(z). The frustration of i at any nonterminal history h ∈ H given αi is

the gap, if positive, between the payoff i expected at the beginning of the game and the maximum achievable expected

payoff given h:

Fi[h, αi] :=
[

E[πi,1, αi|∅] − max
ai∈Ai(h)

E[πi,1, αi|h, ai]

]+
. (9)

Note that in the first stage, hence conditional on the empty history h = ∅, frustration Fi[h, αi] is null. Indeed, Eq. (9) implies

that negative surprise is a necessary (although not sufficient) condition for frustration, and players cannot be surprised at

the beginning of the game. Thus, frustration can affect behavior only in games with at least two stages. Next, we define the

simple anger distortion function of i at h ∈ H as

di,h

(
z, θ,α
)

= −θiFi[h, αi]
∑

j∈I\{i}
π j,1(z)

for every (z, θ, α) ∈ Z ×�×�1. With this, the decision utility of action ai ∈ Ai(h) at h ∈ H, given (θ i, β i) is defined by

ūi,h(ai; θi, βi) = E[πi,1, αi|h, ai] + E
[
di,h, αi|h, ai

]
.

The action tendency of players affected by simple anger is to increase the aggregate harm that can be inflicted on co-

players, if not too costly. BD&S consider more nuanced versions of anger where aggression is only directed to blameworthy

co-players.43 With more than two stages, this model corresponds to the “fast play” version of the multistage setting in BD&S,

interpretable as a one-period game. The key issue is that, in one-period games, the beliefs that determine the reference point

are those held at the beginning of the game.

6.3. Multiperiod p-games

Now we extend the analysis to an arbitrary horizon T ∈ N∪{∞}. In Section 4 we put forward a representation of game-

independent preferences over streams of outcomes and realized beliefs by an additive discounted aggregation of a stream

of one-period utilities. Given a multi-period game form, this yields belief-dependent intertemporal (experience) utilities of

paths:
42 By standard arguments, for every maximizer σ ∗
i
, every deterministic (pure) plan in the “support” of σ ∗

i
is also a maximizer.

43 In leader-follower games, simple anger is equivalent to anger from blaming behavior. See BD&S.
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ui : Z × � × �1 → R,(
z, θ,α
)

�→
T (z)∑
t=1

γ t−1
i

vt
i

(
θ,πt
(
z, θ
)
,ψt
(
z, θ,α
))

, (10)

where γ i ∈ (0, 1) is the discount factor,44 and the (πt, ψt) functions give the t -period streams of material outcomes and

beliefs.45

As in the one-period case, game-dependent psychological motivations can be captured by the reduced-form experience

utility of Eq. (10), which is similar to the (first-order) belief-dependent utility of B&D. We now take the profile of utility

functions (ui)i ∈ I as given. Similarly, for the sake of simplicity, we do not specify a particular form (e.g., additively separable)

for the distortion functions and just posit a profile
(
di,h : Z × � × �1 → R

)
h∈H

. From this, as before we obtain, for each

player i ∈ I, the decision utility functions
(
ūi,h : Ai(h) × �i × �i,2 → R

)
h∈H

which yield “local” best reply correspondences(
ri,h : �i × �i,2 ⇒ Ai(h)

)
h∈H

as in the one-period case.

The models of, e.g., anxiety avoidance (Caplin and Leahy, 2001), suspense and surprise (Ely et al., 2015), and guilt aversion

in a repeated game (Attanasi et al., 2018) fit this setup. The following example provides an illustration with game-dependent

preferences and also allows for a comparison between multiperiod games and one-period multistage games.

Multiperiod frustration and anger. First, consider the simpler case with a unique stage for every period (i.e., L = 1). In this

case, stages and periods coincide. Similarly to the one-period case, suppose that one-period experience utility coincides with

the monetary payoff. Fix t ∈ T, and consider histories ht−1, ht ∈ H with ht−1 ≺ ht .46 Recall that there can be no frustration in

the first stage (hence, period). Building on the one-period case, we model the flow of frustration experienced in stage t + 1, as

the gap, if positive, between the present value of payoffs expected at the beginning of stage t—hence, conditional on ht−1—

and the maximum expected present value achievable in stage t + 1, given ht. Formally, let �i,t (z) =∑k≥t γ k−t
i

πi,k

(
hk(z)
)

denote the present value of payoffs from t given path z, then define

Fi,t+1

[
ht , αi

]
:=
[

E
[
�i,t , αi|ht−1

]
− max

ai∈Ai(ht )
E
[
�i,t , αi|ht , ai

]]+
. (11)

The flow of frustration experienced in stage t + 1 contributes to the stock of frustration experienced in the previous t stages,

but the effect of frustration in early stages fades exponentially according to decay factor δi ∈ [0, 1) (cooling-off effect). For-

mally, the stock of frustration experienced at the beginning of stage t + 1 is

Ft+1
i

[
ht , αi

]
:= Fi,t+1

[
ht , αi

]
+

t∑
k=2

δt−k+1
i

Fi,k

[
hk−1, αi

]
,

where, for each k ≤ t − 1, hk denotes the unique prefix of ht of length k. The stock of frustration cumulated in the first t

stages affects the decision of i in t + 1 given ht through the (simple anger) distortion function

di,ht

(
z, θ,α
)

:= −θiF
t+1
i

[
ht , αi

] ∑
j∈I\{i}

� j,t+1(z).

With this, the decision utility given ht of any action ai ∈ Ai

(
ht
)

is

ūi,ht (ai; θi, βi) := E
[
�i,t+1, αi|ht , ai

]
+ E
[
di,ht , αi|ht , ai

]
.

If we consider the case of full decay of past frustration (i.e., δi = 0), we obtain the “slow play” version of the multistage

setting in BD&S.47

To extend the model for the multistage case (L > 1), define the flow of frustration experienced at the beginning of stage

� + 1 ∈ {1, . . . , L} of period t given history ht−1,� as48

Fi,�+1,t

[
ht−1,�, αi

]
:=
[

E
[
�i,t , αi|ht−1

]
− max

ai∈Ai(ht−1,� )
E
[
�i,t , αi|ht−1,�, ai

]]+
,

while the stock of frustration is

F�+1,t
i

[
ht−1,�, αi

]
:= Fi,�+1,t

[
ht−1,�, αi

]
+

t−1∑
k=1

δt−k+1
i

Fi,L,k

[
hk, αi

]

44 If T < ∞ we may allow γi = 1 (no discounting).
45 See Section 5. To ease notation, we write πt(z, θ) instead of πt(ht(z), θ). We also let

(
μ0,μt
)

= ψt
(
z, θ,α
)

denote the on-path beliefs of the first t

periods, hence the first t + 1 dates.
46 Recall that, if t = 1, then ht−1 = ∅.
47 Note, however, that BD&S assume that payoffs are realized only at the end of the game.
48 Recall that ht−1,� =

(
ht−1, h�

t

)
is the concatenation of the (t − 1)-period history ht−1 with the within-period history h�

t , and that ht−1,0 = ht−1.
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where, for each k ≤ t − 1, hk denotes the k-period complete history that precedes ht−1,�. This formula is coherent with

our interpretation that, within period t, interaction takes place almost instantaneously and then players wait one unit of

time before moving on to period t + 1. Hence, there is no within-period accumulation of frustration, just a within period

accumulation of information that affects via updating players’ perception of goal obstruction. Frustration is only accumulated

across periods.

Section summary. Our definition of p-game consists of two main ingredients:

1. (trait- and) belief-dependent utilities of terminal histories ui : Z × � × �1 → R (i ∈ I), which we interpret as experience

utilities;

2. local (i.e., history-dependent) distortions di,h : Z × � × �1 → R (i ∈ I, h ∈ H), which help shape action tendencies.

