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Abstract

Decision makers, such as doctors, judges, and managers, make consequential choices
based on predictions of unknown outcomes. Do these decision makers make system-
atic prediction mistakes based on the available information? If so, in what ways are
their predictions systematically biased? In this paper, I characterize conditions under
which systematic prediction mistakes can be identified in empirical settings such as
hiring, medical diagnosis, and pretrial release. I derive a statistical test for whether
the decision maker makes systematic prediction mistakes under these assumptions and
provide methods for estimating the ways in which the decision maker’s predictions are
systematically biased. I analyze the pretrial release decisions of judges in New York
City, estimating that at least 20% of judges make systematic prediction mistakes about
misconduct risk given defendant characteristics. Motivated by this analysis, I estimate
the effects of replacing judges with algorithmic decision rules, and find that replacing
judges with algorithms where systematic prediction mistakes occur dominates the sta-
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1 Introduction

Decision makers, such as doctors, judges, and managers, make consequential decisions

based on predictions of unknown outcomes. For example, in deciding whether to detain a

defendant awaiting trial, a judge predicts the defendant’s behavior upon release based on

information such as the defendant’s current criminal charge and prior arrest record. Are these

decision makers making systematic prediction mistakes based on this available information?

If so, which decision makers? On which decisions? And in what ways are their predictions

systematically biased?

These foundational questions have renewed policy relevance and empirical life as ma-

chine learning based models increasingly replace or inform decision makers in criminal jus-

tice, health care, labor markets, and consumer finance.1 The hope is that these tools can

improve decisions by predicting more accurately than existing decision makers. In assess-

ing whether such machine learning based models can improve decision-making, researchers

therefore attempt to evaluate decision makers’ implicit predictions through comparisons of

their choices against those made by predictive models.2

Yet uncovering systematic prediction mistakes in these empirical settings is challeng-

ing as both the decision maker’s preferences and information set are unknown to us. For

example, we do not know how judges assess the cost of pretrial detention. Judges may un-

cover useful information through their courtroom interactions with defendants, but we do

not observe these interactions. The decision maker’s choices may therefore differ from the

predictive model not because she is making systematic prediction mistakes, but rather she

1Risk assessment tools are used in criminal justice systems throughout the United States (Stevenson, 2018;
Dobbie and Yang, 2019, 2021). Clinical risk assessments aid doctors in diagnostic and treatment decisions
(Obermeyer and Emanuel, 2016; Beaulieu-Jones et al., 2019). For applications in consumer finance, see
for example Einav, Jenkins and Levin (2013), Blattner and Nelson (2021), and Fuster et al. (2022). For
discussions of workforce analytics and resume screening software, see Hoffman, Kahn and Li (2018), Li,
Raymond and Bergman (2020), and Raghavan et al. (2020).

2See, for example, Hoffman, Kahn and Li (2018), Kleinberg et al. (2018), Erel et al. (2019), Li, Raymond
and Bergman (2020), Jung et al. (2020), and Mullainathan and Obermeyer (2022). Comparing a decision
maker’s choices against a predictive model has a long tradition in psychology (e.g., Dawes, 1971, 1979; Dawes,
Faust and Meehl, 1989; Camerer and Johnson, 1997; Grove et al., 2000; Kuncel et al., 2013).

1



has preferences that differ from the model’s objective function or observes information that

is unavailable to the model. While existing empirical research recognizes these challenges

(e.g., Kleinberg et al., 2018; Mullainathan and Obermeyer, 2022), it lacks a unifying econo-

metric framework for analyzing a decision maker’s choices under weak assumptions about

their preferences and information sets.

This paper develops an econometric framework for analyzing whether a decision maker

makes systematic prediction mistakes and to characterize how their predictions are system-

atically biased. I clarify what can be identified about systematic prediction mistakes from

data and empirically relevant assumptions about behavior, and map those assumptions into

statistical inferences about systematic prediction mistakes. This framework, therefore, ro-

bustly measures key behavioral mechanisms underlying the tradeoffs between human and

algorithmic decision making.

I consider empirical settings, such as pretrial release, medical diagnosis, and hiring, in

which a decision maker makes choices for many individuals based on a prediction of some

unknown outcome using each individual’s characteristics. The characteristics are observable

to both the decision maker and the researcher. There is a missing data problem: the re-

searcher only observes the outcome conditional on the decision maker’s choices (e.g., we only

observe a defendant’s behavior upon release if a judge released them).

In these empirical settings, I explore the nonparametric restrictions imposed on the

decision maker’s choices by expected utility maximization, which models the decision maker

as maximizing some (unknown to us) utility function at some beliefs about the outcome given

the characteristics as well as any distribution of private information. Due to the missing

data problem, the true conditional distribution of the outcome given the characteristics is

partially identified. The expected utility maximization model therefore only restricts the

decision maker’s beliefs to lie somewhere in this identified set, a restriction I call “accurate

beliefs.” If there exists no utility function, accurate beliefs, nor any private information that

rationalizes their observed choices, I say the decision maker is making “systematic prediction
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mistakes” based on the characteristics of individuals.

I provide an empirical characterization of expected utility maximization at accurate

beliefs over an economically rich class of utility functions. This characterization implies

systematic prediction mistakes are untestable without further assumptions. If either all ob-

served characteristics of individuals directly affect the decision maker’s utility function or

the missing data can take any value, then the decision maker’s choices can always be ra-

tionalized. However, placing an exclusion restriction on which characteristics may directly

affect the decision maker’s utility function and informative bounds on the missing data re-

stores the testability of expected utility maximization behavior. Variation in choices across

characteristics that do not directly affect the utility function must only arise due to vari-

ation in beliefs and their beliefs must be Bayes-plausible with respect to some conditional

distribution of the outcome given the characteristics in the identified set, together implying

testable restrictions.

With this framework in place, I further establish that the data are informative about

the magnitudes of the decision maker’s systematic prediction mistakes. As a computational

device, I extend the behavioral model to only require that the decision maker’s choices

approximately maximize expected utility, meaning that their choices must only be within

some expected utility cost of being optimal without taking a stand on what drives the

decision maker’s misoptimizations. I derive bounds on the total expected utility cost to the

decision maker of their systematic prediction mistakes and the share of systematic prediction

mistakes in their decisions.

I then analyze whether the data are informative about the ways in which the decision

maker’s beliefs are systematically biased. I allow the decision maker to have possibly in-

accurate beliefs about the outcome, no longer requiring their beliefs to lie in the identified

set for the true conditional distribution of the outcome given the characteristics. This takes

no stand on the behavioral foundations for the decision maker’s inaccurate beliefs, and so

it encompasses various mechanisms like inattention to characteristics, representativeness, or
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salience (e.g., Handel and Schwartzstein, 2018; Bordalo et al., 2016; Bordalo, Gennaioli and

Shleifer, 2021). For a binary outcome, I bound a parameter that summarizes the extent to

which the decision maker’s beliefs overreact or underreact to the characteristics of individu-

als. These bounds may indicate whether the decision maker’s beliefs vary more (“overreact”)

or less than (“underreact”) the true conditional distribution of the outcome across values of

the characteristics.

As an empirical illustration, I analyze the pretrial system in New York City, in which

judges decide whether to release defendants awaiting trial based on a prediction of whether

they will fail to appear in court.3 For each judge, I observe the conditional probability that

she releases a defendant given a rich set of characteristics (e.g., race, age, current charge,

prior criminal record, etc.) as well as the conditional probability that a released defendant

fails to appear in court. The conditional failure to appear rate among detained defendants

is unobserved due to the missing data problem.

If all defendant characteristics may directly affect the judge’s utility function or the con-

ditional failure to appear rate among defendants detained by this judge may take any value,

then my identification results establish that the judge’s release decisions are always consistent

with expected utility maximization behavior at accurate beliefs. Absent further assumptions,

the judge’s release decisions could reflect either a utility function that varies richly based

on defendant characteristics or private information. However, empirical researchers may be

willing to assume, for example, that while judges may engage in taste-based discrimination

on a defendant’s race, other defendant characteristics such as prior pretrial misconduct his-

tory only affect judges’ beliefs about failure to appear risk. Judges in New York City are

quasi-randomly assigned to defendants, which implies bounds on the conditional failure to

appear rate among detained defendants. Given such utility exclusion restrictions and quasi-

experimental bounds on the missing data, my identification results establish that expected

3In the New York City pretrial system, judges decide whether to release defendants prior to their trial
without conditions (“on own recognizance”) or set monetary bail conditions. In Section 5.4.2, I report the
robustness of my findings to alternative definitions of the pretrial decision.
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utility maximization behavior at accurate beliefs is falsified by misrankings in the judge’s

release decisions. Holding fixed defendant characteristics that may directly affect utility

(e.g., among defendants of the same race), do all released defendants have a lower failure to

appear rate than the upper bound on the failure to appear rate of all defendants detained

by this judge? If not, there exists no utility function satisfying the conjectured exclusion

restriction nor private information such that the judge’s choices maximize expected utility

at accurate beliefs about failure to appear risk given defendant characteristics.

By testing for such misrankings in the pretrial release decisions of individual judges, I

estimate, as a lower bound, that at least 20% of judges in New York City from 2008-2013

make systematic prediction mistakes about failure to appear risk based on defendant char-

acteristics. Under alternative utility exclusion restrictions, there exists no utility function

nor distribution of private information such that the release decisions of these judges would

maximize expected utility at accurate beliefs about failure to appear risk. These systematic

prediction mistakes occur over many defendants, are costly to judges in an expected utility

sense, and arise because judges’ beliefs underreact to variation in failure to appear risk based

on defendant characteristics between predictably low risk and predictably high risk defen-

dants. Rejections of expected utility maximization behavior at accurate beliefs are driven by

release decisions on defendants at the tails of the predicted risk distribution. These findings

are robust to alternative definitions of the pretrial misconduct outcome, alternative defini-

tions of the pretrial decision, and alternative empirical strategies for bounding the failure to

appear rate among detained defendants.

Finally, I analyze the effects of replacing particular judges with algorithmic decision rules

in the New York City pretrial system. The policymaker’s tradeoff between a judge’s decisions

and an algorithmic decision rule depend on whether the judge makes systematic prediction

mistakes about failure to appear risk and if so on which defendants, whether the judge is

misaligned and optimizing a different objective than the policymaker, and finally whether

the judge observes any useful private information that is unavailable to the algorithm. By
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allowing for these three competing forces, the preceding behavioral analysis informs our

understanding of the possible tradeoff between human and algorithmic decision making.

I estimate the effects of replacing judges who were found to make systematic prediction

mistakes with an algorithmic decision rule. Replacing these judges with an algorithmic de-

cision rule only where systematic prediction mistakes occur at the tails of the predicted risk

distribution weakly dominates the status quo, and can lead to up to 20% improvements in

worst-case expected social welfare (measured as a weighted average of the failure to appear

rate among released defendants and the pretrial detention rate). Since there exists no utility

function nor distribution of private information at which their decisions over these defen-

dants maximize expected utility, replacing judges with an algorithmic decision rule over the

tails of the predicted risk distribution can be a free lunch by correcting systematic prediction

mistakes. Fully replacing judges with an algorithmic decision rule, by contrast, has ambigu-

ous effects that depend on the policymaker’s objective due to a tradeoff between the extent

of misalignment and the value of private information.

In related work, Kleinberg et al. (2018) directly compare the pretrial release decisions

of all judges in New York City against an estimated, machine learning based decision rule.

Mullainathan and Obermeyer (2022) analogously compare doctors’ stress testing decisions

against a machine learning based decision rule. Viewed through the lens of my identification

analysis, Kleinberg et al. (2018) is limited to making statements about judge decision making

under several assumptions: first, that judges’ utility functions do not vary based on defendant

characteristics; second, utility functions do not vary across judges; and third, that private

information does not vary across judges. I conduct my analysis judge-by-judge, allowing each

judge’s utility function to flexibly vary based on defendant characteristics and heterogeneity

in both utility functions and private information across judges.

Analyzing radiologists, Chan, Gentzkow and Yu (2022) estimate a structural model in

which decision makers’ beliefs are summarized by a normally distributed signal structure (see

also Abaluck et al., 2016; Arnold, Dobbie and Hull, 2022). I nonparametrically model the
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decision maker’s beliefs as arising from observable characteristics and private information,

allowing me to separately explore these two components of the information environment.

In exchange for this flexibility, testing whether choices are consistent with expected utility

maximization at accurate beliefs requires an exclusion restriction on which characteristics

affect the decision maker’s utility function and any informative bounds on the missing data,

although I allow the utility function to vary arbitrarily across non-excluded characteristics.

Finally, I build on a growing literature in microeconomic theory that derives the testable

implications of behavioral models in state-dependent stochastic choice (SDSC) data (e.g.,

Caplin and Martin, 2015; Caplin and Dean, 2015; Caplin et al., 2020). While useful in ana-

lyzing lab-based experiments, such results have had limited applicability due to the difficulty

of collecting SDSC data (Gabaix, 2019; Caplin, 2021). I focus on common empirical settings

in which the data suffer from a missing data problem, showing that these settings can ap-

proximate ideal SDSC data by using quasi-experimental variation to address the missing

data problem. Martin and Marx (2022) study the identification of taste-based discrimina-

tion in a binary choice experiment. The setting I consider nests theirs by allowing for several

key features of observational data such as missing data, multi-valued outcomes, and multiple

choices. I follow in spirit of the information design literature (e.g., Bergemann and Morris,

2016, 2019) by asking whether there exists any private information that could rationalize

the decision maker’s choices. Recent papers take this approach in different settings or to

answer different questions, such as Syrgkanis, Tamer and Ziani (2018) in auctions, Magnolfi

and Roncoroni (2021) in entry games, Bergemann, Brooks and Morris (2022) on the welfare

effects of unknown information structures, and Gualdani and Sinha (2020) in discrete choice

models.

2 Expected utility maximization at accurate beliefs

A decision maker makes choices for many individuals based on the prediction of an

unknown outcome using each individual’s characteristics. Under what conditions do the
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decision maker’s choices maximize expected utility at some utility function, accurate beliefs

given the characteristics, and any additional private information?

2.1 Setting and observable data

The decision maker selects a binary choice c ∈ {0, 1} for each individual. Each individual

is summarized by characteristics x ∈ X and an unknown outcome y∗ ∈ Y . The random

vector (X,C, Y ∗) ∼ P (·) defined over X × {0, 1} × Y summarizes the joint distribution

of the characteristics, the decision maker’s choices, and outcomes over all individuals. I

assume the characteristics and outcome have finite support, and there exists δ > 0 such that

P (x) := P (X = x) ≥ δ for all x ∈ X .

We observe the characteristics of each individual as well as the decision maker’s choice.

There is a missing data or selective labels problem: we only observe Y ∗ if the decision maker

selected C = 1 (Rubin, 1976; Kleinberg et al., 2018). Defining Y := C · Y ∗, the observable

data is the joint distribution (X,C, Y ) ∼ P ( ·). I assume this joint distribution is known to

focus on the identification challenges in this setting. The decision maker’s conditional choice

probabilities are πc(x) := P (C = c | X = x) for c ∈ {0, 1} and x ∈ X , and the observable

conditional outcome probabilities are P1(y
∗ | x) := P (Y ∗ = y∗ | C = 1, X = x) for x ∈ X .

The conditional outcome probabilities P0(y
∗ | x) := P (Y ∗ = y∗ | C = 0, X = x) are not

identified due to the missing data problem. The true outcome probabilities P (y∗ | x) :=

P (Y ∗ = y∗ | X = x) are also not identified as a consequence.

To make this concrete, I illustrate how a large class of empirical applications, known as

screening decisions, map into this setting.

Example (Pretrial Release). A judge decides whether to detain or release defendants C ∈

{0, 1} awaiting trial (e.g., Arnold, Dobbie and Yang, 2018; Kleinberg et al., 2018; Arnold,

Dobbie and Hull, 2022). The outcome Y ∗ ∈ {0, 1} is whether a defendant would fail to

appear in court if released. The characteristics X summarize recorded information about

the defendant such as demographics, the defendant’s current charges, and the defendant’s

prior arrest/conviction record. The judge’s conditional release rate π1(x) and the conditional
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failure to appear rate among released defendants P1(y
∗ | x) are identified. The conditional

failure to appear rate among detained defendants P0(y
∗ | x) is not identified. ▲

Example (Medical Testing and Diagnosis). A doctor decides whether to conduct a medical

test or make a particular diagnosis (e.g., Abaluck et al., 2016; Chan, Gentzkow and Yu,

2022). For example, shortly after an emergency room visit, a doctor decides whether to

conduct a stress test on patients C ∈ {0, 1} to determine whether they had a heart attack

(Mullainathan and Obermeyer, 2022). The outcome Y ∗ ∈ {0, 1} is whether the patient had a

heart attack. The characteristics X summarize recorded information about the patient such

as demographics, reported symptoms, and prior medical history. The doctor’s conditional

stress testing rate π1(x) and the conditional heart attack rate among stress tested patients

P1(y
∗ | x) are identified. The conditional heart attack rate among untested patients P0(y

∗ | x)

is not identified. ▲

Example (Hiring). A hiring manager decides whether to hire job applicants C ∈ {0, 1}

(Autor and Scarborough, 2008; Hoffman, Kahn and Li, 2018; Frankel, 2021). The outcome

Y ∗ is a vector of on-the-job productivity measures, such as length of tenure since turnover

may be costly. The characteristics X are recorded information about the applicant such

as demographics, education level, and prior work history. The manager’s conditional hiring

rate π1(x) and the conditional distribution of on-the-job productivity measures among hired

applicants P1(y
∗ | x) are identified. The distribution of on-the-job productivity measures

among rejected applicants P0(y
∗ | x) is not identified. ▲

Such screening decisions are a leading class of “prediction policy problems” (Kleinberg et al.,

2015). Other examples include job interviews (e.g., Li, Raymond and Bergman, 2020), loan

approvals (e.g., Fuster et al., 2022), and child welfare screenings (Chouldechova et al., 2018).

In the main text, I make two simplifying assumptions: (i) the decision maker only faces

two choices; and (ii) the decision maker’s choice does not have a direct causal effect on the

outcome. Online Appendix B generalizes my identification results to treatment assignment
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problems, in which the decision maker allocates individuals to alternative treatments that

causally affect the outcome, nesting the main text as a special case.

As notation, let ∆(A) denote the set of all probability distributions on a finite set A.

For c ∈ {0, 1}, let Pc( · | x) ∈ ∆(Y) denote the vector of conditional outcome probabilities

given choice C = c and characteristics X = x. Let P ( · | x) ∈ ∆(Y) denote the vector of

true outcome probabilities given characteristics X = x.

2.2 Bounds on the missing data

I model the researcher’s assumptions about the missing data problem in the form of

researcher-specified bounds on the unobserved conditional outcome probabilities.

Assumption 2.1. For each x ∈ X , there exists a known subset Bx ⊆ ∆(Y) satisfying

P0( · | x) ∈ Bx.

By modelling the researcher’s assumptions in terms of generic bounds Bx, Assumption 2.1

captures many empirical strategies. In some cases, researchers may wish to analyze the

decision maker’s choices without placing any further assumptions on the missing data, which

corresponds to Bx = ∆(Y). Researchers may instead use quasi-experimental variation or

introduce additional restrictions to bound the unknown conditional outcome probabilities,

in which case Bx may depend on identified features of the data as I discuss in Section 3.

Under Assumption 2.1, the identified set for the true outcome probabilities given x ∈ X ,

denoted H(P ( · | x);Bx), equals the set of P̃ ( · | x) ∈ ∆(Y) satisfying P̃ (y∗ | x) = P̃0(y
∗ |

x)π0(x) + P1(y
∗ | x)π1(x) for all y

∗ ∈ Y and some P̃0( · | x) ∈ Bx.

2.3 Behavioral model

I examine the restrictions placed on the decision maker’s choices by expected utility

maximization at accurate beliefs. Under this model, the decision maker maximizes expected

utility given an information set for each individual that consists of their characteristics and

some additional private information which I denote by the random variable V . For example,

doctors may learn useful information about the patient’s current health in an exam, and
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judges may interact with defendants during the pretrial release hearing; but these interactions

may not be recorded.

Suppose the researcher partitions the characteristics x := (xI , xE) with X = XI × XE.

The expected utility maximization model is summarized by a utility function and a joint

distribution over the characteristics, private information, choices and outcomes, denoted

(X, V,C, Y ∗) ∼ Q(·), that satisfies three conditions.

Definition 2.1. A utility function u : {0, 1} × Y × XI → R specifies the payoff associated

with each choice-outcome pair at characteristics xI ∈ XI . Let U denote the feasible set of

utility functions specified by the researcher.

Definition 2.2. The decision maker’s choices are consistent with expected utility maximiza-

tion if there exists a utility function u ∈ U and joint distribution (X, V,C, Y ∗) ∼ Q(·)

satisfying

i. Expected Utility Maximization: For all c ∈ {0, 1}, c′ ̸= c, (x, v) ∈ X × V such that

Q(c | x, v) > 0,

EQ [u(c, Y ∗;XI) | X = x, V = v] ≥ EQ [u(c′, Y ∗;XI) | X = x, V = v] .

ii. Information Set: C ⊥⊥ Y ∗ | X, V under Q(·).

iii. Data Consistency: For all x ∈ X , there exists P̃0( · | x) ∈ Bx satisfying

Q(x, c, y∗) =


P1(y

∗ | x)π1(x)P (x) if c = 1

P̃0(y
∗ | x)π0(x)P (x) if c = 0

for all y∗ ∈ Y .

2.3.1 Interpreting the utility exclusion restriction

The key behavioral assumption is an exclusion restriction on the decision maker’s utility

11



function. Only the characteristics XI are included in the decision maker’s utility function.

The remaining characteristics XE are excluded from the decision maker’s utility function

and only affect the decision maker’s beliefs.

In many settings, researchers either already make such utility exclusion restrictions or

reason about their plausibility. In medical testing and diagnosis, researchers often assume

that a doctor’s payoffs are constant across patients or only depend on a limited set of

characteristics (e.g., Abaluck et al., 2016; Chan, Gentzkow and Yu, 2022; Mullainathan and

Obermeyer, 2022). Structural analyses of pretrial decisions assume that a judge’s payoffs

may only directly depend on the race of a defendant (e.g., Arnold, Dobbie and Hull, 2022),

and recent work considers the validity of marginal outcome tests under alternative utility

exclusion restrictions (Becker, 1957; Arnold, Dobbie and Yang, 2018; Canay, Mogstad and

Mountjoy, 2020). Other researchers empirically explore whether judges may be more lenient

towards younger defendants (Stevenson and Doleac, 2022) or more harsh towards defendants

charged with violent crimes (Kleinberg et al., 2018).

Since this is a substantive economic assumption, I discuss two ways researchers may

specify such utility exclusion restrictions. First, the researcher may conduct a sensitivity

analysis, reporting how their conclusions vary as the choice of utility exclusion restriction

varies. Such a sensitivity analysis summarizes how flexible the decision maker’s utility func-

tion must be across characteristics to rationalize choices and how behavioral conclusions vary

across plausible assumptions. Second, the exclusion restriction may also be normatively mo-

tivated, summarizing social or legal restrictions on what characteristics ought not to directly

enter the decision maker’s utility function.

2.3.2 Accurate beliefs and systematic prediction mistakes

If Definition 2.2 is satisfied, then the decision maker’s implied beliefs about the outcome

given the characteristics, denoted Q( · | x) ∈ ∆(Y), lie in the identified set for the true

outcome probability P ( · | x). That is, Q( · | x) ∈ H(P ( · | x);Bx) for all x ∈ X as

a consequence of Data Consistency, and the decision maker’s implied beliefs Q( · | x) are
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accurate in this weak sense if their choices are consistent with expected utility maximization.

Put another way, if the decision maker’s choices are inconsistent with expected utility

maximization, then there exists no utility function nor private information such that their

choices would maximize expected utility at any beliefs in the identified set for the true

outcome probability P ( · | x). The decision maker is behaving as-if their implied beliefs

given the characteristics are systematically mistaken in this strong sense.

Definition 2.3. The decision maker is making systematic prediction mistakes over the class

of utility functions U if their choices are inconsistent with expected utility maximization.

While the behavioral model restricts the decision maker’s implied beliefs to lie in the iden-

tified set for the true outcome probability, it is otherwise agnostic about how the decision

maker arrives at those beliefs. In this sense, if the decision maker is making systematic pre-

diction mistakes, then their choice behavior is inconsistent with any model of belief formation

that leads to beliefs in the identified set for the true outcome probabilities.

Furthermore, the interpretation of a systematic prediction mistake is tied to both the

researcher-specified bounds on the missing data (Assumption 2.1) and the feasible set of

utility functions U (Definition 2.1). Less informative bounds on the missing data imply there

are more candidate values of the missing conditional outcome probabilities and, in turn, more

candidate values of the true outcome probabilities that may rationalize choices. A larger

feasible set of utility functions U analogously implies that expected utility maximization

places fewer restrictions on behavior as the researcher is entertaining a larger set of utility

functions that may rationalize choices. Definition 2.3 must therefore be interpreted in the

context of the researcher’s assumptions on both the missing data and the decision maker’s

utility function.
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3 Identifying systematic prediction mistakes in screen-

ing decisions

I characterize conditions under which expected utility maximization at accurate beliefs

has testable implications. Testing whether the decision maker’s choices are consistent with

expected utility maximization at accurate beliefs is equivalent to testing moment inequalities

under these conditions.

3.1 Characterization result

I characterize when the decision maker’s choices are consistent with expected utility

maximization over the class of linear utility functions.

Assumption 3.1 (Vector-valued outcome). ForK ≥ 1, the outcome satisfies y∗ := (y∗1, . . . , y
∗
K) ∈

[0, 1]K .

Definition 3.1. Under Assumption 3.1, the class of linear utility functions is the set of

utility functions satisfying u(c, y∗;xI) =
∑K

k=1 u1,k(xI)y
∗
kc + u0,k(xI)(1 − y∗k)(1 − c), where

u1,k(xI), u0,k(xI) ≤ 0, |u1,k(xI) + u0,k(xI)| = 1 for all xI ∈ XI .

This is an economically rich class that captures many common empirical intuitions. The

parameters u1,k(xI), u0,k(xI) ≤ 0 summarize the costs of ex-post errors for each outcome

(i.e., selecting C = 1 when Y ∗
k is large and selecting C = 0 when Y ∗

k is small respectively).

