The Political Economy of Nonlinear Capital Taxation

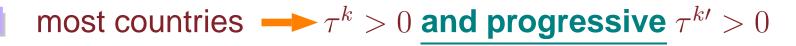
Emmanuel Farhi

Iván Werning

April 2008

The Political Economy of Nonlinear Capital Taxation

Introduction This Paper Main Result Related Literature Outline Two Deried Medal	most c	ountrie	es 🗕	$ ightarrow au^k >$	> ()	
Two Period Model Infinite Horizon Conclusions						



This Paper

- ♦ Main Result
- ♦ Related Literature
- Outline
- Two Period Model

Infinite Horizon

Conclusions

 \triangleright $\tau^{K} > 0$: corporate tax, capital gains, income tax

Introduction

This Paper

- ✤ Main Result
- ✤ Related Literature
- ♦ Outline

Two Period Model

Infinite Horizon

Conclusions

\$\nabla^K > 0\$: corporate tax, capital gains, income tax
 \$\nabla^{K'} > 0\$: income tax

Introduction

- This Paper
- ♦ Main Result
- ✤ Related Literature
- ♦ Outline
- Two Period Model
- Infinite Horizon

Conclusions

most countries $\rightarrow \tau^k > 0$ and progressive $\tau^{k'} > 0$

\$\tau^K > 0\$: corporate tax, capital gains, income tax
 \$\tau^{K'} > 0\$: income tax

- ► Atkinson-Stiglitz: $\tau^k = 0$
- **Chamley-Judd:** $\tau^k = 0$
- ▶ others: $\tau^k \neq 0$ (Non-Separability / Inverse Euler)

Introduction

- This Paper
- Main Result
- Related Literature
- ♦ Outline
- Two Period Model
- Infinite Horizon

Conclusions

most countries $\rightarrow \tau^k > 0$ and progressive $\tau^{k'} > 0$

\(\tau^K > 0\): corporate tax, capital gains, income tax
 \(\tau^{K'} > 0\): income tax

- ▶ Atkinson-Stiglitz: $\tau^k = 0$
- **Chamley-Judd:** $\tau^k = 0$
- ▷ others: $\tau^k \neq 0$ (Non-Separability / Inverse Euler)

Q: Equilibrium Capital Taxation **?**

Introduction

- This Paper
- Main Result
- Related Literature
- ♦ Outline
- Two Period Model
- Infinite Horizon

Conclusions

most countries $\rightarrow \tau^k > 0$ and progressive $\tau^{k'} > 0$

\(\tau^K > 0\): corporate tax, capital gains, income tax
 \(\tau^{K'} > 0\): income tax

- ▶ Atkinson-Stiglitz: $\tau^k = 0$
- **Chamley-Judd:** $\tau^k = 0$
- ▷ others: $\tau^k \neq 0$ (Non-Separability / Inverse Euler)

Q: Equilibrium Capital Taxation **?**

Introduction This Paper Main Result Related Literature Outline 	positive theories?	$ \rightarrow \tau^K > 0, \text{ silent on } \tau^{K'} $	
Two Period Model			
Infinite Horizon			
Conclusions			

- Introduction
- This Paper
- Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

- **positive** theories? $\rightarrow \tau^{K} > 0$, silent on $\tau^{K'}$
- time-inconsistency (Kydland-Prescott)
- representative agent
- linear taxes
- ex-post: capital = lump-sum
- no-commitment

- Introduction
- This Paper
- Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

- **positive** theories? $\rightarrow \tau^{K} > 0$, silent on $\tau^{K'}$
- time-inconsistency (Kydland-Prescott)
- representative agent
- linear taxes
- ex-post: capital = lump-sum
- no-commitment capital taxation

- Introduction
- This Paper
- Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

positive theories? $\rightarrow \tau^{K} > 0$, silent on $\tau^{K'}$

- time-inconsistency (Kydland-Prescott)
 - representative agent
- linear taxes
- ex-post: capital = lump-sum
- no-commitment capital taxation
- redistribution
 - commitment but heterogenous agents
 - linear tax on capital + lump-sum rebate
 - mediant voter + skewed distribution

- Introduction
- This Paper
- Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

positive theories? $\rightarrow \tau^{K} > 0$, silent on $\tau^{K'}$

- time-inconsistency (Kydland-Prescott)
 - representative agent
- linear taxes
- ex-post: capital = lump-sum
- no-commitment capital taxation
- redistribution
 - commitment but heterogenous agents
 - linear tax on capital + lump-sum rebate
 - mediant voter + skewed distribution
 - capital taxation