According to our simplified assumptions, both depend on own and others’ first-order beliefs. Overall action tendencies are

represented by local decision utilities ūi,h : Ai(h) × �i × �i,2 → R (i ∈ I, h ∈ H) obtained as the summation of the conditional

expectation of the experience utility and distortion for each action, given the player’s personal traits and second-order be-

liefs. The first ingredient, experience utility, may be derived from game-independent psy-utilities as per Eq. (10), or defined

directly on the game form, relying on its causal structure.

This allows us to provide a potentially useful classification of p-games according to the belief-dependent motivations

they encode. We already discussed game-independence. Other interesting special cases obtain when distortions are absent

(di,h ≡ 0) and all that matters is the anticipation of psychological states (which in turn may depend on anticipatory feelings),

or the polar case when experience utility does not depend on beliefs and the latter only affect action tendencies via dis-

tortions (that is, ui: Z ×�→ R). We call the former case “mere anticipation” and the latter “mere action tendencies.” With

mere anticipation, preferences may satisfy own-plan independence (OPI) with the ensuing dynamic consistency properties.

To illustrate, we present a non-exhaustive classification of some models.

Game-independent Game-dependent

Mere anticipation, no OPI
Exp. − based re f . − dependence

Anxiety and suspense

Mere anticipation, OPI
Guilt aversion

Intrinsic reputation
Regret avoidance

Mere action tendencies —
Frustration and anger

Reciprocity

7. Solution concepts

In this section, we start with the formal definition of rationality of player i given his personal features (θ i, αi) ∈�i ×�i,1

and his second-order belief β i ∈�i,2. This is a conjunction of coherence conditions concerning the triple (z, θ i, β i). Specifically,

the plan of i, uniquely derived from his belief β i must give positive probability only to actions that maximize the “local”

decision-utility functions ūi,h(·, θi, βi) (rational planning, RP) and it must agree with the actual actions played by i on path

z (material consistency, MC). Next, we introduce the concept of strong belief. Fix an event F ⊆ Z × �−i × �−i,1 (e.g., that i’s

co-players are rational). We say that i strongly believes F if his conditional second-order belief β i over Z × �−i × �−i,1 gives

probability 1 to F for each personal history hi ∈ Hi that does not contradict F. With this, we provide an algorithm, strong-

rationalizability, characterizing the relevant implications of the epistemic hypotheses of rationality and common strong belief

in rationality.49

We also consider (pure, psychological) self-confirming equilibrium (SCE), that is, a state at which every player best replies

to his beliefs and these are confirmed by what he observes. Note, in a SCE, players might well hold wrong beliefs con-

cerning co-players’ personal features or reactions to unchosen actions. SCE characterizes steady states of learning dynamics

in games played recurrently, but—unlike rationalizability—it does not capture any form of strategic reasoning. By adding

the confirmation property to strong rationalizability, we obtain rationalizable SCE.50 Finally, we give a novel definition of

Bayesian sequential equilibrium (BSE) for p-games, which generalizes and adapts the equilibrium concepts defined in Attanasi

et al. (2016) and BD&S.

7.1. Rationality

In what follows, we maintain the assumption of coherence of first- and second-order beliefs, that is, αi =margi(β i), an

obvious rationality condition (cf. Section 5.2). We now define all the other aspects of players’ rationality.

Definition 3. Player i ∈ I plans rationally given (θ i, β i) if, for every h ∈ H,

suppσ̂i(αi)(·|h) ⊆ ri,h(θi, βi), (12)
49 For applications of rationalizability to psychological games see Attanasi et al. (2013) and Battigalli et al. (2013a).
50 The term “self-confirming equilibrium” was coined in the seminal article of Fudenberg and Levine (1993). See the survey by Battigalli et al. (1992) and

the discussion in Battigalli et al. (2015) for references to the (rationalizable) SCE and related concepts.



P. Battigalli, R. Corrao and M. Dufwenberg / Journal of Economic Behavior and Organization 167 (2019) 185–218 207
where αi =margi(β i).

Rational planning (RP) is a coherence condition relating i’s plan to θ i and his beliefs about others. We can interpret it as

an intra-personal equilibrium (incentive compatibility) condition saying that planned actions maximize decision utility given

“rational expectations” about future own behavior. RP also applies to players whose preferences are dynamically inconsistent,

as long as players are sophisticated.51 The following RP correspondence of i associates each θ i with the beliefs of i satisfying

RP given θ i:

RPi : �i ⇒ �i,2,

θi �→
⋂
h∈H

{
βi ∈ �i,2 : σ̂i(αi)

(
ri,h(θi, βi)|h

)
= 1
}
.

Under own-plan independence (OPI, Definition 2), the standard properties of the subjective expected utility model hold

and rational plans are obtained by dynamic programming methods. More formally, expected experience utility can be ex-

pressed as a function of i’s plan and beliefs about co-players, denoted by βi,−i:

E[ui(·, θi, margi(βi)), βi|h] ≡ Uθi,h

(
σ̂i(margi(βi)), βi,−i

)
,

where Uθi,h
is a function of i’s behavior strategy (starting at h) and i’s beliefs about others.52

Remark 1. Under OPI, player i plans optimally given (θ i, β i) if and only if

E[ui(·, θi, margi(βi)), βi|h] = max
σi∈
i

Uθi,h(σi, βi,−i)

for every h ∈ H. Furthermore, for every h ∈ H, the maximum is also attained by every pure continuation strategy in the

“support” of σ̂i(margi(βi)) [that is,
∏

h′�hsuppσ̂i(margi(βi))
(
·|h′)].

In words, under OPI optimal planning is equivalent to sequential rationality. If instead OPI does not hold, such equivalence

fails. Furthermore, for given beliefs about others, it may be impossible to find deterministic plans satisfying RP, as the

following example due to BD&S shows (see also Section 6 in B&D).

Rational planning in the Ultimatum Minigame with Frustration and Anger. Consider the one-period Ultimatum Minigame

in Fig. 9 and assume that Bob is affected by frustration and anger. As shown in Fig. 10, Bob’s decision utility at history (Gr)

is

uB(aB, θB, βB) =
{

1 − 3θB[2αB(Fa|∅) + αB(Ac|Gr)(1 − αB(Fa|∅)) − 1]
+

i f aB = Ac,
0 i f aB = R j,

where αB =margB(βB) and αB(Ac|Gr) := σ̂B(αB)(Ac|Gr). Assume that θB = 1 and that Bob initially expects a fair offer with

probability 1/2. One can check that Bob has no deterministic plan satisfying RP. In particular, if he initially plans to Accept,

after the Greedy offer he wants to Reject because his initially expected payoff—hence his later frustration—is high enough

to induce an angry reaction. If instead he plans to Reject, after the offer he wants to Accept, because his initially expected

payoff—hence his later frustration—is too low. The only plan that satisfies the rationality condition is to accept with 2/3

probability (αB(Ac|Gr) = 2/3).

Next we move to consistency between plan and actual behavior.

Definition 4. Player i ∈ I is materially consistent (MC) at (z, θ i, αi) if, for all h ∈ H and ai ∈ Ai(h),

(h, ai) � z ⇒ σ̂i(αi)(ai|h) > 0.

MC of player i imposes a restriction on the pair (z, β i): for every personal history (h, ai) ∈ Hi preceding terminal history z,

the local plan at h derived from β i must assign positive probability to the actually chosen action ai. The MC correspondence

of i associates each belief (second-order CPS) β i with the set of paths z such that i satisfies MC given β i:

ZMC
i : �i,2 ⇒ Z,

βi �→
⋂
h∈H

⋂
ai∈Ai(h)

{z ∈ Z : (h, ai) � z ⇒ σ̂i(margi(βi))(ai|h) > 0}.

