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Abstract

An agent with a misperception may have an evolutionary advantage when his
misperception and its behavioral implications are recognized by others. In such
situations evolutionary forces can lead to misperceptions, yielding “irrational be-
havior,” such as the play of strictly dominated strategies. We point out that
this reasoning relies on the assumption of subjective rationality–agents are as-
sumed to choose the behavior that maximizes their perceived payoffs. However,
subjective rationality does not have solid evolutionary foundations: in the pres-
ence of misperceptions, agents who do not maximize their perceived payoffs may
have greater fitness than those who do. We show that relaxing the subjective
rationality requirement, somewhat paradoxically, leads to effectively rational be-
havior: although agents may have systematic misperceptions, they will develop
other biases to undo these misperceptions, and will act as if they are rational. As
a result, systematic biases in experimental settings may not necessarily translate
into irrational behavior. We also demonstrate that the same evolutionary forces
lead agents to play as if they have a common prior, even though each agent will
have different and possibly incorrect perceptions of payoffs and the rules of the
game.
Keywords: Common prior, evolution, neutral stability, misperceptions, per-

ceptions, rationality.
JEL Classification: B40, C72, D84.
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1 Introduction

Much of economics is built on the notion that agents will take actions that maximize

their payoff or fitness. Alchian (1950), Friedman (1953), and Becker (1962) have all

emphasized how “evolutionary” competition is likely to eliminate agents who deviate

substantially from maximization. The evolutionary game theory literature formalizes

these insights. Under replicator dynamics, evolutionary forces will typically eliminate

all dominated strategies, and any rest point of an evolutionary process will correspond to

a Nash equilibrium of an underlying game (see, e.g., the recent textbooks on evolutionary

game theory, Weibull, 1997, or Samuelson, 1997).1

The psychology literature and recent research in behavioral economics, instead, em-

phasize a variety of biases and misperceptions (e.g., overconfidence, wishful thinking,

law of small numbers). Although some of these “nonrational” types of behavior may

result from cognitive limitations, many scholars argue that nonrational behavior can

arise because it confers no payoff disadvantage and may even have payoff benefits. First,

there is an informal folk theorem that given the complexity of the economic situations

that agents are involved in and the speed with which evolution works, there will not be

strong enough evolutionary forces to wipe out nonrational behavior (See Mullainathan

and Thaler, 2000, for a very useful discussion and justification for this view. See also

DeLong et al. 1990, Blume and Easley, 1992, for models where nonrational behav-

ior generates higher “payoff” than rational behavior). Second, many economists have

argued that certain types of behavior that appear “irrational” may be useful commit-

ment devices. Robert Frank (1988), for example, points out how the irrational tendency

to seek revenge may be useful by acting as a commitment to punish those who break

their promises. Robson (1990), Banerjee and Weibull (1993), Dekel, Ely and Yilankaya

(1998), and Kockesen et al (1999) similarly show how, when agents’ preferences (types)

are observable, evolution may select preferences or types that act “irrationally” to gain

commitment advantage.

The argument that irrational behavior may be a useful commitment device requires

agents’ preferences to be (to some degree) observable. In fact, a number of contribu-

tions, including Dekel, Ely and Yilankaya (1998), Ely and Yilankaya (1999) and Ok
1Other (non-monotonic) evolutionary dynamics may lead to strategies that are not Nash equilibria

(and are even dominated) in the underlying game. See Bendor et. al. (2001) and Stenneck (2000).
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and Vega-Rodondo (2000) show that when preferences are not observed at all, evolution

takes us back to Nash equilibria. All of these papers, irrespective of whether they allow

preferences to be observed or unobserved, rely on a strong notion of subjective ratio-

nality: agents are assumed to always maximize their perceived utility or payoff. Other

contributions in game theory also start from different perceptions and use a notion of

subjective rationality to derive tight predictions (e.g., Harrison and Kreps, 1978, Morris,

1996, Van den Steen, 2001, Yildiz, 2000).