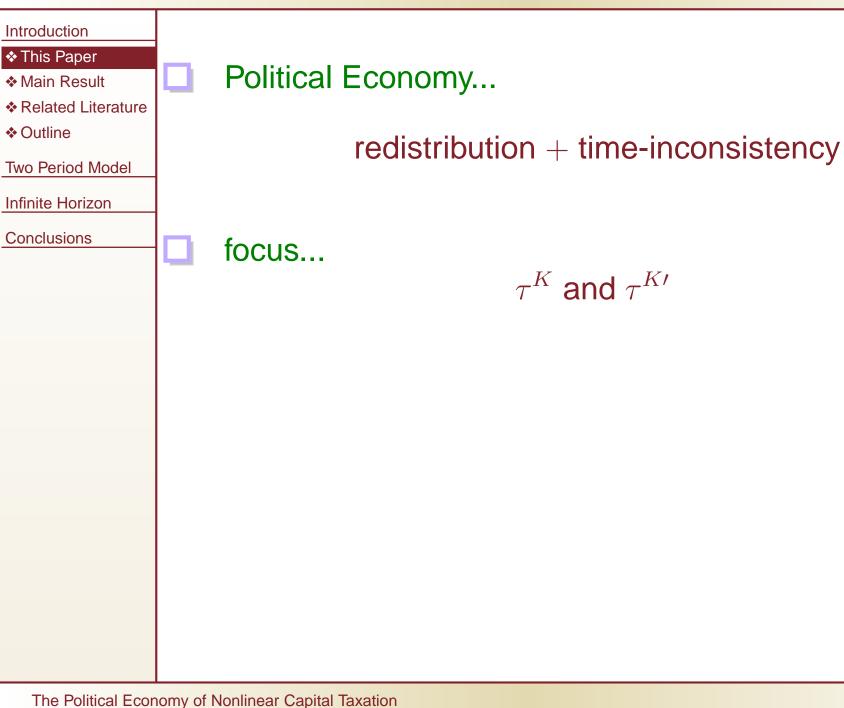
Introduction

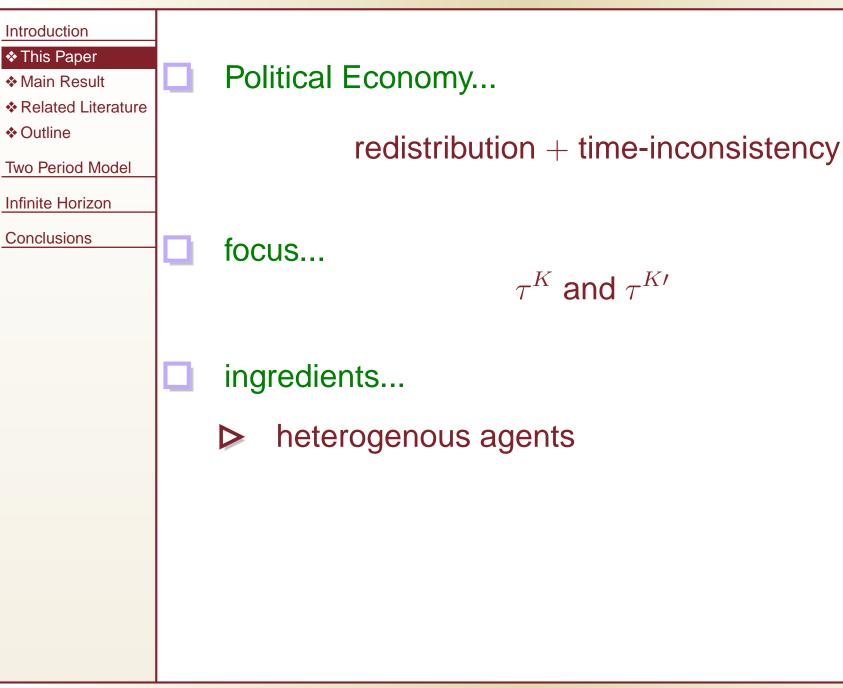
♦ This Paper

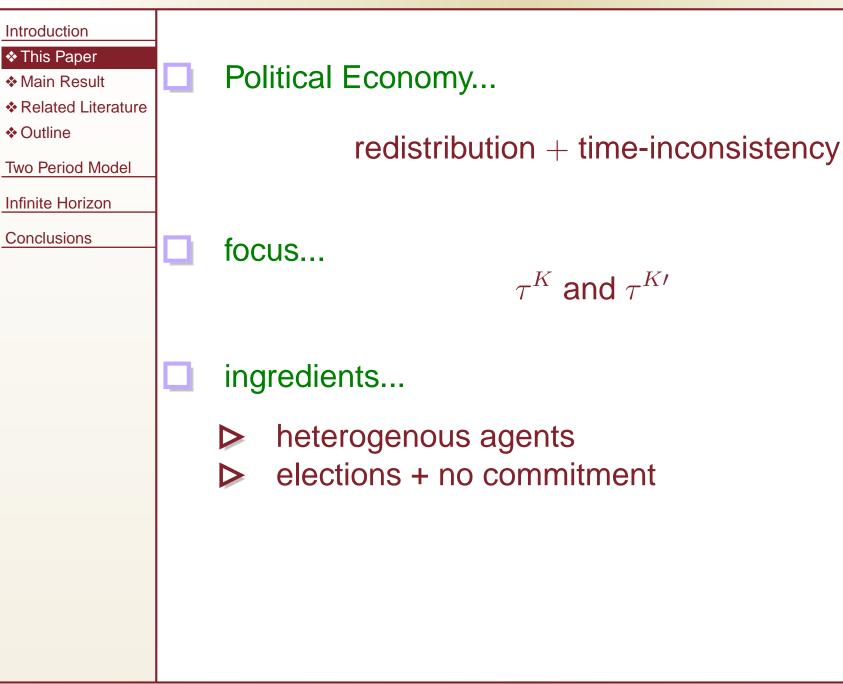
Main Result

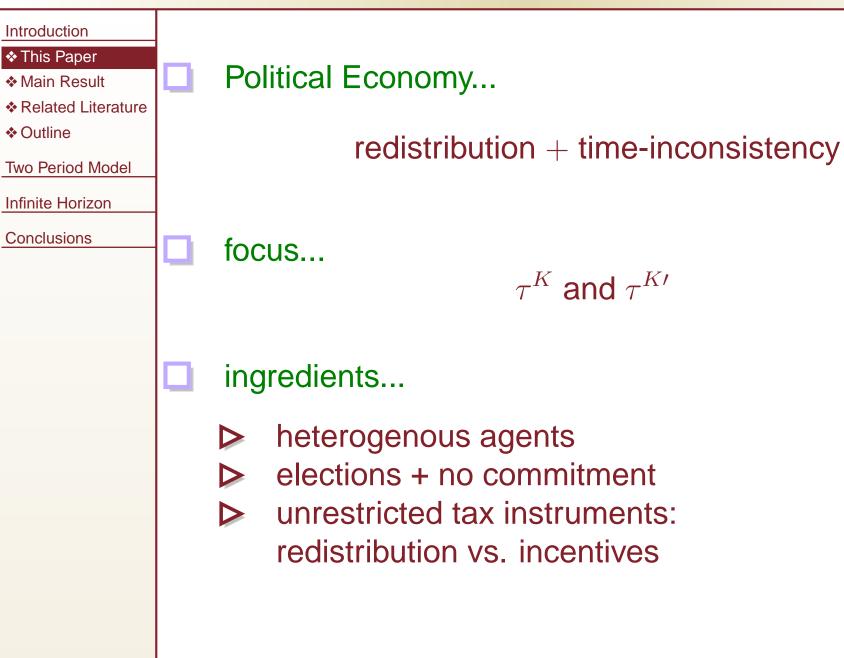
Related Literature

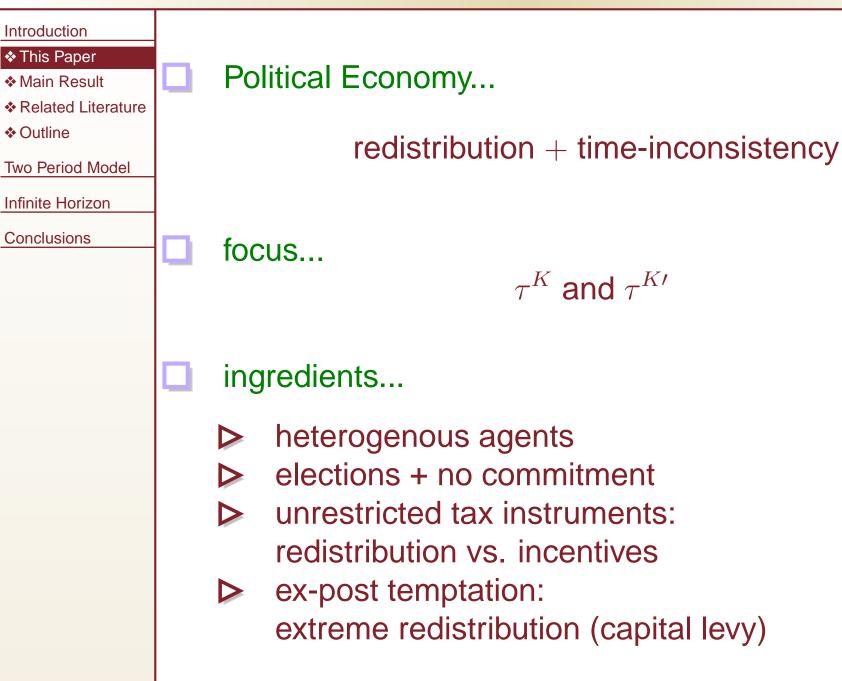
Outline

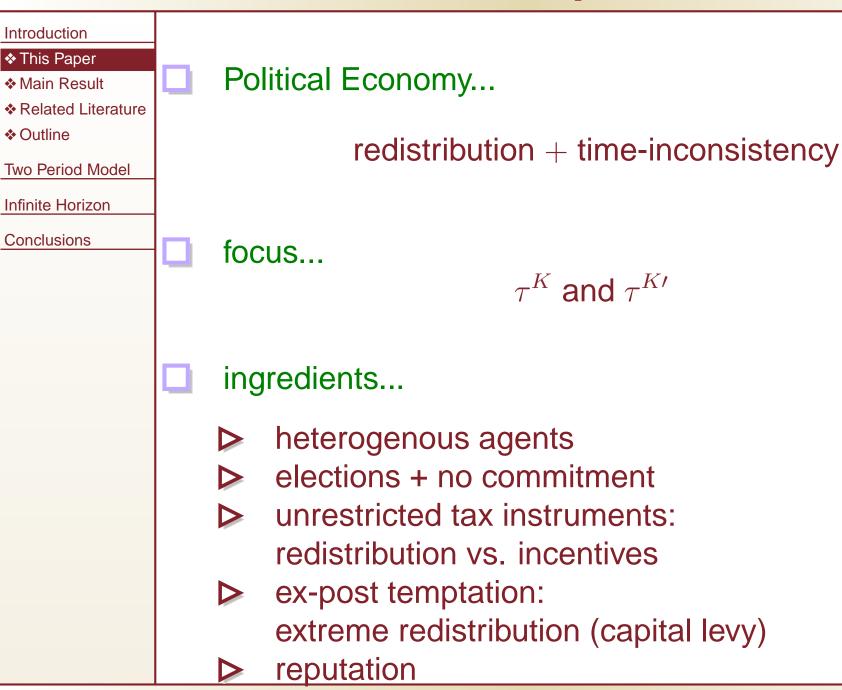

Two Period Model

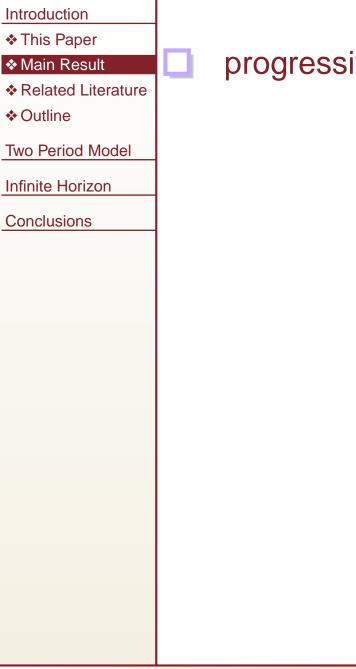

Infinite Horizon

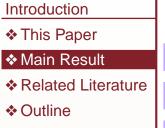

Conclusions


Political Economy...

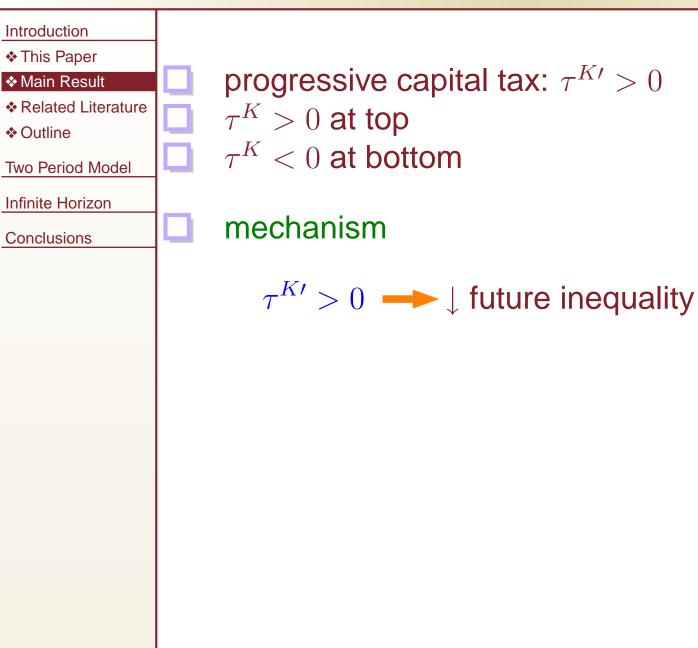

redistribution + time-inconsistency

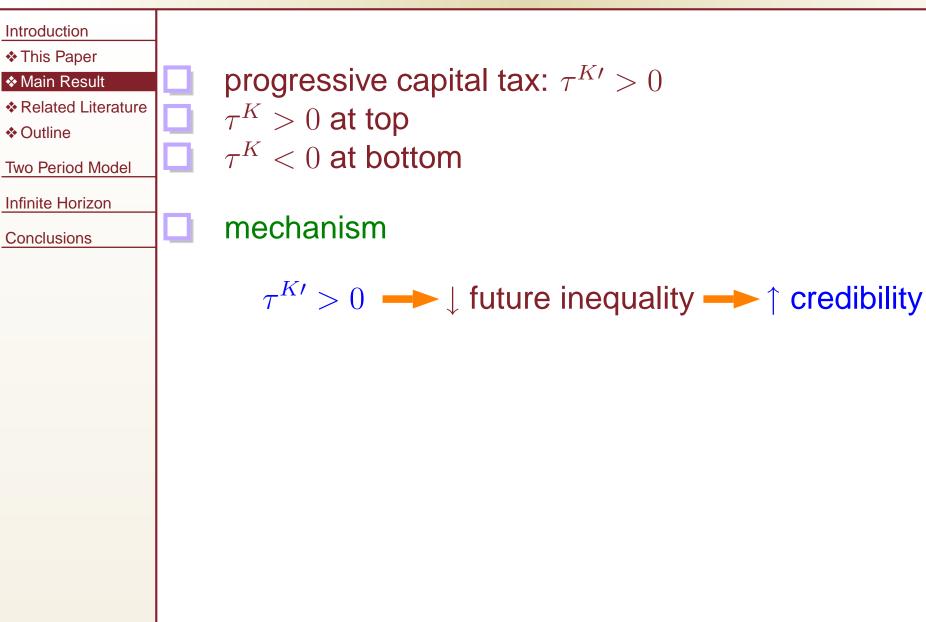


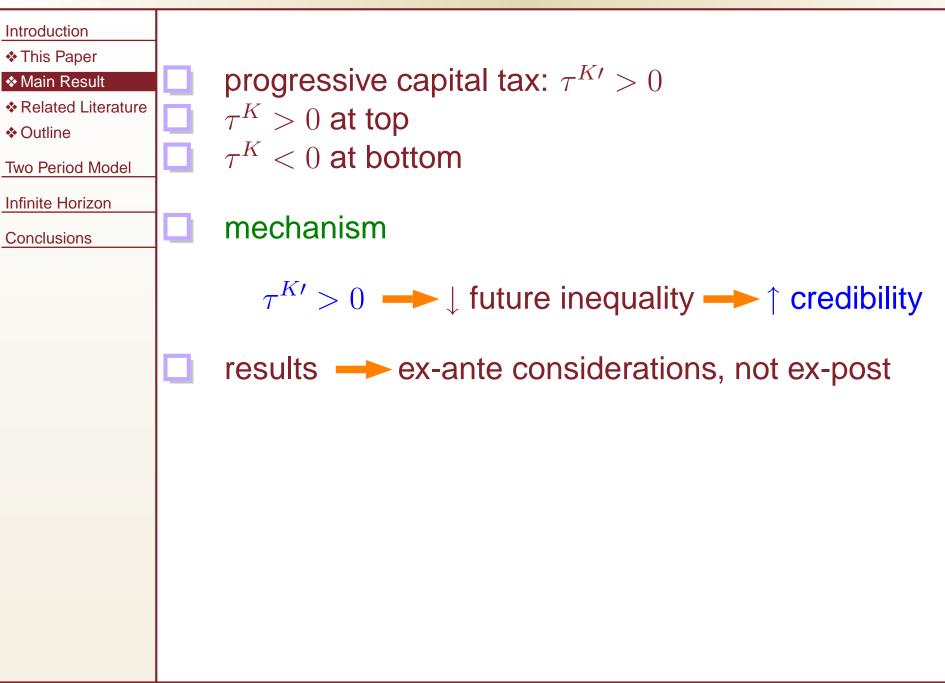




progressive capital tax: $\tau^{K\prime} > 0$




```
progressive capital tax: \tau^{K'} > 0
\tau^{K} > 0 at top
\tau^{K} < 0 at bottom
```


Two Period Model

Infinite Horizon

Conclusions

Related Literature

Introduction

This Paper

♦ Main Result

Related Literature

Outline

Two Period Model

Infinite Horizon

Conclusions

time-inconsistency: Kydland-Prescott (1977); Fischer (1980); Klein-Rios-Rull (2003)

Reputation: Kotlikoff-Persson-Svensson (1988); Chari-Kehoe (1990); Benhabib-Rustichini (1996)

Ramsey...

Related Literature

Introduction

- This Paper
- ♦ Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

- time-inconsistency: Kydland-Prescott (1977); Fischer (1980); Klein-Rios-Rull (2003)
- Reputation: Kotlikoff-Persson-Svensson (1988); Chari-Kehoe (1990); Benhabib-Rustichini (1996)

Redistribution...