We can now define rationality of player i.

Definition 5. Player i ∈ I is rational at (z, θ i, β i) if he plans rationally given (θ i, β i) and is materially consistent at (z, θ i, β i),

that is, if

(z, θi, βi) ∈ Ri :=
{(

z′, θ ′
i , β

′
i

)
∈ Z × �i × �i,2 :

(
z′, β ′

i

)
∈ ZMC

i

(
β ′

i

)
× RPi

(
θ ′

i

)}
.

51 See the example on anger in the Ultimatum Minigame.
52 Such expression relies on the chain rule and OAI. We omit the details.
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Thus, player i is rational at (z, θ i, β i) if and only if (z, β i) is a fixed point of the following intra-personal equilibrium

correspondence

�θi
: Z × �i,2 ⇒ Z × �i,2,

(z, βi) �→ ZMC
i (βi) × RPi(θi).

Given this characterization of rationality, one can prove the existence of states in Z ×�i ×�i,2 at which i is rational by

fixed-point methods if ui is continuous.

7.2. Strong belief and restrictions of beliefs

The rationality concept defined in the previous section does not capture strategic thinking. We now proceed to model a

form of strategic thinking based on the assumption that each player keeps assuming that his co-players are rational (and

strategically sophisticated) as long as this is consistent with their observed behavior. This is a form of forward-induction

reasoning (cf. Battigalli and Siniscalchi, 2002). Such strategic reasoning helps players infer—to some extent—what other

players think from the rationalization of what they do. This is particularly important in p-games where players care about

the beliefs of others as they matter intrinsically, not just instrumentally, to predict the likely consequences of own actions

(cf. B&D). Forward induction is based on the notion of strong belief:

Definition 6. Fix a player i ∈ I and a second-order belief β i ∈�i,2. We say that β i strongly believes event F ⊆ Z × �−i × �−i,1

if, for every personal history hi ∈ Hi,

F ∩ [hi] 
= ∅ ⇒ βi(F |hi) = 1,

where [hi] := Z(hi) × �−i × �−i,1.

With this, we are able to express hypotheses about strategic thinking, such as the assumption that player i strongly

believes in the rationality of his co-players.

In applications, it is often the case that beliefs of some (or all) players are required to satisfy restrictions that are not de-

rived by strategic thinking. Such restrictions may depend parametrically on own personal traits. For example, we may want

to assume that each player thinks the personal traits of others are similar to his own. Our framework allows us to express

such restrictions. Formally, we consider a profile of nonempty compact-valued correspondences �̂ :=
(
�̂i : �i ⇒ �i,2

)
i∈I

such

that, for each player i ∈ I, �̂i associates each θ i with a corresponding set of second-order beliefs �̂i(θi) ⊆ �i,2. We say that

the belief of i satisfies restrictions �̂ at (z, θ i, β i) if βi ∈ �̂i(θi). These restrictions may represent commonly understood prob-

abilities of chance moves, or other assumptions suggested by the application at hand like, e.g., the symmetry assumptions

in the analysis of rationalizable deception under guilt aversion in Battigalli et al. (2013b).

7.3. Strong rationalizability

We can finally present the strong rationalizability algorithm. The procedure we propose entails an iterated elimination of

utility-relevant states. Importantly, this is not a procedure on observables since, for example, the profile of first-order beliefs

αi of player i cannot be directly observed.53 Nevertheless, in many experimental settings, it is possible to elicit the first-order

beliefs of players in order to verify the accuracy of the predictions provided by strong rationalizability.

Definition 7. Fix restrictions �̂ and consider the following procedure

(Step 0) Let P0

c,�̂
:= Z × �c; for every i ∈ I, let P0

i,�̂
:= Z × �i × �i,1 and P0

−i,�̂
:= Z × �−i × �−i,1;

(Step n > 0 ) Let Pn

c,�̂
:= Pn−1

c,�̂
= Z × �c; for every i ∈ I, Pn

i,�̂
is the set of triples (z, θ i, αi) ∈ Z ×�i ×�i,1 such that there

exists βi ∈ �̂i(θi) satisfying

1. Coherence: margi(βi) = αi;

2. Rationality: Player i is rational at (z, θ i, β i);

3. Strong belief: For every m ∈ {1, . . . , n − 1}, β i strongly believes Pm

−i,�̂
.

Moreover, let

Pn

−i,�̂
:=
⋂

j∈Ic\{i}

(
Pn

j,�̂
× �− j × �− j,1

)
and

Pn

�̂
:=
⋂(

Pn

i,�̂
× �−i × �−i,1

)
.

i∈Ic

53 Of course, it is always possible to consider the projection of the set of rationalizable states in Z ×�×�1 onto the space of observables.
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We say that player i is n-th order rational at (z, θ, α) if this triple survives the nth iteration of the above procedure, that

is, if
(
z, θ,α
)

∈ Pn

�̂
. It can be checked by inspection of the recursive definition that Pn

�̂
⊆ Pn−1

�̂
for every n ∈ N. Finally, we

define P∞
�̂

:= ⋂
n∈N

Pn

�̂
and say that (z, θ, α) is strongly �̂-rationalizable if

(
z, θ,α
)

∈ P∞
�̂

.

BC&S provide an epistemic justification for the algorithm of Definition 7. In particular, they show that, for every n ∈ N,

Pn

�̂
characterizes the utility-relevant implications of the epistemic hypotheses of rationality and n-mutual strong belief in

rationality given the restrictions �̂. Under own-plan independence of psy-utility (OPI), P∞
�̂

characterizes the utility-relevant

implications of rationality and common strong belief in rationality given the restrictions �̂ (for an illustration, see the

analysis of the Trust Minigame in Section 7.5). Furthermore, nonemptiness can be proved for a class of restrictions, given

OPI and continuous psy-utilities:54

Result 1. Suppose that the restrictions �̂ only concern beliefs about the co-players’ personal traits, OPI holds, and players’

experience utilities (ui, i ∈ I) are continuous in beliefs. Then, for every n ∈ N ∪ {∞}, Pn

�̂
is nonempty.

7.4. Self-confirming equilibrium (SCE)

To ease the exposition, in the present section we assume that there are no chance moves and that psy-utility is own-plan

independent. Consider now the following simplified situation. The same set of agents play the same one-period (possibly

multi-stage) game among themselves for a very large number of periods. Furthermore, these agents are very impatient;

therefore, they do not care about the impact of their current period behavior on the behavior and beliefs of their co-

players in future periods, that is, they just maximize their one-period expected utility. We want to study stable behavior

and beliefs. Stability obtains when updated beliefs and best-reply behavior converge to a limit and do not change any more.

Limit behavior is described by a path z of the one-period game. Assuming that players observe ex post the realized path, it

must be the case that in the limit they assign probability 1 to the actions played on path z. Thus, beliefs about the behavior

of others must be confirmed in the following sense.

Definition 8. Player i ∈ I has confirmed beliefs about others at (z, θ i, β i) if, for all h ∈ H and a−i ∈ A−i(h),

(h, a−i) � z ⇒ σ̂i,−i(αi)(a−i|h) = 1,

where αi =margi(β i).

Since we assumed that psy-utility satisfies OPI, we may also assume without essential loss of generality that players have

deterministic plans (see Section 7.1). Thus, we consider the following strengthening of the MC condition:

Definition 9. Player i ∈ I is deterministically materially consistent (DMC) at (z, θ i, β i) if, for all h ∈ H and ai ∈ Ai(h),

(h, ai) � z ⇒ σ̂i(αi)(ai|h) = 1,

where αi =margi(β i).