It places no restrictions on how costs vary across included characteristics XI and outcomes

Y ∗
k . In the pretrial release example, defining Y ∗ = Y ∗

1 ∈ {0, 1} to be whether a defendant

would fail to appear in court, the class of linear utility functions assumes it is costly for the

judge to detain a defendant that would not fail to appear or release a defendant that would

fail to appear, but places no restrictions on how these costs vary across included defendant

characteristics XI , such as defendant race, age, or charge severity. If instead Y ∗ = (Y ∗
1 , Y

∗
2 ) is

whether a defendant would fail to appear in court Y ∗
1 ∈ {0, 1} and be re-arrested Y ∗

2 ∈ {0, 1},

the class of linear utility functions also places no restriction on the relative cost of releasing
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a defendant that would fail to appear versus be re-arrested.

For xI ∈ XI and c ∈ {0, 1}, define Πc(xI) := {xE ∈ XE : πc(xI , xE) > 0}. Let Ȳ ∗ :=∑K
k=1 Y

∗
k , µc(x) := E[Ȳ ∗ | C = c,X = x] for c ∈ {0, 1}, and µ̄0(x) := maxP̃0( ·|x)∈Bx

µ0(x).

Theorem 3.1. Suppose Assumption 3.1 holds. The decision maker’s choices are consistent

with expected utility maximization at some linear utility function if and only if, for all xI ∈

XI ,

max
xE∈Π1(xI)

µ1(xI , xE) ≤ min
xE∈Π0(xI)

µ̄0(xI , xE) (1)

Otherwise, the decision maker is making systematic prediction mistakes over the class of

linear utility functions.

Over the class of linear utility functions, expected utility maximization requires the decision

maker to make choices according to an incomplete threshold rule based on the expectation

for Ȳ ∗ under their beliefs given the characteristics and their private information. The thresh-

old may vary across included characteristics XI , and it is incomplete since the behavioral

model takes no stand on how possible indifferences are resolved. The proof of Theorem 3.1

shows that the conditional outcome probabilities summarize all possible beliefs that could

arise. The inequalities (1) check whether any value of the conditional outcome probabili-

ties consistent with the researcher’s bounds (Assumption 2.1) could reproduce the decision

maker’s choices under such a threshold rule.4

3.2 When are systematic prediction mistakes identifiable?

By examining when the inequalities in Theorem 3.1 are always satisfied, I characterize

leading cases in which we cannot identify systematic prediction mistakes.

Corollary 3.1. Suppose Assumption 3.1 holds. The decision maker’s choices are consistent

with expected utility maximization at accurate beliefs and some linear utility function if either:

4Theorem 3.1 builds on the “no-improving action switches” inequalities, which were originally derived
by Caplin and Martin (2015) to analyze choice behavior in state-dependent stochastic choice data from
experiments.
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(i) all characteristics directly affect utility (i.e, X = XI) and µ1(xI) ≤ µ̄0(xI) for all xI ∈ XI ;

or (ii) µ̄0(x) = K for all x ∈ X .

If all characteristics are included in the decision maker’s utility function (i.e., X = XI), then

the decision maker’s choices are consistent with expected utility maximization whenever

the researcher’s bounds are compatible with the existence of private information (Corollary

3.1(i)). More precisely, if the conditional expectation of Ȳ ∗ given C = 0 may be at least

as large as the observed conditional expectation of Ȳ ∗ given C = 1 under the researcher’s

assumptions, then a threshold rule in which the threshold richly varies across the character-

istics can always rationalize the decision maker’s choices. If the researcher’s bounds allow for

the existence of private information in this weak sense, then a utility exclusion restriction is

necessary to identify systematic prediction mistakes. Corollary 3.1(ii), however, establishes

that such an exclusion restriction alone may be insufficient. Absent informative bounds on

the unobservable conditional outcome probabilities, the decision maker’s choices may always

be rationalized by the extreme case in which the decision maker’s private information is per-

fectly predictive of the unknown outcome. In this sense, identifying systematic prediction

mistakes over the class of linear utility functions requires behavioral assumptions that place

an exclusion restriction on the decision maker’s utility function and econometric assumptions

that generate informative bounds on the unobservable conditional outcome probabilities.

Under such assumptions, Theorem 3.1 provides interpretable conditions for identifying

systematic prediction mistakes. Holding fixed xI ∈ XI , does there exist some excluded

characteristic xE ∈ XE such that the largest possible expected value of Ȳ given C = 0 is

strictly lower than the observed expected value of Ȳ given C = 1 at some other excluded

characteristic x′
E ∈ XE? If so, the decision maker could do strictly better by raising their

probability of selecting choice C = 0 at x′
E and lowering their probability of selecting choice

C = 1 at xE no matter her linear utility function, implied beliefs given the characteristics,

and private information.

In the pretrial release example, we may suspect the judge engages in taste-based dis-
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crimination based on defendant race. Checking whether the judge’s release decisions are

consistent with expected utility maximization at accurate beliefs about failure to appear

risk requires checking, among defendants of the same race, whether there exists some group

of released defendants with a higher failure to appear rate than the worst-case failure to

appear rate of some group of detained defendants among defendants. If so, the judge must

be misranking defendants based on failure to appear risk given their characteristics, and

their choices are inconsistent with expected utility maximization at any accurate beliefs,

private information, and linear utility function that depends arbitrarily on defendant race.

These misrankings characterize the joint null hypothesis that the decision maker’s choices

are consistent with expected utility maximization at accurate beliefs and some linear utility

function satisfying the conjectured utility exclusion restriction.

3.3 Constructing bounds on the missing data

Suppose there is a randomly assigned instrument that generates variation in the decision

maker’s choice probabilities. Such instruments commonly arise, for example, through the

random assignment of decision makers – judges may be randomly assigned to defendants in

pretrial release (e.g., Kling, 2006; Dobbie, Goldin and Yang, 2018; Arnold, Dobbie and Yang,

2018; Kleinberg et al., 2018; Arnold, Dobbie and Hull, 2022), and doctors may be randomly

assigned to patients in medical testing (e.g., Abaluck et al., 2016; Chan, Gentzkow and Yu,

2022).

Assumption 3.2 (Conditionally Random Instrument). Let Z ∈ Z be a finite support

instrument. The joint distribution (X,Z,C, Y ∗) ∼ P ( ·) satisfies Y ∗ ⊥⊥ Z | X, and there

exists some δ > 0 such that P (x, z) := P (X = x, Z = z) ≥ δ for all (x, z) ∈ X × Z.

The conditional expectation µ0(x, z) := E[Ȳ ∗ | C = 0, X = x, Z = z] is partially

identified under Assumption 3.2. In the case where the instrument arises through the random

assignment of decision makers, the identified set for µ0(x, z) corresponds to sharp bounds on

the conditional outcome probabilities for a single decision maker.
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Proposition 3.1. Suppose Assumptions 3.1-3.2 hold. For any (x, z) ∈ X×Z with π0(x, z) >

0, the identified set for µ0(x, z) is the interval [µ
0
(x, z), µ1(x, z)], where

µ
0
(x, z) = max

{
µ(x)− µ1(x, z)π1(x, z)

π0(x, z)
, 0

}
, and µ0(x, z) = min

{
µ(x)− µ1(x, z)π1(x, z)

π0(x, z)
, 1

}

for µ(x) = maxz̃∈Z{µ1(x, z̃)π1(x, z̃)} and µ0(x) = minz̃∈Z{Kπ0(x, z̃) + µ1(x, z̃)π1(x, z̃)}.

Online Appendix C.1 derives bounds under the assumption that the instrument is quasi-

randomly assigned conditional on only some characteristic such as courtroom-by-time indi-

cators in the pretrial release example, which I use in the empirical application to the New

York City pretrial system.

Under the expected utility maximization model, Assumption 3.2 only requires that if the

decision maker’s choices are consistent with expected utility maximization at some utility

function u ∈ U and joint distribution (X,Z, V, C, Y ∗) ∼ Q, then Y ∗ ⊥⊥ Z | X under Q(·).

Requiring that the decision maker’s beliefs be accurate imposes that the instrument cannot

affect their beliefs about the outcome given the characteristics. Both the utility function and

private information can otherwise richly vary with the instrument. In the pretrial release

example, if all judges make choices as-if they maximize expected utility at accurate beliefs

and judges are randomly assigned to defendants, then all judges must have the same beliefs

about failure to appear risk given defendant characteristics. Judges may still richly differ

from one another in their utility functions and private information. In this sense, these

bounds do not require monotonicity (e.g., see de Chaisemartin, 2017; Frandsen, Lefgren and

Leslie, 2019). These bounds also require no parametric extrapolation across decision makers

(e.g., Arnold, Dobbie and Hull, 2022; Angelova, Dobbie and Yang, 2023).

By setting the researcher’s bounds (Assumption 2.1) to be consistent with the derived

instrumental variable bounds (Proposition 3.1), I apply Theorem 3.1 to test whether the

decision maker’s choices are consistent with expected utility maximization at accurate beliefs

and some linear utility function.
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Proposition 3.2. Suppose Assumptions 3.1-3.2 hold, and 0 < π1(x, z) < 1 for all (x, z) ∈

X ×Z. The decision maker’s choices at z ∈ Z are consistent with expected utility maximiza-

tion at some linear utility function if and only if, for all xI ∈ XI , pairs xE, x̃E ∈ XE and

z̃ ∈ Z,

µ1(xI , xE, z)− µ0,z̃(xI , x̃E, z) ≤ 0, (2)

where µ0,z̃(x, z) =
Kπ0(x,z̃)+µ1(x,z̃)π1(x,z̃)

π0(x,z)
− µ1(x,z)π1(x,z)

π0(x,z)
.

Equation (2) is a system of many moment inequalities. The number of moment inequalities

equals |XI | · |XE|2 · (|Z| − 1), and grows rapidly with the support of the characteristics and

instruments. In empirical applications, the number of moment inequalities will typically be

extremely large, posing a practical challenge as the number of observations in each cell of

characteristics x ∈ X can be extremely small. I return to this problem in the empirical

application to the New York City pretrial system.

4 Characterizing systematic prediction mistakes in screen-

ing decisions

Researchers can identify systematic prediction mistakes over the class of linear utility

functions by searching for misrankings in the decision maker’s choices. Such misrankings

are further informative about the magnitudes of the decision maker’s systematic prediction

mistakes and the ways in which the decision maker’s beliefs are systematically biased.

4.1 Bounding the costs and share of systematic prediction mis-

takes

To characterize the magnitudes of the decision maker’s systematic prediction mistakes, I

weaken Definition 2.2 to only require that the decision maker’s choices approximately maxi-

mize expected utility.
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Definition 4.1. The decision maker’s choices approximately maximize expected utility at

accurate beliefs and expected utility costs ϵ := {ϵ(x) ≥ 0: x ∈ X} if there exists a utility

function u ∈ U and joint distribution (X, V,C, Y ∗) ∼ Q(·) satisfying:

i. Approximate Expected Utility Maximization: For all c ∈ {0, 1}, c′ ̸= c, (x, v) ∈ X ×V

such that Q(c | x, v) > 0,

EQ [u(c, Y ∗;XI) | X = x, V = v] ≥ EQ [u(c′, Y ∗;XI) | X = x, V = v]− ϵ(x).

and (ii) Information Set, (iii) Data Consistency as in Definition 2.2. The identified set of

expected utility costs is the set of ϵ := {ϵ(x) ≥ 0: x ∈ X} such that there exists u ∈ U and

(X, V,C, Y ∗) ∼ Q(·) satisfying (i)-(iii).

I use Definition 4.1 to characterize the extent to which the decision maker’s choices devi-

ate from expected utility maximization at accurate beliefs. At each characteristic x ∈ X ,

the smallest ϵ(x) satisfying Definition 4.1 summarizes how large are the decision maker’s

violations of expected utility maximization.

Over the class of linear utility functions, the identified set of expected utility costs is

characterized by misrankings in the decision maker’s choices. This implies tractable charac-

terizations of the total expected utility cost and the share of systematic prediction mistakes

in the decision maker’s choices.

Theorem 4.1. Suppose Assumption 3.1 holds and 0 < π1(x) < 1 for all x ∈ X . The decision

maker’s choices approximately maximize expected utility at some linear utility function and

expected utility costs ϵ := {ϵ(x) ≥ 0: x ∈ X} if and only if, for all pairs x = (xI , xE),

x′ = (xI , x
′
E),

µ1(x)− µ0(x
′)− ϵ(x)− ϵ(x′) ≤ 0. (3)

The identified set of expected utility costs equals the set of all ϵ = {ϵ(x) ≥ 0: x ∈ X}

satisfying (3).
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4.1.1 Bounding the expected utility costs of systematic prediction mistakes

The lower bound on the total expected utility cost of systematic prediction mistakes

summarizes how worse off is the decision maker in an expected utility sense relative to

hypothetical choices that correctly optimized. By Theorem 4.1, the lower bound is given by

the following linear program

E := min
ϵ(x)≥0: x∈X

∑
x∈X

P (x)ϵ(x) (4)

s.t. µ1(x)− µ0(x
′)− ϵ(x)− ϵ(x′) ≤ 0 for all x = (xI , xE), x

′ = (xI , x
′
E).

The lower bound E equals zero if and only if the decision maker’s choices are consistent

with expected utility maximization at accurate beliefs. For a scalar outcome Y ∗ = Y ∗
1 ,

Online Appendix C.2 discusses how the lower bound E can be translated into an equivalent

fraction of ex-post errors that arose from the decision maker’s systematic prediction mistakes

through an accounting exercise. In the pretrial release example, the lower bound E is the

judge’s total expected utility cost of their systematic prediction mistakes about failure to

appear risk, and it can be translated into an equivalent reduction in the fraction of defendants

that are released and fail to appear that would produce the same total expected utility cost.

4.1.2 Bounding the share of systematic prediction mistakes

The identified set of expected utility costs further characterizes the share of systematic

prediction mistakes in the decision maker’s choices. Towards this, I say a subset of charac-

teristics X̃ ⊆ X is rationalizable at accurate beliefs if there exists a utility function u ∈ U

and joint distribution (X, V,C, Y ∗) ∼ Q(·) satisfying Definition 2.2 only over characteristics

x ∈ X̃ . The largest rationalizable subset X of characteristics is then

X := argmax
X̃⊆X

∑
x∈X̃

P (x) s.t. X̃ is rationalizable at accurate beliefs, (5)
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and the share of rationalizable decisions is P (X ) :=
∑

x∈X P (x). If the decision maker’s

choices are consistent with expected utility maximization at accurate beliefs, then X = X

and P (X ) = 1. The share of systematic prediction mistakes in the decision maker’s choices is

therefore 1−P (X ). In Online Appendix C.3, I show that the share of systematic prediction

mistakes can be characterized by a mixed-integer linear program over the identified set of

expected utility costs. This provides a simple summary statistic about the frequency of the

decision maker’s systematic prediction mistakes.

4.2 Bounding inaccurate beliefs based on characteristics

Misrankings in the decision maker’s choices may indicate that their beliefs are inaccurate

– that is, their implied beliefs do not lie in the identified set H(P ( · | x);Bx). This is a com-

mon behavioral hypothesis. Empirical researchers conjecture that judges may systematically

mis-predict failure to appear risk based on defendant characteristics (Kleinberg et al., 2018),

and the same concern arises in analyses of medical decisions (Currie and Macleod, 2017).

To investigate whether the decision maker’s choices maximize expected utility at inac-

curate beliefs, I next modify “Data Consistency” in Definition 2.2.

Definition 4.2. The decision maker’s choices are consistent with expected utility maximiza-

tion at inaccurate beliefs if there exists some utility function u ∈ U and joint distribution

(X, V,C, Y ∗) ∼ Q(·) satisfying (i) Expected Utility Maximization, (ii) Information Set as in

Definition 2.2, and

iii. Data Consistency with Inaccurate Beliefs: For all x ∈ X , there exists P̃0( · | x) ∈ Bx

such that, for all y∗ ∈ Y ,

Q(c | y∗, x)P̃ (y∗ | x)Q(x) =


P1(y

∗ | x)π1(x)P (x) if c = 1

P̃0(y
∗ | x)π0(x)P (x) if c = 0,

where P̃ (y∗ | x) = P1(y
∗ | x)π1(x) + P̃0(y

∗ | x)π0(x).

Definition 4.2 drops the restriction that the decision maker’s implied beliefs must lie in the
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identified set for the true outcome probabilities. Since it places no direct restrictions on

the decision maker’s implied prior beliefs Q( · | x) nor what gives rise to them, behavior

consistent with expected utility maximization at inaccurate beliefs could arise from various

behavioral mechanisms. Definition 4.2 therefore nests specific models of belief formation,

such as alternative forms of inattention (e.g., Sims, 2003; Gabaix, 2014; Caplin and Dean,

2015) or the use of representativeness heuristics (e.g., Gennaioli and Shleifer, 2010; Bordalo

et al., 2016; Bordalo, Gennaioli and Shleifer, 2021). By extending the argument given in the

proof of Theorem 3.1, I show that expected utility maximization at inaccurate beliefs and

some linear utility function is equivalent to a threshold rule on based on the expectation for

Ȳ ∗, reweighed by the likelihood ratio of between the decision maker’s implied beliefs and

some conditional distribution in the identified set (see Lemma A.2).

In the special case of a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}, this implies a bound on

the extent to which the decision maker’s beliefs overreact or underreact to variation in the

characteristics.

Proposition 4.1. Consider a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}, and assume 0 < π1(x) < 1

for all x ∈ X . Suppose the decision maker’s choices are consistent with expected utility

maximization at inaccurate beliefs and some linear utility function at P̃ ( · | x) ∈ H(P ( · |

x);Bx) satisfying 0 < P̃ (1 | x) < 1 for all x ∈ X . Then, there exists non-negative weights

ω(y∗;x) ≥ 0 satisfying, for all x ∈ X ,

P1(1 | x) ≤ ω(0;x)u0,1(xI)

ω(0;x)u0,1(xI) + ω(1;x)u1,1(xI)
≤ P 0(1 | x), (6)

where ω(y∗;x) = Q(y∗ | x, )/P̃ (y∗ | x) and Q(y∗ | x), P̃ (y∗ | x) are given in Definition 4.2.

Define δ(x) := Q(1|x)/Q(0|x)
P̃ (1|x)/P̃ (0|x)

to be the relative odds ratio of the outcome under the decision

maker’s beliefs relative to the true conditional distribution, and τ(x) := ω(0;x)u0,0(xI)

ω(0;x)u0,0(xI)+ω(1;x)u1,1(xI)

to be the decision maker’s reweighed utility threshold. If τ(x) were known, then δ(x) could
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be backed out as

(1− τ(xI , xE))/τ(xI , xE)

(1− τ(xI , x′
E))/τ(xI , x′

E)
=

δ(xI , xE)

δ(xI , x′
E)

(7)

for any xI ∈ XI and xE, x
′
E ∈ XE. The ratio δ(xI , xE)/δ(xI , x

′
E) is an implied prediction

mistake, and it summarizes the extent to which the decision maker’s beliefs overreact or

underreact to variation in the characteristics relative to the true conditional distribution. If

the ratio is less than one, then the decision maker’s beliefs about the relative probability of

Y ∗
1 = 1 versus Y ∗

1 = 0 varies less across the characteristics (xI , xE) and (xI , x
′
E) than the true

outcome probabilities, and the decision maker’s implied beliefs therefore underreact across

these characteristics. If the ratio is strictly greater than one, then the decision maker’s im-

plied beliefs overreact across the characteristics in this sense. Since Proposition 4.1 provides

an identified set for τ(x), an identified set for δ(xI , xE)/δ(xI , x
′
E) can in turn be constructed

by computing Equation (7) for each pair τ(xI , xE), τ(xI , x
′
E) satisfying Equation (6).

5 Do pretrial judges make systematic prediction mis-

takes?

As an empirical illustration, I apply this econometric framework to analyze the pretrial

decisions of judges in New York City. I find that at least 20% of judges in New York

City make systematic prediction mistakes in their pretrial release decisions. Under various

utility exclusion restrictions, their pretrial decisions are inconsistent with expected utility

maximization at accurate beliefs about misconduct outcomes given defendant characteristics.

5.1 Pretrial decisions in New York City

I analyze the pretrial system in New York City, which has been previously studied in

Leslie and Pope (2017), Kleinberg et al. (2018) and Arnold, Dobbie and Hull (2022). I

observe the universe of all arrests made in New York City between November 1, 2008 and

November 1, 2013. This contains information on 1,460,462 cases, of which 758,027 cases were

subject to a pretrial release decision. To construct the main estimation sample, I exclude (i)
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cases involving non-white and non-black defendants; (ii) cases assigned to judges with fewer

than 100 cases; and (iii) cases heard in a court-by-time cell in which there were fewer than

100 cases or only one unique judge, where a court-by-time cell is defined at the assigned

courtroom by shift by day of week by month by year level. The main estimation sample

consists of 569,256 cases heard by 265 unique judges. I focus on the top 25 judges that heard

the most cases over the sample period. These top 25 judges altogether heard 243,118 cases

in the main estimation sample, and each judge heard at least 5,000 cases. Online Appendix

Table A4 provides descriptive statistics about the main estimation sample and the cases

heard by the top 25 judges.

For each case, I observe demographic information about the defendant such as their

race, gender, and age, the current charges filed, their criminal record, and their record of

pretrial misconduct. I observe a unique identifier for the judge assigned to the case. In

each case, the judge decides whether to release the defendant prior to their trial without

conditions (“on own recognizance”) or set monetary bail conditions. Following Kleinberg

et al. (2018) and Arnold, Dobbie and Hull (2022), I code the assigned judge as having

released a defendant if either the defendant was released without conditions or the defendant

paid cash bail and as having detained a defendant otherwise. I report the robustness of my

findings to alternative definitions of the pretrial decision. If the defendant was released, I

observe whether the defendant either failed to appear in court or was re-arrested for a new

crime. Online Appendix Table A5 reports descriptive statistics broken out by whether the

defendant was released or detained.

As discussed in Kleinberg et al. (2018), the New York City pretrial system asks judges

to narrowly consider failure to appear risk in deciding whether to release a defendant. I test

whether the release decisions of the top 25 judges in New York City maximize expected utility

at accurate beliefs about failure to appear risk given defendant characteristics at some linear

utility function and private information, assuming that either (i) no defendant characteristics,

(ii) the defendant’s race, (iii) the defendant’s race and age, or (iv) the defendant’s race
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and charge severity (felony vs. misdemeanor) directly affect the judges’ utility function.5

Nonetheless, judges may consider other outcomes as well, such as whether a defendant would

be re-arrested for any new crime or re-arrested for a violent crime. I therefore report the

sensitivity of my behavioral conclusions to alternative definitions of the pretrial misconduct

outcome. I discretize age into young and older defendants, where older defendants are those

older than 25 years.

5.2 Dimension reduction using out-of-sample prediction

A key practical challenge in testing whether judges’ release decisions satisfy Proposition

3.2 is that the number of moment inequalities is large, and as a consequence the number of

observations per characteristic cell is extremely small. Discretizing all demographic informa-

tion (e.g., race, age, gender), all current charge information, the prior criminal record, and

prior history of pretrial misconduct into binary values produces 134,062 unique characteristic

cells with on average 4.24 cases per characteristic cell in the main estimation sample.

To deal with this practical challenge, I test whether there are misrankings in the judges’

decisions over a coarsened partition of the characteristics. Define D : X → {1, . . . , Nd} to

partition the characteristics into level sets {x : D(x) = d}. By iterated expectations, if a

judge’s choices are consistent with expected utility maximization at accurate beliefs and

some linear utility function, then there must be no misrankings in their decisions over the

partition D( ·). Let µc(xI , d) := E[Ȳ ∗ | C = c,XI = xI , D(X) = d] and πc(xI , d) := P (C =

c | XI = xI , D(X) = d) for c ∈ {0, 1}.

Proposition 5.1. Suppose Assumption 3.1 holds. If the decision maker’s choices are con-

sistent with expected utility maximization at accurate beliefs and some linear utility function,

5Empirically the data only contain binary indicators for whether a defendant is black or white. Yet
for example research on colorism in the criminal justice system (e.g., King and Johnson, 2016) suggests
that judges’ prejudices may vary continuously based on defendant skin tone, and more recently Ludwig
and Mullainathan (2023) find that defendant facial characteristics influence judges’ pretrial decisions. The
conjectured exclusion restriction therefore imposes that only the measured race indicator (as well as defendant
race or charge severity) may affect judges’ utility functions.
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then, for all xI ∈ XI

max
d∈D1(xI)

µ1(xI , d) ≤ min
x∈D0(xI)

µ0(xI , d), (8)

where D1(xI) := {d : π1(xI , d) > 0} and D0(xI) := {d : π0(xI , d) > 0}.

Provided Nd ≪ |XE|, the number of moment inequalities implied by Equation (8) is dras-

tically reduced and can be tested using methods that rely on an asymptotic normal ap-

proximation (Canay and Shaikh, 2017; Molinari, 2020). Searching for misrankings over the

coarsened characteristics provides a valid falsification test of whether the decision maker’s

choices are consistent with expected utility maximization at accurate beliefs.

In a screening decision, a natural choice is to construct the partition D( ·) using super-

vised machine learning methods that predict the outcome Ȳ ∗. Given an estimated prediction

function f̂ : X → [0, K], define D( ·) by binning the characteristics X into percentiles of pre-

dicted risk within each xI ∈ XI . In my empirical analysis, I predict misconduct outcomes

among defendants released by all other judges within each xI ∈ XI , defined as either race-

by-age cells or race-by-felony charge cells, and partition the characteristics into deciles of

predicted risk within each value xI ∈ XI . The prediction function is an ensemble that

averages the predictions of an elastic net model and a random forest.

In Online Appendix D, I provide sufficient conditions under which the coarsened inequal-

ities continue to sharply characterize expected utility maximization at accurate beliefs. The

characterizations of the expected utility cost of systematic prediction mistakes, the share of

systematic prediction mistakes, and bounds on the decision maker’s inaccurate beliefs also

retain intuitive interpretations after this coarsening step.

5.3 Constructing bounds through the quasi-random assignment

of judges

Judges in New York City are quasi-randomly assigned to cases within court-by-time

cells defined at the assigned courtroom by shift by day of week by month by year level

(see Kleinberg et al., 2018; Arnold, Dobbie and Hull, 2022, for further discussion), which
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implies bounds on the conditional failure to appear rate among detained defendants for any

particular judge. To verify quasi-random assignment, I conduct balance checks that regress

a measure of judge leniency on a rich set of defendant characteristics as well as court-by-time

fixed effects that control for the level at which judges are as-if randomly assigned to cases.