Ramsey...

median voter + commitment: Persson-Tabellini (1994); Alesina-Rodrick (1994); Bertola (1993)

Related Literature

Introduction

- This Paper
- ♦ Main Result
- Related Literature
- Outline
- Two Period Model
- Infinite Horizon
- Conclusions

- time-inconsistency: Kydland-Prescott (1977); Fischer (1980); Klein-Rios-Rull (2003)
- Reputation: Kotlikoff-Persson-Svensson (1988); Chari-Kehoe (1990); Benhabib-Rustichini (1996)

Redistribution...

Ramsey...

- median voter + commitment: Persson-Tabellini (1994); Alesina-Rodrick (1994); Bertola (1993)
- Mirrleesian economies...
 - Political economy: Sleet-Yeltekin (2007); Acemoglu-Golosov-Tsyvinski (2007)
 - intergenerational optimum: Farhi-Werning (2007, 2008)

Outline

Introduction	1.	Two Period Model	
This Paper Main Result Related Literature Outline Two Period Model Infinite Horizon Conclusions	2.	Infinite Horizon Model	

Outline

Introduction This Paper Main Result Related Literature Outline 		
Two Period Model		
Infinite Horizon		
Conclusions	1.	Two Period Model
	2.	Infinite Horizon Model

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ✤ Main Result
- Intuition
- Infinite Horizon
- Conclusions

Two Period Model

i	i	÷ .					÷.		
	In	tr	0	a	u	CI	11	റ	n
1			~	~	~	-	•••	~	

Two Period Model

Environment

- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

continuum of agents θ

Introduction

Two Period Model

Environment

- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

continuum of agents θ preferences

$$v_0 = u(c_0) - \theta h(n_0) + \beta u(c_1)$$

Introduction

Two Period Model

Environment

- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon

Conclusions

continuum of agents θ preferences

$$v_0 = u(c_0) - \theta h(n_0) + \beta u(c_1)$$

resource constraint

$$\int c_0(\theta) \, dF(\theta) + k_1 \le \int n_0(\theta) \, dF(\theta)$$

$$\int c_1(\theta) \, dF(\theta) \le Rk_1$$
[RC]

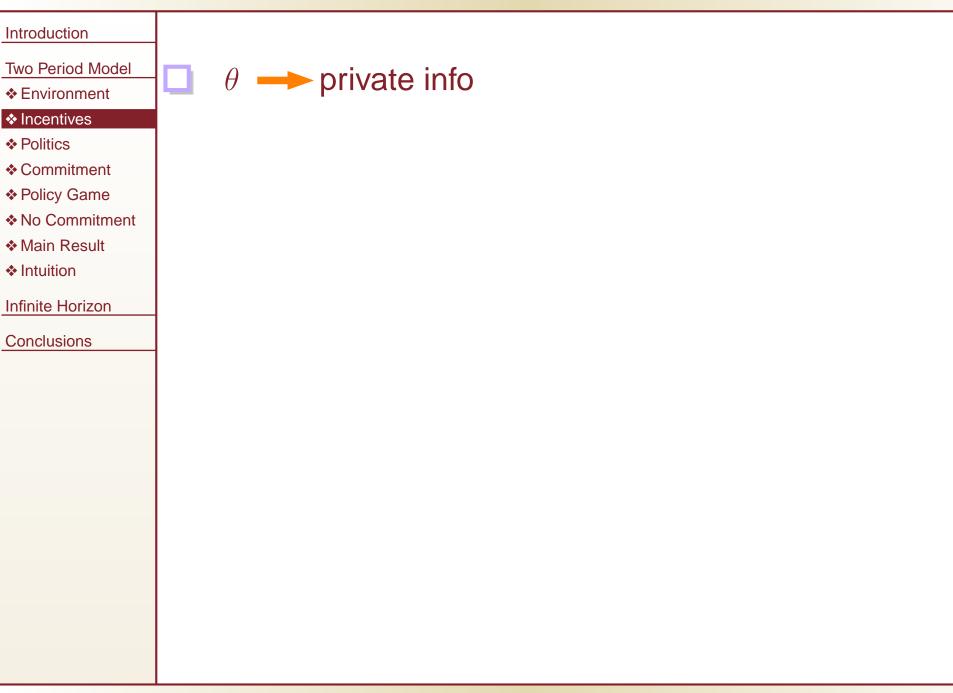
Introduction

Two Period Model

Environment

- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ✤ Main Result
- Intuition
- Infinite Horizon

Conclusions


continuum of agents θ preferences

$$v_0 = u(c_0) - \theta h(n_0) + \beta u(c_1)$$

resource constraint

$$\int c_0(\theta) \, dF(\theta) + \frac{1}{R} \int c_1(\theta) \, dF(\theta) \le \int n_0(\theta) \, dF(\theta)$$
[RC]

Incentives

Incentives

Introduction

- Two Period Model
- EnvironmentIncentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

$\theta \longrightarrow$ private info incentive compatibility: $(c_0(\theta), n_0(\theta), c_1(\theta))$:

$$u(c_0(\theta)) - \theta h(n_0(\theta)) + \beta u(c_1(\theta)) \ge u(c_0(\theta')) - \theta h(n_0(\theta')) + \beta u(c_1(\theta'))$$
[IC]

Incentives

Introduction

Two Period Model

EnvironmentIncentives

- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition

```
Infinite Horizon
```

Conclusions

$\theta \longrightarrow$ private info incentive compatibility: $(c_0(\theta), n_0(\theta), c_1(\theta))$:

$$u(c_0(\theta)) - \theta h(n_0(\theta)) + \beta u(c_1(\theta)) \ge u(c_0(\theta')) - \theta h(n_0(\theta')) + \beta u(c_1(\theta'))$$
[IC]

budget constraints:

$$c_0 + a_0 \le n_0 - T^n(n_0)$$

 $c_1 \le Ra_0 - T^a(a_0)$ [BC]

Incentives

Introduction

Two Period Model

EnvironmentIncentives

- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition

```
Infinite Horizon
```

Conclusions

$\theta \longrightarrow \text{private info}$ incentive compatibility: $(c_0(\theta), n_0(\theta), c_1(\theta))$:

$$u(c_0(\theta)) - \theta h(n_0(\theta)) + \beta u(c_1(\theta)) \ge u(c_0(\theta')) - \theta h(n_0(\theta')) + \beta u(c_1(\theta'))$$
[IC]

budget constraints:

$$c_0 + a_0 \le n_0 - T^n(n_0)$$

 $c_1 \le Ra_0 - T^a(a_0)$ [BC]

Proposition. [Implementation]

[IC] ← [BC]

Introduction

Two Period Model

Environment

Incentives

Politics

Commitment

Policy Game

No Commitment

✤ Main Result

Intuition

Infinite Horizon

Conclusions

Probabilistic voting

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

Probabilistic voting

- two candidates: A vs. B
- **>** propose policies $\rightarrow v_0^i(\theta)$ for i = A, B

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

Probabilistic voting

- two candidates: A vs. B
- **>** propose policies $\rightarrow v_0^i(\theta)$ for i = A, B
- agents vote, comparing

 $v_0^A(\theta) + \varepsilon^A \quad \text{VS.} \quad v_0^B(\theta) + \varepsilon^B$