We can compactly express DMC and confirmed beliefs about others as follows:

Definition 10. Player i ∈ I has path-consistent beliefs at (z, θ i, β i) if, for all h ∈ H and a ∈ A(h),

(h, a) � z ⇒ σ̂i,I(αi)(a|h) = 1,

where αi =margi(β i).

We can now define (psychological) SCE (cf. Fudenberg and Levine, 1993).

Definition 11. Fix belief restrictions �̂. Triple (z, θ, α) is an SCE given �̂ if, for every i ∈ I, there exists βi ∈ �̂i(θi) such that

1. Coherence: margi(βi) = αi;

2. Rationality and path consistency: Player i is rational and path consistent at (z, θ i, β i).

It is clear that, whenever we let �̂i(θi) = �i,2 for all i ∈ I and θ i ∈�i, then we get a “restriction-free” definition of SCE.

Note that the foregoing equilibrium concept does not capture endogenous restrictions of beliefs derived from strategic

reasoning. Indeed, we can make sense of this definition even if we do not assume that players’ parameterized utility func-

tions are commonly known. Suppose now that the parameterized utility functions are commonly known (i.e., it is common

knowledge how θ maps to belief-dependent preferences). Then, it makes sense to define a refinement of self-confirming

equilibrium that takes into account strategic reasoning based on such common knowledge (cf. Battigalli and Guaitoli, 1997;

Rubinstein and Wolinsky, 1994).
54 On p-games, see also BC&S and Section 5 in B&D. There are also other notions of rationalizability for dynamic games with different epistemic justi-

fications. For example, Perea (2014) shows that common belief in future rationality yields a notion of “backward rationalizability” (see also Battigalli and

De Vito, 2018), and Ben-Porath (1997) shows that common initial belief in rationality justifies a much weaker notion of rationalizability (see also Battigalli

and Siniscalchi, 1999).
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Definition 12. Fix restrictions �̂ and consider the following procedure

(Step 0) For every i ∈ I, let Q0

i,�̂
:= Z × �i × �i,1 and Q0

−i,�̂
:= Z × �−i × �−i,1;

(Step n > 0 ) For every i ∈ I, Qn

i,�̂
⊆ Z × �i × �i,1 is the set of triples (z, θ i, αi) such that there exists βi ∈ �̂i(θi) satisfying

1. Coherence: margi(βi) = αi;

2. Rationality and path consistency: Player i is rational and path consistent at (z, θ i, β i);

3. Strong belief: For every m ∈ {1, . . . , n − 1}, β i strongly believes Qm

−i,�̂
.

Moreover, let

Qn

−i,�̂
:=
⋂

j∈I\{i}

(
Qn

j,�̂
× �− j × �− j,1

)
,

Qn

�̂
:=
⋂
i∈I

(
Qn

i,�̂
× �−i × �−i,1

)
,

and Q∞
�̂

:= ⋂
n∈N

Qn

�̂
. We say that (z, θ, α) ∈ Z ×�×�1 is a strongly �̂-rationalizable SCE if and only if

(
z, θ,α
)

∈ Q∞
�̂

.

As in the case of strong rationalizability, we can provide an epistemic foundation for the algorithm of Definition 12.55

Since we are considering a “pure” version of SCE without actual randomization, we cannot give general existence conditions.

7.5. Examples about solution concepts with foundations

We analyze two psychological games—the Trust Minigame with simple Guilt and the Ultimatum Minigame with Simple

Anger—through the solution concepts presented above. Let us emphasize that these are just numerical examples illustrating

the solution concepts. In particular, the behavioral implications crucially depend on the assumed restrictions on beliefs about

traits.

Trust Minigame with simple guilt. Consider the psychological game in Fig. 5 and let �B =
{
θ, θ̄
}
, with θ < 1, θ̄ > 2. Since

Ann is commonly known to be selfish, �A = {0}, and we omit θA from the notation. We assume no belief restriction for

Bob, whereas Ann is assumed to believe that the high-guilt type of Bob is more likely than the low-guilt type:

�̂A =
{
βA ∈ �A,2 : marg�B

βA

({
θ̄
}|∅) ≥ 1

2
+ ε
}
, (13)

where 0 <ε < 1/2 is a fixed parameter. Recall that Z = {(Out), (In, Sh), (In, Tk)}. We use the same abbreviations of Section 2,

such as αSh
A

= αA({Sh}|In) = αA({Sh} × �B|In), and DA for Ann’s (belief-dependent) disappointment at (In, Tk). We analyze

this game with strong rationalizability and SCE.

Strong rationalizability. The first three iterations of strong �̂-rationalizability give the key predictions:

1. The first iteration of the algorithm in Definition 7 deletes the utility-relevant states that violate rationality, or the belief

restrictions. Focusing on Ann, since she maximizes her expected material payoff, (z, αA) ∈ P1

A,�̂
iff (if and only if) restric-

tion (13) holds, and either αSh
A

< 1/2 with z = (Out) and αIn
A

= 0, or αSh
A

> 1/2 with z ∈ {(In, Sh), (In, Tk)} and αIn
A

= 1, or

αSh
A

= 1/2 (and material consistency holds). In particular, In is consistent with Ann’s rationality and belief restrictions,

and ((In, aB), αA) ∈ P1

A,�̂
for some aB ∈ {Sh, Tk} only if E[πA, αA|∅] ≥ 1. Also, the low-guilt type of Bob wants to Take:

((In, aB), θ , αB) ∈ P1

A,�̂
only if aB = Tk, αSh

B
= 0.

2. Since Bob strongly believes P1

A,�̂
, which is consistent with In, (z, θB, αB) ∈ P2

B,�̂
only if there is some βB inducing αB such

that βB(E[πA, α̃A|∅] ≥ 1|In) = 1. This implies E[DA, βB|In] ≥ 1. Guilt aversion (Eq. (1)) implies that Bob wants to Share

(resp. Take) if θB = θ̄ (resp. θB = θ ).

3. Since Ann strongly believes P2

B,�̂
, αSh

A
=marg�B

βA

(
θ̄ |∅), that is, she believes that Bob would Share iff θB = θ̄ . Thus, belief

restriction (13) implies that αSh
A

> 1/2 and Ann wants to go In: (z, αA) ∈ P3

A,�̂
only if z = (In, aB) (aB ∈ {Sh, Tk}) and αIn

A
=

1.

SCE. There are two cases:

• If Bob has low guilt aversion (θB = θ ), only path (Out) is consistent with SCE, because a low-guilt Bob would Take if given

the opportunity. In particular, all triples (Out, θ , α) with αA ∈ �̂A, αSh
A

≤ 1/2, αSh
B

= 0, and αIn
A

= αIn
B

= 0 are part of an

SCE, where the last two equalities follow from path consistency.
55 The formal result and proof (which relies on own-plan independence) are available upon request.
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• If Bob is highly guilt averse (θB = θ̄ ), then both paths (Out) and (In, Sh) are consistent with SCE. Bob’s best reply depends

on his conditional belief βB( · |In), which is not pinned down by the SCE conditions. Thus, all triples
(
(In, Sh), θ̄ ,α

)
with

αA ∈ �̂A, αIn
A

= αIn
B

= 1, and αSh
A

= αSh
B

= 1, and αIn
A

= αIn
B

= 0 (by path consistency) are SCE’s. Path (In, Tk) instead is

inconsistent with SCE: for every triple ((In, Tk), θB, α), if path consistency holds, then αIn
A

= 1, αSh
A

= 0 and Ann cannot

be rational.