I measure judge leniency using the leave-one-out release rate among all other defendants

assigned to a particular judge (Dobbie, Goldin and Yang, 2018; Arnold, Dobbie and Yang,

2018; Arnold, Dobbie and Hull, 2022). I conduct these balance checks separately within

each included characteristic cell (defined by race-by-age cells or race-by-felony-charge cells),

reporting the coefficient estimates in Online Appendix Tables A6-A7. In each subsample,

the estimated coefficients are economically small in magnitude. A joint F-test fails to reject

the null hypothesis of quasi-random assignment for the main estimation sample.

The quasi-random assignment of judges implies bounds on the pretrial misconduct rate

among defendants detained by each judge in the top 25. I group judges into quintiles of

leniency based on the constructed leniency measure, and define the instrument Z ∈ Z to be

the leniency quintile of the assigned judge. Applying the results in Online Appendix C.1,

the bound on, for example, the failure to appear rate defined as Y ∗ = Y ∗
1 ∈ {0, 1} among

detained defendants with XI = xI , D(X) = d for a particular judge using leniency quintile

z̃ ∈ Z depends on the quantities E[P (C = 1, Y ∗
1 = 1 | XI = xI , D(X) = d, Z = z̃, T ) | XI =

xI , D(X) = d] and E[P (C = 0 | XI = xI , D(X) = d, Z = z̃, T ) | XI = xI , D(X) = d], where

T ∈ T denotes the court-by-time cells and the expectation averages over all cases assigned

to this particular judge. I tractably model these conditional probabilities as

1{C = 1, Y ∗
1 = 1} =

∑
xI ,d,z

βc,y∗

xI ,d,z
1{XI = xI , D(X) = d, Z = z}+ ϕt + ϵ (9)

1{C = 0} =
∑
xI ,d,z

βc
xI ,d,z

1{XI = xI , D(X) = d, Z = z}+ ϕt + ν, (10)

over all cases in the main estimation sample, where ϕt are court-by-time fixed effects. I

estimate the relevant quantities by adding the estimated coefficients β̂c
xI ,d,z̃

, β̂c,y∗

xI ,d,z̃
to the

28



average of the respective fixed effects associated with cases heard by the judge within each

(xI , d)-cell.

Figure I plots the observed failure to appear rate among defendants released by the

judge that heard the most cases and the resulting estimated upper bound on the failure to

appear rate among detained defendants associated with the most lenient quintile of judges

at each decile of predicted risk for each race-by-age cell. Testing whether this judge’s pretrial

release decisions are consistent with expected utility maximization at accurate beliefs about

failure to appear risk, then involves checking whether, holding fixed characteristics that

directly affect the utility function, all released defendants have a lower probability of failing

to appear in court (orange, circles) than the upper bound on the failure to appear rate of all

detained defendants (blue, triangles). Online Appendix Figure A1 plots the same quantities

for each race-by-felony cell.

5.4 What fraction of judges make systematic prediction mistakes?

By constructing the failure to appear rate among released defendants and the upper

bound on the failure to appear rate among detained defendants as in Figure I for each judge

in the top 25, I test whether the release decisions of each judge in the top 25 are consistent

with expected utility maximization at accurate beliefs about failure to appear risk and

some linear utility function satisfying the conjectured exclusion restrictions (Proposition

5.1). I test the moment inequalities that compare the failure to appear rate among released

defendants in the top half of the predicted failure to appear risk distribution against the

bounds on the failure to appear rate among detained defendants in the bottom half of the

predicted failure to appear risk distribution.

The top panel of Table I summarizes the results from testing whether there exists mis-

rankings based on failure to appear risk in the release decisions of each judge in the top

25 under various exclusion restrictions. After a multiple hypothesis testing correction that

controls the family-wise error rate at the 5% level, the inequalities in Proposition 5.1 are

rejected for at least 20% of judges. When both race and age are allowed to directly affect
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judges’ utility functions, violations imply that the judge’s release decisions could not have

been generated by any possible discrimination based on the defendant’s race and age, any

accurate beliefs about failure to appear risk nor variation in private information across defen-

dants. This test allows each judge’s utility function to flexibly vary based on defendant race

and age, as well as unrestricted heterogeneity in utility functions and private information

across judges.

5.4.1 Alternative pretrial misconduct outcomes

If judges’ utility functions depend on a richer definition of pretrial misconduct than just

failure to appear risk, then the rejections found may reflect mis-specification of the outcome,

rather than evidence of systematic prediction mistakes. We may suspect, for example, that

judges base their release decisions on whether a defendant would be re-arrested for a new

crime and the potential severity of the new crime.

I next define the outcome as Y ∗ = (Y ∗
1 , Y

∗
2 , Y

∗
3 ), where Y ∗

1 ∈ {0, 1} is whether the

defendant would fail to appear in court as before, Y ∗
2 ∈ {0, 1} is whether the defendant

would be re-arrested for a non-violent crime, and Y ∗
3 ∈ {0, 1} is whether the defendant would

be re-arrested for a violent crime (i.e., a violent felony offense, murder, rape or robbery).

I now test whether the release decisions of each judge in the top 25 are consistent with

expected utility maximization at accurate beliefs about the vector of misconduct outcomes

and some linear utility function satisfying the conjectured exclusion restrictions. In this

case, the class of linear utility functions places no restrictions on how the relative cost of

releasing a defendant that would fail to appear differs from that of a defendant that would

be re-arrested for a non-violent or violent crime. By analyzing each judge in the top 25

separately, I further allow any two judges to differentially assess the relative cost of releasing

a defendant that would fail to appear versus a defendant that would be re-arrested for a

non-violent or violent crime.

The middle panel of Table I summarizes the results from testing whether there exists

misrankings based on this vector of misconduct outcomes in the release decisions of each
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judge in the top 25 under various exclusion restrictions. I again find that the pretrial release

decisions of at least 20% of judges are inconsistent with expected utility maximization at

accurate beliefs about failure to appear risk, non-violent crime risk, and violent crime risk

and some linear utility function satisfying the conjectured exclusion restrictions.

5.4.2 Incorporating monetary bail conditions

As mentioned earlier, my empirical analysis defined the judge’s decision as only a choice

between releasing or detaining a defendant. In practice, judges in New York City decide

whether to release a defendant without conditions (“on own recognizance”), meaning the

defendant is released automatically without bail conditions, or set monetary bail conditions.

Consequently, judges could be making two distinct prediction mistakes: first, judges may be

systematically mispredicting misconduct outcomes; and second, judges may be systemati-

cally mispredicting the ability of defendants to post a specified bail amount.

To investigate this possibility, I instead define the judge’s choice to be whether to re-

lease the defendant on recognizance (C = 1) or set monetary bail conditions (C = 0), and

I define the outcome Y ∗ as the vector of whether the defendant would satisfy the mone-

tary bail condition and whether the defendant would fail to appear in court if released. In

Online Appendix C.4, I show expected utility maximization at accurate beliefs about bail

payment ability and failure to appear risk can again be characterized as a system of moment

inequalities. The bottom panel of Table I summarizes the results from testing these resulting

moment inequalities under alternative utility exclusion restrictions. I find that the decisions

of at least 32% of judges in New York City are inconsistent with expected utility maximiza-

tion at accurate beliefs about the ability of defendants to post a specified bail amount and

failure to appear risk given defendant characteristics.

5.4.3 Alternative bounds on the missing data

Finally, I constructed bounds on the unobserved misconduct rate among defendants de-

tained by each judge in the top 25 using the quasi-random assignment of judges to cases.
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Alternative empirical strategies for bounding the missing data are possible, and I next il-

lustrate one such strategy. In particular, suppose that the unobserved failure to appear

rate among defendants detained by a particular judge is bounded by the observed failure to

appear rate among defendants released by the same judge. That is, for each judge, I apply

Proposition 5.1 instead assuming P (Y ∗
1 = 1 | C = 1, XI = xI , D(X) = d) ≤ P (Y ∗

1 = 1 |

C = 0, XI = xI , D(X) = d) ≤ (1 + κ)P (Y ∗
1 = 1 | C = 0, XI = xI , D(X) = d) for some

chosen parameter κ ≥ 0. Examining how the results change as κ ≥ 0 varies summarizes how

alternative assumptions on the magnitude of the missing data problem affects the conclu-

sions about systematic prediction mistakes. In the extreme case with κ = 0, the unobserved

failure to appear rate among defendants detained by a particular judge is point identified.

Figure II reports the fraction of judges in the top 25 for whom we can reject expected

utility maximization at accurate beliefs under alternative utility exclusion restrictions and

varying the choice of κ ≥ 0. Rationalizing the pretrial release decisions of all judges requires

assuming that detained defendants must be at least 5.5 times as risky as released defendants.

I therefore continue to find substantial evidence of systematic prediction mistakes in these

judges’ choices under alternative assumptions about the missing data problem.

5.5 How common and costly are systematic prediction mistakes?

Since the conclusions about the fraction of judges whose decisions are inconsistent with

expected utility maximization at accurate beliefs are robust to alternative definitions of

pretrial misconduct and bounds on the missing data, I focus on exploring the prediction

mistakes about failure to appear risk using bounds on the missing data constructed with

the quasi-random assignment of judges to cases. I report analogous results using alternative

bounds on the missing data and alternative definitions of pretrial misconduct in Online

Appendix E.

While there exists misrankings in the pretrial release decisions of a large fraction of

judges, it could be that these systematic prediction mistakes about failure to appear risk

only occur over a small subset of defendants or are small in magnitude. To investigate this
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possibility, I estimate the bound on the share of systematic prediction mistakes (Section

4.1.2). For each judge whose choices are inconsistent with expected utility maximization

at accurate beliefs at the nominal 5% level (i.e., an unadjusted rejection), Table II reports

the minimum, median and maximum bound on the share of systematic prediction mistakes

across these judges. When both defendant race and age may affect judges’ utility functions,

the median judge makes systematic prediction mistakes on approximately 30% of defen-

dants assigned to them. When both defendant race and whether the defendant was charged

with a felony may affect utility, the median judge makes systematic prediction mistakes on

approximately 24% of defendants assigned to them.

I next estimate how costly are these uncovered systematic prediction mistakes by cal-

culating the bound on the total expected utility cost of systematic prediction mistakes for

each judge whose choices are inconsistent with expected utility maximization at accurate

beliefs at the nominal 5% level (Section 4.1.1). I translate these estimated expected utility

costs into an equivalent reduction in the fraction of defendants that are released and fail to

appear in court that would produce the same total expected utility cost to the judge (Online

Appendix C.2). For the median judge, this corresponds to an equivalent 9.92 percentage

point reduction in the fraction of defendants that are released and fail to appear in court

when both defendant race and age are allowed to directly affect utility, and an equivalent

12.1 percentage point reduction when both defendant race and defendant charge severity are

allowed to directly affect utility. Taken together, these results indicate that these judges’

implied systematic prediction mistakes both occur over a sizeable fraction of defendants and

are large in an expected utility sense.

5.6 Bounding prediction mistakes based on defendant character-

istics

I next investigate the ways in which the judge’s beliefs about failure to appear risk are

systematically biased. I apply the identification results in Section 4.2 to bound the extent to
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which these judges’ implied beliefs overreact or underreact to predictable variation in failure

to appear risk based on defendant characteristics. For each judge whose choices are incon-

sistent with expected utility maximization at accurate beliefs at the nominal 5% level, I first

construct a 95% joint confidence set for the reweighted utility thresholds τ(xI , d), τ(xI , d
′)

at the bottom and top deciles of the predicted failure to appear risk distribution using

test inversion based on Proposition 4.1. I construct a 95% confidence interval for their im-

plied prediction mistakes δ(xI , d)/δ(xI , d
′) between the top decile and bottom deciles of the

predicted failure to appear risk distribution by calculating (1−τ(xI ,d))/τ(xI ,d)
(1−τ(xI ,d′))/τ(xI ,d′)

for each pair

τ(xI , d), τ(xI , d
′) in the joint confidence set.

Figure III plots the constructed confidence intervals for the implied prediction mistakes

δ(xI , d)/δ(xI , d
′) for each judge over the race-and-age cells (see Online Appendix Figure A2

for race-and-felony charge cells) Whenever informative, the confidence intervals highlighted

in orange lie everywhere below one, indicating that these judges’ are acting as-if their implied

beliefs about failure to appear risk underreact to predictable variation in failure to appear

risk. These judges are acting as-if they perceive the change in failure to appear risk between

defendants in the top decile and bottom decile of predicted risk to be lass then true change

in failure to appear risk across these defendants. This could be consistent with judges

“regularizing” how their implicit predictions of failure to appear risk respond to variation

in the characteristics across these extreme defendants, and may therefore be suggestive of

some form inattention (Caplin and Dean, 2015; Gabaix, 2019).

5.7 Which decisions violate expected utility maximization?

As a final qualitative step to investigate why the release decisions of judges in New York

City are inconsistent with expected utility maximization at accurate beliefs about failure to

appear risk, I report the cells of defendants on which the largest misranking in Proposition

5.1 occurs. This shows which defendants are associated with the largest misrankings in the

judges’ choices.

Among judges whose choices are inconsistent with expected utility maximization at
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accurate beliefs, Table III reports the fraction of judges for whom the maximal studentized

misranking occurs over the tails (deciles 1-2, 9-10) or the middle of the predicted failure to

appear risk distribution (deciles 3-8) for black and white defendants respectively. All of the

largest misrankings in the judges’ choices occur over defendants that lie in the tails of the

predicted risk distribution. Furthermore, the majority occur over decisions involving black

defendants as well. In fact, if the tails of the predicted failure to appear risk distribution

are dropped from the original analysis in Section 5.4, all judges’ pretrial release decisions

over the remaining defendants in the middle of the predicted risk distribution are consistent

with expected utility maximization at accurate beliefs. These empirical findings together

highlight that release decisions over defendants at the tails of the predicted risk distribution

are the primary driver of the documented inconsistencies with expected utility maximization

at accurate beliefs about failure to appear risk.

6 The welfare effects of algorithmic decision-making

I finally illustrate the implications of the econometric analysis of systematic prediction

mistakes for the design of algorithmic decision systems. I analyze either fully or partially

replacing judges in the New York City pretrial system with algorithmic decision rules. The

effects of replacing human decisions with algorithms depend on whether judges’ make sys-

tematic prediction mistakes and if so on which defendants, whether judges are misaligned

and optimizing a different objective than the policymaker, and finally whether judges ob-

serve any useful private information that is unavailable to the algorithmic decision rules.

By allowing for these three competing forces, the analysis of systematic prediction mistakes

informs our understanding of the possible tradeoffs between human and algorithmic decision

making.

Consider a policymaker with the linear social welfare function u∗
1,1y

∗
1c+u∗

0,1(1−y∗1)(1−c)

for binary outcome Y ∗ = Y ∗
1 ∈ {0, 1} and u∗

1,1, u
∗
0,1 ≤ 0. The policymaker evaluates a

candidate decision rule π̃1(x) ∈ [0, 1], which denotes the probability C = 1 is chosen given
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X = x by the decision rule. Expected social welfare of the decision rule at x ∈ X is

P (1 | x)π̃1(x)u
∗
1,1 + P (0 | x)π̃0(x)u

∗
0,1, (11)

and total expected social welfare further averages according to the marginal distribution of

characteristics. Due to the missing data problem, expected welfare under any candidate

decision rule is partially identified. Online Appendix C.5 characterizes the identified set of

expected social welfare under alternative candidate decision rules.

I compare expected social welfare under the release decisions of judges in New York City

against expected social welfare under particular algorithmic decision rules. Consistent with

the stated objectives of the New York City pretrial system, I define the binary outcome

to be whether a defendant would fail to appear in court. I specify u∗
0,1 = −ũ/|1 + ũ|

and u∗
1,1 = −1/|1 + ũ| for some chosen ũ ≥ 0, reporting results as |ũ| varies. For each

choice ũ, I construct an algorithmic decision rule that decides whether to release individuals

by thresholding a prediction of the probability they would fail to appear at each possible

cell of payoff relevant characteristics XI and each decile of predicted failure to appear risk

D(X). The threshold varies based on the parametrization of the social welfare function. By

following a threshold rule, there are no misrankings in these algorithmic decisions given its

predictions, and in fact it can be shown that these algorithmic decisions are consistent with

expected utility maximization at accurate beliefs, albeit with no private information. See

Online Appendix C.6 for further details.

I construct 95% confidence intervals for the identified set of expected social welfare under

the algorithmic decision rule and the judge’s observed released decisions, reporting the ratio

of worst-case expected social welfare under the algorithmic decision rule against the judge’s

observed release decisions. I conduct this exercise for each judge over the race-by-age cells,

reporting the median, minimum and maximum gain across judges. Online Appendix E.3

reports results over the race-by-felony charge cells.
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6.1 Replacing judges who make systematic prediction mistakes

I compare the release decisions of judges who make systematic prediction mistakes about

failure to appear risk against algorithmic decision rules that fully replace them over all

defendants. These judges made systematic prediction mistakes over defendants in the tails

of the predicted failure to appear risk distribution. Over the remaining defendants, however,

their choices are consistent with expected utility maximization at accurate beliefs about

failure to appear risk, some private information, and a utility function that varied based on

defendant race and age.

The policymaker’s comparison between fully replacing judges with algorithmic decision

rules versus the judges’ release decisions is driven by three forces. First, the algorithmic de-

cision rules may improve decisions by correcting these judges’ systematic prediction mistakes

over the tails of the predicted failure to appear risk distribution. Second, the algorithmic

decision rules may improve decisions by correcting possible misalignment between the pol-

icymaker’s social welfare function u∗
0,1, u

∗
1,1 which does not directly depend on defendant

characteristics, and these judges’ utility functions u1,1(xI), u0,1(xI) over the remaining de-

fendants. Finally, in the other direction, these judges may observe useful private information

over the remaining defendants that is unavailable to the algorithm.

In order to trace out these competing effects, Figure IVa compares the worst-case ex-

pected social welfare under the algorithmic decision rules against the release decisions of each

judge, varying the policymaker’s social welfare function u∗
0,1 = −ũ/|1+ ũ|, u∗

1,1 = −1/|1+ ũ|.

Worst-case expected social welfare under the algorithmic decision rules is strictly larger than

worst-case expected social welfare under these judges’ decisions for most values of the policy-

maker’s social welfare function. Intriguingly for |ũ| ∈ [0.3, 0.8], the algorithmic decision rules

either lead to no improvement or strictly lower worst-case expected social welfare relative

to these judges’ decisions. Online Appendix Figure A3 plots the comparison of worst-case

expected social welfare by the race of the defendant, highlighting that these costs of the

algorithmic decision rule are particularly large over white defendants. For these values, the
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cost of misalignment with the policymaker’s objective may be outweighed by the value of

these judges’ private information over the remaining defendants, and so it is costly to fully

replace them with algorithmic decision rules. To further investigate this hypothesis, Online

Appendix Figure A4 compares the release rates of the algorithmic decision rules that directly

optimize the social planner’s objective function against the observed release rates of these

judges. Indeed, the judges’ observed release rates are most similar to the algorithmic decision

rules’ release rates precisely over the values of the social welfare function where these judges’

decisions dominate the algorithmic decision rules.

The preceding econometric analysis, however, suggests that it would be most valuable to

replace these judges with algorithmic decision rules precisely over the defendants at the tails

of the predicted failure to appear risk distribution. Over these defendants, there exists no

private information nor utility function that could rationalize these judges’ choices at any

accurate beliefs about failure to appear risk. I therefore next compare these judges’ observed

release decisions against algorithmic decision rules that only replace them over defendants

in the tails of the predicted failure to appear risk distribution but otherwise defers to the

judges on all remaining defendants. Such a triage rule may reap the benefits of correcting

systematic prediction mistakes where they occur while avoiding the potential loss of valuable

private information on the remaining defendants. Figure IVb reports the welfare effects of

partially replacing judges with algorithmic decision rules as the policymaker’s social welfare

function varies. Strikingly, I find that the algorithmic decision rule that corrects systematic

prediction mistakes weakly dominates the observed release decisions of judges, no matter

the value of the social welfare function. For some parametrizations, the algorithmic decision

rule leads to 20% improvements in worst-case social welfare relative to the observed release

decisions of these judges.

These comparisons of judges’ decisions against algorithmic decision rules that either fully

or partially replace judges highlight how the analysis of systematic prediction mistakes in-

forms the design of algorithmic decision systems. Recent machine learning methods attempt
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to directly optimize whether particular decisions should be made by directly by an algorithm

or instead should be deferred to an existing decision maker (e.g., Madras, Pitassi and Zemel,

2018; Raghu et al., 2019; Wilder, Horvitz and Kamar, 2020). By simultaneously allowing for

systematic prediction mistakes, possible misalignment and private information, the econo-

metric analysis directly informs us about these specific behavioral mechanisms which govern

the effects of replacing decision makers with algorithmic decision rules.

6.2 Replacing judges who do not make systematic prediction mis-

takes

I next compare the release decisions of judges whose choices were found to be consistent

with expected utility maximization at accurate beliefs about failure to appear risk against

algorithmic decision rules that fully replace them over all defendants. The policymaker’s

comparison between these judges’ release decisions and fully replacing them with algorithmic

decision rules now only depends on two forces: first, the algorithmic decision rules may

correct possible misalignment between the policymaker’s objective and these judges’ utility

functions; and second, these judges may observe useful private information that is unavailable

to the algorithms.

Online Appendix Figure A5 reports the welfare effects of replacing these judges with

algorithmic decision rules, varying |ũ|. Replacing these judges’ release decisions may strictly

lower worst-case expected social welfare for a range of social welfare functions. For these

values, the cost of potential misalignment may be outweighed by the value of these judges’

private information, leading to better decisions than the algorithmic decision rules on average

from the policymaker’s perspective. Online Appendix Figure A6 compares the algorithm’s

release rates against the observed release rates of these judges, showing that their observed

release rates are most similar to the algorithmic decision rule over the values of the social

welfare function where the status quo dominates the counterfactual. Altogether, the effects

of fully replacing a decision maker whose decisions are consistent with expected utility max-
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imization at accurate beliefs again depends on the tradeoff between the value of their private

information against the degree to which they are misaligned with the policymaker. Exploring

how policymakers may empirically design optimal delegation rules to such decision makers

(e.g., see Frankel, 2021) in light of this econometric framework is an important question for

future work.

7 Conclusion

This paper develops an econometric framework for testing whether a decision maker

makes systematic prediction mistakes in high stakes settings like pretrial release and many

others. I characterized expected utility maximization behavior, where the decision maker

maximizes some utility function at accurate beliefs as well as some private information.

I developed a statistical test for whether the decision maker makes systematic prediction

mistakes and methods for estimating the ways in which their predictions are systematically

biased. Analyzing the New York City pretrial system, I found that a substantial fraction of

judges make systematic prediction mistakes about pretrial misconduct risk given defendant

characteristics.

Machine learning based models are now increasingly used in high-stakes decisions, and

specific behavioral hypotheses about decision makers often underlie their design. The ef-

fects of fully or partially replacing decision makers with algorithmic decision rules depend

on whether decision makers make systematic prediction mistakes and if so on which deci-

sions, whether decision makers are misaligned and optimizing a different objective than the

policymaker, and finally whether decision makers observe useful private information that

is unavailable to the algorithmic decision rules. By combining quasi-experimental variation

with formal identification analysis, researchers can explore the empirical content of expected

utility maximization at accurate beliefs, and thereby inform our understanding of the possi-

ble tradeoffs between human and algorithmic decision making.

Of course, machine learning based models are also frequently used to inform decision

40



makers by providing them with a recommended decision or risk prediction (e.g., see Stevenson

and Doleac, 2022; Agarwal et al., 2023; Albright, 2023; Angelova, Dobbie and Yang, 2023;

Grimon and Mills, 2023, among many others). The design of such algorithmic decision aids

requires a behavioral understanding of the human decision maker “in-the-loop.” Indeed,

recent work begins to shed empirical light on how exactly human decision makers form

beliefs and respond to algorithms in these settings. For example, by examining variation

in estimated testing probabilities, Mullainathan and Obermeyer (2022) provide suggestive

evidence that doctors may simultaneously fail to pay attention to some relevant patient

characteristics yet overweight other salient characteristics. Judges may pay attention to facial

characteristics of defendants (Ludwig and Mullainathan, 2023), and mistakenly overrule

algorithmic recommendations as they overweight recent salient cases (Angelova, Dobbie and

Yang, 2023), and respond differentially to algorithmic recommendations based on defendant

race (Albright, 2023). While I explored how to robustly test for and measure deviations from

the rational benchmark of expected utility maximization at accurate beliefs, the next step is

to explore the formal implications of alternative behavioral hypotheses such as inattention

(e.g., Sims, 2003; Gabaix, 2014; Caplin and Dean, 2015) as well as forms of salience or

representativeness (e.g., Gennaioli and Shleifer, 2010; Bordalo et al., 2016; Bordalo, Gennaioli

and Shleifer, 2021). Such results are the missing econometric link needed to operationalize

behavioral insights into the design of algorithmic decision systems. Exploiting these high-

stakes settings as rich laboratories for behavioral economics is an important, policy-relevant

agenda at the intersection of economic theory and microeconometrics, motivated by the

application of machine learning in these empirical settings.

Ashesh Rambachan

Massachusetts Institute of Technology

Department of Economics
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Figures

Figure I: Judge-specific failure to appear rate among released defendants and bound on the failure
to appear rate among detained defendants.

Notes: This figure plots the failure to appear rate among released defendants (orange, circles) and the
bounds on the failure to appear rate among detained defendants based on the judge leniency instrument
(blue, triangles) at each decile of predicted failure to appear risk and race-by-age cell for the judge that
heard the most cases in the main estimation sample. See Section 5.3 for further estimation details on these
bounds.
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Figure II: Fraction of judges whose release decisions are inconsistent with expected utility maxi-
mization behavior at accurate beliefs.

Notes: This figure summarizes the results for testing whether the release decisions of each judge in the top
25 are consistent with expected utility maximization behavior at a linear utility function u(c, y∗;xI) that
(i) does not depend on any observable characteristics, (ii) depends on the defendant’s race, (iii) depends
on both the defendant’s race and age, and (iv) depends on both the defendant’s race and whether the
defendant was charged with a felony offense. Bounds on the failure to appear rate among detained defendants
are constructed using bounds using the alternative bounding strategy discussed in Section 5.4.3 for κ =
{0, 1, . . . , 10}. I test the moment inequalities using the conditional least-favorable hybrid test developed in
Andrews, Roth and Pakes (2023). I estimate the variance-covariance matrix of the failure to appear rate
among released defendants using the bootstrap conditional on the included characteristics XI and predicted
risk decile D(X). The adjusted rejection rate reports the fraction of rejections after a multiple hypothesis
testing correction that controls the family-wise error rate at the 5% level.
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Figure III: Judge-specific bounds on prediction mistakes between predicted failure to appear risk
deciles.