In this paper, we argue that subjective rationality does not have strong evolutionary

foundations (see also Blume and Easley, 1992). Subjectively irrational agents–who sys-

tematically choose strategies that do not maximize their perceived payoffs–may obtain

higher payoffs than subjectively rational agents. Somewhat paradoxically, once we allow

mutations (deviations) that relax subjective rationality, there are strong forces pushing

agents towards effectively rational behavior (with limited information).2 Our main re-

sults can be summarized as: allowing subjective irrationality leads to effectively rational

behavior (with limited information) in any neutrally stable outcome of evolution.3

Nevertheless, we find that there is no immediate link between rational behavior and

accurate perceptions. Evolution will select agents who will act “effectively rationally”,

but these agents will have very different perceptions, and sometimes will make systematic

mistakes (yet their mistakes will cancel each other). In this sense, our analysis provides a

microfoundation for the common premise that agents will typically behave as if they are

rational (e.g., Friedman, 1953). This reasoning suggests that systematic misperceptions

in experimental settings or in situations with little relevance to long-run fitness do not

necessarily translate into widespread “irrational” behavior.

We also show that in any neutrally stable outcome of evolution, agents may have

different perceptions, but the play will always correspond to a Nash equilibrium outcome
2We call an agent as effectively rational with limited information iff he maximizes his expected fitness

with respect to his information. Such an agent may lack some information, but will never have any
bias nor play dominated strategies given his information set. (A stronger notion of rationality will
correspond to effectively rational with full information.) We refer to this type of behavior as “effectively
rational” since agents, despite their misperceptions, act as if they are rational. Alternatively, this
type of behavior could be referred to as “objectively rational” to contrast it with subjectively rational
behavior. To minimize terminology, we stick to the term “effectively rational”.

3Neutral stability is a weaker form of evolutionary stability, where stable strategies do not need to
perform strictly better than all mutations in pot-entry population.
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of a game where players have a common prior.4 This result is of interest since there is

disagreement about the plausibility of the common prior assumption in game theory (see

for example, Gul, 1998, and Aumann, 1998). Since the common-prior assumption is a

crucial epistemological foundation for equilibrium behavior in most games, the criticisms

regarding the common prior assumption have important implications for all equilibrium

analysis (see Aumann, 1987, and Aumann and Brandenburger, 1995, for the importance

of the common prior assumption, and Dekel and Gul, 1997, for the related criticism of

equilibrium analysis). Our results suggest that equilibrium analysis with the common-

prior assumption may have good evolutionary foundations–even when players’ expressed

beliefs are incompatible with each other.

It is important to note that the neutrally stable behavior will be effectively rational

only with limited information; some misperceptions may remain in the form of “igno-

rance”, so agents will not necessarily play a Nash equilibrium outcome of the underlying

full-information game. When perceptions are observable, agents may develop misper-

ceptions in order to suppress information that would otherwise reduce the payoff to all

parties.5

The rest of the paper is organized as follows. In the next section, we give a number

of examples that illustrate our results, and also discuss related literature in more detail.

Section 3 analyzes evolution in a single-agent decision problem (without strategic inter-

actions) more formally. Section 4 analyzes a multi-agent/game-theoretic situation and

contains the main results of the paper. Since our main point is that effectively rational

behavior emerges once we allow agents to be subjectively irrational, in this section, we

allow perceptions to be observed, creating the most favorable environment for deviations

from rational behavior (see, e.g., Dekel, Ely, and Yilankaya, 1998). Section 5 analyzes

evolution when perceptions are not observed. Section 6 concludes.
4But they may not be able to distinguish some underlying games from each other. This common

prior will simply correspond to the frequencies with which these underlying games are played.
5This result is obtained because perceptions are more than “cheap talk”: they also determine how

individuals process the world. A player who perceives two different situations in exactly the same way
has to play the same strategy in both situations. We show below that when perceptions are simply
“cheap talk” systematic misperceptions that affect behavior cannot arise.
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2 Examples, Outline and Related Literature