With the given belief restrictions (Ann believes that θ̄ is more likely than θ ), there is no strongly �̂-rationalizable SCE

if Bob has low guilt aversion. Indeed, a forward-induction argument similar to the one given for �̂-rationalizability implies

that Ann goes In, but then Bob Takes and Ann’s beliefs cannot be confirmed (path consistency is violated). Only
(
(In, Sh), θ̄

)
is consistent with strongly �̂-rationalizable SCE.

Ultimatum Minigame with simple anger. Consider the psychological game in Fig. 5 and let �B = {0, 1}. As noted by BD&S,

since Ann is a first mover she cannot feel frustrated and her anger trait is irrelevant (see Section 6.2). Hence, we do not

consider θA. We assume no belief restriction for Bob, whereas Ann is assumed to believe that the probability of high-anger

type of Bob is less than 1/3:

�̂A =
{
βA ∈ �A,2 : marg�B

βA({1}|∅) ≤ 1

3
− ε
}
,

where 0 <ε < 1/3 is a fixed parameter. Recall that Z = {(Fa), (Gr, Ac), (Gr, R j)}. We use the same abbreviations of Section 2,

such as αAc
A

= αA(Ac|Gr).

Strong rationalizability.

1. Focusing on Ann, since she maximizes her expected material payoff, (z, αA) ∈ P1

A,�̂
iff either αAc

A
< 2/3 with z = (Fa) and

αGr
A

= 0, or αAc
A

> 2/3 with z ∈ {(Gr, Ac), (Gr, Rj)} and αGr
A

= 1, or αAc
A

= 2/3 (and material consistency holds). In particular,

Gr is consistent with Ann’s rationality and ((Gr, aB), αA) ∈ P1

A,�̂
for some aB ∈ {Ac, Rj} only if E[πA, αA|∅] ≥ 1. Conditional

on Gr, when unaffected by anger (i.e., θB = 0), Bob wants to Accept. When prone to anger (θB = 1) Bob’s rational plan

depends on his belief αFa
B

:

α̂Ac
B

(
αFa

B

)
=

⎧⎨⎩
1 i f αFa

B ≤ 1
3

4
3 −2αFa

B

1−αFa
B

i f αFa
B ∈
(

1
3
, 2

3

)
0 i f αFa

B ≥ 2
3

where, for every αFa
B

∈ [0, 1], α̂Ac
B

(
αFa

B

)
denotes the probability to Accept prescribed by Bob’s optimal plan given αFa

B
.

Therefore, ((Gr, aB), 1, αB) ∈ P1

B,�̂
iff αFa

B
< 2/3 with aB = Ac and αAc

B
= min

{(
4
3 − 2αFa

B

)
/
(
1 − αFa

B

)
, 1
}
, or αFa

B
> 1/3 with

aB = R j and αAc
B

= max
{(

4
3 − 2αFa

B

)
/
(
1 − αFa

B

)
, 0
}
, or αFa

B
= 2/3 (and material consistency holds).

2. Since P1

A,�̂
allows for both offers by Ann, Bob’s strong belief in P1

A,�̂
does not yield new relevant implications for Bob’s

beliefs and behavior. Instead, Ann’s belief in Bob’s rationality, and the assumption (belief restrictions) that she assigns

low probability to the high-anger type imply that she makes the Greedy offer: (z, αA) ∈ P2

A,�̂
only if z = (Gr, aB) (aB ∈ {Ac,

Rj}), αAc
A

≥ 2/3 + ε, and αGr
A

= 1.

3. Bob’s belief in P2

A,�̂
implies that he expects the greedy offer and is not frustrated by it. Thus, he Accepts even if prone to

anger: ((Gr, aB), 1, αB) ∈ P3

B,�̂
only if aB = Ac, αFa

B
= 0, αAc

B
= 1.

SCE.

• Path (Fa) is always consistent with SCE. Indeed, whenever αAc
A

≤ 2/3, rationality implies that Ann makes the Fair offer.

With this, Ann and Bob’s conjectures will never be falsified.

• Path (Gr, Ac) is always consistent with SCE. Indeed, in this case path consistency implies

αGr
A = αGr

B = αAc
B = αAc

A = 1.

Therefore, both Ann and Bob also satisfy rational planning. Indeed, expecting the Greedy offer with probability 1, Bob is

never frustrated, regardless of his personal trait. Path (Gr, Rj) is inconsistent with SCE because path consistency contra-

dicts rationality. Note that behavioral implications of SCE are not affected by anger traits and belief restrictions.

In this example, strongly �̂-rationalizable SCE works pretty much like strong �̂-rationalizability.

The following table summarizes the main predictions of the solution concepts in the two p-games, which of course

depend on the assumed restrictions on beliefs.

str. �̂-rationalizability �̂-SCE str. �̂-rationalizable SCE

TmG with Guilt

�̂ : αA

(
θ̄
)
≥ 1

2
+ε

(In, Sh) if θB= θ̄

(In, Tk) if θB=θ
(Out) or (In, Sh) if θB= θ̄

(Out) if θB=θ

(In, Sh) if θB= θ̄

∅ (� �̂-rat. SCE) if θB=θ

UmG with Anger

�̂ : αA(θB = 1)≤ 1
3
−ε

(Gr, Ac) (Fa) or (Gr, Ac) (Gr, Ac)



212 P. Battigalli, R. Corrao and M. Dufwenberg / Journal of Economic Behavior and Organization 167 (2019) 185–218
7.6. Bayesian sequential equilibrium (BSE)

Rationalizability and (rationalizable) SCE are non-standard solution concepts with a rigorous epistemic or learning foun-

dation. Now we move on to an extension for p-games of a solution concept with no deep foundation (to the best of our

knowledge), but with tradition on its side: K&W’s sequential equilibrium (SE), a slight coarsening of Selten (1975) trembling-

hand perfect equilibrium concept. We will argue that earlier extensions to p-games of traditional equilibrium concepts are

special cases of the solution concept proposed here, called Bayesian SE, or BSE. The advantage of this perspective in PGT is

that it yields the hierarchies of beliefs that PGT takes as arguments of the utility functions.

To simplify the exposition, here we assume that �c is a singleton, i.e., there is distributed knowledge of θ. Thus, we can

neglect the chance player c and write � =∏i∈I �i. We further simplify by neglecting the role of time: we assume that we

have a one-period multistage game. Both assumptions can be removed by increasing notational complexity.

Harsanyi’s Bayesian equilibrium and belief hierarchies. Our analysis is based on Harsanyi (1967) seminal work on games with

incomplete information, which we have to review. Let �◦(X) denote the set of full-support probability measures over a finite

set X. Harsanyi defined and analyzed equilibria of games with incomplete information starting with the following ingredi-

ents: a game form and a profile of parametrized (non-psychological) utility functions (ui : Z × � → R)i∈I . Recognizing that

beliefs about � and beliefs about beliefs are both essential for equilibrium analysis, he proposed to add to such ingredients

a �-based type structure

〈I, (�i, Ei, ηi)i∈I〉
that provides an implicit representation of hierarchical beliefs about �. Specifically, for player i ∈ I, Ei is a finite (nonempty)

set of epistemic types, and Ti := �i × Ei denotes i’s set of types à la Harsanyi. The (finite) set of profiles of types is T :=∏
i∈I �i × Ei, and each player i ∈ I is endowed with a strictly positive exogenous prior belief ηi ∈ �◦(T ).56 Similarly, we denote

with T−i :=∏ j∈I\{i} � j × E j the (finite) set of profiles of types of player i’s co-players.

The prior ηi may be interpreted as the belief about exogenous unknowns held by i in a hypothetical ex ante stage in

which he does not yet know his type;57 but there is no need to give an independent meaning to ηi, it is just a conveniently

compact way to encode— via conditioning—the exogenous belief of each type τi = (θi, εi) about the types of other players.