Notes: This figure plots the 95% confidence interval on the implied prediction mistake δ(xI , d)/δ(xI , d
′)

between the top decile d and bottom decile d′ of the predicted failure to appear risk distribution for each
judge in the top 25 whose pretrial release decisions are inconsistent with expected utility maximization at
accurate beliefs at the nominal 5% level (the “unadjusted rejection rate” in the top panel of Table II) and
each race-by-age cell. When informative, the confidence intervals highlighted in orange show that judges
under-react to predictable variation in failure to appear risk from the highest to the lowest decile of predicted
failure to appear risk (i.e., the estimated bounds lie below one). See Section 4.2 for theoretical details on
the implied prediction mistake and Section 5.6 for the estimation details.
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Figure IV: Comparison of algorithmic decision rule against judges whose release decisions are
inconsistent with expected utility maximization at accurate beliefs.

(a) Algorithmic decision rule that fully replaces judges.

(b) Algorithmic decision rule that corrects prediction mistakes.

Notes: This figure reports the change in worst-case expected social welfare under two algorithmic decisions
rules against the release decisions of judges whose pretrial release decisions are inconsistent with expected
utility maximization at accurate beliefs at the nominal 5% level (the “unadjusted rejection rate” in the top
panel of Table II). Panel (a) reports the comparison for an algorithmic decision rule that fully replaces judges
over all decisions. Panel (b) reports the comparison for an algorithmic decision rule that only replaces judges
over the tails of the predicted risk distribution. The x-axis plots the relative social welfare cost of detaining a
defendant that would not fail to appear in court |ũ| (i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1+ ũ|,
u∗
1,1 = −1/|1 + ũ|. The solid line plots the median change and the dashed lines report the minimum and

maximum change across judges that make systematic prediction mistakes. See Section 6 for further details.
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Tables

Table I: Estimated fraction of judges whose release decisions are inconsistent with expected utility
maximization at accurate beliefs.

Utility Functions u(c, y∗;xI)
No Characteristics Race Race + Age Race + Felony Charge

A) Failure to appear
Unadjusted Rejection Rate 48% 48% 48% 56%
Adjusted rejection rate 24% 24% 20% 32%

B) Misconduct outcomes
Adjusted rejection rate 24% 24% 20% 32%

C) Release on recognizance
Adjusted rejection rate 32% 32% 32% 52%

Notes: This table summarizes the results for testing whether each judge’s pretrial release decisions are
consistent with expected utility maximization at accurate beliefs and some linear utility function u(c, y∗;xI)
that (i) do not depend on any defendant characteristics, (ii) depend on the defendant’s race, (iii) depend on
both the defendant’s race and age, and (iv) depend on both the defendant’s race and whether the defendant
was charged with a felony offense. Panel A tests for misrankings based on failure to appear risk alone,
(see Section 5.4). Panel B alternatively defines the outcome Y ∗ = (Y ∗

1 , Y
∗
2 , Y

∗
3 ) ∈ {0, 1}3 as whether the

defendant would fail to appear in court Y ∗
1 , be re-arrested for a non-violent crime Y ∗

2 , and be re-arrested
for a violent crime Y ∗

3 upon release (see Section 5.4.1). Panel C tests whether the “release on recognizance”
vs monetary bail decisions of judges are consistent with expected utility maximization behavior at accurate
beliefs (see Section 5.4.3). In each specification, bounds on the missing outcomes among detained defendants
are constructed using the judge leniency instrument (see Section 5.3). I test the moment inequalities using
the conditional least-favorable hybrid test developed in Andrews, Roth and Pakes (2023). I estimate the
variance-covariance matrix of moments using the bootstrap conditional on the included characteristics XI ,
predicted risk decile D(X) and leniency quintile instrument Z. The “adjusted rejection rate” reports the
fraction of rejections across all judges in the top 25 after a multiple hypothesis testing correction that controls
the family-wise error rate at the 5% level.
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Table II: Share of systematic prediction mistakes among judges whose release decisions are incon-
sistent with expected utility maximization at accurate beliefs.

Utility Functions u(c, y∗;xI)
Race and Age Race and Felony Charge

Unadjusted Rejection Rate 48% 56%

Prediction Mistake Share
Minimum 6.30% 11.88%
Median 30.87% 24.45%

Maximum 42.26% 45.78%

Notes: This table summarizes the estimated bound on the share of systematic prediction mistakes among
judges whose release decisions are inconsistent with expected utility maximization at accurate beliefs and
linear utility functions that depend on both the defendant’s race and age as well as the defendant’s race
and whether the defendant was charged with a felony. Among judges’ whose pretrial release decisions are
inconsistent with expected utility maximization at accurate beliefs at the nominal 5% level (the “unadjusted
rejection rate” in the top panel of Table I), I compute the optimal value of the sample analogue to the
optimization program (21). See Section 4.1.2 for theoretical details on the bound for the share of systematic
prediction mistakes and Section 5.5 for the estimation details.

Table III: Largest misrankings among judges whose release decisions are inconsistent with expected
utility maximization at accurate beliefs.

Utility Functions u(c, y∗;xI)
Race and Age Race and Felony Charge

Unadjusted Rejection Rate 48% 56%

White Defendants
Middle Deciles 0% 0%
Tail Deciles 25% 7.14%

Black Defendants
Middle Deciles 0% 0%
Tail Deciles 75% 92.85%

Notes: This table summarizes the location of the largest (studentized) misranking in Proposition 5.1 among
judges whose release decisions are inconsistent with expected utility maximization at accurate beliefs and
linear utility functions that depend on both the defendant’s race and age as well as the defendant’s race
and whether the defendant was charged with a felony. Among judges whose pretrial release decisions are
inconsistent with expected utility maximization at accurate beliefs at the nominal 5% level (the “unadjusted
rejection rate” in the top panel of Table I), I report the fraction of judges for whom the largest studentized
misranking occurs among white and black defendants on tail deciles (deciles 1-2, 9-10) and middle deciles
(3-8) of predicted failure to appear risk.
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A Omitted proofs

A.1 Section 3: identifying systematic prediction mistakes in screen-
ing decisions

A.1.1 Proof of Theorem 3.1

Lemma A.1. The decision maker’s choices are consistent with expected utility maximization
at some linear utility function if and only if there exists some linear utility function satisfying

i. µ1(xI , xE) ≤
∑K

k=1 |u0,k(xI)| for all (xI , xE) ∈ XI ×XE with π1(xI , xE) > 0,

ii.
∑K

k=1 |u0,k(xI)| ≤ µ0(xI , xE) for all (xI , xE) ∈ XI ×XE with π0(xI , xE) > 0.

Proof. I apply Theorem B.1 to a screening decision with a binary choice. Theorem B.1
requires µ1(xI , xE) ≤

∑K
k=1 |u0,k(xI)| for all (xI , xE) ∈ XI × XE with π1(xI , xE) > 0, and∑K

k=1 |u0,k(xI)| ≤ µ0(xI , xE) for all (xI , xE) ∈ XI × XE with π0(xI , xE) > 0. Applying the
sharp bound µ0(x) ≤ maxP̃ ( ·|x)∈Bx

µ0(x) := µ0(x) then delivers the result.

By Lemma A.1, the decision maker’s choices are consistent with expected utility max-
imization behavior if and only if there exists a linear utility function u(c, y∗;xI) satisfying,
for all xI ∈ XI ,

max
xE∈Π1(xI)

µ1(xI , xE) ≤
K∑
k=1

|u0,k(xI)| ≤ min
xE∈Π0(xI)

µ0(xI , xE)

The inequalities in Theorem 3.1 are immediate. The identified set of linear utility functions
is then given by all linear utility functions (Definition 3.1) that satisfy the above display. □

A.1.2 Proof of Proposition 3.1

Recall Ȳ ∗ :=
∑K

k=1 Y
∗
k , µ(x, z) := E[Ȳ ∗ | X = x, Z = z] and µc(x, z) := E[Ȳ ∗ | C = c,X =

x, Z = z] for c ∈ {0, 1} Under Assumption 3.2, µ(x, z) = µ(x, z̃) = µ(x) for all x ∈ X and
z, z̃ ∈ Z. Using that Y ∗

k ∈ [0, 1] for all k = 1, . . . , K and applying worst-case bounds (e.g.,
Manski, 1994), µ(x, z) is sharply bounded by

µ1(x, z̃)π1(x, z̃) ≤ µ(x, z) ≤ Kπ0(x, z̃) + µ1(x, z̃)π1(x, z̃).

The result follows by (i) writing µ(x, z) = µ0(x, z)π0(x, z) + µ1(x, z)π1(x, z) via iterated
expectations, (ii) taking the maximum, minimum of the lower, upper bounds respectively
over z̃ ∈ Z, and (iii) re-arranging. □

A.2 Section 4: characterizing systematic prediction mistakes in
screening decisions

A.2.1 Proof of Theorem 4.1

I apply Theorem B.2 to a screening decision with a binary choice over the class of linear
utility functions. For all (xI , xE) ∈ XI × XE with π1(xI , xE) > 0, Theorem B.2 requires
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µ1(xI , xE) − ϵ(xI , xE) ≤
∑K

k=1 |u0,k(xI)|. For all (xI , xE) ∈ XI × XE with π0(xI , xE) > 0,

Theorem B.2 requires
∑K

k=1 |u0,k(xI)| ≤ µ0(xI , xE) + ϵ(xI , xE). Putting these together, it
follows that the decision maker’s choices approximately maximize expected utility at ϵ =
{ϵ(x) ≥ 0: x ∈ X} if and only if, for all xI ∈ XI ,

max
xE∈XE

{µ1(xI , xE)− ϵ(xI , xE)} ≤ min
x′
E∈XE

{µ0(xI , x
′
E) + ϵ(xI , x

′
E)} .

This is equivalent to, for all xI ∈ XI ,

µ1(xI , xE)− µ0(xI , x
′
E)− ϵ(xI , xE)− ϵ(xI , x

′
E) ≤ 0 for all xE, x

′
E ∈ XE.

□

A.2.2 Proof of Proposition 4.1

To prove this result, we first establish the following Lemma.

Lemma A.2. Suppose Assumption 3.1 holds, P̃ ( · | x) > 0 for all P̃ ( · | x) ∈ H(P ( · | x);Bx),
x ∈ X , and 0 < π1(x) < 1 for all x ∈ X . The decision maker’s choices are consistent with
expected utility maximization at inaccurate beliefs and some linear utility function if and only
if there exists P̃0( · | x) ∈ Bx and non-negative weights ω(y∗;x) satisfying, for all xI ∈ XI ,

max
x̃E∈Π1(xI)

EP̃ [ω1(Y
∗;X)Ȳ ∗ | C = 1, X = (xI , x̃E)] ≤ min

x̃E∈Π0(xI)
EP̃ [ω0(Y

∗;X)Ȳ ∗ | C = 0, X = (xI , x̃E)]

and, for all x ∈ X , EP̃ [ω(Y
∗;X) | X = x] = 1, where ω1(y

∗;x) = ω(y∗;x)/EP̃ [ω(Y
∗;X) |

C = 1, X = x], ω0(y
∗;x) = ω(y∗;x)/EP̃ [ω(Y

∗;X) | C = 0, X = x] and EP̃ [·] is the expecta-

tion under the joint distribution (X,C, Y ∗) ∼ P̃ ( ·) defined in the proof.

Proof. This is an immediate consequence of applying Theorem B.3 to a binary choice, screen-
ing decision over the class of linear utility functions. For all x ∈ X with π1(x) > 0, Theorem
B.3 requires

EP̃ [ω(Y
∗;X)Ȳ ∗ | C = 1, X = x] ≤ EP̃ [ω(Y

∗;X) | C = 1, X = x]

(
K∑
k=1

|u0,k(xI)|

)
.

Defining ω1(Y
∗;X) = ω(Y ∗;X)/EP̃ [ω(Y

∗;X) | C = 1, X = x], this can be equivalently
written as

EP̃ [ω1(Y
∗;X)Ȳ ∗ | C = 1, X = x] ≤

K∑
k=1

|u0,k(xI)|.

Similarly, for all x ∈ X with π0(x) > 0, Theorem B.3 requires

K∑
k=1

|u0,k(xI)| ≤ EP̃ [ω0(Y
∗;X)Ȳ ∗ | C = 0, X = x],

where ω0(Y
∗;X) = ω(Y ∗;X)/EP̃ [ω(Y

∗;X) | C = 0, X = x]. It therefore follows that the
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decision maker’s choices are consistent with expected utility maximization at inaccurate
beliefs if and only if there exists a linear utility function, P̃ ( · | x) ∈ Bx for all x ∈ X and
non-negative weights ω(y∗;x) satisfying, for all xI ∈ XI ,

max
x̃E∈Π1(xI)

EP̃ [ω1(Y
∗;X)Ȳ ∗ | C = 1, X = x] ≤

K∑
k=1

|u0,k(xI)|,

K∑
k=1

|u0,k(xI)| ≤ min
x̃E∈Π0(xI)

EP̃ [ω0(Y
∗;X)Ȳ ∗ | C = 0, X = x]

and, for all x ∈ X , EP̃ [ω(Y
∗;X) | X = x] = 1. □

Under the stated conditions, the necessity statement in Theorem B.3 implies that, for
all x ∈ X ,

ω(1;x)u1,1(xI)P1(1 | x) ≥ ω(0;x)u0,1(xI)P1(0 | x),
ω(0;x)u0,1(xI)P̃0(0 | x) ≥ ω(1;x)u1,1(xI)P̃0(1 | x),

where ω(y∗;x) = Q̃(y∗|x)
P̃ (y∗|x)

. Re-arranging these inequalities, we observe that

P1(1 | x) ≤ ω(0;x)u0,1(xI)

ω(0;x)u0,1(xI) + ω(1;x)u1,1(xI)
≤ P̃0(1 | x).

The result follows by applying the bounds on P̃0(1 | x). □

A.3 Section 5: do pretrial release judges make prediction mis-
takes?

A.3.1 Proof of Proposition 5.1

This is an immediate consequence of Lemma B.1 to a screening decision and iterated expec-
tations. Since the decision maker’s choices are consistent with expected utility maximization,
by Lemma B.1, there exists some linear utility function u and P̃0( · | x) ∈ Bx such that her
choices satisfy, for all x ∈ X ,∑

y∗∈Y

P (Y ∗ = y∗, C = 1 | X = x)u(1, y∗;xI) ≥
∑
y∗∈Y

P (Y ∗ = y∗, C = 1 | X = x)u(0, y∗;xI)∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | X = x)u(0, y∗;xI) ≥
∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | X = x)u(1, y∗;xI),

where P̃ (Y ∗ = y∗, C = 0 | X = x) = P̃0(y
∗ | x)π0(x). Therefore, her choices satisfy, for all

d ∈ {1, . . . , Nd},∑
xE : D(xI ,xE)=d

∑
y∗∈Y

P (Y ∗ = y∗, C = 1 | X = (xI , xE))
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
u(1, y∗;xI) ≥
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∑
xE : D(xI ,xE)=d

∑
y∗∈Y

P (Y ∗ = y∗, C = 1 | X = (xI , xE))
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
u(0, y∗;xI)

and ∑
xE : D(xI ,xE)=d

∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | X = (xI , xE))
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
u(0, y∗;xI) ≥

∑
xE : D(xI ,xE)=d

∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | X = (xI , xE))
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
u(1, y∗;xI).

These can equivalently be written as∑
y∗∈Y

P (Y ∗ = y∗, C = 1 | XI = xI , D(X) = d)u(1, y∗;xI) ≥

∑
y∗∈Y

P (Y ∗ = y∗, C = 1 | XI = xI , D(X) = d)u(0, y∗;xI)

and ∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | XI = xI , D(X) = d)u(0, y∗;xI) ≥

∑
y∗∈Y

P̃ (Y ∗ = y∗, C = 0 | XI = xI , D(X) = d)u(1, y∗;xI).

The result then follows by the same argument as the proof of Theorem 3.1. □

B Expected utility maximization in treatment assign-

ment problems
In the main text, I made two simplifying assumptions for exposition: (i) the decision maker
only faced two choices; and (ii) the decision maker’s choice did not have a direct causal effect
on the outcome. I now relax both assumptions, and analyze treatment assignment problems
in which the decision maker selects one of many treatments for each individual. This nests
the main text analysis of screening decisions as a special case.

B.1 Setting and behavioral model

The decision maker selects a choice c ∈ {c1, . . . , cJ} for each individual. Each individual
is summarized by characteristics x ∈ X and a vector of potential outcomes. The potential
outcome yj := y(cj) ∈ Y is the outcome that would occur if the decision maker selects
choice cj. Let y⃗ = (y1, . . . , yJ) ∈ YJ denote the vector of potential outcomes associated with
each choice, and y⃗−j is the vector of all potential outcomes except for the potential outcome
associated with choice cj.

The random vector (X,C, Y⃗ ) ∼ P ( ·) summarizes the joint distribution of the char-
acteristics, the decision maker’s choices and potential outcomes across all individuals. I
assume the characteristics and outcome have finite support, and there exists δ > 0 such that
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P (x) := P (X = x) ≥ δ for all x ∈ X . This nests the main text as a special case if we further
assume (i) choice is binary c ∈ {0, 1}; and (ii) choices do not have a causal effect on the
outcome with y1 = y∗, y0 = 0.

We observe the potential outcome associated with the decision maker’s choice, where
Y :=

∑J
j=1 Yj1{C = cj}. We observe the conditional potential outcome probabilities

P (Yj = y | C = cj, X = x) for j = 1, . . . , J , but not the counterfactual potential out-
come probabilities P (Yk = y | C = cj, X = x) for j ̸= k. As notation, let Pj(y⃗ | x) :=

P (Y⃗ = y⃗ | C = cj, X = x), and Pj( · | x) ∈ ∆(YJ) denote the conditional distribution

Y⃗ | C = cj, X = x. Let πj(x) := P (C = cj | X = x) denote the generalized propensity score
for each cj ∈ {c1, . . . , cJ}.

For each choice cj and characteristic x ∈ X , I assume there exists a known subset Bj,x ⊆
∆(YJ) such that Pj( · | x) ∈ Bj,x and

∑
y⃗−j

P̃j ((y⃗−j, yj) | x) = P (Yj = yj | C = cj, X = x)

for all P̃j( · | x) ∈ Bj,x and yj ∈ Y . Denote the identified set for P ( · | x) := P (Y⃗ | X = x)
as H(P ( · | x);Bx), where Bx := {Bj,x : j = 1, . . . , J}.

Definition B.1. The utility function u : {c1, . . . , cJ}×YJ×XI specifies the payoff associated
with each choice, vector of potential outcomes, and characteristics xI ∈ XI . Let U denote
the feasible set of utility functions specified by the researcher.

Definition B.2. The decision maker’s choices are consistent with expected utility maxi-
mization in a treatment assignment problem if there exists u ∈ U and (X, V,C, Y⃗ ) ∼ Q(·)
satisfying

i. Expected Utility Maximization: For all cj ∈ {c1, . . . , cJ}, (x, v) ∈ X × V such that
Q(cj | x, v) > 0,

EQ

[
u(cj, Y⃗ ;XI) | X = x, V = v

]
≥ EQ

[
u(c′, Y⃗ ;XI) | X = x, V = v

]
for all c′ ̸= cj, where EQ[ ·] denotes the expectation under Q(·).

ii. Information Set: C ⊥⊥ Y⃗ | {X, V } under Q(·).

iii. Data Consistency: For all cj ∈ {c1, . . . , cJ}, x ∈ X , there exists P̃j( · | x) ∈ Bj,x

satisfying, for all y⃗ ∈ YJ ,

Q(x, cj, y⃗) = P̃j(y⃗ | x)πj(x)P (x).

The identified set of utility functions is the set of u ∈ U such that there exists (X, V,C, Y⃗ ) ∼
Q(·) satisfying (i)-(iii).

B.2 Characterization results

The decision maker’s choices in a treatment assignment problem are consistent with expected
utility maximization behavior if and only if there exists a utility function that satisfies a set
of stochastic revealed preference inequalities.
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Theorem B.1. The decision maker’s choices in a treatment assignment problem are con-
sistent with expected utility maximization behavior if and only if there exists u ∈ U and
P̃j( · | x) ∈ Bj,x for all cj ∈ {c1, . . . , cJ}, x ∈ X such that

EQ

[
u(cj, Y⃗ ;XI) | C = cj, X = x

]
≥ EQ

[
u(c′, Y⃗ ;XI) | C = cj, X = x

]
(12)

for all c′ ̸= cj whenever πj(x) > 0, where (X,C, Y⃗ ) ∼ Q(·) is given by Q(x, cj, y⃗) = P̃j(y⃗ |
x)πj(x)P (x). The identified set of utility functions is the set of all utility functions u ∈ U
such that there exists P̃j( · | x) ∈ Bj,x for all cj ∈ {c1, . . . , cJ}, x ∈ X satisfying (12).

Theorem B.1 provides a necessary and sufficient characterization of expected utility maxi-
mization that only involves the data and the bounds on the conditional potential outcome
probabilities.

As in Section 3 of the main text, I next analyze the testable implications of expected
utility maximization behavior for a binary choice c ∈ {0, 1} over linear utility functions.

Assumption B.1 (Vector-valued outcome). For some K ≥ 1, each potential outcome sat-
isfies yj = y(cj) = (y1(cj), . . . , yK(cj)) ∈ [0, 1]K for j = 1, . . . , J .

Under Assumption B.1, the class of linear utility functions is the set of utility function
satisfying u(c, y⃗;xI) =

∑K
k=1 yk − u0,k(xI)c, where u0,k(xI) ≥ 0 for all xI ∈ XI . As in the

main text, define Πc(xI) := {xE : π1(xE, xI) > 0} for c ∈ {0, 1}. Let Ȳ (c) :=
∑K

k=1 Yk(c),
µc(x) := E[Ȳ (1)−Ȳ (0) | C = c,X = x] for each c ∈ {0, 1}, and µ

0
(x) := minP̃0( ·|x)∈B0,x

µ0(x),

µ1(x) := maxP̃1( ·|x)∈B1,x
µ1(x).

Corollary B.1. The decision maker’s choices are consistent with expected utility maximiza-
tion at some linear utility function if and only if, for all xI ∈ XI ,

max
xE∈Π0(xI)

µ
0
(xI , xE) ≤ min

xE∈Π1(xI)
µ1(xI , xE). (13)

The identified set of linear utility functions equals the set of all utility functions satisfying,
for all xI ∈ XI , u(c, y⃗;xI) =

∑K
k=1 yk − u0,k(xI)c with u0,k(xI) ≥ 0 and

max
xE∈Π0(xI)

µ
0
(xI , xE) ≤

K∑
k=1

|u0,k(xI)| ≤ min
xE∈Π1(xI)

µ1(xI , xE). (14)

Corollary B.1 immediately implies two negative results about the identification of systematic
prediction mistakes in treatment assignment problems that parallel Corollary 3.1 in the main
text for screening decisions.

Corollary B.2. The decision maker’s choices are consistent with expected utility maximiza-
tion behavior at some linear utility function u(c, y⃗;xI) =

∑K
k=1 yk + u0,k(xI)c if either:

(i) All characteristics affect utility (i.e., X = XI) and µ
0
(xI) ≤ µ1(xI) for all xI ∈ XI .

(ii) The researcher’s bounds on the conditional potential outcome probabilities are uninfor-

mative, meaning, for both c ∈ {0, 1} and all x ∈ X , Bc,x equals the set of all P̃c( · | x)
satisfying

∑
yc̃∈Y P̃c(yc, yc̃ | x) = Pc(yc | x) for all yc ∈ Y.
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B.3 Approximate expected utility maximization in treatment as-
signment problems

I characterize conditions under which the decision maker’s choices approximately maximize
expected utility at accurate beliefs in a treatment assignment problem. The definition of
approximate expected utility maximization behavior in the main text (Definition 4.1) gen-
eralizes naturally.

Definition B.3. The decision maker’s choices are consistent with approximate expected
utility maximization in a treatment assignment problem if there exists u ∈ U , expected
utility costs ϵ(x) ≥ 0 for all x ∈ X , and (X, V,C, Y⃗ ) ∼ Q(·) satisfying:

i. Approximate Expected Utility Maximization: For all c ∈ {0, 1}, c′ ̸= c, (x, v) ∈ X ×V
such that Q(c | x, v) > 0,

EQ

[
u(c, Y⃗ ;XI) | X = x, V = v

]
≥ EQ

[
u(c′, Y⃗ ;XI) | X = x, V = v

]
− ϵ(x),

and (ii) Information Set, (iii) Data Consistency as defined in Definition B.2. The identified
set of expected utility costs is the set of ϵ = {ϵ(x) ≥ 0: x ∈ X} such that there exists u ∈ U
and (X, V,C, Y⃗ ) ∼ Q(·) satisfying (i)-(iii).

Theorem B.2. The decision maker’s choices are consistent with approximate expected utility
maximization if and only if there exists u ∈ U , ϵ(x) ≥ 0 for all x ∈ X , and P̃j( · | x) ∈ Bj,x

for all cj ∈ {c1, . . . , cJ}, x ∈ X satisfying

EQ

[
u(cj, Y⃗ ;XI) | C = c,X = x

]
≥ EQ

[
u(c′, Y⃗ ;XI) | C = c,X = x

]
− ϵ(x) (15)

for all c′ ̸= cj whenever πj(x) > 0, where (X,C, Y⃗ ) ∼ Q(·) is given by Q(x, c, y⃗) = P̃j(y⃗ |
x)πj(x)P (x).

Corollary B.3. Consider treatment assignment problem with binary choice, and suppose
0 < π1(x) < 1 for all x ∈ X . The decision maker’s choices approximately maximize expected
utility at some linear utility function and expected utility costs ϵ(x) ≥ 0 for all x ∈ X if and
only if, for all pairs x = (xI , xE), x

′ = (xI , x
′
E),

µ
0
(x)− µ1(x

′)− ϵ(x)− ϵ(x′) ≤ 0. (16)

The identified set of expected utility costs equals the set of all ϵ = {ϵ(x) ≥ 0: x ∈ X}
satisfying (16).