2.1 Examples and Outline

Consider the following 2x2 game and interpret the payoffs as fitness levels, so that

evolutionary dynamics will favor strategies that have higher payoffs:

Example of underlying game
(Game 1):

1\2 L R
l 0,0 2,2
r 1,1 3,0

This game is dominance solvable and hence has a unique Nash equilibrium in which

player 1 chooses r and player 2 plays L. Now imagine a meta-game in which players have

different perceptions of their payoffs–they may see the payoff matrix differently– and

an evolutionary process determining the frequency of different perceptions. The fitness

of different perceptions in this evolutionary meta-game are still given by the payoffs in

the underlying game. Moreover, let us make two important assumptions:

1. observability: agents’ perceptions are observable to others in the game (for ex-

ample, the perception of the payoff matrix that one holds is engraved on their

forehead).6

2. subjective rationality: players continue choose whichever action maximizes their

perceived payoffs.

Then, consider a type for player 1 who perceives this game instead as

Misperceived game
(Game 2):

1\2 L R
l 2,0 4,2
r 1,1 3,0

This type mistakenly perceives that l is a dominant strategy, and given subjective

rationality, will choose l over r. This will encourage his opponent to play R, and so

a player with this type of misperception will receive the “true payoff” of 2. This mis-

perception benefits player 1 because it enables him to commit to playing his dominated

strategy in the underlying game, thus enticing player 2 to change his play. Without the
6See Frank (1988) for a defense of the view that perceptions and preferences are, at least to some

degree, observable to others.
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misperception, player 1 could not have committed to playing his dominated strategy,

and player 2 would have preferred to respond by L.

To see the forces shaping the evolution of perceptions, we simply apply standard

evolutionary reasoning to a meta-game where we allow player 1 to either have the correct

perception of Game 1 or misperceive it as Game 2 (in other words, we allow mutations

over accurate and inaccurate perceptions). For simplicity, we allow no misperceptions

for player 2. To highlight the choices facing player 2, we also write out the four strategies

for player 2, even though there is no evolutionary selection over these actions (instead,

player 2 chooses his action optimally after observing the perceptions of player 1). Since

players are subjectively rational given their perceptions, the payoffs in this meta-game

are

Meta-game
of the evolution of perceptions:

1\2 LL LR RL RR
accurate perception 1,1 1,1 3,0 3,0
misperception 0,0 2,2 0,0 2,2

Strategy LL for player 2 corresponds to choosing L when player 1 is observed to have

accurate perceptions and also when he is observed to have misperceptions. Strategy

LR corresponds to choosing L when player 1 has accurate perceptions, but R when he

has misperceptions. The payoffs then follow immediately from Game 1, incorporating

the fact that when he has accurate perceptions, player 1 will choose r, and when he

misperceives the payoffs, he will choose l.

The best play for player 1 is clearly to develop a misperception, inducing him to play a

dominated strategy, l, in the underlying game. The best response of player 2 is to choose

LR. This generates the payoff (2,2), which is obviously not a Nash equilibrium outcome

of the underlying game (and it contains the play of a dominated strategy along the

equilibrium path). Replicator or similar monotonic dynamics will therefore encourage

the development of misperceptions.

Intuitively, when player 2 sees an opponent with accurate perceptions, he will choose

L, anticipating that his opponent will choose r, giving both players (1,1). In contrast,

when faced with a player with a misperception, he will correctly reason that his oppo-

nent will play l, and he will choose R, leading to (2,2). This example therefore suggests

that evolutionary pressures, far from wiping out misperceptions, may favor apparently

“nonrational” behavior. Specifically, two types of nonrational behavior arise as an out-

come of the evolution of perceptions in this case: first, agents may have systematic
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misperceptions; second, these misperceptions lead to the play of strictly dominated (and

hence non-equilibrium) strategies in the underlying game.

The role of the observability assumption above is clear: if the misperception of player

1 were not observed, it could not act as a commitment device. Specifically, a mutant

(deviation) without misperception would choose r and receive the higher payoff of 3 at

the expense of player 2.