Thus, for each i ∈ I, we derive a belief map

ϕi : Ti → �◦(T−i),

τi �→ ηi(τi, ·)
ηi({τi} × T−i)

.

It follows that, each type τ i is associated with a coherent hierarchy of exogenous beliefs. To explain it rigorously, we

first introduce preliminary notation. Fix a function ϕ : X → Y, where X and Y are, so far, abstract sets. Then, every finite-

support probability measure μ on X induces a corresponding finite-support probability measure on Y, denoted by μ ◦ ϕ−1,

according to the following pushforward formula:58(
μ ◦ ϕ−1

)
(E) := μ

(
ϕ−1(E)

)
=

∑
y∈E∩ϕ(suppμ)

μ
(
ϕ−1(y)

)
.

The hierarchy of exogenous beliefs of type τ i is a sequence

ϕ∞
i (τi) = (ϕi,n(τi))

∞
n=1,

where the exogenous first-order belief is

ϕi,1(τi) = marg�−i
ϕi(τi) ∈ �(�−i).

With this, for each i ∈ I, we can define the auxiliary map

ϕ̄−i,1 : T−i →
∏
j 
=i

� j × �
(
�− j

)
,(

θ−i,ε−i

)
�→
(
θ j, ϕ j,1

(
θ j, ε j

))
j 
=i

associating each profile of co-players’ types with the corresponding profile of personal traits and first-order beliefs. Then,

the exogenous second-order belief of each type τ i is

ϕi,2(τi) = ϕ(τi) ◦ ϕ̄−1
−i,1

∈ �

(∏
j 
=i

� j × �
(
�− j

))
.

56 The assumption that the prior is strictly positive (ηi(τ) > 0 for each τ ∈ T ) is made for simplicity.
57 We call exogenous any belief about exogenous unknowns, either unconditional, or conditional on exogenous events. Otherwise, a belief is called en-

dogenous.
58 The definition for arbitrary probability measures is similar, but it involves measure-theoretic technicalities.
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The second-order belief hierarchy ϕ2
i (τi) =

(
ϕi,1(τi), ϕi,2(τi)

)
is necessarily coherent, i.e.,

marg�−i
ϕi,2(τi) = ϕi,1(τi)

by construction. We can similarly derive all the finite hierarchies of exogenous beliefs

ϕn
i (τi) = (ϕi,1(τi), . . . , ϕi,n(τi))

as well as the infinite hierarchy ϕ∞
i (τi), and all these hierarchies are coherent by construction. Since we use only beliefs up

to the second order, we need not spell out the details.

Three observations are worth noting.

1. Harsanyi’s approach gives no guidance, or discipline, about the specification of the sets Ei of epistemic types and the

belief maps ϕi. For example, each set Ei could be a singleton, thus making beliefs depend (only) on personal traits. A

kind of polar case obtains when � is singleton, i.e., there is complete information, and yet multiple epistemic types, i.e.,

Ei has at least two elements for some i ∈ I. This makes Harsanyi’s approach at the same time baffling and very flexible.

We take advantage of its flexibility.

2. According to Harsanyi’s Bayesian equilibrium, a player’s behavior depends on his type according to a behavior map (de-

cision rule) ς i, and each type of each player behaves so as to maximize expected utility given his exogenous belief under

the (traditional) equilibrium assumption that he has a correct conjecture about the behavior maps ς−i. In particular, a

(pure) Bayesian equilibrium of a one-stage standard game is a profile (ςi : Ti → Ai)i∈I of (pure) behavior maps such that,

for all i ∈ I and (θi, εi) ∈ Ti,

ςi(θi, εi) ∈ arg max
ai∈Ai

E

[
ui

(
ai,ς−i

(
θ̃−i, ε̃−i

)
, θi, θ̃−i

)
, ϕi(θi, εi)

]
(the definition can be generalized to allow for randomized behavior maps, as shown below for p-games). The key obser-

vation here is that the profile of behavior maps ς = (ςi)i∈I yields a hierarchy of endogenous beliefs59

β∞
i (τi,ς) = (βi,n(τi))

∞
n=1

for each type τi ∈ Ti of each i ∈ I. To see this, for each i, define the auxiliary map

ς̄−i : T−i → A−i × �−i,(
θ−i,ε−i

)
�→
(
ς j

(
θ j, ε j

)
, θ j

)
j 
=i

.

Then, the first-order belief of each τ i about co-players’ traits and actions is

βi,1(τi,ς) = ϕi(τi) ◦ ς̄−1
−i

∈ �i,1 := �(A−i × �−i).

With this, we obtain, for each i, another auxiliary map:

ς̄−i,1 : T−i → A−i × �−i × �−i,1,(
θ−i,ε−i

)
�→
(
ς j

(
θ j, ε j

)
, θ j, β j,1

(
θ j, ε j,ς

))
j 
=i

and derive the second-order belief of each type τ i about the actions, traits, and first-order beliefs of the co-players as

follows:

βi,2(τi,ς) = ϕi(τi) ◦ ς̄−1
−i,1

∈ �i,2 := �(A−i × �−i × �−i,1).

Higher-order endogenous beliefs are derived in a similar way. Again, we omit the details because we do not use them,

and we henceforth revert to denoting first-order beliefs with α and second-order beliefs with β; thus,

αi(τi,ς) := βi,1(τi,ς) and βi(τi,ς) := βi,2(τi,ς).

Like the exogenous hierarchies, also the hierarchies of endogenous beliefs are coherent; in particular,

αi(τi,ς) = margA−i×�−i
βi(τi,ς).

3. With this construction and equilibrium concept, distinct types with the same exogenous hierarchical beliefs may behave

differently in equilibrium. For example, if there is complete information, � is a singleton (� =
{
θ̄
}

) and exogenous hier-

archies of beliefs are trivial: the first-order belief of each type
(
θ̄i, εi

)
∈
{
θ̄i

}
× Ei assigns probability 1 to θ̄−i, the second-

order belief assigns probability 1 to θ̄−i and the profile of such point beliefs of the co-players, and so on. Yet, there may

be multiple epistemic types for some players, and a Bayesian equilibrium may be different from a Nash equilibrium of

the complete-information game: indeed, it is a correlated equilibrium (Aumann, 1974) of the complete-information game.
59 Since here we consider beliefs of many orders, we let β i,n denote the generic belief of order n. In particular, we write β i,1 instead of αi for first-order

beliefs, and β i,2 instead of β i for second-order beliefs.
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Bayesian p-games and equilibria. Suppose we have a one-stage p-game with utilities that depends only on initial beliefs:

〈I, (Ai,�i, ui : A × � × �1 → R)i∈I〉,
where �i,1 = �(A × �−i) and �1 =∏i∈I �i,1. If we append to this game a �-based type structure 〈I, (�i, Ei, ηi)i∈I〉, we

obtain a (static) Bayesian p-game. The PGT version of the traditional equilibrium concept for such game does not have

to be defined in a special—or ad hoc—way, we just have to take the Bayesian equilibrium concept “off the shelves,”

keeping in mind that any profile of behavior maps yields a belief hierarchy for each type of each player. To allow for

non-deterministic plans, we consider randomized behavior maps associating each Harsanyi type τ i with a mixed action

ςi(τi) = (ςi(τi)(ai))ai∈Ai
∈ �(Ai). Exogenous beliefs are then combined with a given profile ς = (ςi : Ti → �(Ai))i∈I of ran-

domized behavior maps to obtain the hierarchical endogenous beliefs of each type by means of a generalized pushforward

formula. In particular, the first-order belief of any Harsanyi type τ i is:

αi(τi,ς)
(
ai, a−i, θ−i

)
= ςi(τi)(ai) ×

( ∑
ε−i∈E−i

ϕi(τi)
(
θ−i, ε−i

) ∏
j∈I\{i}

ς j

(
θ j, ε j

)(
aj

))
(14)

for all ai ∈ Ai, a−i ∈ A−i, θ−i ∈ �−i. With this, ς is a (randomized) Bayesian equilibrium if, for every i ∈ I and (θi, εi) ∈ Ti,

suppςi(θi, εi) ⊆ arg max
ai∈Ai

E

[
ui

(
ai,ς−i

(
θ̃−i, ε̃−i

)
, θi, θ̃−i, αi(θi, εi,ς),α−i

(
θ̃−i, ε̃−i,ς

))
, ϕi(θi, εi)

]
.

