

OPTIMAL TARGETED LOCKDOWNS IN A MULTI-GROUP SIR MODEL

ACEMOGLU + CHERNOZHUKOV + WERNING + WHINSTON (MIT) (MIT) (MIT& SLOAN)

Policy analysis for COVID-19...

Policy analysis for COVID-19...

Epi: herd immunity, effect of mitigation, timing, etc.

Policy analysis for COVID-19...

- **Epi:** herd immunity, effect of mitigation, timing, etc.
- **Econ:** costs of lockdowns, optimal policy, etc.

Policy analysis for COVID-19...

Epi: herd immunity, effect of mitigation, timing, etc.

- **Econ:** costs of lockdowns, optimal policy, etc.
- COVID-19: very asymmetric effects

Age Group	Mortality rate
20-49	0.001
50-64	0.01
65+	0.06

(Ferguson, 2020)

Policy analysis for COVID-19...

- **Epi:** herd immunity, effect of mitigation, timing, etc.
- **Econ:** costs of lockdowns, optimal policy, etc.
- COVID-19: very asymmetric effects

Age Group	Mortality rate
20-49	0.001
50-64	0.01
65+	0.06

(Ferguson, 2020)

This paper: simple multi-group model

explore optimal policy implications

- Multi-group SIR/SEIR model
 - Application: young, middle-aged and old (65+)
 - Calibrate to COVID-19
 - Optimal control, contrast...
 - targeting
 - no targeting (uniform)

FINDINGS

- Large gains from targeted policy
- Most gains from simple semi-targeted policies: treat 65+ group differentially
- Do <u>not</u> set zero lockdown for young immediately
- Testing important

IMPORTANT CAVEATS

We are not epidemiologists

- Model specification and parameters: very uncertain
- Our results: optimum can be sensitive to parameters

- Actual policy prescriptions: requires careful implementation tailored to situations on the ground
- We hope our analysis helps think about the bigger picture

We welcome comments and suggestions!

OUTLINE

- Model
- Calibration
- Main Results
- Robustness

MR-SIR MODEL

 $S_j(t) + \overline{I_j(t)} + R_j(t) + D_j(t) = \overline{N_j}$

 $S_{j}(t) + I_{j}(t) + R_{j}(t) + D_{j}(t) = N_{j}$ new infections in group $j = \beta S_{j} \sum_{k} \rho_{jk} I_{k}$

- ▶ j=1,2,...,J groups
- newly infected...
 - mild: $1 \iota_j$
 - ▶ severe ("ICU"): ι_j
- > all infected resolve at rate γ_j
 - mild: all recover
 - ICU: $\gamma_j = \delta_j^d(t) + \delta_j^r(t)$

- ▶ j=1,2,...,J groups
- newly infected...
 - mild: $1 \iota_j$
 - ▶ severe ("ICU"): ι_j
- > all infected resolve at rate γ_j
 - mild: all recover

► ICU:
$$\gamma_j = \delta_j^d(t) + \delta_j^r(t)$$

 $\delta_j^d(t) = \psi_j(H(t))$
 $H(t) = \sum_i \iota_j I_j(t)$

- Testing + Isolating
 - Non-ICU au_j
 - \blacktriangleright ICU ϕ_j
- Not isolated: $\eta_j \equiv 1 (\iota_j \phi_j + (1 \iota_j) \tau_j)$

- Recovered agents...
 - assumed immune
 - detected and separated κ_j (not locked down)

PRODUCTION AND LOCKDOWN

- ▶ Lockdown $L_j \in [0, \overline{L}_j]$
 - opportunity cost w_j
 - Effectiveness is imperfect: θ_j

Fraction interacting infections

$$1 - \theta_j L_j(t)$$

- Assume...
 - vaccine + cure arrives at some T
 - after this infections drop to zero and stay there

Extension: T stochastic

new infections in group $j = \beta(1 - \theta_j L_j) S_j \sum_k \rho_{jk} \eta_k (1 - \theta_k L_k) I_k$

new infections = βSI

 $S_j(t) + I_j(t) + R_j(t) + D_j(t) = N_j$

new infections in group $j = \beta(1 - \theta_j L_j) S_j \sum_k \rho_{jk} \eta_k (1 - \theta_k L_k) I_k$

Lives Lost =
$$\sum_{j} D_j(T)$$

Lives Lost =
$$\sum_{j} D_{j}(T)$$

Economic Losses = $\int_{0}^{T} \sum_{j} \Psi_{j}(t) dt$

 Ψ_{7}

Lives Lost =
$$\sum_{j} D_j(T)$$

Economic Losses = $\int_0^T \sum_{j} \Psi_j(t) dt$
 $f(t) = (1 - \xi_j) w_j S_j(t) L_j(t) + (1 - \xi_j) w_j I_j(t) (1 - \eta_k (1 - L_j(t)))$
 $+ (1 - \xi_j) w_j (1 - \kappa_j) R_j(t) L_j(t) + w_j \Delta_j \iota_j \delta_j^d(t) I_j(t)$

 Ψ

Lives Lost =
$$\sum_{j} D_j(T)$$

Economic Losses = $\int_0^T \sum_{j} \Psi_j(t) dt$
 $j(t) = (1 - \xi_j) w_j S_j(t) L_j(t) + (1 - \xi_j) w_j I_j(t) (1 - \eta_k (1 - L_j(t)))$
 $+ (1 - \xi_j) w_j (1 - \kappa_j) R_j(t) L_j(t) + w_j \Delta_j \iota_j \delta_j^d(t) I_j(t)$