B.4 Expected utility maximization at inaccurate beliefs in treat-
ment assignment problems

I finally characterize conditions under which the decision maker’s choices are consistent with
expected utility maximization at inaccurate beliefs in a treatment assignment problem.

Definition B.4. The decision maker’s choices are consistent with expected utility maximiza-
tion at inaccurate beliefs in a treatment assignment if there exists u ∈ U and (X, V,C, Y⃗ ) ∼

OA-8



Q(·) satisfying (i) Expected Utility Maximization, (ii) Information Set as in Definition B.2,
and

iii. Data Consistency with Inaccurate Beliefs: For all x ∈ X , there exists P̃j( · | x) ∈ Bj,x

for each j = 1, . . . , J such that, for all y⃗ ∈ YJ and cj ∈ {c1, . . . , cJ},

Q(cj | y⃗, x)P̃ (y⃗ | x)Q(x) = P̃j(y⃗ | x)πj(x)P (x),

where P̃ (y⃗ | x) =
∑J

j=1 P̃j(y⃗ | x)πj(x).

Theorem B.3. Assume P̃ ( · | x) > 0 for all P̃ ( · | x) ∈ H(P ( · | x);Bx) and x ∈ X .
The decision maker’s choices are consistent with expected utility maximization at inaccurate
beliefs in a treatment assignment problem if and only if there exists u ∈ U , P̃j( · | x) ∈ Bj,x

for all j = 1, . . . , J and x ∈ X , and non-negative weights ω(y⃗;x) satisfying

i. For all cj ∈ {c1, . . . , cJ}, x ∈ X with πj(x) > 0, c′ ̸= cj

EP̃

[
ω(Y⃗ ;X)u(cj, Y⃗ ;XI) | C = cj, X = x

]
≥ EP̃

[
ω(Y⃗ ;X)u(c′, Y⃗ ;XI) | C = cj, X = x

]
ii. For all x ∈ X , EP̃ [ω(Y⃗ ;X) | X = x] = 1

where EP̃ [·] is the expectation under (X,C, Y⃗ ) ∼ P̃ (·) defined as P̃ (x, cj, y⃗) = P̃j(y⃗ |
x)πj(x)P (x).

B.5 Proofs of characterization results for treatment assignment
problems

B.5.1 Proof of Theorem B.1

Proof. I prove the following Lemma, and then show it implies Theorem B.1.

Lemma B.1. The decision maker’s choices are consistent with expected utility maximization
behavior if and only if there exists a utility function u ∈ U , P̃j( · | x) ∈ Bj,x for each
cj ∈ {c1, . . . , cJ} and x ∈ X satisfying∑

y⃗∈YJ

P̃j(y⃗ | x)πj(x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

P̃j(y⃗ | x)πj(x)u(c
′, y⃗;xI)

for all x ∈ X , c ∈ {c1, . . . , cJ}, c′ ̸= cj,

Proof of Lemma B.1: Necessity Suppose that the decision maker’s choices are con-
sistent with expected utility maximization at some utility function U and joint distribution
(X, V,C, Y⃗ ) ∼ Q.

First, I show that if the decision maker’s choices are consistent with expected utility
maximization behavior at some utility function u, joint distribution (X, V,C, Y⃗ ) ∼ Q in
which private information has support V , then her choices are also consistent with expected
utility maximization behavior at some finite support private information. I show this for the
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case where J = 2, and the argument generalizes to J > 2 at the expense of more cumbersome
notation.

Partition the original signal space V into the subsets V{1},V{2},V{1,2}, which collect to-
gether the signals v ∈ V at which the decision maker strictly prefers C = c1, strictly prefers
C = c2 and is indifferent between C = c1, C = c2 respectively. Define the coarsened signal
space Ṽ = {v{1}, v{2}, v{1,2}} and coarsened private information Ṽ ∈ Ṽ as

Q̃(Ṽ = v{1} | Y⃗ = y⃗, X = x) = Q(V ∈ V{1} | Y⃗ = y⃗, X = x)

Q̃(Ṽ = v{2} | Y⃗ = y⃗, X = x) = Q(V ∈ V{2} | Y⃗ = y⃗, X = x)

Q̃(Ṽ = v{1,2} | Y⃗ = y⃗, X = x) = Q(V ∈ V{1,2} | Y⃗ = y⃗, X = x).

Define Q̃(C = c1 | Ṽ = v{1}, X = x) = 1, Q̃(C = c2 | Ṽ = v{2}, X = x) = 1 and

Q̃(C = c2 | Ṽ = v{1,2}, X = x) =
Q(C = c2, V ∈ V{1,2} | X = x)

Q(V ∈ V{1,2} | W = w,X = x)
.

Define the coarsened expected utility representation by the utility function u and the random
vector (X, Ṽ , C, Y⃗ ) ∼ Q̃, where Q̃(x, v, c, y⃗) = Q(x, y⃗)Q̃(ṽ | x, y⃗)Q̃(c | x, ṽ). The information
set and expected utility maximization conditions are satisfied by construction. Data consis-
tency is satisfied since it is satisfied at the original private information V ∈ V . To see this,
notice that for all (x, y⃗) ∈ W ×X × Y2

P (C = c2, Y⃗ = y⃗ | X = x) =

Q(C = c2, V = V , Y⃗ = y⃗ | X = x) =

Q(C = c2, V ∈ V{2}, Y⃗ = y⃗ | X = x) +Q(C = 1, V ∈ V{1,2}, Y⃗ = y⃗ | X = x) =

Q̃(C = c2, Ṽ = v2, Y⃗ = y⃗ | X = x) + Q̃(C = 1, Ṽ = v1,2, Y⃗ = y⃗ | X = x) =∑
ṽ∈Ṽ

Q̃(C = c2, Ṽ = ṽ, Y⃗ = y⃗ | X = x) = Q̃(C = c2, Y⃗ = y⃗ | X = x).

The same argument applies to P (C = c1, Y⃗ = y⃗ | X = x). For the remainder of the necessity
proof, it is therefore without loss to assume private information V ∈ V has finite support.

I next show that if there exists an expected utility representation for the decision maker’s
choices, then the stated inequalities in Lemma B.1 are satisfied by adapting the necessity
argument given the “no-improving action switches inequalities” in Caplin and Martin (2015).
Suppose that the decision maker’s choices are consistent with expected utility maximization
at utility function u ∈ U and joint distribution (X, V,C, Y⃗ ) ∼ Q. Then, for each cj ∈
{c1, . . . , cJ} and (x, v) ∈ X × V ,

Q(cj | x, v)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(cj, y⃗;xI)

 ≥ Q(cj | x, v)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(c′, y⃗;xI)


holds for all cj ̸= c′. If Q(cj | x, v) = 0, this holds trivially. If Q(cj | x, v) > 0, this holds
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through the expected utility maximization condition. Multiply both sides by Q(v | x) to
arrive at

Q(cj | x, v)Q(v | x)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(cj, y⃗;xI)

 ≥ Q(cj | x, v)Q(v | x)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(c′, y⃗;xI)

 .

Next, use information set to write Q(cj, y⃗ | x, v) = Q(y⃗ | x, v)Q(cj | x, v) and arrive at

Q(v | x)

∑
y⃗∈YJ

Q(cj, y⃗ | x, v)u(cj, y⃗;xI)

 ≥ Q(v | x)

∑
y⃗∈YJ

Q(cj, y⃗ | x, v)u(c′, y⃗;xI)

 .

Finally, we use Q(cj, y⃗, v | x) = Q(cj, y⃗ | x, v)Q(v | x) and then further sum over v ∈ V to
arrive at

∑
y⃗∈YJ

(∑
v∈V

Q(v, cj, y⃗ | x)

)
u(cj, y⃗;xI) ≥

∑
y⃗∈YJ

(∑
v∈V

Q(v, cj, y⃗ | x)

)
u(c′, y⃗;xI)∑

y⃗∈YJ

Q(cj, y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | x)u(c′, y⃗;xI).

The inequalities in Lemma B.1 follow from an application of data consistency.

Proof of Lemma B.1: Sufficiency As notation, let C := {c1, . . . , cJ}. To establish
sufficiency, I show that if the conditions in Lemma B.1 hold, then private information v ∈ V
can be constructed that recommends choices c ∈ C and an expected utility maximizer would
find it optimal to follow these recommendations as in the sufficiency argument in Caplin and
Martin (2015) for the “no-improving action switches” inequalities.

Towards this, suppose that the conditions in Lemma B.1 are satisfied at some P̃j( · |
x) ∈ Bj,x for all j = 1, . . . , J , x ∈ X . As notation, let v ∈ V :=

{
1, . . . , 2J

}
index all possible

subsets in the power set 2C.
For each x ∈ X , define Cx := {cj : πj(x) > 0} ⊆ C to be the set of choices selected with

positive probability, and partition Cx into subsets that have identical conditional outcome
probabilities. There are V̄x ≤ |Cx| such subsets. Each subset of this partition of Cx is a
subset in the power set 2C, and so I may associate each subset in this partition with its index
v ∈ V . Denote the conditional outcome probability associated with the subset labelled v by
P ( · | v, x) ∈ ∆(YJ). Finally, define Q(y⃗ | x) =

∑J
j=1 P̃j(y⃗ | x)πj(x).

Define V ∈ V according to

QV (v | x) =
∑

cj : Pj( ·|x)=P ( ·|v,x)

πj(x) if v ∈ Vx,

QV (v | y⃗, x) =

{
P (y⃗|v,x)Q(v|x)

Q(y⃗|x) if v ∈ Vx and Q(y⃗ | x) > 0,

0 otherwise.
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Next, define C ∈ C according to

Q(cj | v, x) =


πj(x)

/ ∑
cj̃ : Pj̃( ·|x)=P ( ·|v,x)

πj̃(x)

 if v ∈ Vx and Pj( · | c, x) = P ( · | v, x)

0 otherwise.

Together, this defines the random vector (X, Y ∗, V, C) ∼ Q, whose joint distribution is
defined as

Q(x, y⃗, v, c) = P (x)Q(y⃗ | x)Q(v | y⃗, x)Q(c | v, x).

We now check that this construction satisfies information set, expected utility maxi-
mization and data consistency. First, information set is satisfied since Q(c, y⃗ | x, v) = Q(y⃗ |
x, v)Q(c | x, v) by construction. Next, for any x ∈ X and cj ∈ Cx, define vj,x ∈ Vx to be the
label satisfying Pj( · | x) = P ( · | v, x). For P (cj, y⃗ | w, x) > 0, observe that

P (cj, y⃗ | x) = P̃j(y⃗ | x)πj(x) =

Q(y⃗ | x)

Q(y⃗ | vj,x, x)
∑

j̃ : Pj̃( ·|x)=
P ( ·|vj,x,x)

πj̃(x)

Q(y⃗ | x)
πj(x)∑

j̃ : Pj̃( ·|x)=
P ( ·|vj,x,x)

πj̃(x)
=

Q(y⃗ | x)Q(vj,x | y⃗, x)Q(c | vj,x, x) =∑
v∈V

Q(y⃗ | x)Q(v | y⃗, x)Q(c | v, x) =
∑
v∈V

QV,C,Y⃗ (v, c, y⃗ | x) = QC,Y⃗ (c, y⃗ | x).

Moreover, whenever PC,Y⃗ (c, y⃗ | x) = 0, Q(y∗ | vj,x, x)Q(c | vj,x, x) = 0. Therefore, data
consistency holds. Finally, by construction, for Q(C = cj | V = vj,x, X = x) > 0,

Q(Y⃗ = y⃗ | V = vj,x, X = x) =
Q(V = vj,x | Y⃗ = y⃗, X = x)Q(Y⃗ = y⃗ | X = x)

Q(V = vj,x | X = x)
= P̃j(y⃗ | x).

Expected utility maximization is therefore satisfied since the inequalities in Lemma B.1 were
assumed to hold and data consistency holds.

Lemma B.1 implies Theorem B.1: Define the joint distribution Q as Q(x, cj, y⃗) =

P̃j(y⃗ | x)πj(x)P (x). Rewrite the condition in Lemma B.1 as: for all cj ∈ {c1, . . . , cJ} and
c′ ̸= cj, ∑

y⃗∈YJ

Q(cj, y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | xI)u(c
′, y⃗;xI).

Notice that if πj(x) = 0, then Q(cj, y⃗ | x) = 0. The inequalities involving c ∈ C with
πc(x) = 0 are therefore satisfied. Next, inequalities involving cj ∈ {c1, . . . , cJ} with πj(x) > 0
can be equivalently rewritten as∑

y⃗∈YJ

Qj(y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Qj(y⃗ | xI)u(c
′, y⃗;xI).
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The statement of Theorem B.1 follows by noticing that∑
y⃗∈YJ

Qj(y⃗ | x)u(cj, y⃗;xI) = EQ

[
u(cj, Y⃗ ;xI) | C = cj, X = x

]
,

∑
y⃗∈YJ

Qj(y⃗ | x)U(c′, y⃗;xI) = EQ

[
u(c′, Y⃗ ;xI) | C = cj, X = x

]
.

B.5.2 Proof of Corollary B.1

Proof. This follows from Theorem B.1. For all x ∈ X with π1(x) > 0, the inequalities require∑K
k=1 E[Yk(1) | C = 1, X = x] − u0,k(xI) ≥

∑K
k=1 E[Yk(0) | C = 1, X = x]. For all x ∈ X

with π0(x) > 0, the inequalities require
∑K

k=1 E[Yk(0) | C = 0, X = x] ≥
∑K

k=1 E[Yk(1) | C =
0, X = x] − u0,k(xI). Re-arranging delivers that the decision maker’s choices are consistent
with expected utility maximization at a linear utility function if and only if there exists
P̃1( · | x) ∈ B1,x and P̃0( · | x) ∈ B0,x satisfying

µ0(xI , xE) ≤
K∑
k=1

|u0,k(xI)| whenever π0(x) > 0

K∑
k=1

|u0,k(xI)| ≤ µ1(xI , xE) whenever π1(x) > 0.

Taking the maximum of the upper bound over P̃1( · | x) ∈ B1,x and the minimum of the

lower bound over P̃0( · | x) ∈ B1,x then yields the result.

B.5.3 Proof of Theorem B.2

Proof. The proof follows the same strategy as Theorem B.1. I prove the following Lemma,
and then show that it implies Theorem B.2.

Lemma B.2. The decision maker’s choices are consistent with expected utility maximization
behavior if and only if there exists a utility function u ∈ U , P̃j( · | x) ∈ Bj,x for each
cj ∈ {c1, . . . , cJ} and x ∈ X satisfying∑

y⃗∈YJ

P̃j(y⃗ | x)πj(x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

P̃j(y⃗ | x)πj(x)u(c
′, y⃗;xI)− πj(x)ϵ(x)

for all x ∈ X , c ∈ {c1, . . . , cJ}, c′ ̸= cj.

Proof of Lemma B.2: Necessity Suppose the decision maker’s choices are consistent
with approximate expected utility maximization behavior at some u ∈ U , (X, V,C, Y⃗ ) ∼ Q,
and ϵ = {ϵ(x) ≥ 0: x ∈ X}. By the same argument in the necessity direction for Lemma
B.1, it is without loss of generality to assume V ∈ V has finite support.
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For each cj ∈ {c1, . . . , cJ}, (x, v) ∈ X × V

Q(cj | x, v)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(cj, y⃗;xI)

 ≥ Q(cj | x, v)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(c′, y⃗;xI)

−Q(cj | x, v)ϵ(x)

holds for all cj ̸= c′. If Q(cj | x, v) = 0, this holds trivially. If Q(cj | x, v) > 0, this holds
through the approximate expected utility maximization condition. Multiply both sides by
Q(v | x) to arrive at

Q(cj | x, v)Q(v | x)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(cj, y⃗;xI)

 ≥

Q(cj | x, v)Q(v | x)

∑
y⃗∈YJ

Q(y⃗ | x, v)u(c′, y⃗;xI)

−Q(cj | x, v)Q(v | x)ϵ(x).

Next, use information set to write Q(cj, y⃗ | x, v) = Q(y⃗ | x, v)Q(cj | x, v) and arrive at

Q(v | x)

∑
y⃗∈YJ

Q(cj, y⃗ | x, v)u(cj, y⃗;xI)

 ≥ Q(v | x)

∑
y⃗∈YJ

Q(cj, y⃗ | x, v)u(c′, y⃗;xI)

−Q(cj, v | x)ϵ(x)

Finally, we use Q(cj, y⃗, v | x) = Q(cj, y⃗ | x, v)Q(v | x) and further sum over v ∈ V to arrive
at

∑
y⃗∈YJ

(∑
v∈V

Q(v, cj, y⃗ | x)

)
u(cj, y⃗;xI) ≥

∑
y⃗∈YJ

(∑
v∈V

Q(v, cj, y⃗ | x)

)
u(c′, y⃗;xI)−

∑
v∈V

Q(cj, v | x)ϵ(x),

∑
y⃗∈YJ

Q(cj, y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | x)u(c′, y⃗;xI)−Q(cj | x)ϵ(x)

The inequalities in Lemma B.1 then follow from an application of data consistency.

Proof of Lemma B.2: Sufficiency Sufficiency follows by the same construction of the
joint distribution (X, V, Y ∗, C) ∼ Q as given in the sufficiency direction for Lemma B.1.

Lemma B.2 implies Theorem B.2 Define Q as Q(x, cj, y⃗) = P̃j(y⃗ | x)πj(x)P (x).
Rewrite the condition in Lemma B.2 as: for all cj ∈ {c1, . . . , cJ} and c′ ̸= cj,∑

y⃗∈YJ

Q(cj, y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | xI)u(c
′, y⃗;xI)−Q(cj | x)ϵ(x).

Notice that if πj(x) = 0, then Q(cj, y⃗ | x) = 0 and Q(cj | x) = 0. The inequalities involving
c ∈ C with πc(x) = 0 are therefore satisfied. The inequalities involving cj ∈ {c1, . . . , cJ} with
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πj(x) > 0 can be equivalently rewritten as∑
y⃗∈YJ

Qj(y⃗ | x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Qj(y⃗ | xI)u(c
′, y⃗;xI)− ϵ(x).

The statement of Theorem B.2 follows by noticing that∑
y⃗∈YJ

Qj(y⃗ | x)u(cj, y⃗;xI) = EQ

[
u(cj, Y⃗ ;xI) | C = cj, X = x

]
,

∑
y⃗∈YJ

Qj(y⃗ | x)u(c′, y⃗;xI) = EQ

[
u(c′, Y⃗ ;xI) | C = cj, X = x

]
.

B.5.4 Proof of Corollary B.3

Proof. I apply Theorem B.2 to a binary choice, treatment assignment problem over the
class of linear utility functions. For all (xI , xE) ∈ XI × XE with π0(xI , xE) > 0, Theorem
B.2 requires µ

0
(xI , xE) − ϵ(xI , xE) ≤

∑K
k=1 |u0,k(xI)|. For all (xI , xE) ∈ XI × XE with

π1(xI , xE) > 0, Theorem B.2 requires
∑K

k=1 |u0,k(xI)| ≤ µ1(xI , xE) + ϵ(xI , xE). Putting
these together, it follows that the decision maker’s choices approximately maximize expected
utility at ϵ = {ϵ(x) ≥ 0: x ∈ X} if and only if, for all xI ∈ XI ,

max
xE∈XE

{
µ
0
(xI , xE)− ϵ(xI , xE)

}
≤ min

x′
E∈XE

{µ1(xI , xE) + ϵ(xI , xE)} .

This is equivalent to, for all xI ∈ XI ,

µ
0
(xI , xE)− µ1(xI , x

′
E)− ϵ(xI , xE)− ϵ(xI , x

′
E) ≤ 0 for all xE, x

′
E ∈ XE.

B.5.5 Proof of Theorem B.3

Proof. To prove this result, I first establish the following lemma, and then show Theorem
B.3 follows as a consequence.

Lemma B.3. Assume P̃ ( · | x) > 0 for all P̃ ( · | x) ∈ H(P ( · | x);Bx) and all x ∈ X .
The decision maker’s choices are consistent with expected utility maximization behavior at
inaccurate beliefs if and only if there exists a utility function u ∈ U , prior beliefs Q( · |
x) ∈ ∆(YJ) for all x ∈ X , P̃j( · | x) for j = 1, . . . , J and all x ∈ X satisfying, for all
cj ∈ {c1, . . . , cJ} and c′ ̸= cj,∑

y⃗∈YJ

Q(y⃗ | x)P̃ (cj | y⃗, x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(y⃗ | x)P̃ (cj | y⃗, x)u(c′, y⃗;xI),

where P̃ (cj | y⃗, x) = P̃j(y⃗|x)πj(x)

P̃ (y⃗|x)
and P̃ (y⃗ | x) =

∑J
j=1 P̃j(y⃗ | x)πj(x).
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Proof of Lemma B.3: Necessity First, by an analogous argument as given in the proof
of necessity for Lemma B.1, it is without loss to assume V ∈ V has finite support. Second,
following the same steps as the proof of necessity for Lemma B.1, I arrive at∑

y⃗∈YJ

Q(cj, y⃗ | x)u(c, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | x)u(c′, y⃗;xI).

We then observe Q(c, y⃗ | x) = Q(c | y⃗, x)Q(y⃗ | x) = P̃ (c | y⃗, x)Q(y⃗ | x), where the last
equality follows via Data Consistency with Inaccurate Beliefs.

Proof of Lemma B.3: Sufficiency To show sufficiency, suppose that the conditions in
Lemma B.3 are satisfied at some P̃j( · | x) ∈ Bj,x for c ∈ {c1, . . . , cJ}, x ∈ X and some
Q( · | x) ∈ ∆(YJ) for all x ∈ X .

Define the joint distribution (X,C, Y⃗ ) ∼ P̃ according to P̃ (x, c, y⃗) = P̃ (c | y⃗, x)Q(y⃗ |
x)P (X = x), where P̃ (c | y⃗, x) is defined in the statement of the Lemma. Given the

inequalities in the Lemma, we construct a joint distribution (X, V,C, Y⃗ ) ∼ Q to satisfy
information set, expected utility maximization behavior and data consistency with inaccurate
beliefs for the constructed joint distribution (X,C, Y⃗ ) ∼ P̃ following the same sufficiency
argument as given in Lemma B.1.

Let C = {c1, . . . , cJ} and v ∈ V :=
{
1, . . . , 2J

}
index all possible subsets in the power

set 2C Define π̃j(x) to be the probability of C = cj given X = x and P̃j(y⃗ | x) to be the
conditional potential outcome probability given C = cj, X = x under the constructed joint

distribution (X,C, Y⃗ ) ∼ P̃ in the statement of the Lemma.
For each x ∈ X , define Cx := {cj : π̃j(x) > 0} ⊆ C to be the set of choices selected with

positive probability, and partition Cx into subsets that have identical constructed conditional
potential outcome probabilities. There are V̄x ≤ |Cx| such subsets. Associate each subset
in this partition with its associated index v ∈ V and denote the possible values as Vx.
Denote the choice-dependent outcome probability associated with the subset labelled v by
P̃ ( · | v, x) ∈ ∆(YJ).

Define V ∈ V according to

Q(V = v | x) =
∑

cj : P̃j( ·|x)=P̃ ( ·|v,x)

π̃j(x) if v ∈ Vx,

Q(V = v | y⃗, x) =

{
P̃ (y⃗|v,x)Q(V=v|x)

Q(y⃗|x) if v ∈ Vx and Q(y⃗ | x) > 0,

0 otherwise.

Next, define the random variable C ∈ C according to

Q(C = cj | v, x) =


π̃j(x)∑

j̃ : P̃
j̃
( ·|x)=P̃ ( ·|v,x) π̃j̃(x)

if v ∈ Vx and P̃j( · | x) = P̃ ( · | v, x)

0 otherwise.

Together, this defines the random vector (X, Y⃗ , V, C) ∼ Q, whose joint distribution is defined
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as
Q(x, y⃗, v, c) = P (x)Q(y⃗ | x)Q(v | y⃗, x)Q(c | v, x).

We check that this construction satisfies information set, expected utility maximization
and data consistency. First, information set is satisfied since Q(c, y⃗ | x, v) = Q(y⃗ | x, v)Q(c |
x, v) by construction. Next, for any x ∈ X and cj ∈ Cx, define vj,x ∈ Vx to be the label

satisfying P̃j( · | x) = P̃ ( · | v, x). For P̃ (cj, y⃗ | x) > 0, observe that

P̃ (cj, y⃗ | x) = P̃j(y⃗ | x)π̃j(x) =

Q(y⃗ | x)

Q(y⃗ | vj,x, x)
∑{

j̃ : P̃j̃( ·|x)=
P̃ ( ·|v,x)

} π̃j̃(x)

QY⃗ (y⃗ | x)
π̃j(x)∑{

j̃ : P̃j̃( ·|x)=
P̃ ( ·|v,x)

} π̃j̃(x)
=

Q(y⃗ | x)Q(vj,x | y⃗, x)Q(c | vj,x, x) =∑
v∈V

Q(y⃗ | x)Q(v | y⃗, x)Q(c | v, x) =
∑
v∈V

Q(v, c, y⃗ | x).

Moreover, whenever P̃ (c, y⃗ | x) = 0, Q(y⃗ | vj,x, x)Q(c | vj,x, x) = 0. Since P̃ (c, y⃗ | x) =

π̃(c | y⃗, x)Q(y⃗ | x) by construction, (X, V,C, Y⃗ ) ∼ Q satisfies data consistency at inaccurate
beliefs (Definition B.4). Finally, for Q(cj | V = vj,x, X = x) > 0,

Q(Y⃗ = y⃗ | V = vj,x, X = x) =
Q(V = vj,x | Y⃗ = y⃗, X = x)Q(Y⃗ = y⃗ | X = x)

Q(V = vj,x | X = x)
= P̃j(y⃗ | X = x)

and π̃j(x) > 0. Therefore, using data consistency at inaccurate beliefs and the inequalities
in Lemma B.3, we have that∑

y⃗∈YJ

Q(y⃗ | v, x)u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

Q(y⃗ | v, x)u(c′, y⃗;xI),

which follows from the fact that QY⃗ (y⃗ | x)P̃ (cj | y⃗, x) = Q(cj, y⃗ | x) and the construction of

P̃ , and Q(Y⃗ = y⃗ | V = vj,x, X = x) = P̃j(y⃗ | x) as just shown. Therefore, expected utility
maximization is also satisfied.