Remark 2. Under complete information, when we consider the special case in which there is only one epistemic type for

each player, we obtain the psychological Nash equilibrium of GP&S.

If instead, we allow for multiple epistemic types, we introduce uncertainty about the beliefs of other players (including

their plans). Thus, as noticed by Attanasi et al. (2016, Section 3), the Bayesian equilibrium concept allows to reconcile uncer-

tainty about co-players’ beliefs with traditional equilibrium analysis, whereas such uncertainty is notably absent from the

extensions of traditional complete-information concepts to PGT of GP&S and B&D.

Let us now move on to dynamic games, the main object of our analysis. When we append a �-based type structure to a

multistage p-game, we obtain a Bayesian multistage p-game. In this case, a (randomized) equilibrium is given by a profile

ς = (ςi : Ti → 
i)i∈I ∈
∏
i∈I


Ti

i

of behavior strategy maps. In words, each map ςi ∈ 

Ti
i

associates each type τ i of player i with a behavior strategy, that is

ςi(τi) = (ςi(·|h; τi))h∈H ∈ 
i =
∏
h∈H

�(Ai(h)).

A behavior map ς i for i is strictly positive whenever each mixed action ς i( · |h; τ i) has full support, that is,

ςi(Ti) ⊆ 
i
◦ :=
∏
h∈H

�◦(Ai(h)).

A profile of behavior strategy maps ς = (ςi)i∈I is strictly positive whenever ς i is strictly positive for each i ∈ I. The space

of strictly positive behavior strategy maps for i is denoted by [
i
◦]

Ti , while the set of profiles of such maps is denoted by∏
j∈I

[

 j

◦]T j .

Given (ϕi)i ∈ I (exogenous) and (ς i)i ∈ I (endogenous), if (ς i)i ∈ I is strictly positive then, for every i ∈ I, it is possible to derive

first- and second-order CPSs for each Harsanyi type τi = (θi, εi), respectively denoted by αi(τ i, ς) and β i(τ i, ς), by means

of Bayesian updating and a multistage extension of Eq. (14) (we omit the details). Formally, fix a strictly positive profile ς =
(ς i)i ∈ I. There exists a first-order belief map αi(ς) : Ti → �i,1, which associates each type τ i with a corresponding first-order

CPS αi(τi,ς) = (αi(τi,ς)(·|hi))hi∈Hi
∈ �i,1. Given the profile of first-order belief maps

(
αi(ς) : Ti → �i,1

)
i∈I

, for each i ∈ I, we

can derive the second-order belief map βi(ς) : Ti → �i,2. By construction, αi(ς) is the marginal of β i(ς).

A profile of behavior and second-order belief maps(
ς,β
)

=
(
(ςi(τi), βi(τi))τi∈Ti

)
i∈I

∈
∏
i∈I

(
i × �i,2)
Ti

is called an assessment. The following definition adapts K&W’s SE concept to assessments in Bayesian multistage p-games.

Their sequential rationality condition is replaced by rational planning, which is equivalent to sequential rationality in stan-

dard games.60 Their consistency condition (essentially a very strong independence condition with a “trembling-hand” in-

terpretation) is here adapted to account for higher-order beliefs. This condition implies that observed deviations from the

equilibrium path are interpreted as unintentional moves and that they do not lead to the expectation of further deviations.

Definition 13. Assessment (ς, β) is a BSE of the Bayesian multistage p-game determined by �-based type structure

〈I, (�i, Ei, ηi) 〉 if
i∈I

60 Since utility functions in standard games are not belief-dependent, they necessarily satisfy own-plan independence, hence the equivalence. See

Section 7.1.
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1. Rational planning: For all i ∈ I and τi ∈ Ti,

∀h ∈ H, suppςi(·|h; τi) ⊆ ri,h(θi(τi), βi(τi));
2. K&W-consistency: there exists a sequence (ςn)n∈N of profiles of strictly positive behavior strategy maps converging to ς

and such that, for all i ∈ I and τi ∈ Ti,

βi(ςn)(τi) −→ βi(τi).

Unlike one-stage games, in Bayesian multistage p-games (conditional) beliefs cannot be directly derived from behavior

strategy maps because some histories are reached with probability 0 in equilibrium, i.e., they are off the equilibrium path.

This is not much different from the SE concept for standard games, where off-equilibrium-path beliefs about co-players’

types (or past actions, in games with imperfectly observable actions) are not pinned down by equilibrium strategies via

Bayes rule. For this reason, in both cases we look for equilibrium assessments rather than just equilibrium strategies. Yet,

the spirit of our previous observation still applies: Using the off-the-shelf Bayesian equilibrium concept allows to avoid defi-

nitions specifically tailored to p-games. Indeed, hierarchies of initial beliefs can be derived from the behavior strategy maps,

which settles the question when only initial beliefs enter in the utility functions (as assumed by GP&S). Furthermore, con-

ditional beliefs can be partially pinned down through an approximation by a sequence of strictly positive behavior strategy

maps. The following theorem shows that the BSE concept is not empty.

Result 2. Every Bayesian multistage p-game with continuous utility functions has at least one BSE.61

The most important feature of BSE is that it allows for non-trivial updating about the beliefs of others, including their plans;

hence, it allows for non-trivial updating of beliefs about intentions. This is true also under complete information, as long as the

type structure contains multiple epistemic types, as noted by BD&S for a special case of BSE (see point 4 of Remark 3). By

contrast, the earlier notions of SE for multistage games with complete information imply that players’ higher-order (point)

beliefs are correct and cannot change, on or off the equilibrium path (see GP&S, B&D, and BD&S). This implies that such

notions, unlike BSE, do not allow for non-trivial updating about co-players’ intentions. In the following set of remarks, we

call naive a type structure with only one epistemic type for each player (each Ei is a singleton); a type structure with only

one type for each player is called trivial. Thus, a type structure is trivial if it is naive and there is complete information, i.e.,

� is a singleton.

Remark 3. With a trivial type structure, �i,1 ⊆ �Hi (Z), and in each BSE players share the same first-order beliefs conditional

on each history h ∈ H.

Also, recall that we maintain the simplifying assumption of observable actions.

Result 3. BSE is equivalent to known solution concepts in special cases:

1. In standard Bayesian multistage games with complete information, if the type structure is naive—hence trivial—BSE is

equivalent to subgame perfect equilibrium (this, of course, relies on our maintained assumption of observable actions,

otherwise BSE would be a refinement of subgame perfection).

2. In standard Bayesian multistage games, BSE is equivalent to K&W’s SE.

3. In Bayesian multistage p-games with complete information, if the type structure is naive—hence trivial—BSE is equivalent

to the SE concept of BD&S.

4. In Bayesian multistage p-games with complete information, if the type structure is such that each players’ beliefs about

others are type-independent (hence, only his plan depends on his type) BSE is equivalent to the “polymorphic” SE con-

cept of BD&S.