 Ψ

$$\begin{aligned} \text{Lives Lost} &= \sum_{j} D_j(T) \\ \text{Economic Losses} &= \int_0^T \sum_{j} \Psi_j(t) \, dt \\ \mathbf{f}(t) &= (1 - \xi_j) w_j S_j(t) L_j(t) + (1 - \xi_j) w_j I_j(t) (1 - \eta_k (1 - L_j(t))) \\ &+ (1 - \xi_j) w_j (1 - \kappa_j) R_j(t) L_j(t) + w_j \Delta_j \iota_j \delta_j^d(t) I_j(t) \end{aligned}$$

Economic Losses + χ Lives Lost

GAINS FROM TRAGETING

- Better tailoring... (not subtle)
 raise lockdown for old
 + lower lockdown for young
- Targeted herd immunity... (more subtle) even just lower lockdown for young can protect old

GAINS FROM TRAGETING

- Better tailoring... (not subtle)
 raise lockdown for old
 + lower lockdown for young
- Targeted herd immunity... (more subtle) even just lower lockdown for young can protect old

QUESTIONS?

PARAMETER CALIBRATION

- Fatality rates...
 - Ferguson & South Korea

Age Group	Mortality rate
20-49	0.001
50-64	0.01
65+	0.06

- for us: age dependence more than levels
- Contagion rate $\beta = 0.134$ (Ro=2.4)
- Duration of disease $\gamma_j = 1/18$
- Interactions uniform: ho=1 (later calibrate contact matrix)
- Groups sizes and earnings...

$$N_y = 0.53, N_m = 0.26, N_o = 0.21$$

 $w_y = 1, w_m = 1, w_o = 0.26$

Hospital Capacity effects

$$\delta_j^d(t) = \underline{\delta}_j^d \cdot [1 + \lambda H(t)]$$

= $\underline{\delta}_j^d \cdot [1 + \widehat{\lambda} \sum_k \underline{\delta}_k^d I_k(t)]$

- calibrate $\hat{\lambda}$ so mortality is 10% higher when 10% infection rate
- Examine hard "ICU constraint" later

Low testing and isolation:

$$\eta_j = 0.9$$

Lockdowns...

• effectiveness $\theta_j = 0.75$

Maximums $\bar{L}_y = 0.7, \bar{L}_m = 0.7, \bar{L}_o = 1$

Immunity cards for recovered $\kappa_j = 1$

... but explore opposite case later

Cost of death: adjust economic cost for finite work time

- > young: 30 years $\Delta_y = 30 \times 365$
- middle: 7.5 years $\Delta_m = 7.5 \times 365$

- Vaccine baseline: T=1.5 years
- Also explore more optimistic cases

QUESTIONS?

RESULTS

Large gains for Semi-Targeting Small gains for Full-Targeting

Safety-Focused = 0.2% mortality

Large gains for Semi-Targeting Small gains for Full-Targeting

Large gains for Semi-Targeting Small gains for Full-Targeting Safety-Focused = 0.2% mortality

Economy-Focused = 10% output loss

Outcomes

0.3735

0.002

0.0001

0.0013

0.0076

400

Outcomes

0.1

0.0105

0.0007

0.0067

🗕 m - - 0

400

0.04

Economic Loss

Y Fatality Rate

M Fatality Rate

O Fatality Rate

200

Economic Loss

Y Fatality Rate

M Fatality Rate

O Fatality Rate

200

Adt. Pop. Fatalities

Adt. Pop. Fatalities

OPTIMAL SEMI TARGETED

Big Improvements vs. Uniform Policy

OPTIMAL FULLY TARGETED

Additional gains, but small: semi-targeting gets to most of it

SAFETY FIRST

Point on frontier with 0.05% adult mortality

4G MODEL

Split old into working and not working...

RECOVERED, NO IMMUNITY CARD

GROUP DISTANCING (RHO=0.7; BASELINE = 1)

Valuable especially with targeting! (matching technology matters here)

TESTING

TESTING + TRACING + GROUP DISTANCING

Silver Bullet?

EARLIER VACCINE/CURE

12 months

6 months

EARLIER VACCINE/CURE

12 months

6 months

ROBUSTNESS

- ICU hard constraint
- higher mortality: South Korea
- Iower transmission (e.g. masks)
- higher initial recovered
- Iower effective lockdowns
- alternative group distancing
- alternative value for old in lockdown
- alternative work from home

ICU HARD CONSTRAINT (INFECTIONS BELOW 2%)

ICU HARD CONSTRAINT (INFECTIONS BELOW 2%)

LOWER TRANSMISSION: R0=1.8 (BASELINE 2.4)

LESS EFFECTIVE LOCKDOWNS

$$\theta = 0.75 \quad \rightarrow \quad \theta = 0.5$$

CONTACT MATRIX CALIBRATION

BBC Pandemic Project (more recent than POLYMOD)

Lockdown Policy

1.0

0.150

Infection Rates

Outcomes 0.2696

0.002

0.0004

0.0027

0.0051

400

400

Outcomes

0.3769

0.002

0.0002

0.0014

0.0072

INTERACTIVE MR-SIR DASHBOARD

https://mr-sir.herokuapp.com/main

(link provided in our paper)

Optimal Policies Simple Policies Summary

This tab implements simple lockdown policies of the following form: a fraction of each group can be locked down for a set number of days, and the lockdown effectiveness varies across groups. We assume fraction .01 of the population is initially infected.

Lockdown Parameters

NEXT STEPS...

- Parameters: update as better information
- Testing: capacity issues and build up over time

- Operationalize...
 - How to better isolate elderly?
 - Corp of workers: immune or isolated

Our results today: targeted lockdown policies very beneficial

BEHAVIORAL RESPONSES

- Behavioral responses...
 - crucial to understand no intervention
 - but generally do not affect planning solutions
 - affect implementation
- Targeting may be easier with behavioral responses