Rewrite inequalities in Lemma B.3 in terms of weights: Define P̃ as in the statement
of the Theorem. Rewrite the condition in Lemma B.3 as: for all cj ∈ {c1, . . . , cJ} and c̃ ̸= cj,∑

y⃗∈YJ

Q(y⃗ | x)
P̃ (y⃗ | x)

P̃ (c, y⃗ | x)u(c, y⃗;xI) ≥
∑
y⃗∈YJ

Q(y⃗ | x)
P̃ (y⃗ | x)

P̃ (c, y⃗ | x)u(c′, y⃗;xI).

Notice that if πj(w, x) = 0, then P̃ (cj, y⃗ | x) = 0. Therefore, the inequalities involving cj ∈
{c1, . . . , cJ} with πj(x) = 0 are trivially satisfied. The inequalities involving c ∈ {c1, . . . , cJ}
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with πj(x) > 0 can be equivalently rewritten as∑
y⃗∈YJ

Q(y⃗ | x)
P̃ (y⃗ | x)

P̃j(y⃗ | x)u(c, y⃗;xI) ≥
∑
y⃗∈YJ

Q(y⃗ | x)
P̃ (y⃗ | x)

P̃j(y⃗ | x)u(c′, y⃗;xI).

The result follows by noticing
∑

y⃗∈YJ P̃j(y⃗ | x)Q(y⃗|x)
P̃ (y⃗|x)

u(c, y⃗;xI) = EP̃

[
Q(y⃗|x)
P̃ (y⃗|x)

u(c, y⃗;xI)
]
and

defining the weights as ω(y⃗;x) = Q(y⃗|x)
P̃ (y⃗|x)

.

C Additional results for the econometric framework

C.1 Quasi-randomly assigned instrumental variable

In this section, I modify Assumption 3.2 to only require that the instrument be quasi-
randomly assigned conditional on some additional finite support characteristics t ∈ T . Con-
sider the joint distribution (X,T, Z,C, Y ∗) ∼ P ( ·) and assume that it satisfies the following
assumption.

Assumption C.1 (Quasi-Random Instrument). The joint distribution (X,T, Z,C, Y ∗) ∼
P ( ·) satisfies (X, Y ∗) ⊥⊥ Z | T and there exists some δ > 0 such that P (x, t, z) := P (X =
x, T = t, Z = z) ≥ δ for all (x, t, z) ∈ X × T × Z.

In the empirical application to the New York City pretrial release system, judges are quasi-
randomly assigned to cases within court-by-time strata T ∈ T .

Under Assumption 3.1 and Assumption C.1, researchers can derive bounds on the un-
observable conditional outcome probabilities µ0(x, z), as needed to apply the characteriza-
tion results for expected utility maximization at accurate beliefs provided in Section 3.1
of the main text. To state this result, let µ(x, z) := E[Ȳ ∗ | X = x, Z = z], µ(x, t, z) :=
E[Ȳ ∗ | X = x, Z = z, T = t], µc(x, t, z) := E[Ȳ ∗ | C = c,X = x, Z = z, T = t]
for c ∈ {0, 1}, πc(x, t, z) := P (C = c | X = x, T = t, Z = z) for c ∈ {0, 1}, and
P (t | x, z) := P (T = t | X = x, Z = z).

Proposition C.1. Suppose Assumption 3.1 and Assumption C.1 hold. For any (x, z) ∈
X × Z with π0(x, z) > 0, the identified set for µ0(x, z) is the interval [µ′

0
(x, z), µ′

0(x, z)],
where

µ′
0
(x, z) = max

{
µ′(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 0

}
, µ′

0(x, z) = min

{
µ′(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 1

}
,

µ′(x, z) = E[max
z̃∈Z

{µ1(x, z̃, T )π1(x, z̃, T )} | X = x, Z = z], and

µ′(x, z) = E[min
z̃∈Z

{µ1(x, z̃, T )π1(X, z̃, T ) +Kπ0(X, z̃, T )} | X = x, Z = z].

Proof. Under Assumption C.1, µ(x, t) = µ(x, t, z) = µ(x, t, z̃) for any x ∈ X , t ∈ T , and
z, z̃ ∈ Z. By the same reasoning as in the proof of Proposition 3.1, µ(x, t, z) is bounded by

µ1(x, t, z̃)π1(x, t, z̃) ≤ µ(x, t, z) ≤ Kπ0(x, t, z̃) + µ1(x, t, z̃)π1(x, t, z̃).
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Therefore, for any x ∈ X , z ∈ Z, µ(x, z) satisfies

E
[
max
z̃∈Z

{µ1(x, z̃, T )π1(x, z̃, T )} | X = x, Z = z

]
≤ µ(x, z),

µ(x, z) ≤ E
[
min
z̃∈Z

{µ1(x, z̃, T )π1(X, z̃, T ) +Kπ0(X, z̃, T )} | X = x, Z = z

]
.

The result then follows immediately via iterated expectations.

Under Assumption 3.1 and Assumption C.1, the researcher can also derive valid bounds at
any particular instrument value by the same logic. In particular, for any z̃ ∈ Z, µ0(x, z) is
bounded below and above respectively by

µ′
0,z̃
(x, z) = max

{
µ′
z̃
(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 0

}
, µ′

0,z̃(x, z) = min

{
µ′
z̃(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 1

}
,

where µ′
z̃
(x, z) = E[{µ1(x, z̃, T )π1(x, z̃, T )} | X = x, Z = z] and µ′

z̃(x, z) = E[µ1(x, z̃, T )π1(X, z̃, T )+
Kπ0(X, z̃, T ) | X = x, Z = z].

Assumption C.1 imposed that P (x, t, z) ≥ δ for all (x, t, z) ∈ X ×T ×Z and some δ > 0.
This implies P (Z = z | X = x, T = t) > 0 for all values (x, t, z) ∈ X × T × Z, and so
instrument is assumed to satisfy strict overlap conditional on the characteristics X and the
additional characteristic T . Of course, strict overlap may be violated in particular empirical
applications, and the bounds can be suitably extended.

Proposition C.2. Suppose Assumption 3.1 is satisfied, and the joint distribution (X,T, Z,C, Y ∗) ∼
P ( ·) satisfies (X, Y ∗) ⊥⊥ Z | T . For any (x, z) ∈ X×Z with π0(x, z) > 0, µ0(x, z) is bounded
below and above respectively by

µ′′
0
(x, z) = max

{
µ′′(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 0

}
and µ′′

0(x, z) = min

{
µ′′(x, z)− µ1(x, z)π1(x, z)

π0(x, z)
, 1

}
,

where Z(x, t) = {z : P (Z = z | X = x, T = t) > 0}, µ′′(x, z) = E[maxz̃∈Z(x,T ){µ1(x, z̃, T )π1(x, z̃, T )} |
X = x, Z = z] and µ′′(x, z) = E[minz̃∈Z(x,T ){µ1(x, z̃, T )π1(X, z̃, T ) + Kπ0(X, z̃, T )} | X =
x, Z = z].

Proof. The proof follows the same argument as Proposition C.1.

C.2 Translating expected utility costs into ex-post errors

Section 4.1.1 of the main text showed that the total expected utility cost E of systematic
prediction mistakes to the decision maker can be characterized as the optimal value of a
linear program. For a scalar outcome Y ∗ = Y ∗

1 , E can be translated into an equivalent
reduction in ex-post errors E[Y ∗

1 ·C] that would produce the same expected utility cost E to
the decision maker.

Assume Y ∗ = Y ∗
1 , and let ϵ(x) denote an optimal solution to Equation (4). By the
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definition of approximate expected utility maximization, E is an upper bound on

E[u(C∗(X, V ), Y ∗
1 ;XI)−u(C, Y ∗

1 ;XI)] =
∑
xI∈XI

{|u0,1(xI)|∆0,0(xI) + |u1,1(xI)|∆1,1(xI)}P (xI),

(17)
where C∗(X, V ) is the optimal choice at (X, V ), ∆0,0(xI) = E[(1 − C)(1 − Y ∗

1 ) − (1 −
C∗(X, V ))(1 − Y ∗

1 ) | XI = xI ] is the reduction of ex-post errors that select C = 0 when Y ∗
1

is small, and ∆1,1(xI) = E[CY ∗
1 − C∗(X, V )Y ∗

1 | XI = xI ] is the reduction of ex-post errors
that select C = 1 when Y ∗

1 is large. From the proof of Theorem 4.1, the identified set of
linear utility functions at expected utility costs ϵ(x) is satisfies, for all xI ∈ XI ,

max
x̃E∈XE

{µ1(xI , x̃E)− ϵ(xI , x̃E)} ≤ |u0,1(xI)| ≤ min
x̃E∈XE

max
x̃E∈X

{µ0(xI , x̃E)− ϵ(xI , x̃E)} , (18)

and define |u0,1(xI)| = maxx̃E∈XE
{µ1(xI , x̃E)− ϵ(xI , x̃E)}, |u1,1(xI)| = 1− |u0,1(xI)|. At this

candidate linear utility function, we can calculate the implied reduction in ex-post errors
∆1,1(xI) that are equivalent to E in an expected utility sense by calculating

max
∆0,0(xI),∆1,1(xI)

∑
xI

∆1,1(xI)P (xI) (19)

s.t. 0 ≤ ∆1,1(xI) ≤ E[CY ∗ | XI = xI ] for all xI ∈ XI ,

0 ≤ ∆0,0(xI) ≤ π0(xI) for all xI ∈ XI ,∑
xI∈XI

{|u0,1(xI)|∆0,0(xI) + |u1,1(xI)|∆1,1(xI)}P (xI) ≤ E .

The first constraint imposes that the reduction in ex-post errors ∆1,1(xI) must be weakly
positive, and can be no greater than the observed ex-post errors E[CY ∗

1 | XI = xI ] at the
decision maker’s choices. The second constraint imposes that the reduction in ex-post errors
∆0,0(xI) must also be weakly positive, and can be no greater than the observed probability
the decision maker selected C = 0. The final constraint imposes that the implied expected
utility of the change in ex-post errors must be consistent with the expected utility cost E .

The implied reduction in ex-post errors computed by Equation (19) is an accounting
exercise to better summarize the magnitudes of the decision maker’s implied prediction mis-
takes. At the conjectured utility function u0,1(·), u1,1(·), it searches for the largest reduction
in ex-post errors ∆0,0(·),∆1,1(·) that is consistent with the total expected utility cost E . The
constraints do not impose that the ex-post errors must be achievable by behavior that is
consistent with expected utility maximization at accurate beliefs. As a result, the optimal
value of Equation (19) cannot be interpreted as a feasible reduction in ex-post errors E[Y ∗

1 ·d]
that could be achieved by expected utility maximization at accurate beliefs. Furthermore,
notice that if

∑
xI∈XI

|u1,1(xI)|E[Y ∗
1 · C | XI = xI ]P (xI) ≤ E , then the optimal value of

Equation (19) is trivially equal to E[Y ∗
1 · C].
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C.3 Characterizing the share of systematic prediction mistakes

In Section 4.1.2, I defined the largest rationalizable subset X of characteristics is then

X := argmax
X̃⊆X

∑
x∈X̃

P (x) s.t. X̃ is rationalizable at accurate beliefs. (20)

The share of rationalizable decisions is P (X ) :=
∑

x∈X P (x), and the share of systematic

prediction mistakes in the decision maker’s choices is therefore 1 − P (X ). Theorem 4.1
implies that the share of systematic prediction mistakes can be equivalently characterized
by the following optimization program.

Theorem C.1. The share of systematic prediction mistakes in the decision maker’s choices
satisfies 1− P (X ) = λ, where

λ :=min
ϵ

∑
x∈X

P (x)1{ϵ(x) > 0} (21)

s.t. ϵ(x) ≥ 0 for all x ∈ X ,

µ1(x)− µ0(x
′)− ϵ(x)− ϵ(x′) ≤ 0 for all pairs x = (xI , xE), x

′ = (xI , x
′
E).

Proof. To prove this result, I will show that 1 − λ = P (X ). First, let ϵ∗(x) denote an
optimal solution to the program defining λ, meaning λ =

∑
x∈X P (x)1{ϵ∗(x) > 0}. Define

XR = {x ∈ X : ϵ∗(x) = 0}, and observe that XR is a rationalizable subset at accurate beliefs,
since, for all pairs (xI , xE), (xI , x

′
1) ∈ XR, µ1(xI , xE)− µ0(xI , x

′
E) ≤ 0 by construction. As a

consequence, P (X ) ≥ P (XR) =
∑

x∈X P (x)1{ϵ∗(x) = 0} = 1− λ.

Next, for each x ∈ X , define ϵ(x) = 0. For each x = (xI , xE)��∈X , define

ϵ1(x) = max
x′
E

{µ1(x)− µ0(xI , x
′
E)}, and ϵ2(x) = max

x′
E

{µ1(xI , x
′
E)− µ0(x)},

and set ϵ(x) = max{ϵ1(x), ϵ2(x)}. By construction, µ1(xI , xE) − µ0(xI , x
′
E) − ϵ(xI , xE) −

ϵ(xI , x
′
E) ≤ 0 for all pairs (xI , xE), (xI , x

′
E) ∈ X . ϵ = {ϵ(x) : x ∈ X} is therefore feasible in

the program defining λ, and so

λ ≤
∑
x∈X

P (x)1{ϵ(x) > 0}.

This implies 1− λ ≥ 1−
∑

x∈X P (x)1{ϵ(x) > 0} =
∑

x∈X P (x)1{ϵ(x) = 0} = P (X ).

The share of systematic prediction mistakes in the decision maker’s choices λ defined in
(21) can be equivalently written as the optimal value of a mixed-integer linear program. This
uses the standard “Big-M” method. Defining M ≥ 2K to be some large known constant, it
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follows

λ := min
ω(x),ϵ(x)

∑
x

P (x)ω(x) s.t.

µ1(x)− µ0(x
′)ϵ(x)− ϵ(x′) ≤ 0 for all pairs x = (xI , xE), x

′ = (xI , x
′
E),

0 ≤ ϵ(x) ≤ M · ω(x), ω(x) ∈ {0, 1}

since maxx,x′∈X{µ1(x)− µ0(x
′)} ≤ 2K because Y ∗

k ∈ [0, 1] for all k = 1, . . . , K.

C.4 Extension to incorporating monetary bail conditions

In Section 5, I defined the judge’s choice to be a binary choice of whether to release or detain
the defendant. In practice, judges in New York City choose what bail conditions and mon-
etary amount to set for a defendant. Defendants may either be “released on recognizance”
(i.e., released without bail conditions) or the judge may set bail conditions, in which case
the defendant is only released if they can post the set bail amount. As a robustness exercise,
I now define a judge’s choice as whether or not to release the defendant on recognizance.

Let C ∈ {0, 1} denote whether the judge released the defendant “on recognizance” (C =
1). The outcome is Y ∗ = (R∗, Y ∗

1 ), where R∗ ∈ {0, 1} denotes whether the defendant would
satisfy the monetary bail condition set by the judge and Y ∗

1 ∈ {0, 1} is whether the defendant
would fail to appear in court if released. Let R ∈ {0, 1} denote whether the defendant was
released. The observed release satisfies R = C+(1−C)R∗, meaning the defendant is released
if the judge selects release on recognizance or sets monetary bail conditions and the defendant
satisfies them. I assume the judge payoffs only depend on whether a defendant is released
and fails to appear in court or a defendant is detained and would not fail to appear in court.
That is, I consider the set of utility functions U satisfying u(c, r∗, y∗1;xI) = u(r, y∗1;xI), where
u(0, 1;xI) = 0, u(1, 0;xI) = 0, u(0, 0;xI) < 0, u(1, 1;xI) < 0, and |u(0, 0;xI)+u(1, 1;xI)| = 1.

I apply Theorem B.1 to derive conditions under which the judge’s choices are consistent
with expected utility maximization at accurate beliefs about both failure to appear risk and
the ability of defendant’s to meet the bail conditions. For each xI ∈ XI , define Π1(xI) :=
{xE ∈ XE : π1(xI , xE) > 0} and Π0(xI) := {xE ∈ XE : π0(xI , xE) > 0}.

Proposition C.3. Assume P (Y ∗
1 = 1 | X = x) < 1 for all x ∈ X with π1(x) > 0 and

P (R = 0 | C = 0, X = x) > 0 for all x ∈ X with π0(x) > 0. The decision maker’s choices
are consistent with expected utility maximization behavior at some u ∈ U if and only if, for
all xI ∈ XI ,

max
xE∈Π1(xI)

P (Y ∗
1 = 1 | C = 1, X = (xI , xE)) ≤ min

xE∈Π0(xI)
P (Y ∗

1 = 1 | R = 0, C = 0, X = (xI , xE)).

Proof. The inequalities in Theorem B.1 imply that the judge’s choices are consistent with
expected utility maximization behavior at accurate beliefs if and only if

(1) for all x ∈ X with π1(x) > 0, P (Y ∗
1 = 1 | C = 1, X = x) ≤ −u(0, 0;xI).

(2) for all x ∈ X with π0(x) > 0,

P (Y ∗
1 = 1, R = 1 | C = 0, X = x)u(1, 1;xI)+P (Y ∗ = 0, R = 0 | C = 0, X = x)u(0, 0;xI) ≥
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P (Y ∗
1 = 1 | C = 0, X = x)u(1, 1;xI).

The condition (2) may be re-arranged as

P (Y ∗
1 = 0, R = 0 | C = 0, X = x)u(0, 0;xI) ≥ P (Y ∗

1 = 1, R = 0 | C = 0, X = x)u(1, 1;xI),

where P (Y ∗
1 = 0, R = 0 | C = 0, X = x) = P (R = 0 | C = 0, X = x) − P (Y ∗

1 = 1, R = 0 |
C = 0, X = x). Substituting and re-arranging then delivers

P (Y ∗
1 = 1, R = 0 | C = 0, X = x) (−u(0, 0;xI)− u(1, 1;xI)) ≥

−P (R = 0 | C = 0, X = x)u(0, 0;xI).

The result follows.

In Section 5.4.2 of the main text, I test whether the inequalities in Proposition C.3 are
satisfied over the deciles of predicted failure to appear risk constructed in Section 5.2. I use
the quasi-random assignment of judges to cases to construct bounds on the unobservable
failure to appear rate among detained defendants that could not satisfy their monetary bail
conditions. I now estimate the observed failure to appear rate only among defendants that
were released on recognizance.

C.5 Expected social welfare: identification and inference

C.5.1 Expected social welfare under candidate decision rules

For a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}, consider a policymaker whose payoffs are summa-

rized by the linear social welfare function u∗
1,1y

∗
1c+ u∗

0,1(1− y∗1)(1− c) as in Section 6 of the
main text. As notation, let θ(x) denote expected social welfare at x ∈ X under a candidate
decision rule π̃(x) as given in (11), which can be rewritten as

θ(x) = ℓ(x; π̃, u∗)P (1 | x) + β(x; π̃, u∗) (22)

for ℓ(x; π̃, u∗) := u∗
1,1π̃(x)− u∗

0,1(1− π̃(x)) and β(x; π̃, u∗) := u∗
0,1(1− π̃(x)). Total expected

social welfare then equals

θ(π̃, u∗) = β(π̃, u∗) +
∑
x∈X

P (x)ℓ(x; π̃, u∗)P (1 | x), (23)

where β(π̃, u∗) :=
∑

x∈X P (x)β(x; π̃, u∗). Since P (1 | x) is partially identified, total expected
social welfare is also partially identified and its sharp identified set of total expected welfare
is an interval.

Proposition C.4. Assume a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}. Consider a policymaker

with a linear social welfare function u∗
0,1, u

∗
1,1 < 0 and a candidate decision rule π̃(x). The

sharp identified set of total expected social welfare, denoted H(θ(π̃, u∗);B), is an interval with
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H(θ(π̃, u∗);B) =
[
θ(π̃, u∗), θ(π̃, u∗)

]
, where

θ(π̃, u∗) = β(π̃, u∗) +

 min{
P̃ ( ·|x) :
x∈X

}∑
x∈X

P (x)ℓ(x; π̃, u∗)P̃ (1 | x) s.t. P̃ ( · | x) ∈ H(P ( · | x);B0,x) ∀x ∈ X

 ,

θ(π̃, u∗) = β(π̃, u∗) +

 max{
P̃ ( ·|x) :
x∈X

}∑
x∈X

P (x)ℓ(x; π̃, u∗)P̃ (1 | x) s.t. P̃ ( · | x) ∈ H(P ( · | x);B0,x) ∀x ∈ X

 .

For a binary outcome, the bounds Bx can be expressed as an interval with [P (1 | x), P (1 | x)].
For example, this is true if the bounds are constructed using an instrumental variable as
discussed in the main text. In this case, Proposition C.4 implies that the sharp identified
set of total expected social welfare under a candidate decision rule is characterized by the
solution to two linear programs. Furthermore, provided the candidate decision rule and
joint distribution of the characteristics X are known, testing the null hypothesis that total
expected social welfare is equal to some candidate value is equivalent to testing a system of
moment inequalities with nuisance parameters that enter linearly.

Proposition C.5. Under the same set-up as Proposition C.4, conditional on the character-
istics X, testing the null hypothesis H0 : θ(π̃, u

∗) = θ0 is equivalent to testing whether

∃δ ∈ Rdx−1 s.t. Ã(·,1)
(
θ0 − ℓ⊺(π̃, u∗)P c=1,y∗1=1 − β(π̃, u∗)

)
+ Ã(·,−1)δ ≤

(
−P c=0,y∗1=1

P
c=0,y∗1=1

)
,

where dx := |X |, ℓ(π̃, u∗) is the dx-dimensional vector with elements P (x)ℓ(x; π̃, u∗), P c=1,y∗1=1

is the dx-dimensional vector of moments P (C = 1, Y ∗
1 = 1 | X = x), P c=0,y∗1=1, P

c=0,y∗1=1

are the dx-dimensional vectors of lower and upper bounds on P (C = 0, Y ∗
1 = 1 | X = x)

respectively, and Ã is a known matrix.6

A confidence interval for total expected social welfare can then be constructed through test
inversion. Testing procedures for moment inequalities with nuisance parameters are available
for high-dimensional settings in Belloni, Bugni and Chernozhukov (2018). Andrews, Roth
and Pakes (2023) and Cox and Shi (2022) develop inference procedures that exploit the
additional linear structure and are valid in low-dimensional settings.

C.5.2 Expected social welfare under decision maker’s observed choices

Consider again a policymaker with linear social welfare function u∗
0,1 < 0, u∗

1,1 < 0. Total
expected social welfare under the decision maker’s observed choices is given by

θDM(u∗) =u∗
1,1P (C = 1, Y ∗

1 = 1) + u∗
0,1P (C = 0)

− u∗
0,1

∑
x∈X

P (C = 0, Y ∗
1 = 1 | X = x)P (x).

6For a matrix B, B(·,1) refers to its first column and B(·,−1) refers to all columns except its first column.
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Since P (C = 0, Y ∗
1 = 1 | X = x) is partially identified, total expected social welfare under

the decision maker’s observed choices is also partially identified and the sharp identified set
is again an interval.

Proposition C.6. Under the same set-up as Proposition C.4, the sharp identified set of total
expected social welfare under the decision maker’s observed choices, denoted H(θDM(u∗);B),
is an interval with H(θDM(u∗);B) =

[
θDM(u∗), θ

DM
(u∗)

]
, where

θDM(u∗) = u∗
1,1P (C = 1, Y ∗

1 = 1) + u∗
0,1P (C = 0)− u∗

0,1P (C = 0, Y ∗
1 = 1)

θ
DM

(u∗) = u∗
1,1P (C = 1, Y ∗

1 = 1) + u∗
0,1P (C = 0)− u∗

0,1P (C = 0, Y ∗
1 = 1),

where

P (C = 0, Y ∗
1 = 1) = max{

P̃ (C=0,Y ∗
1 =1|X=x) :
x∈X

}∑
x∈X

P (x)P̃ (C = 0, Y ∗
1 = 1 | X = x)

s.t. P̃ (C = 0, Y ∗
1 = 1 | X = x) ∈ H(P (C = 0, Y ∗

1 = 1 | X = x);B0,x) ∀x ∈ X

and P (C = 0, Y ∗
1 = 1) is the optimal value of the analogous minimization problem.

The bounds Bx for a binary outcome are an interval, and so Proposition C.4 implies that
the sharp identified set of total expected social welfare under a candidate decision rule is
characterized by the solution to two linear programs.

Provided the joint distribution of the characteristics X are known, then testing the null
hypothesis that total expected social welfare is equal to some candidate value is equivalent
to testing a system of moment inequalities with a large number of nuisance parameters that
enter the moments linearly.

Proposition C.7. Under the same set-up as Proposition C.4, conditional on the character-
istics X, testing the null hypothesis H0 : θ

DM(u∗) = θ0 is equivalent to testing whether

∃δ ∈ Rdx s.t. ÃDM
(·,1)
(
θ0 − u∗

1,1P (C = 1, Y ∗
1 = 1) + u∗

0,1P (C = 0)
)
+ÃDM

(·,−1)δ ≤
(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
,

where PC,Y ∗
1
(0, 1), PC,Y ∗

1
(0, 1) are the dx-dimensional vectors of lower and upper bounds on

PC,Y ∗(C = 0, Y ∗
1 = 1 | X = x) respectively, and ÃDM is a known matrix.

C.6 The policymaker’s first-best decision rule

For a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}, consider a policymaker with a linear social welfare

function u∗
1,1y

∗
1c+u∗

0,1(1−y∗1)(1− c) with u∗
0,1 < 0, u∗

1,1 < 0 as in Section 6 of the main text. I
construct an algorithmic decision rule based on analyzing how the policymaker would make
choices herself in the binary screening decision. Rambachan et al. (2021) refer to this as the
“first-best problem” in their analysis of algorithmic decision rules.

Due to the missing data problem, the conditional probability of Y ∗
1 = 1 given the char-

acteristics is partially identified and I assume the policymaker adopts a max-min evaluation
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criterion to evaluate decision rules. Let π̃(x) ∈ [0, 1] denote the probability the policymaker
selects C = 1 given X = x. At each x ∈ X , the policymaker then chooses π̃(x) to maximize

min
P̃ (1|x)

π̃(x)P̃ (1 | x)u∗
1,1 + (1− π̃(x))(1− P̃ (1 | x))u∗

0,1

s.t. P (1 | x) ≤ P̃ (1 | x) ≤ P (1 | x).