Next we illustrate the SE concept obtained as a special case of BSE with a trivial type structure (see point 3 of Remark 3)

and show how it differs from the SE concept of GP&S and B&D.

SE in the Trust Minigame with guilt aversion and complete information. Consider the Trust Minigame with guilt aversion

depicted in Fig. 5, and assume that θB is common knowledge, i.e., there is complete information. We analyze BSEs when the

type structure is naive, hence trivial (because there is complete information). Since there is only one type for each player,

a BSE is just a profile (pair) of behavior strategies (σ A, σ B) and a corresponding profile of second-order beliefs (βA, βB).

Furthermore, the correct-conjectures condition implies that each player’s (first-order) belief about the co-player’s behavior

coincides with the co-player’s behavior strategy (Remark 3). Thus, in equilibrium, αIn
A

= αIn
B

and αSh
A

= αSh
B

. Of course, the set

of BSEs depends on the commonly known parameter θB. Neglecting knife-edge cases for simplicity, there are three possible

situations:

• Low guilt aversion: θB < 1. In this case, the best response of Bob is to Take, independently of βB. Therefore, Ann predicts

that Bob would Take if she trusts him and we obtain the pure equilibrium strategies (Out, Tk). The corresponding second-

order beliefs are degenerate. For example,

βB

([
z = Out, α̃In

A = α̃Sh
A = 0
]|∅) = 1,
61 This can be shown by adapting the proof of existence of sequential equilibria of B&D. See also BD&S.
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and so on.62 Therefore, E[DA, βB|∅] = 0.

• Intermediate guilt aversion: 1 <θB < 2. As explained in Section 7.5, if θB > 1, Bob’s best reply is to Share if E[DA,

βB|In] > 2/θB. Therefore, there are two pure BSEs, (i) (Out, Tk) with αIn
A

= 0, αSh
B

= 0 and, by correct conjectures,

E[DA, βB|In] = 1 < 2/θB, and (ii) (In, Sh) with αIn
A

= 1, αSh
B

= 1 and E[DA, βB|In] = 2 > 2/θB. Next, consider mixed equi-

libria in which Bob’s plan is not deterministic. The necessary indifference condition is E[DA, βB|In] = 2/θB. There are

three subcases. Note that the consistency condition holds.

• If αSh
B

= αSh
A

< 1/2 then Ann best responds with Out, that is, αIn
A

= 0. Since Bob is certain of Ann’s plan, we have

E[DA, βB|In] = 1 < 2/θB, which contradicts the indifference condition.

• If αSh
B

= αSh
A

= 1/2 then Ann is indifferent, that is, αIn
A

∈ [0, 1]. Since Bob is certain of Ann’s first-order belief, we have

again E[DA, βB|In] = 1 < 2/θB, which contradicts the indifference condition.

• If αSh
B

= αSh
A

> 1/2 then Ann’s best reply is In, that is, αIn
A

= 1. Given that Bob is certain of Ann’s first-order belief,

E[DA, βB|In] = 2αSh
B

> 1. Finally, the indifference condition gives αSh
B

= 1/θB ∈ (1/2, 1); hence, there is a mixed BSE

where Ann goes In and Bob Shares with probability 1/θB.

• High guilt aversion: θB > 2. In this case there is only one BSE, (In, Sh). To see this, note that Ann has the option of securing

a payoff of $1; hence, in equilibrium she must expect to get at least $1. Since Bob’s second-order beliefs are correct, he

is certain—both ex ante and upon observing In—that the disappointment caused by Take is at least 1. Hence, he wants to

Share if 2 > 4 − θB, that is, θB > 2, the case we are considering. Thus, Ann predicts that Bob would Share and chooses to

trust.

Note the difference with the equilibrium analysis of B&D, where (Out, Tk) is an equilibrium for every θB. Formally, B&D

consider a different psychological utility for Bob at terminal history (In, Tk). But the deeper reason is that B&D model

explicitly only players’ beliefs about co-players. As they acknowledge, they implicitly assume that players’ plans necessarily

coincide with their behavior, which implies that if Bob observes In he is certain that Ann planned to trust. But Bob’s second-

order belief about Ann’s initial expectation that he would Share is correct, hence the same at each node. This implies that,

if Bob is initially certain that Ann expects him to Take and nonetheless he observes In, he becomes certain that Ann expects

to get $0, hence he wants to Take.

8. Concluding remarks

Reciprocity, emotions, concerns for others’ opinions, and self-esteem are belief-dependent forms of motivation. Theoret-

ical modeling leads to p-games. In this contribution, we have shown how. Our aim has been to help scholars who wish to

do applied economics and to explore how those sentiments shape outcomes. We also scrutinized a variety of (old and new)

PGT solution concepts. We illustrated our approach starting from the Trust and the Ultimatum Minigames, two game forms

where the credibility of promises (Trust) and threats (Ultimatum) is crucial. We showed how belief-dependent motivations,

such as guilt aversion (Trust) and anger (Ultimatum) enhance the credibility of promises and threats.

Our approach is broad enough to address many concerns. Yet, there are themes we have not explored either to simplify

the analysis, or because there are some technical problems to address, or because there are conceptual problems to address.

We close this paper by listing some of these issues, left for future work.

More general game forms. We assumed for simplicity that the game form has finitely many perfectly observable actions, but

we can extend the analysis to games with imperfectly observable actions, and also allow, to some extent, for a continuum

of actions and personal traits.

Causal effects of beliefs. We analyzed how beliefs affect material outcomes (consequences) indirectly via belief-dependent

motivations (which drive agents’ behavior). Yet, beliefs may affect outcomes more directly via induced emotions, e.g., when

anxiety affects performance (e.g., Rauh and Seccia, 2006), or anger affects strength (Gneezy and Imas, 2014). On the one

hand, though we did not pursue the theme, such effects can be captured using the reduced-form psy-utility functions ui of

Section 6. On the other hand, our framework, as is, does not allow to represent the impact of (belief-dependent) emotions

on cognitive abilities, which is also acknowledged in the aforementioned papers.

SCE in population games and games with chance moves. Our simplified analysis of SCE excludes the objective randomness of

population games and more generally of games with chance moves. Applications often feature such randomness, which can

be accounted for by extending to p-games the “mixed” SCE concept of Fudenberg and Levine (1993).63

Signals about emotions. In face-to-face (or otherwise non-anonymous) interaction, agents observe signals, such as facial cues,

about personal traits (e.g., trait-anger) and emotions (e.g., state-anger) of others (see van Leeuwen et al., 2018). Our anal-

ysis can be extended to include such signals. This entails addressing technical issues concerning signals about continuous

variables.
62 Since equilibrium assessments are consistent, first-order beliefs can either be derived from the strategies, or from the second-order beliefs.
63 See also Battigalli et al. (1992) and Battigalli et al. (2019).
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Game-dependent preferences and personal traits. We emphasized a distinction between the belief-dependent preferences that

can be modeled without the game form and those that we can only model with reference to a game form. While we find

this distinction useful, we also think it reflects a limitation of our analysis and, to the best of our knowledge, of current PGT.

The issue with game-dependent preferences is that they involve key elements related to the causal structure of the decision

problem, like the value of the best unchosen alternative in the case of regret (see the illustrative example in Section 6),

and we recover them from the game form. Yet, preferences are personal traits presumably shaped in our evolutionary past.

Assuming that the archive of possible game forms is somehow encoded in our neural circuits stretches credulity. Thus,

there should be a way to describe such preferences without direct reference to game forms. This could perhaps be achieved

by introducing “interface variables” in the model, that is, variables that affect psychological states whose meaning we can

understand with no reference to a specific decision problem, but whose value is determined by the decision problem itself.

Again, the value of the best alternative in a model of regret may be an example.
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