Introduction

Two Period Model

Environment

Incentives

Politics

- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

Probabilistic voting

- two candidates: A vs. B
- **>** propose policies $\rightarrow v_0^i(\theta)$ for i = A, B
- agents vote, comparing

$$v_0^A(\theta) + \varepsilon^A$$
 vs. $v_0^B(\theta) + \varepsilon^B$

 $\varepsilon^A - \varepsilon^B$: uniform and i.i.d.
 result --> maximize

$$\int v_0(\theta) \, dF(\theta)$$

Introduction

Two Period Model

Environment

Incentives

Politics

- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

Probabilistic voting

- two candidates: A vs. B
- **>** propose policies $\rightarrow v_0^i(\theta)$ for i = A, B
- agents vote, comparing

$$v_0^A(\theta) + \varepsilon^A$$
 vs. $v_0^B(\theta) + \varepsilon^B$

 $\varepsilon^A - \varepsilon^B$: uniform and i.i.d.
 result - maximize

$$\int v_0(\theta) \, dF(\theta)$$

crucial: values equality in consumption

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

Commitment benchmark

 $\max \int v_0(\theta) \, dF(\theta) \quad \text{s.t.} \quad \text{IC and RC}$

Introduction

- Two Period Model
- Environment
- Incentives
- Politics

Commitment

- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon

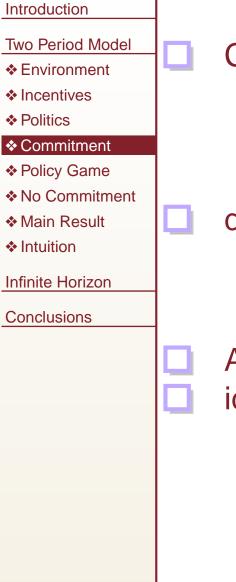
Conclusions

Commitment benchmark

$$\max \int v_0(\theta) \, dF(\theta) \quad \text{s.t.} \quad \text{IC and RC}$$

define marginal tax

```
u'(c_0(\theta)) = \beta R(1 - \tau(\theta))u'(c_1(\theta))
```



Commitment benchmark

```
\max \int v_0(\theta) \, dF(\theta) \quad \text{s.t.} \quad \text{IC and RC}
```

define marginal tax

```
u'(c_0(\theta)) = \beta R(1 - \tau(\theta))u'(c_1(\theta))
```

```
Atkinson-Stiglitz \rightarrow \tau^k(\theta) = 0
```


Commitment benchmark

```
\max \int v_0(\theta) \, dF(\theta) \quad \text{s.t.} \quad \text{IC and RC}
```

define marginal tax

```
u'(c_0(\theta)) = \beta R(1 - \tau(\theta))u'(c_1(\theta))
```

Atkinson-Stiglitz $\rightarrow \tau^k(\theta) = 0$ idea: separability

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

voting in each period

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

voting in each period

▶ t = 0: choose tax system to max $\int v_0(\theta) dF(\theta)$

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

voting in each period

- ▶ t = 0: choose tax system to max $\int v_0(\theta) dF(\theta)$
- ▶ t = 1: choose reform or not to max $\int v_1(\theta) dF(\theta)$

Introduction

- Two Period Model
- EnvironmentIncentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

voting in each period

- ▶ t = 0: choose tax system to max $\int v_0(\theta) dF(\theta)$ ▶ t = 1: choose reform or not to max $\int v_1(\theta) dF(\theta)$
- reform...
- \triangleright cost: ρ lost output

Introduction

- Two Period Model
- EnvironmentIncentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

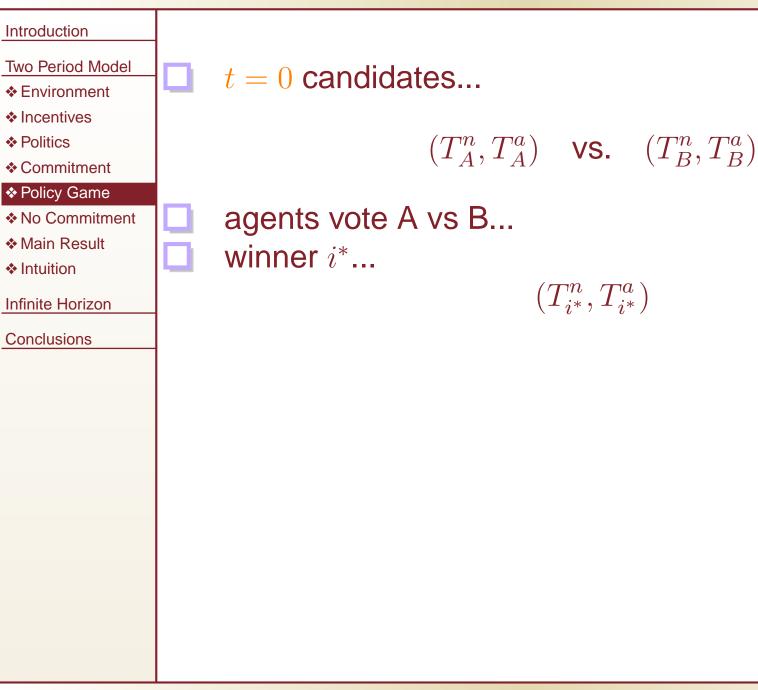
voting in each period

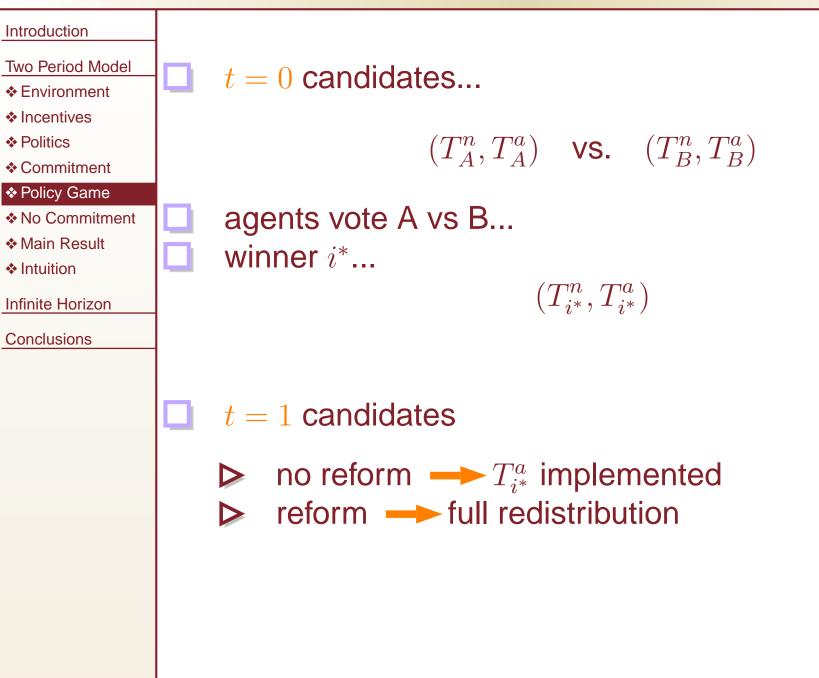
► t = 0: choose tax system to max $\int v_0(\theta) dF(\theta)$ ► t = 1: choose reform or not to max $\int v_1(\theta) dF(\theta)$

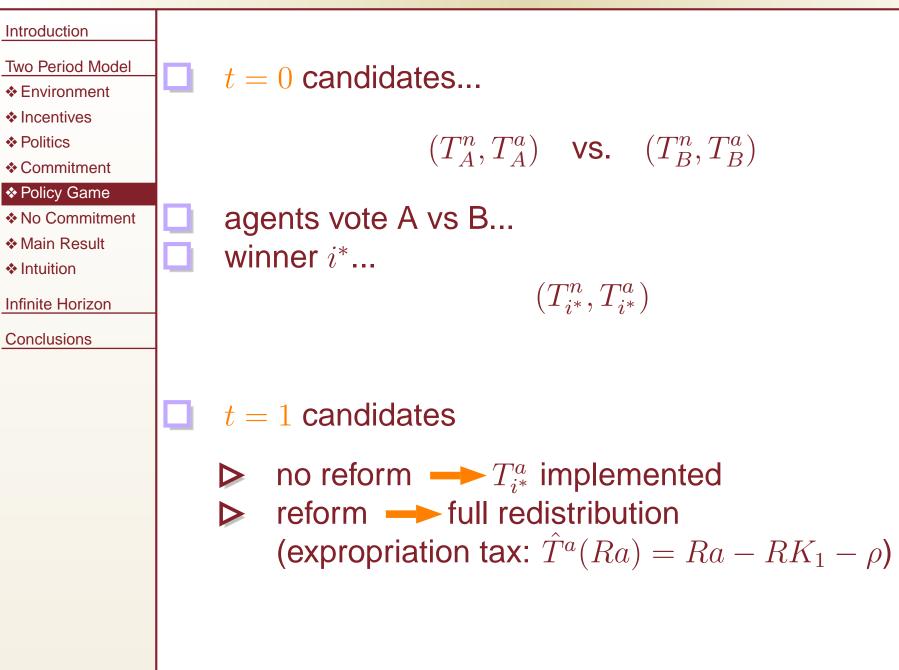
reform...