Proposition C.8. Assume a binary outcome Y ∗ = Y ∗
1 ∈ {0, 1}. Consider a policymaker

with linear social welfare function u∗
0,1 < 0, u∗

1,1 < 0, who chooses π̃(x) ∈ [0, 1] to maximize

worst-case expected social welfare. Defining τ ∗(u∗) :=
u∗
0,1

u∗
0,1+u∗

1,1
= |u∗

0,1|, her max-min decision

rule is

π̃(x) =


1 if P (1 | x) ≤ τ ∗,

0 if P (1 | x) ≥ τ ∗,

τ ∗ if P (1 | x) < τ ∗ < P (1 | x).

The policymaker makes choices based on a threshold rule, where the threshold τ ∗ depends
on the relative costs of ex-post errors under the social welfare function. If the upper bound
on the probability of Y ∗

1 = 1 conditional on the characteristics is sufficiently low, then the
policymaker chooses C = 1 with probability one. If the lower bound on the probability
of Y ∗ = 1 is sufficiently high, then the policymaker chooses C = 0 with probability one.
Otherwise, if the identified set for P (Y ∗

1 = 1 | X = x) contains the threshold τ ∗, the
policymaker randomizes and selects C = 1 with probability exactly equal to τ ∗.

In my empirical analysis in Section 6, I evaluate the choices of judges against this first-
best decision rule applied to each cell of included characteristics XI and each decile of
predicted risk D(X). The bounds on the probability defendants would fail to appear in
court (Y ∗

1 = 1) conditional on the characteristics is constructed using the quasi-random
assignment of judges as discussed in Section 5.3, and the threshold τ ∗ varies as the social
welfare function u∗

0,1, u
∗
1,1 varies. I construct the decision rule using only data from the

held-out judges, and treat it as fixed.
Finally, for any particular choice of the social welfare function u∗

0,1, u
∗
1,1, I verify whether

the resulting algorithmic decision rule is consistent with expected utility maximization at
accurate beliefs without private information (since the algorithmic decision rule is only based
on observable characteristics). This follows in the spirit of Caplin, Martin and Marx (2022)’s
analysis of a pneumonia diagnosis algorithm. Following the logic of the proof of Theorem 3.1,
verifying whether the algorithmic decision rule is consistent with expected utility maximiza-
tion at accurate beliefs is equivalent to checking whether there exists some true conditional
outcome probability P (1 | x) satisfying the researcher’s bounds such that

P (1 | x) ≤ τ ∗ for all x s.t. π̃(x) > 0

τ ∗ ≤ P (1 | x) for all x s.t. π̃(x) < 1,

for the implied threshold τ ∗ =
u∗
0,1

u∗
0,1+u∗

1,1
= |u∗

0,1|. For the first-best decision rule defined over

each payoff each cell of included characteristics XI and each decile of predicted risk D(X)
and the bounds constructed on the true outcome probability based on the quasi-random
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assignment of judges, these inequalities are satisfied for each judge and each social welfare
function u∗

0,1 = −ũ/|1 + ũ| and u∗
1,1 = −1/|1 + ũ| I consider in Section 6. The algorithmic

decision rules are, therefore, consistent with expected utility maximization at accurate beliefs
at the corresponding social welfare function.

C.7 Proofs of additional results for the econometric framework

C.7.1 Proof of Proposition C.4

Proof. The researcher’s bounds on the unobserved conditional outcome probabilities implies
bounds on P̃ (1 | x) ∈ H(P (1 | x);Bx) as discussed in Section 2.2 of the main text. The
result then immediately follows from (23), taking the maximum and minimum over P (1 | x)
that are consistent with the researcher’s bounds.

C.7.2 Proof of Proposition C.5

Proof. First, rewrite θ(π̃, u∗) as

β(π̃, u∗) + ℓ⊺(π̃, u∗)PC,Y ∗
1
(1, 1) + ℓ⊺(π̃, u∗)PC,Y ∗

1
(0, 1),

where ℓ⊺(π̃, u∗) is defined in the statement of the proposition and PC,Y ∗
1
(1, 1), PC,Y ∗

1
(0, 1)

are the dx vectors whose elements are P (C = 1, Y ∗
1 | X = x), P (C = 0, Y ∗

1 = 1 | X = x)
respectively. The null hypothesis H0 : θ(π̃, u

∗) = θ0 is equivalent to the null hypothesis that

there exists P̃C,Y ∗
1
(0, 1) satisfying

ℓ⊺(π̃, u∗)P̃C,Y ∗
1
(0, 1) = θ(π̃, u∗)− β(π̃, u∗)− ℓ⊺(π̃, u∗)PC,Y ∗

1
(1, 1)

P (C = 0, Y ∗
1 = 1 | X = x) ≤ P̃ (C = 0, Y ∗

1 = 1 | X = x) ≤ P (C = 0, Y ∗
1 = 1 | X = x) for all x ∈ X .

We can express the bounds as AP̃C,Y ∗
1
(0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
, where A =

(
−I
I

)
is

a known matrix and PC,Y ∗
1
(0, 1), PC,Y ∗

1
(0, 1) are the dx vectors of lower and upper bounds

respectively. Therefore, the null hypothesis H0 : θ(π̃, u∗) = θ0 is equivalent to the null
hypothesis

∃P̃C,Y ∗
1
(0, 1) satisfying ℓ⊺(π̃, u∗)P̃C,Y ∗

1
(0, 1) = θ0 − β(π̃, u∗)− ℓ⊺(π̃, u∗)PC,Y ∗

1
(1, 1) and

AP̃C,Y ∗
1
(0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
.

Next, we apply a change of basis argument. Define the full rank matrix Γ, whose first row
is equal to ℓ⊺(π̃, u∗). The null hypothesis H0 : θ(π̃, u

∗) = θ0 can be further rewritten as

∃P̃C,Y ∗
1
(0, 1) satisfying AΓ−1ΓP̃C,Y ∗

1
(0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
,

where ΓP̃C,Y ∗
1
(0, 1) =

(
Γ(1,·)P̃C,Y ∗

1
(0, 1)

Γ(−1,·)P̃C,Y ∗
1
(0, 1)

)
=

(
θ0 − β(π̃, u∗)− ℓ⊺(π̃, u∗)PC,Y ∗

1
(1, 1)

δ

)
defining
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δ = Γ(−1,·)P̃C,Y ∗
1
(0, 1) and Ã = AΓ−1. The result then follows immediately with some algebra.

C.7.3 Proof of Proposition C.6

Proof. The proof follows the same argument as the proof of Proposition C.4.

C.7.4 Proof of Proposition C.7

Proof. As notation, let P̃C,Y ∗
1
(0, 1 | x) := P̃ (C = 0, Y ∗

1 = 1 | X = x) and let P̃C,Y ∗
1
(0, 1)

denote the dx-dimensional vector with entries equal to P̃ (C = 0, Y ∗
1 | X = x). From

the definition of θDM(u∗), the null hypothesis H0 : θDM(u∗) = θ0 is equivalent to the null

hypothesis that there exists P̃C,Y ∗
1
(0, 1) satisfying

− u∗
0,1

∑
x∈X

P̃C,Y ∗
1
(0, 1 | x)P (X = x) = θ0 − u∗

1,1P (C = 1, Y ∗
1 = 1)− u∗

0,1P (C = 0)

P (C = 0, Y ∗
1 = 1 | X = x) ≤ P̃C,Y ∗(0, 1 | x) ≤ P (C = 0, Y ∗

1 = 1 | X = x) for all x ∈ X .

We can express these bounds in the form AP̃C,Y ∗
1
(0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
, A =

(
−I
I

)
is a known matrix. Therefore, defining ℓ(u∗) to be the dx dimensional vector with entries
−u∗

0,1P (X = x), the null hypothesis H0 : θDM(u∗) = θ0 is therefore equivalent to the null
hypothesis

∃P̃C,Y ∗
1
(0, 1) satisfying ℓ⊺(u∗)P̃C,Y ∗

1
(0, 1) = θ0 − u∗

1,1P (C = 1, Y ∗
1 = 1)− u∗

0,1P (C = 0) and

AP̃C,Y ∗
1
(0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
.

Next, we apply a change of basis argument. Define the full rank matrix Γ, whose first row
is equal to ℓ⊺(u∗). The null hypothesis H0 : θ

DM(u∗) = θ0 can be further rewritten as

∃P̃C,Y ∗
1
(0, 1) satisfying AΓ−1ΓP̃ (0, 1) ≤

(
−PC,Y ∗

1
(0, 1)

PC,Y ∗
1
(0, 1)

)
,

where ΓP̃C,Y ∗
1
(0, 1) =

(
Γ(1,·)P̃C,Y ∗

1
(0, 1)

Γ(−1,·)P̃C,Y ∗
1
(0, 1)

)
=

(
θ0 − u∗

1,1P (C = 1, Y ∗
1 = 1)− u∗

0,1P (C = 0)
δ

)
defining δ = Γ(−1,·)P̃C,Y ∗

1
(0, 1) and Ã = AΓ−1. The result then follows immediately with

some algebra.

C.7.5 Proof of Proposition C.8

Proof. To show this result, I consider cases for each x ∈ X .
Case 1: Suppose P (Y ∗

1 = 1 | X = x) ≤ τ ∗. In this case,

P (Y ∗
1 = 1 | X = x)u∗

1,1 ≥ P (Y ∗ = 0 | X = x)u∗
0,1
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for all P (Y ∗
1 = 1 | X = x) satisfying P (Y ∗

1 = 1 | X = x) ≤ P (Y ∗ = 1 | X = x) ≤ P (Y ∗
1 = 1 |

X = x). Therefore, it is optimal to set π̃(x) = 1.
Case 2: Suppose P (Y ∗

1 = 1 | X = x) ≥ τ ∗. In this case,

P (Y ∗
1 = 1 | X = x)u∗

1,1 ≤ P (Y ∗
1 = 0 | X = x)u∗

0,1

for all P (Y ∗
1 = 1 | X = x) satisfying P (Y ∗

1 = 1 | X = x) ≤ P (Y ∗
1 = 1 | X = x) ≤ P (Y ∗

1 = 1 |
X = x). Therefore, it is optimal to set π̃(x) = 0.

Case 3: Suppose P (Y ∗
1 = 1 | X = x) < τ ∗ < P (Y ∗

1 = 1 | X = x). First, notice
π̃(x) = τ ∗ delivers constant expected payoffs for all P (Y ∗

1 = 1 | X = x) satisfying P (Y ∗
1 =

1 | X = x) ≤ P (Y ∗
1 = 1 | X = x) ≤ P (Y ∗

1 = 1 | X = x). As a function of P (Y ∗
1 = 1 | X = x)

and π̃(x), expected social welfare equals

π̃(x)P (Y ∗
1 = 1 | X = x)u∗

1,1 + (1− π̃(x))P (Y ∗
1 = 0 | X = x)u∗

0,1.

The derivative with respect to P (Y ∗
1 = 1 | X = x) equals π̃(x)u∗

1,1 − (1 − π̃(x))u∗
0,1, which

equals zero if π̃(x) = τ ∗. Moreover, worst case expected social welfare at π̃(x) = τ ∗ is

equal to the constant
u∗
0,1u

∗
1,1

u∗
0,1+u∗

1,1
. I show that any other choice of π̃(x) delivers strictly lower

worst-case expected social welfare in this case.
Consider any π̃(x) < τ ∗. At this choice, expected social welfare is minimized at P (Y ∗

1 =
1 | X = x). But, at P (Y ∗

1 = 1 | X = x), the derivative of expected social welfare with
respect to π̃(x) equals P (Y ∗

1 = 1 | X = x)u∗
1,1 − (1 − P (Y ∗

1 = 1 | X = x))u∗
0,1, which is

strictly positive since P (Y ∗
1 = 1 | X = x) < τ ∗. This implies that

π̃(x)P (Y ∗
1 = 1 | X = x)u∗

1,1 + (1− π̃(x))(1− P (Y ∗
1 = 1 | X = x))u∗

0,1 <

τ ∗P (Y ∗
1 = 1 | X = x)u∗

1,1 + (1− τ ∗)(1− P (Y ∗ = 1 | X = x))u∗
0,1 =

u∗
0,1u

∗
1,1

u∗
0,1 + u∗

1,1

.

Therefore, worst-case expected social welfare for any π̃(x) < τ ∗ is strictly less than worst-case
expected social welfare at π̃(x) = τ ∗.

Consider any π̃(x) > τ ∗. At this choice, expected social welfare is minimized at P (Y ∗
1 =

1 | X = x). But, at P (Y ∗
1 = 1 | X = x), the derivative of expected social welfare with

respect to π̃(w, x) equals P (Y ∗
1 = 1 | X = x)u∗

1,1 − (1 − P (Y ∗ = 1 | X = x))u∗
0,1, which is

strictly negative since P (Y ∗
1 = 1 | X = x) > τ ∗. This implies that

π̃(x)P (Y ∗
1 = 1 | X = x)u∗

1,1 + (1− π̃(x))(1− P (Y ∗
1 = 1 | X = x))u∗

0,1 <

τ ∗P (Y ∗
1 = 1 | X = x)u∗

1,1 + (1− τ ∗)(1− P (Y ∗
1 = 1 | X = x))u∗

0,1 =
u∗
0,1u

∗
1,1

u∗
0,1 + u∗

1,1

.

Therefore, worst-case expected social welfare for any π̃(x) > τ ∗ is strictly less than worst-case
expected social welfare at π̃(x) = τ ∗.
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D Additional results for expected utility maximization

after dimension reduction
In this section, I show how the characterization results for the magnitudes of systematic
prediction mistakes and ways in which the decision maker’s beliefs are systematically biased
can suitably modified to account for the dimension reduction discussed in Section 5.2.

D.1 Approximate expected utility maximization after dimension
reduction

As in the main text, let D : X → {1, . . . , Nd} partition the observable characteristics X
into level sets {x ∈ X : D(x) = d}. For a treatment assignment problem, Theorem B.2
implies that if the decision maker’s choices are consistent with approximate expected utility
maximization, then their choices satisfy a system of implied revealed preference inequalities
over the coarsening D(·). This follows from Lemma B.2 and the same iterated expectations
argument as in the proof of Proposition B.2. I omit the proof for brevity.

Proposition D.1. Assume 0 < πj(x) < 1 for all cj ∈ {c1, . . . , cJ} and x ∈ X . Suppose
the decision maker’s choices are consistent with approximate expected utility maximization
at u ∈ U and ϵ = {ϵ(x) ≥ 0: x ∈ X}. Then, for each xI ∈ XI , d ∈ {1, . . . , Nd}, cj ∈
{c1, . . . , cJ} and c′ ̸= cj,∑

y⃗∈YJ

P̃j(y⃗ | (xI , d))u(cj, y⃗;xI) ≥
∑
y⃗∈YJ

P̃j(y⃗ | (xI , d))u(c
′, y⃗;xI)− ϵ̄(xI , d),

where

P̃ (cj, y⃗ | (xI , d)) =
∑

xE : D(xI ,xE)=d

P̃ (cj, y⃗ | (xI , xE))
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
,

πj(xI , d) =
∑

xE : D(xI ,xE)=d

πj(xI , xE)
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
,

P̃j(y⃗ | (xI , d)) = P̃ (cj, y⃗ | (xI , d))/πj(xI , d),

ϵ̄(xI , d) = πj(xI , d)
−1

∑
xE : D(xI ,xE)=d

ϵ(xI , xE)πj(xI , xE)
P (XE = xE | XI = xI)

P (D(XI , XE) = d | XI = xI)
.

Corollary D.1. Suppose 0 < π1(x) < 1 for all x ∈ X . If the decision maker’s choices
approximately maximize expected utility at some linear utility function and ϵ = {ϵ(x) ≥
0: x ∈ X}, then there exists ϵ̄(xI , d) ≥ 0 such that, for all pairs (xI , d), (xI , d

′),

µ1(x, d)− µ0(x, d
′)− ϵ̄(x, d)− ϵ̄(x, d′) ≤ 0.

I next show how the coarsening affects the interpretation of the lower bound on the
expected utility cost of systematic prediction mistakes. Define the worst-case cost of sys-
tematic prediction mistakes over D( ·) as E∗(D) =

∑
xI ,d

P (xI , d)ϵ
∗(xI , d), where ϵ∗(x) is

an optimal solution to the linear program defined in (4) of the main text, and ϵ∗(xI , d) =
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maxxE : D(xI ,xE)=d ϵ
∗(xI , xE). That is, E∗(D) is the worst-case cost of systematic prediction

mistakes to the decision maker over the partition D( ·) since it applies the largest misrank-
ing within each cell of the partition over the entire partition. By construction, E∗(D) ≥ E .
Consider the optimal value of the linear program

E(D) := min
ϵ(xI ,d)

∑
xI ,d

P (xI , d)ϵ(xI , D(x))

s.t. ϵ(xI , d) ≥ 0 for all x ∈ X ,

µ1(xI , d)− µ0(xI , d
′)− ϵ(xI , d)− ϵ(xI , d

′) ≤ 0 for all pairs (xI , d), (xI , d
′).

It is immediate that E(D) ≤ E∗(D) since ϵ∗(xI , d) is feasible in the program, and so E(D) is
a valid lower bound on the worst-case expected utility cost to the decision maker over D( ·).
Furthermore, E(D) = 0 if E = 0 by construction.

Analogously, define λ∗(D) =
∑

xI ,d
P (xI , d)1{ϵ∗(xI , d) > 0} to be the worst-case share

of systematic prediction mistakes over D( ·). By construction, λ ≤ λ∗(D). Consider the
optimal value of the program

λ(D) := min
ϵ(xI ,d)

∑
xI ,d

P (xI , d)1{ϵ(xI , D(x)) > 0}

s.t. ϵ(xI , d) ≥ 0 for all x ∈ X ,

µ1(xI , d)− µ0(xI , d
′)− ϵ(xI , d)− ϵ(xI , d

′) ≤ 0 for all pairs (xI , d), (xI , d
′).

Since ϵ∗(xI , d) is feasible, it follows that λ(D) ≤ λ∗(D), and so, λ(D) is a valid lower bound
on the worst-case share of systematic prediction mistakes over D( ·).

D.2 Expected utility maximization at inaccurate beliefs after di-
mension reduction

As in the main text, let D : X → {1, . . . , Nd} partition the observable characteristics X into
level sets {x ∈ X : D(x) = d}. For a treatment assignment problem, Theorem B.3 implies
that if the decision maker’s choices are consistent with expected utility maximization at
inaccurate beliefs, then their choices satisfy a system of implied revealed preference inequal-
ities over the coarsening D(·). This follows directly from Lemma B.3 and the same iterated
expectations argument as in the proof of Proposition 5.1. I omit the proof for brevity.

Proposition D.2. Suppose the decision maker’s choices are consistent with expected utility
maximization behavior at inaccurate beliefs and some utility function u ∈ U . Then, for each
xI ∈ XI , d ∈ {1, . . . , Nd}, cj ∈ {c1, . . . , cJ} and c′ ̸= cj,∑

y⃗∈YJ

Q(cj, y⃗ | xI , d)u(c, y⃗;xI) ≥
∑
y⃗∈YJ

Q(cj, y⃗ | xI , d)u(c
′, y⃗;xI),
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where

Q(c, y⃗ | xI , d) =

 ∑
xE : D(xI ,xE)=d

P̃ (c | y⃗, (xI , xE))Q(y⃗ | (xI , xE))P (xE | xI)

 /P (D(XI , XE) = d | XI = xI),

P̃ (c | y⃗, x) = P̃ (y⃗ | c, x)πc(x)∑
c′∈C P̃ (y⃗ | c′, x)πc′(x)

.

Provided that P (c, y⃗ | x) > 0 for all (c, y⃗) ∈ C × YJ and x ∈ X , Proposition D.2 can be
recast as checking whether there exists non-negative weights ω(c, y⃗;xI , d) ≥ 0 satisfying, for
all cj ∈ {c1, . . . , cJ} with c′ ̸= cj and x ∈ X ,∑

y⃗∈YJ

ω(cj, y⃗;xI , d)P̃ (cj, y⃗ | xI , D(x) = d)u(cj, y⃗;xI) ≥

∑
y⃗∈YJ

ω(cj, y⃗;xI , d)P̃ (cj, y⃗ | xI , D(x) = d)u(c′, y⃗;xI)

and EP̃

[
ω(C, Y⃗ ;XI , D(X)) | XI = xI , D(X) = d

]
= 1.

I next apply this result in a screening decision with a binary choice and binary outcome.
In this special case, following the same argument as the proof of Proposition 4.1, this result
may be applied to derive bounds on the decision maker’s reweighed utility threshold through

P1(1 | xI , d) ≤
ω(0, 0;xI , d)u0,1(xI)

ω(0, 0;xI , d)u0,1(xI) + ω(1, 1;xI , d)u1,1(xI)
≤ P 0(1 | xI , d), (24)

where Pc(y
∗ | xI , d) := P (Y ∗ = y∗ | C = c,XI = xI , D(X) = d). Next, define M =

1{C = 0, Y ∗ = 0}+1{C = 1, Y ∗ = 1}, τ(xI , d) =
ω(0,0;xI ,d)u0,1(xI)

ω(0,0;xI ,d)u0,1(xI)+ω(1,1;xI ,d)u1,1(xI)
. Examining

xI ∈ XI , d, d
′ ∈ {1, . . . , Nd}, we arrive at

(1− τ(xI , d))/τ(xI , d)

(1− τ(xI , d′))/τ(xI , d′)
=

Q(C=1,Y ∗=1|M=1,xI ,d)/Q(C=0,Y ∗=0|M=1,xI ,d)
Q(C=1,Y ∗=1|M=1,xI ,d′)/Q(C=0,Y ∗=0|M=1,xI ,d′)

P (C=1,Y ∗=1|M=1,xI ,d)/P (C=0,Y ∗=0|M=1,xI ,d)
P (C=1,Y ∗=1|M=1,xI ,d′)/P (C=0,Y ∗=0|M=1,xI ,d′)

. (25)

By examining values in the identified set of reweighted utility thresholds defined on the
coarsened characteristic space, bounds may be constructed on a parameter that summarizes
the decision maker’s beliefs about their own “ex-post errors.” That is, how does the decision
maker’s belief about the relative probability of choosing C = 0 and outcome Y ∗ = 0 occurring
vs. choosing C = 1 and outcome Y ∗ = 1 occurring compare to the true probability? If these
bounds lie everywhere below one, then the decision maker’s beliefs about their own ex-post
errors are underreacting to variation in risk across the cells (xI , d) and (xI , d

′). If these
bounds lie everywhere above one, then the decision maker’s beliefs about their own ex-post
errors are overreacting.
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D.3 Constructing coarsened characteristics in screening decisions
via out-of-sample prediction

In the empirical application to pretrial release decisions, I construct the partition D( ·) of
the observed characteristics using supervised machine learning methods that predict the
outcome Ȳ ∗ on the pretrial release decisions of other judges. Given an estimated prediction
function f̂ : X → [0, K], define D( ·) by binning the characteristics X into percentiles of
predicted risk within each xI ∈ XI . Provided the prediction function f̂( ·) performs well out-
of-sample in the sense that it equals the true conditional expectation µ(x) := E[Ȳ ∗ | X = x]
and the excluded characteristics XE only enter the decision maker’s information set through
their initial beliefs, then the inequalities in Proposition 5.1 continue to sharply characterize
expected utility maximization at accurate beliefs in a screening decision.

Proposition D.3. Assume f̂(x) = µ(x), D(x) is defined as the level sets of f̂(x), and
µ(X) is sufficient for XE in the decision maker’s behavior, meaning V | {Y ∗, XI , XE} ∼
V | {Y ∗, XI , µ(X)} and C | {V,XI , XE} ∼ C | {V,XI , µ(X)} under Q(·). Then the deci-
sion maker’s choices are consistent with expected utility maximization at some linear utility
function if and only if, for all xI ∈ XI , Equation (8) is satisfied.

Proof. Under the restriction V | {Y ∗, X} ∼ V | {Y ∗, XI , µ(X)} and C | {V,X} ∼ C |
{V,XI , µ(X)}, the expected utility maximization model (X, V,C, Y ∗) ∼ Q is equivalent to a
joint distribution (X, V,C, Y ∗) ∼ Q̃ for any utility function u ∈ U that factorizes according
to Q̃(X)Q̃(Y ∗ | X)Q̃(V | Y ∗, µ(X), XI)Q̃(C | V, µ(X), XI). The result then follows by the
same argument as the proof of Theorem 3.1.

Proposition D.3 provides a novel connection between out-of-sample prediction and identifica-
tion in analyzing systematic prediction mistakes. Provided the excluded characteristics XE

only affect the decision maker’s behavior through the true conditional expectation µ∗(x),
the extent to which the inequalities in Equation (8) are non-sharp is driven by how well
the estimated prediction function recovers µ∗(x). Nonetheless, the inequalities in Equation
(8) always provide a valid falsification test for accurate beliefs regardless of whether the
conditions in Proposition D.3 are satisfied.

E Additional empirical results for the New York City

pretrial system

E.1 Defining the outcome to be any pretrial misconduct

Given the stated objectives of the NYC pretrial system, the main text defined the outcome
Y ∗ = Y ∗

1 ∈ {0, 1} to be whether a defendant would fail to appear in court. As a robustness
exercise, I define the outcome of interest Y ∗ = Y ∗

1 ∈ {0, 1} to be whether a defendant would
commit “any pretrial misconduct” (i.e., either fail to appear in court or be re-arrested for
any new crime).

What fraction of judges make prediction mistakes? I test whether the release deci-
sions of each judge in the top 25 are consistent with expected utility maximization behavior
at some linear utility function that (i) does not depend on any observable characteristics,
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(ii) depends on the defendant’s race, (iii) depends on both the defendant’s race and age, or
(iv) depends on the defendant’s race and whether the defendant was charged with a felony
offense. Online Appendix Table A1 shows that the pretrial release decisions of at least 64%
of judges are inconsistent with expected utility maximization at accurate beliefs about pre-
trial misconduct risk and some linear utility function satisfying the conjectured exclusion
restrictions.

How common and costly are systematic prediction mistakes? I estimate the bound
on the share of systematic prediction mistakes about pretrial misconduct risk assuming judges
optimize some linear utility function that depends on both the defendant’s race and age or
the defendant’s race and whether the defendant was charged with a felony offense (see Section
4.1.2 for theoretical details). Online Appendix Table A2 summarizes the results across judges
whose choices are inconsistent with expected utility maximization at accurate beliefs at the
nominal 5% level.

I also estimate the bound on the total expected utility cost to judges of their systematic
prediction mistakes about pretrial misconduct risk (see Section 4.1.1 for theoretical details)
across the same judges. Using the procedure in Online Appendix C.2, I translate these
estimated expected utility costs into an equivalent reduction in the fraction of defendants that
are released and would commit pretrial misconduct that would produce the same expected
utility cost to the judge. For the median judge, this corresponds to an equivalent reduction
of 25.06 percentage points when both defendant race and age are allowed to directly affect
utility and 25.90 percentage points when defendant race and charge severity are allowed to
directly affect utility.