- \triangleright cost: ρ lost output
- benefit: equalize consumption $c_1(\theta) = Rk_1 \rho$

compare...


$$\int u(c_1(\theta)) \, dF(\theta) \quad \text{VS.} \quad u(Rk_1 - \rho)$$


Introduction


- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

t = 0 candidates...

 (T_A^n, T_A^a) VS. (T_B^n, T_B^a)

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game

No Commitment

- ✤ Main Result
- Intuition
- Infinite Horizon
- Conclusions

solving backwards...

Introduction

Two Period Model

- EnvironmentIncentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

solving backwards... t = 1: no reform if and only if

$$u(c_1(\theta)) dF(\theta) \ge u(Rk_1 - \rho)$$

strategy maps: T_0^a and $a(\theta) \longrightarrow$ reform or not

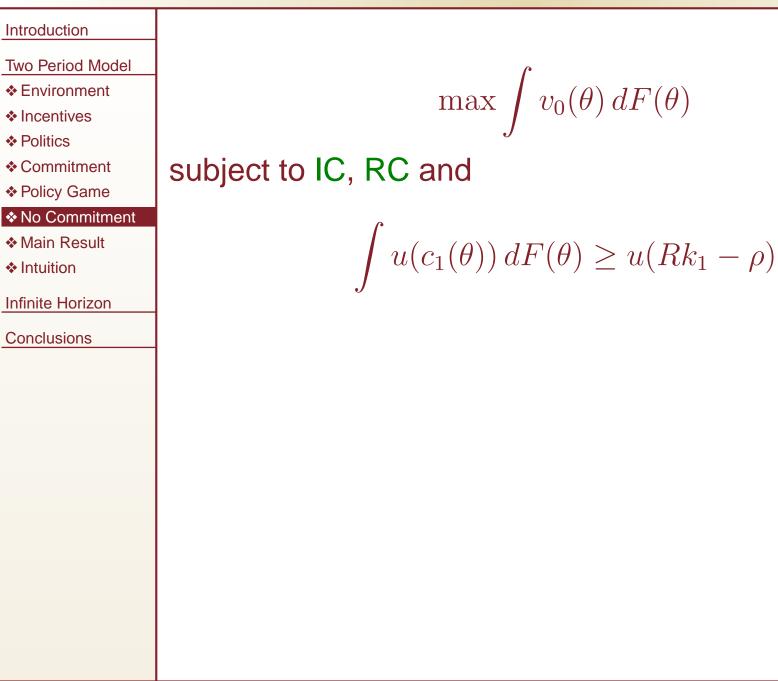
t = 0: candidates always avoid reform... ... otherwise output ρ lost!

Introduction

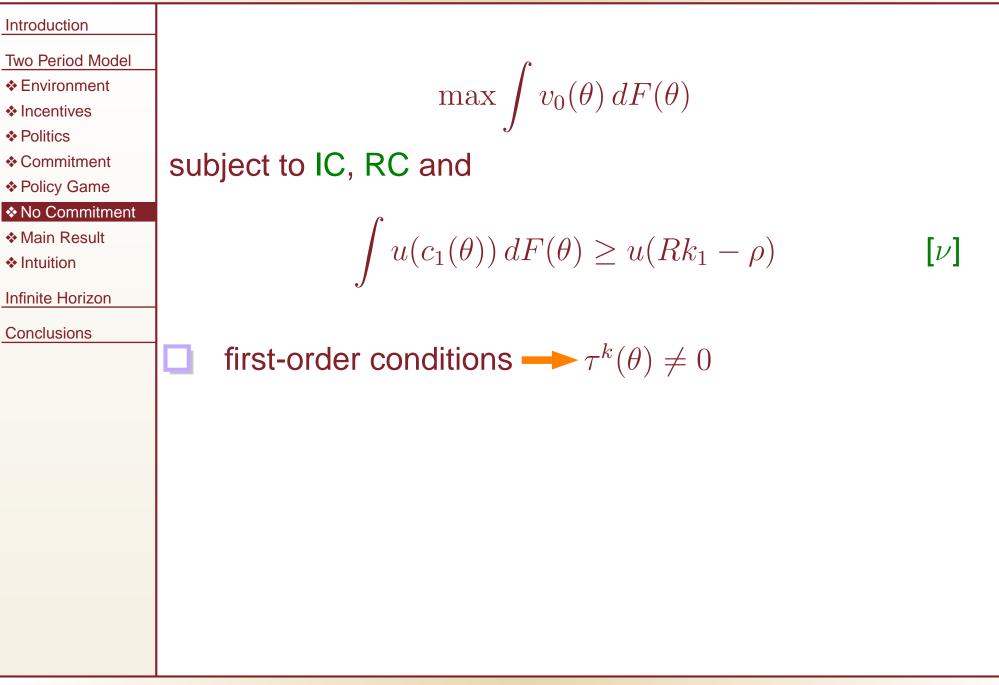
Two Period Model

- EnvironmentIncentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition

```
Infinite Horizon
```


Conclusions

solving backwards... t = 1: no reform if and only if


$$u(c_1(\theta)) dF(\theta) \ge u(Rk_1 - \rho)$$

strategy maps: T_0^a and $a(\theta) \longrightarrow$ reform or not

- t = 0: candidates always avoid reform... ... otherwise output ρ lost!
 - constrained optimum problem

 $[\nu]$

Main Result

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment

♦ Main Result

- Intuition
- Infinite Horizon
- Conclusions

Two formulas for capital taxes

progressivity

$$\tau^k(\theta) = \frac{\beta R u'(Rk_1 - \rho) - u'(c_0(\theta))}{\mu_0 \nu^{-1} \beta + \beta R u'(Rk_1 - \rho)}$$

level

$$\tau^{k}(\theta) = \frac{u'(Rk_{1} - \rho) - u'(c_{1}(\theta))}{\mu_{0}\nu^{-1}R^{-1} + u'(Rk_{1} - \rho) - u'(c_{1}(\theta))}$$

Main Result

Introduction

- Two Period Model
- EnvironmentIncentives
- Politics
- * Pointes
- Commitment
- Policy Game
- No Commitment

♦ Main Result

- Intuition
- Infinite Horizon
- Conclusions

Two formulas for capital taxes

progressivity

$$\tau^k(\theta) = \frac{\beta R u'(Rk_1 - \rho) - u'(c_0(\theta))}{\mu_0 \nu^{-1} \beta + \beta R u'(Rk_1 - \rho)}$$

level

$$\tau^{k}(\theta) = \frac{u'(Rk_{1} - \rho) - u'(c_{1}(\theta))}{\mu_{0}\nu^{-1}R^{-1} + u'(Rk_{1} - \rho) - u'(c_{1}(\theta))}$$

Proposition. (i) τ^k progressive (ii) positive at top (iii) negative at bottom

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

no-commitment constraint

 $\int u(c_1(\theta)) \, dF(\theta) \ge u(Rk_1 - \rho)$

distortions

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon

Conclusions

no-commitment constraint

 $\int u(c_1(\theta)) \, dF(\theta) \ge u(Rk_1 - \rho)$

distortions two effects

LHS — progressive subsidy

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ♦ Main Result
- Intuition
- Infinite Horizon
- Conclusions

no-commitment constraint

 $\int u(c_1(\theta)) \, dF(\theta) \ge u(Rk_1 - \rho)$

distortions two effects

LHS --> progressive subsidy
 RHS --> constant tax

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

no-commitment constraint

 $\int u(c_1(\theta)) \, dF(\theta) \ge u(Rk_1 - \rho)$

distortions two effects

LHS --> progressive subsidy
 RHS --> constant tax

ex-ante: progressivity reduces inequality
 helps avoid ex-post reform

Two Period Model

Environment

CommitmentPolicy Game

Main Result

Infinite Horizon

Conclusions

Intuition

No Commitment

Incentives

Politics

no-commitment constraint

 $\int u(c_1(\theta)) \, dF(\theta) \ge u(Rk_1 - \rho)$

distortions two effects

LHS --> progressive subsidy
 RHS --> constant tax

ex-ante: progressivity reduces inequality
 helps avoid ex-post reform

implementation: $T^a(a)$ convex, increasing at the top, decreasing at the bottom

Introduction

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ✤ Main Result
- Intuition
- Infinite Horizon
- Conclusions

mechanism...

asset distribution endogeneous

Introduction

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- ✤ Main Result
- Intuition
- Infinite Horizon
- Conclusions

mechanism...

- asset distribution endogeneous
- policy not ex-ante redistribution

Introduction

Two Period Model

- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

mechanism...

- asset distribution endogeneous
- policy not ex-ante redistribution

Intuition

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

mechanism...

- asset distribution endogeneous
- policy not ex-ante redistribution
- ...shift inequality across time

 \triangleright

Intuition

Introduction

- Two Period Model
- Environment
- Incentives
- Politics
- Commitment
- Policy Game
- No Commitment
- Main Result
- Intuition
- Infinite Horizon
- Conclusions

mechanism...

- asset distribution endogeneous
- policy not ex-ante redistribution
- ...shift inequality across time

 \triangleright

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result
- Worst
- Non i.i.d. shocks

Conclusions

Infinite Horizon

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result
- Worst
- ✤ Non i.i.d. shocks

Conclusions

infinite horizon \rightarrow dynamic game no cost of reform ($\rho = 0$) consumption and work each period

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- Main Result
- Worst
- ♦ Non i.i.d. shocks
- Conclusions

infinite horizon \rightarrow dynamic game no cost of reform ($\rho = 0$) consumption and work each period

two differences...

- 1. reputational equilibria \rightarrow "endogenize ρ "
- 2. commitment case *—* immiseration

Introduction

Two Period Model

Infinite Horizon

Setup

- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result
- Worst
- Non i.i.d. shocks

```
Conclusions
```

preferences

$$v_t = \mathbb{E}_{t-1} [u(c_t) - \theta_t h(n_t) + \beta v_{t+1}],$$
$$= \sum_{s=0}^{\infty} \beta^s \mathbb{E}_{t-1} [u(c_{t+s}) - \theta_{t+s} h(n_{t+s})]$$

 $\{\theta_t\}$ i.i.d., private information

Introduction

Two Period Model

Infinite Horizon

♦ Setup

- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result
- Worst
- ✤ Non i.i.d. shocks

```
Conclusions
```

preferences

$$v_t = \mathbb{E}_{t-1} [u(c_t) - \theta_t h(n_t) + \beta v_{t+1}],$$
$$= \sum_{s=0}^{\infty} \beta^s \mathbb{E}_{t-1} [u(c_{t+s}) - \theta_{t+s} h(n_{t+s})]$$

 $\{\theta_t\}$ i.i.d., private information

Revelation principle on equilibrium path (Albanesi-Sleet, 2007; Acemoglu-Golosov-Tsyvinski, 2007)

Incentives

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- ✤ Main Result
- ✤ Worst
- ✤ Non i.i.d. shocks

Conclusions

Utility from strategy σ ...

 $U(\lbrace c_t, n_t \rbrace, \sigma) \equiv \sum_{t, \theta^t} \beta^t [u(c_t(\sigma^t(\theta^t))) - \theta_t h(n_t(\sigma^t(\theta^t)))] \operatorname{Pr}(\theta^t)$

incentive compatibility

$$U(\{c_t, n_t\}, \sigma^*) \ge U(\{c_t, n_t\}, \sigma) \qquad [IC]$$

for all σ

Technology

Introduction

Two Period Model

Infinite Horizon

♦ Setup

- Policy Game
- Planning Problem
- FOCs
- ✤ Main Result
- Worst
- ✤ Non i.i.d. shocks

Conclusions

v = initial utility entitlement $\psi =$ distribution of vresource constraint...

$$C_t + K_{t+1} \le F(K_t, N_t)$$
 $t = 0, 1, \dots$ [RC]

$$N_t \equiv \int \sum_{\theta^t} n_t^v(\theta^t) \operatorname{Pr}(\theta^t) d\psi(v)$$
$$C_t \equiv \int \sum_{\theta^t} c_t^v(\theta^t) \operatorname{Pr}(\theta^t) d\psi(v)$$

Feasible allocation. $(\{c_t^v, n_t^v\}, K_t)$:

IC, RC and $v = U(\{c_t^v, n_t^v\}, \sigma^*)$

Policy Game

Introduction

Two Period Model

Infinite Horizon

- ✤ Policy Game
- Planning Problem
- ✤ FOCs

Setup

- ✤ Main Result
- Worst
- ✤ Non i.i.d. shocks

Conclusions

- H^t = public history entering period t
- ▶ past reports $\sigma^{t-1,v}(\theta^{t-1})$ ▶ past allocations $(\{c_s^v, n_s^v\}_{s \le t-1}, \{K_s\}_{s \le t})$

Policy Game

Introduction

Two Period Model

Infinite Horizon

- ✤ Policy Game
- Planning Problem
- FOCs

Setup

- Main Result
- ✤ Worst
- ✤ Non i.i.d. shocks

Conclusions

- H^t = public history entering period t
- ▶ past reports $\sigma^{t-1,v}(\theta^{t-1})$ ▶ past allocations $\left(\{c_s^v, n_s^v\}_{s \le t-1}, \{K_s\}_{s \le t} \right)$

Timing within period...

- 1. agents: report $\sigma_t^v(\theta^t)$ and work $n_t^v(\sigma_t^v(\theta^t))$
- 2. candidates: platforms $(\{c_t^v\}, K_{t+1})$ s.t. RC
- 3. voting: winning platform implemented
- 4. move to next period $\rightarrow H_{t+1}$

Credibility

Introduction	
Two Period Model	🔲 trigo
Infinite Horizon	
♦ Setup	
Policy Game	
Planning Problem	
✤ FOCs	
Main Result	
♦ Worst	
Non i.i.d. shocks	
Conclusions	

trigger strategy: deviation ----- worst

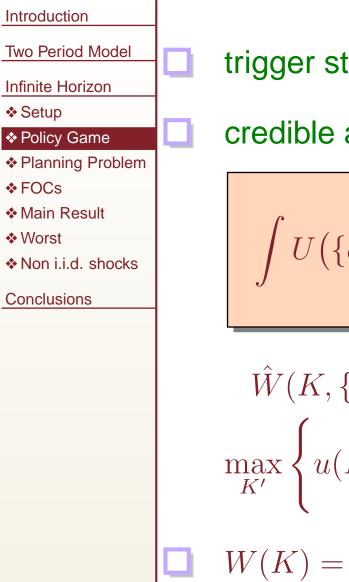
Credibility

Two Period Model

Infinite Horizon

SetupPolicy Game

- Planning Problem
- **♦**FOCs
- ✤ Main Result
- Worst
- Non i.i.d. shocks


Conclusions

trigger strategy: deviation ----- worst

credible allocations: feasibile and...