Bounding prediction mistakes based on defendant characteristics Online Ap-
pendix Figure A7a reports 95% confidence intervals for the identified set of the implied
prediction mistake δ(xI , d)/δ(xI , d

′) between the highest d and lowest decile d′ of predicted
pretrial misconduct risk within each race-by-age XI cell. Online Appendix Figure A7b plots
the 95% confidence intervals for the identified set on the same object within each race-by-
felony charge XI cell. See Section 4.2 for details. Judges appear to systematically underreact
to predictable variation in pretrial misconduct risk between defendants at the tails of the pre-
trial misconduct risk distribution. Whenever these bounds are informative, they lie strictly
below one.

Furthermore, among judges whose choices are inconsistent with expected utility maxi-
mization behavior at accurate beliefs about pretrial misconduct risk, Online Appendix Table
A3 reports the location of the largest studentized misranking and shows the fraction of judges
for whom the largest misranking occurs over the tails of the predicted distribution (deciles
1-2, 9-10) or the middle of the predicted risk distribution (deciles 3-8) for black and white
defendants respectively. I again find that the largest misrankings mainly occur over defen-
dants that lie in the tails of the predicted risk distribution, and furthermore the majority
occur over black defendants at the tails of the predicted risk distribution.
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E.2 Identifying prediction mistakes under alternative bounds on
the missing data

Section 5 analyzed the pretrial release decisions of judges in New York City by constructing
bounds on the failure to appear rate of detained defendants using the quasi-random assign-
ment of judges. I now show how the same analysis may be conducted instead assuming

P (Y ∗
1 = 1 | C = 1, XI = xI , D(X) = d) ≤ P (Y ∗

1 = 1 | C = 0, XI = xI , D(X) = d), (26)

P (Y ∗
1 = 1 | C = 0, XI = xI , D(X) = d) ≤ (1 + κ)P (Y ∗

1 = 1 | C = 0, XI = xI , D(X) = d)
(27)

for some chosen parameter κ ≥ 0. The parameter κ ≥ 0 bounds the failure to appear rate
among detained defendants relative to the failure to appear rate among released defendants,
and I report results as κ ≥ 0 varies.

Under this bounding assumption, in Section 5.4.3 of the main text, I tested whether
the release decisions of each judge in the top 25 are consistent with expected utility maxi-
mization behavior at some linear utility function that (i) does not depend on any observable
characteristics, (ii) depends on the defendant’s race, (iii) depends on both the defendant’s
race and age, or (iv) depends on the defendant’s race and whether the defendant was charged
with a felony offense. Figure II reports the fraction of judges in the top 25 for whom we can
reject expected utility maximization at accurate beliefs under various assumption on which
observable characteristics XI affect the utility function and varying the choice of κ ≥ 0.

How common and costly are systematic prediction mistakes? I estimate the bound
on the share of systematic prediction mistakes about failure to appear risk assuming judges’
optimize some linear utility function that depends on both the defendant’s race and age
or the defendant’s race and whether the defendant was charged with a felony offense (see
Section 4.1.2). Online Appendix Figure A8 reports the estimated bounds on the share of
systematic prediction mistakes across judges whose choices are inconsistent with expected
utility maximization at accurate beliefs about failure to appear risk at the nominal 5% level
as κ ≥ 0 varies.

I also estimate the bound on the total expected utility costs to judges of their systematic
prediction mistakes as κ ≥ 0 varies (see Section 4.1.1). Online Appendix Figure A9a reports
the estimated bounds on the total expected utility cost E , and Online Appendix Figure
A9b translates these estimated total expected utility costs into an equivalent reduction in
the fraction of defendants that are released and would fail to appear in court that would
produce the same total expected utility cost.

Bounding prediction mistakes based on defendant characteristics I next analyze
whether judges over-react or under-react to variation in failure to appear risk based on the
observable characteristics. Online Appendix Figure A10a reports 95% confidence intervals
for the identified set of values δ(xI , d)/δ(xI , d

′) between the highest d and lowest decile d′ of
predicted risk within each race-by-age cell using the bounds with κ = 2. Online Appendix
Figure A10b plots the same results for each race-by-felony charge cell. See Section 4.2 for
theoretical details on the implied prediction mistake δ(xI , d)/δ(xI , d

′). As in the main text,
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judges appear to underreact to predictable variation in failure to appear risk. Whenever
informative, these bounds lie strictly below one.

E.3 The welfare effects of algorithmic decision-making: race-by-
felony charge cells

Section 6 compared worst-case expected social welfare under the observed release decisions
by judges in New York City against worst-case expected social welfare under counterfactual
algorithmic decisions, conducting this exercise over race-by-age cells and deciles of predicted
failure to appear risk. I report the results of the same analysis over race-by-felony charge cells
and deciles of predicted failure to appear risk for completeness and find analogous results.

Online Appendix Figure A11a plots the improvement in worst-case total expected social
welfare under the algorithmic decision rule that fully replaces judges who were found to
make systematic prediction mistakes against the release decisions of these judges. For most
values of the social welfare function, the algorithmic decision rule dominates the observed
choices of these judges, but for social welfare costs of unnecessary detentions ranging over
|ũ| ∈ [0.3, 0.7] (recall u∗

0,1 = −ũ/|1+ũ|, u∗
1,1 = −1/|1+ũ|), the algorithmic decision rule either

leads to no improvement or strictly lowers worst-case expected total social welfare relative
to the judges’ observed decisions. Online Appendix Figure A11b plots the improvement
in worst-case expected social welfare under the algorithmic decision rule that only corrects
systematic prediction mistakes at the tails of the predicted failure to appear risk distribution
against the observed release decisions of these judges. The algorithmic decision rule that
only corrects systematic prediction mistakes weakly dominates the observed release decisions
of judges, no matter the value of the social welfare function.

I compare welfare effects of replacing judges whose choices were found to be consistent
with expected utility maximization behavior at accurate beliefs about failure to appear
risk with algorithmic decision rules. Online Appendix Figure A12 plots the improvement in
worst-case total expected social welfare under the algorithmic decision rule that fully replaces
these judges against their release decisions. Replacing these judges with algorithmic decision
rules may strictly lower worst-case expected social welfare for a range of social welfare costs
of unnecessary detentions.
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F Online appendix figures

Figure A1: Judge-specific failure to appear rate among released defendants and bound on the
failure to appear rate among detained defendants by race-and-felony charge cells.

Notes: This figure plots the observed failure to appear rate among released defendants (orange, circles) and
the bounds based on the judge leniency for the failure to appear rate among detained defendants (blue,
triangles) at each decile of predicted failure to appear risk and race-by-felony charge cell for the judge that
heard the most cases in the main estimation sample. The bounds on the failure to appear rate among
detained defendants (blue, triangles) are constructed using the most lenient quintile of judges. See Section
5.3 for discussion.
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Figure A2: Judge-specific bounds on prediction mistakes between predicted failure to appear risk
deciles within each race-by-felony charge cell.

Notes: This figure plots the 95% confidence interval on the implied prediction mistake δ(xI , d)/δ(xI , d
′)

between the top decile d and bottom decile d′ of the predicted failure to appear risk distribution for each
judge in the top 25 whose pretrial release decisions are inconsistent with expected utility maximization at
accurate beliefs at the nominal 5% level (the “unadjusted rejection rate” in the top panel of Table II) and
each race-by-felony charge cell. The confidence intervals highlighted in orange show that judges under-react
to predictable variation in failure to appear risk from the highest to the lowest decile of predicted failure to
appear risk (i.e., the estimated bounds lie below one). See Section 4.2 for theoretical details on the implied
prediction mistake and Section 5.6 for the estimation details.

Figure A3: Comparison of algorithmic decision rule against judges whose release decisions are
inconsistent with expected utility maximization at accurate beliefs, separately by defendant race.

Notes: This figure reports the change in worst-case expected social welfare under the algorithmic decision rule
against judges whose pretrial release decisions are inconsistent with expected utility maximization at accurate
beliefs at the nominal 5% level (the “unadjusted rejection rate” in the top panel of Table II), separately by
defendant race. The x-axis plots the relative social welfare cost of detaining a defendant that would not fail
to appear in court |ũ| (i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1+ ũ|, u∗
1,1 = −1/|1+ ũ|. The solid

line plots the median change across judges that make mistakes, and the dashed lines report the minimum
and maximum change across judges. See Section 6 for discussion.
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Figure A4: Release rates under algorithmic decision rule relative to the release rates of judges
whose release decisions are inconsistent with expected utility maximization at accurate beliefs.

Notes: This figure reports the overall release rate of the algorithmic decision rules against the release rates
of judges whose pretrial release decisions are inconsistent with expected utility maximization at accurate
beliefs at the nominal 5% level (the “unadjusted rejection rate” in the top panel of Table II). These decisions
rules are constructed and evaluated over race-by-age cells and deciles of predicted risk. The x-axis plots
the relative social welfare cost of detaining a defendant that would not fail to appear in court |ũ| (i.e., an
unnecessary detention), where u∗

0,1 = −ũ/|1 + ũ|, u∗
1,1 = −1/|1 + ũ|. The solid line plots the median release

rate across judges that make systematic prediction mistakes, and the dashed lines report the minimum and
maximum release rates across judges. See Section 6 for discussion.

Figure A5: Comparison of algorithmic decision rule against judges whose choices are consistent
with expected utility maximization at accurate beliefs.

Notes: This figure reports the change in worst-case expected social welfare under the algorithmic decision
rule against judges whose pretrial release decisions are consistent with expected utility maximization at
accurate beliefs about failure to appear risk at the nominal 5% level (the “unadjusted rejection rate” in the
top panel of Table II). The x-axis plots the relative social welfare cost of detaining a defendant that would not
fail to appear in court |ũ| (i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1 + ũ|, u∗
1,1 = −1/|1 + ũ|. The

solid line plots the median change across judges, and the dashed lines report the minimum and maximum
change across judges. See Section 6 for discussion.
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Figure A6: Release rates under algorithmic decision rule relative to the release rates of judges
whose choices are consistent with expected utility maximization at accurate beliefs.

Notes: This figure reports the release rate of the algorithmic decision rules against the observed release rates
among judges whose choices are consistent with expected utility maximization behavior at accurate beliefs at
the nominal 5% level (the “unadjusted rejection rate” in the top panel of Table II). The algorithmic decision
rules are constructed and evaluated over race-by-age cells and deciles of predicted failure to appear risk. The
x-axis plots the relative social welfare cost of detaining a defendant that would not fail to appear in court |ũ|
(i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1+ ũ|, u∗
1,1 = −1/|1+ ũ|. The solid line plots the median

release rate across judges that do not make systematic prediction mistakes, and the dashed lines report the
minimum and maximum release rates across judges. See Section 6 for discussion.

Figure A7: Judge-specific bounds on prediction mistakes about pretrial misconduct risk between
predicted risk deciles

(a) Race-by-age XI cells (b) Race-by-felony charge XI cells

Notes: This figures plots the 95% confidence interval for the identified set on δ(xI , d)/δ(xI , d
′) between the

highest predicted any pretrial misconduct risk decile d and the lowest predicted any pretrial misconduct
risk decile d′ within each race-by-age cell and race-by-felony charge cell. I report results for judges’ whose
choices are inconsistent with expected utility maximization at accurate beliefs at the nominal 5% level. The
outcome Y ∗

1 is whether the defendant would commit any pretrial misconduct upon release (i.e., either fail
to appear in court or be re-arrested for a new crime). Bounds on the any pretrial misconduct rate among
detained defendants are constructed using the judge leniency instrument (see Section 5.3). See Section 4.2
for theoretical details on the implied prediction mistake and Online Appendix E.1 for discussion.
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Figure A8: Share of systematic prediction mistakes using alternative bounds on the missing data.

Notes: This figure summarizes the estimated bound on the share of systematic prediction mistakes among
judges whose choices are inconsistent with expected utility maximization at accurate beliefs and a linear
utility function that depends on both the (i) defendant’s race and age, and (ii) defendant’s race and whether
the defendant was charged with a felony offense. Bounds on the failure to appear rate among detained
defendants are constructed using Equation (26) with κ = {0, 1, . . . , 10}. The lower and upper error bars
summarize the minimum and maximum across judges whose choices are inconsistent with expected utility
maximization at accurate beliefs at the nominal 5% level. The dot summarizes the median estimated bound
across those same judges. See Section 4.1.2 for the theoretical details, as well as Section 5.4.3 and Online
Appendix E.2 for further discussion.

Figure A9: Total expected utility costs of systematic prediction mistakes using alternative bounds
on the missing data.

(a) Expected utility units
(b) Equivalent reduction in percentage of ex-
post errors E[Y ∗

1 · C]

Notes: This figure summarizes the estimated bounds on the total expected utility costs of systematic predic-
tion mistakes among judges whose choices are inconsistent with expected utility maximization at accurate
beliefs and a linear utility function that depends on both the (i) defendant’s race and age, and (ii) defendant’s
race and whether the defendant was charged with a felony offense. Bounds on the failure to appear rate
among detained defendants are constructed using Equation (26) with κ = {0, 1, . . . , 10}. Panel (a) reports
the bound on the total expected utility cost E , and Panel (b) reports the equivalent reduction in the fraction
of defendants that are released and would fail to appear in court that would produce the same total expected
utility cost using the procedure described in Appendix C.2. The lower and upper error bars summarize the
minimum and maximum across judges whose choices are inconsistent with expected utility maximization
at accurate beliefs at the nominal 5% level. The dot summarizes the median estimated bound across those
same judges. See Section 4.1.2 for the theoretical details, as well as Section 5.4.3 and Online Appendix E.2
for further discussion.
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Figure A10: Judge-specific bounds on prediction mistakes between predicted failure to appear
risk deciles using alternative bounds on the missing data.

(a) Race-by-age XI cells (b) Race-by-felony charge XI cells

Notes: This figures plots the 95% confidence interval for the identified set on the implied prediction mistake
δ(xI , d)/δ(xI , d

′) between the highest predicted failure to appear risk decile d and the lowest predicted failure
to appear risk decile d′ within each race-by-age cell and race-by-felony charge cell. The bounds on the failure
to appear rate among detained defendants are constructed using Equation (26) for κ = 2 and for each judge
in the top 25 whose choices are inconsistent with expected utility maximization behavior at these bounds
at the nominal 5% level. See Section 4.2 for theoretical details on the implied prediction mistake, as well as
Section 5.4.3 and Online Appendix E.2 for further discussion.

Figure A11: Comparison of algorithmic decision rule against judges whose release decisions are
inconsistent with expected utility maximization at accurate beliefs over race-by-felony charge cells.

(a) Algorithmic decision rule that fully replaces
judges

(b) Algorithmic decision rule that corrects pre-
diction mistakes

Notes: This figure reports the change in worst-case total expected social welfare under two algorithmic
decision rules against the judge’s observed release decisions among judges whose pretrial release decisions
are inconsistent with expected utility maximization at accurate beliefs over race-by-felony charge cells. Worst
case total expected social welfare under each decision rule is computed by first constructing a 95% confidence
interval for total expected social welfare under the decision rule, and reporting smallest value that lies in the
confidence interval. These decisions rules are constructed and evaluated over race-by-felony cells and deciles
of predicted failure to appear risk. The x-axis plots the relative social welfare cost of detaining a defendant
that would not fail to appear in court |ũ| (i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1+ ũ|. The solid
line plots the median change across judges that make mistakes, and the dashed lines report the minimum
and maximum change across judges. See Section 6 of the main text and Online Appendix E.3 for further
details.
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Figure A12: Comparison of algorithmic decision rule against judges whose choices are consistent
with expected utility maximization at accurate beliefs over race-by-felony charge cells.

Notes: This figure reports the change in worst-case total expected social welfare under the algorithmic
decision rule that fully replaces judges against observed release decisions among judges whose choices are
consistent with expected utility maximization behavior at accurate beliefs about failure to appear risk. Worst
case total expected social welfare under each decision rule is computed by first constructing a 95% confidence
interval for total expected social welfare under the decision rule, and reporting smallest value that lies in the
confidence interval. These decisions rules are constructed and evaluated over race-by-felony cells and deciles
of predicted risk. The x-axis plots the relative social welfare cost of detaining a defendant that would not
fail to appear in court |ũ| (i.e., an unnecessary detention), where u∗

0,1 = −ũ/|1 + ũ|. The solid line plots the
median change across judges that make mistakes, and the dashed lines report the minimum and maximum
change across judges. See Section 6 of the main text and Online Appendix E.3 for further details.
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G Online appendix tables

Table A1: Fraction of judges whose release decisions are inconsistent with expected utility maxi-
mization behavior at accurate beliefs about pretrial misconduct risk.

Utility Functions u(c, y∗;xI)
No Characteristics Race Race + Age Race + Felony Charge

Adjusted Rejection Rate 76% 72% 64% 92%

Notes: This table summarizes the results for testing for misrankings in the release decisions of each judge
in the top 25 at linear utility functions u(c, y∗;xI) that (i) do not depend on any characteristics, (ii) depend
on the defendant’s race, (iii) depend on both the defendant’s race and age, and (iv) depend on both the de-
fendant’s race and whether the defendant was charged with a felony offense. The outcome Y ∗ = Y ∗

1 ∈ {0, 1}
is whether the defendant would commit any pretrial misconduct (i.e., either fail to appear in court or be
re-arrested for a new crime) upon release. Bounds on the any pretrial misconduct rate among detained defen-
dants are constructed using the judge leniency instrument (see Section 5.3). I test the moment inequalities
using the conditional least-favorable hybrid test developed in Andrews, Roth and Pakes (2023). I estimate
the variance-covariance matrix of the any pretrial misconduct rate among released defendants and upper
bounds on the any pretrial misconduct rate among detained defendants using the bootstrap conditional on
the included characteristics XI , predicted risk decile D(X) and leniency quintile instrument Z. The adjusted
rejection rate reports the fraction of rejections after a multiple hypothesis testing correction that controls
the family-wise error rate at the 5% level. See Online Appendix E.1 for further discussion.

Table A2: Share of systematic prediction mistakes among judges whose release decisions are
inconsistent with expected utility maximization at accurate beliefs about pretrial misconduct risk.

Utility Functions u(c, y;xI)
Race and Age Race and Felony Charge

Unadjusted Rejection Rate 84% 98%

Prediction Mistake Share
Minimum 54.87% 59.37%
Median 61.19% 71.30%

Maximum 72.55% 80.93%

Notes: This table summarizes the estimated bound on the share of systematic prediction mistakes among
judges whose release decisions are inconsistent with expected utility maximization at accurate beliefs about
pretrial misconduct risk and utility functions that depend on both the defendant’s race and age as well as the
defendant’s race and whether the defendant was charged with a felony. Among judges’ whose choices were
inconsistent with expected utility maximization at the 5% level (“unadjusted rejection rate”), I compute the
optimal value of the sample analogue to the optimization program (21). See Section 4.1.2 for theoretical
details on the bound for the share of systematic prediction mistakes, and Online Appendix E.1 for discussion.
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Table A3: Largest misranking among judges whose release decisions are inconsistent with expected
utility maximization behavior at accurate beliefs about pretrial misconduct risk.

Utility Functions u(c, y;xI)
Race and Age Race and Felony Charge

Unadjusted Rejection Rate 84% 98%

White Defendants
Middle Deciles 0.00% 0.00%
Tail Deciles 4.76% 4.16%

Black Defendants
Middle Deciles 9.52% 16.66%
Tail Deciles 85.71% 79.16%

Notes: This table summarizes the location of the largest (studentized) misranking in Proposition 5.1 among
judges whose release decisions are inconsistent with expected utility maximization behavior at accurate
beliefs about pretrial misconduct risk and preferences that depend on both the defendant’s race and age
as well as the defendant’s race and whether the defendant was charged with a felony. The outcome Y ∗

1 is
whether the defendant would commit any pretrial misconduct upon release (i.e., either fail to appear in court
or be re-arrested for a new crime). See Online Appendix E.1 for discussion.
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Table A4: Summary statistics comparing the main estimation sample and cases heard by the top
25 judges.
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Notes: This table provides summary statistics for the main estimation sample and the cases heard by the
top 25 judges in the New York City pretrial release data for all defendants and separately by defendant race.
See Section 5.1 of the main text for further discussion.

46



Table A5: Summary statistics for released and detained defendants in the main estimation sample
and for cases heard by the top 25 judges
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Notes: This table provides summary statistics for the main estimation sample and the cases heard by the
top 25 judges in the New York City pretrial release data for all defendants and separately by whether the
defendant was released or detained. See Section 5.1 of the main text for discussion.
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Table A6: Balance check estimates for the quasi-random assignment of judges by defendant race
and age.

White Defendants Black Defendants

Young Older Young Older
(1) (2) (3) (4)

Defendant Characteristics
Female −0.00008 0.00017 −0.00007 −0.00005

(0.00025) (0.00019) (0.00024) (0.00024)
Age −0.000004 −0.00001 −0.00006 −0.00001

(0.00004) (0.00001) (0.00003) (0.00001)
Arrest Charge

Number of Charges −0.00002 −0.000003 −0.00002 0.00001
(0.00003) (0.000005) (0.00006) (0.00003)

Felony Charge 0.00002 −0.00024 0.00019 0.00033
(0.00023) (0.00019) (0.00023) (0.00022)

Any Drug Charge −0.00033 0.00004 −0.00046 0.00004
(0.00033) (0.00022) (0.00025) (0.00020)

Any Violent Crime Charge −0.00025 −0.00010 −0.00016 0.00018
(0.00026) (0.00019) (0.00024) (0.00018)

Any Property Charge −0.00005 −0.00046 −0.00017 −0.00045
(0.00034) (0.00023) (0.00031) (0.00029)

Any DUI Charge 0.00021 0.00042 −0.00160 0.00062
(0.00045) (0.00030) (0.00072) (0.00044)

Defendant Priors
Prior FTA −0.00013 −0.00015 0.00034 −0.00021

(0.00026) (0.00021) (0.00022) (0.00020)
Prior Misdemeanor Arrest 0.00026 −0.00018 −0.00008 0.00034

(0.00021) (0.00017) (0.00022) (0.00022)
Prior Felony Arrest −0.00008 0.00018 0.00035 −0.00025

(0.00026) (0.00027) (0.00030) (0.00024)
Prior Violent Felony Arrest −0.00024 −0.00001 −0.00020 −0.00019

(0.00030) (0.00023) (0.00025) (0.00021)
Prior Misdemeanor Conviction 0.00040 0.00023 0.00040 0.00004

(0.00029) (0.00025) (0.00028) (0.00018)
Prior Felony Conviction 0.00052 0.00005 −0.00094 −0.00016

(0.00049) (0.00019) (0.00033) (0.00017)
Prior Violent Felony Conviction −0.00029 −0.00020 0.00113∗∗ −0.00012

(0.00077) (0.00022) (0.00054) (0.00021)
Joint p-value 0.85104 0.44370 0.038862 0.16062
Court × Time FE ✓ ✓ ✓ ✓
Cases 99,536 171,168 119,156 179,396

Notes: This table reports OLS estimates for regressions of the constructed judge leniency measure on various
defendant and case characteristics in the main estimation sample. These regressions are estimated separately
over subsamples defined on the race and age of the defendant, where “young” is defined as less than or equal
to 25 years and “old” is defined as older than 25 years. Standard errors, reported in parentheses, are clustered
at the defendant and judge level. The joint p-value is based on the F-statistic for whether all defendant and
case characteristics are jointly significant. See Section 5.3 of the main text for discussion.
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Table A7: Balance check estimates for the quasi-random assignment of judges by defendant race
and felony charge.

White Defendants Black Defendants

Felony
Charge

No Felony
Charge

Felony
Charge

No Felony
Charge

(1) (2) (3) (4)
Defendant Characteristics
Female 0.00003 0.00001 −0.00003 −0.00004

(0.00023) (0.00021) (0.00026) (0.00021)
Age −0.00002 −0.00001 0.000004 −0.000004

(0.00001) (0.00001) (0.00001) (0.00001)
Arrest Charge

Number of Charges −0.000002 −0.00004 −0.000005 0.00003
(0.00001) (0.00003) (0.00003) (0.00007)

Any Drug Charge −0.00022 −0.00008 −0.00012 −0.00008
(0.00028) (0.00024) (0.00031) (0.00023)

Any Violent Crime Charge −0.00043 0.00001 0.00038 −0.00013
(0.00030) (0.00018) (0.00026) (0.00017)

Any Property Charge −0.00038 −0.00038 0.00023 −0.00070
(0.00027) (0.00028) (0.00029) (0.00035)

Any DUI Charge 0.00047 0.00049 0.00100 0.00012
(0.00057) (0.00030) (0.00093) (0.00042)

Defendant Priors
Prior FTA −0.00014 −0.00005 0.00012 −0.00003

(0.00023) (0.00020) (0.00024) (0.00015)
Prior Misdemeanor Arrest 0.00024 −0.00012 0.00009 0.00010

(0.00025) (0.00017) (0.00028) (0.00018)
Prior Felony Arrest −0.00007 −0.000005 −0.00043 0.00040

(0.00036) (0.00023) (0.00032) (0.00022)
Prior Violent Felony Arrest −0.00042 0.00012 −0.00001 −0.00020

(0.00029) (0.00021) (0.00025) (0.00018)
Prior Misdemeanor Conviction −0.00009 0.00050 0.00042 −0.00013

(0.00030) (0.00021) (0.00027) (0.00017)
Prior Felony Conviction 0.00010 0.00024 −0.00040 −0.00041

(0.00034) (0.00023) (0.00025) (0.00019)
Prior Violent Felony Conviction 0.00040 −0.00084 −0.00004 0.0000001

(0.00036) (0.00030) (0.00028) (0.00024)
Joint p-value 0.05623 0.27401 0.24607 0.24712
Court × Time FE ✓ ✓ ✓ ✓
Cases 99,463 171,241 112,517 186,035

Notes: This table reports OLS estimates for regressions of the constructed judge leniency measure on various
defendant and case characteristics. These regressions are estimated separately over subsamples defined on
the race of the defendant and whether the defendant was charged with a felony offense. Standard errors,
reported in parentheses, are clustered at the defendant and judge level. The joint p-value is based on the
F-statistic for whether all defendant and case characteristics are jointly significant. See Section 5.3 of the
main text for discussion.
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