 $\int U(\{c_{t+s}^v, n_{t+s}^v\}_{s\geq 0}, \sigma^*)d\psi(v) \geq \hat{W}(K_t, \{n_t^v(\theta^t)\})$

Credibility

trigger strategy: deviation ----- worst

credible allocations: feasibile and...

$$\int U(\{c_{t+s}^{v}, n_{t+s}^{v}\}_{s\geq 0}, \sigma^{*})d\psi(v) \geq \hat{W}(K_{t}, \{n_{t}^{v}(\theta^{t})\})$$

$$\hat{W}(K, \{n_{\theta}\}) \equiv \max_{K'} \left\{ u(F(K, N) - K') - \sum_{\theta} \int \theta h(n_{\theta}) \Pr(\theta) + \beta W(K') \right\}$$

W(K) =worst equilibrium payoff

Planning Problem

Introduction

Two Period Model

Infinite Horizon

Setup

Policy Game

Planning Problem

FOCs

♦ Main Result

Worst

Non i.i.d. shocks

Conclusions

best equilibrium \triangleleft Dual planning problem:

min K_0 s.t. $(\{c_t^v, n_t^v\}; \{K_t\})$ credible

FOCs

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem

FOCs

- ✤ Main Result
- ✤ Worst
- ♦ Non i.i.d. shocks

Conclusions

$$\frac{\mu_{t+1}}{\mu_t} \beta F_K(K_{t+1}, N_{t+1}) - \frac{\nu_{t+1}}{\mu_t} \beta \hat{W}_K(K_{t+1}, \{n_{t+1}^v\}) = 1$$
$$\frac{1}{u'(c^v(\theta^t))} - \frac{\nu_{t+1}}{\mu_{t+1} - \mu_t} = \frac{\mu_{t+1}}{\mu_t} \left(\mathbb{E}_t \Big[\frac{1}{u'(c^v(\theta^{t+1}))} \Big] - \frac{\nu_{t+1}}{\mu_{t+1} - \mu_t} \right)$$

Main Result

Introduction

Two Period Model

Infinite Horizon

Setup

Policy Game

Planning Problem

FOCs

Main Result

✤ Worst

✤Non i.i.d. shocks

Conclusions

average capital tax:

$$1 - \bar{\tau}_t(v_t) \equiv \sum_{\theta} \left(1 - \tau(v_t, \theta) \right) p(\theta)$$

average capital tax is progressive:

$$\bar{\tau}_{t+1}(v_{t+1}) = \frac{\beta \hat{W}_K(K_{t+1}, \{n_{t+1}^v\}) - u'(c^v(\theta^t))}{\beta R_{t+1}} \frac{\nu_{t+1}}{\mu_{t+1}}$$

or

$$\bar{\tau}_{t+1}(v_{t+1}) = \frac{\beta \hat{W}_K(K_{t+1}, \{n_{t+1}^v\}) - \beta R_{t+1} (\mathbb{E}_t \left[u'^{-1} (c^v(\theta^{t+1})) \right])}{\beta R_{t+1} \frac{\mu_{t+1}}{\nu_{t+1}} - \beta R_{t+1} (\mathbb{E}_t \left[u'^{-1} (c^v(\theta^{t+1})) \right])}$$

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result

✤ Worst

- Non i.i.d. shocks
- Conclusions

what is the worst?

Introduction

Two Period Model

Infinite Horizon

Setup

- Policy Game
- Planning Problem
- FOCs
- ♦ Main Result

✤ Worst

Non i.i.d. shocks

Conclusions

what is the worst?

 $W(K) = \min_{n \in [0,\bar{n}]} \max_{K'} \left\{ u(F(K,n) - K') - h(n) + \beta W(K') \right\}$

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs

♦ Main Result

- ♦ Worst
- ✤ Non i.i.d. shocks

Conclusions

what is the worst?

 $W(K) = \min_{n \in [0,\bar{n}]} \max_{K'} \left\{ u(F(K,n) - K') - h(n) + \beta W(K') \right\}$

two implications...

- 1. W(K) is nondecreasing and concave
- 2. $\hat{W}(K, \{n_{\theta}\})$ is increasing, concave, and differentiable.

back to sign...

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs

♦ Main Result

- ♦ Worst
- ✤ Non i.i.d. shocks

Conclusions

what is the worst?

 $W(K) = \min_{n \in [0,\bar{n}]} \max_{K'} \left\{ u(F(K,n) - K') - h(n) + \beta W(K') \right\}$

two implications...

- 1. W(K) is nondecreasing and concave
- 2. $\hat{W}(K, \{n_{\theta}\})$ is increasing, concave, and differentiable.

back to sign...

$$\bar{\tau}_{t+1}(v_{t+1}) = \frac{\beta \hat{W}_K(K_{t+1}, \{n_{t+1}^v\}) - \beta R_{t+1} (\mathbb{E}_t \left[u'^{-1} (c^v(\theta^{t+1})) \right])}{\beta R_{t+1} \frac{\mu_{t+1}}{\nu_{t+1}} - \beta R_{t+1} (\mathbb{E}_t \left[u'^{-1} (c^v(\theta^{t+1})) \right])^{-1}}$$

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs

♦ Main Result

- ♦ Worst
- ✤ Non i.i.d. shocks

Conclusions

what is the worst?

 $W(K) = \min_{n \in [0,\bar{n}]} \max_{K'} \left\{ u(F(K,n) - K') - h(n) + \beta W(K') \right\}$

two implications...

- 1. W(K) is nondecreasing and concave
- 2. $\hat{W}(K, \{n_{\theta}\})$ is increasing, concave, and differentiable.

back to sign...

$$\bar{\tau}_{t+1}(v_{t+1}) = \beta R_{t+1} \frac{u'(\hat{C}_{t+1}) - \left(\mathbb{E}_t \left[u'^{-1} \left(c^v(\theta^{t+1})\right)\right]\right)^{-1}}{\beta R_{t+1} \frac{\mu_{t+1}}{\nu_{t+1}} - \beta R_{t+1} \left(\mathbb{E}_t \left[u'^{-1} \left(c^v(\theta^{t+1})\right)\right]\right)}$$

Non i.i.d. shocks

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- Main Result
- Worst
- Non i.i.d. shocks
- Conclusions

potential rachet effects...

... revelation principle doesn't hold

Non i.i.d. shocks

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- ✤ Main Result
- Worst
- Non i.i.d. shocks
- Conclusions

potential rachet effects...

- ... revelation principle doesn't hold
- 1. general mechanisms $\rightarrow m^t$

Non i.i.d. shocks

Introduction

Two Period Model

Infinite Horizon

- Setup
- Policy Game
- Planning Problem
- FOCs
- Main Result
- Worst
- Non i.i.d. shocks
- Conclusions

potential rachet effects...

- ... revelation principle doesn't hold
- 1. general mechanisms $\rightarrow m^t$
- 2. assume
 - ▶ there exists w > 0 s.t. $min_{N \ge 0} F_N(K, N) > w$
 - $\begin{array}{ll} \blacktriangleright & K \in \left[0, \bar{K}\right] \text{ and } n \in \left[0, \bar{n}\right] \text{ where } \bar{K}, \bar{N} < \infty \\ \hline & u'(F(\bar{K}, \bar{n})) > (\bar{\theta}h(\bar{n}) h(0))/w \end{array}$

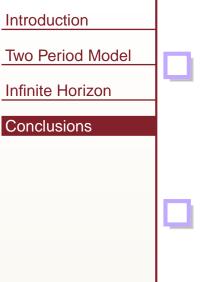
revelation principle on equilibrium path

Two Period Model

Infinite Horizon

Conclusions

Main Result: Political economyredistribution + no commitment



Two Period Model

Infinite Horizon

Conclusions

Main Result: Political economy
 redistribution + no commitment
 progressive capital tax

Main Result: Political economy
redistribution + no commitment
progressive capital tax

key idea: progressivity helps credibility