The subjective rationality assumption is equally important: it guarantees that the

misperception of player 1 will translate into a specific action, encouraging player 2 to

change his behavior.7 Is subjective rationality reasonable in an evolutionary setting?

Consider the choice between two options, A and B, where A has much higher payoff (in

the extreme case, agents who choose B die). But, suppose that all agents have developed

a misperception and think that B is preferable to A. Now imagine selection over two

different types, one that is subjectively rational and the other subjectively irrational

(in the sense that he will not necessarily play the actions that maximize his perceived

payoffs–in fact, here we take the subjectively irrational type to play the action that

minimizes his payoff). The subjectively rational type will choose B since he perceives

it to be preferable to A, while the subjectively irrational type will choose A despite the

fact that he perceives B to yield a higher payoff. Evolution will favor the subjectively

irrational type, choosing A. In fact, a subjectively irrational type with this misperception

will do as well as a subjectively rational agent with accurate perceptions, who perceives

A to yield higher payoff and chooses it. This simple example demonstrates that, in the

presence of misperceptions, there are no compelling reasons to expect evolution to favor

subjectively rational agents.

Let us now return to the analysis of Game 1 and allow players not only to misper-

ceive payoffs, but also to deviate from subjective rationality (for example, mutations

that change how a given perception or plan is mapped into behavior). Our major result

(Proposition 5) states that in this case where we allow subjective irrationality, evolution-

ary forces will take us towards “effectively rational play”–i.e., towards behavior that is
7To many economists and game theorists, subjective rationality is natural, almost tautological:

preferences, through the axiom of revealed preferences, simply represent choices. But in an evolutionary
model where preferences (perceptions) can be observable at the beginning of the game, this revealed-
preference notion does not apply, since we cannot possibly observe the representation of the choice
before the choice has been made.
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indistinguishable from that resulting from rational play and does not feature dominated

strategies given the information set.

To better understand this result, let us now return to the above meta-game and allow

4 different “strategies” for player 1: accurate perception and subjective rationality; mis-

perception and subjective rationality; accurate perception and subjective irrationality;

and misperception and subjective irrationality. Here by misperception we mean that

player 1 perceives Game 2 when the true game is Game 1, while by subjective irrational-

ity we simply mean player 1 playing the dominated strategy in the perceived game. We

allow no misperceptions for player 2.

Meta-game of the evolution
of perceptions and play:

1/2 LL LR RL RR
accurate perception and subjective rationality 1,1 1,1 3,0 3,0
misperception and subjective rationality 0,0 2,2 0,0 2,2
accurate perception and subjective irrationality 0,0 0,0 2,2 2,2
misperception and subjective irrationality 1,1 3,0 1,1 3,0

Again the first letter for player 2 denotes his action when he observes player 1 with

accurate perception, and the second letter gives his action following a misperception by

player. For example, if player 1 has misperceptions and is subjectively rational (row 2),

he will play l, so when player 2 chooses L, the outcome is (0,0) and when he chooses

R, the outcome is (2,2). In contrast, if player 1 has a misperception and is subjectively

irrational (row 4), he perceives l to give higher payoff, but still plays r. Now if player 2

chooses L, the outcome is (1,1), and if he chooses R, the outcome is (3,0).

In this meta-game, the outcome (2,2) is no longer (evolutionarily or neutrally) stable.

To see this, first consider the case that player 1 misperceives the payoffs and is subjec-

tively rational and player 2 plays LR (or RR), leading to (2,2). Imagine a mutation

of player 1 that leads to subjective irrationality, while still keeping the misperception.

Recall that whether player 1 has accurate perceptions is seen by player 2, but whether

he is subjectively rational or not is not observed. Therefore, with both LR and RR,

player 2 will continue to play R, but the mutant player 1 will respond with r and obtain

the higher true payoff 3, taking the system away from (2,2). Similarly, the incumbent

population in which player 1 has accurate perceptions but behaviorally irrational and

player 2 plays RL (or RR) is invaded by the behaviorally rational mutants with ac-

curate perceptions. It is therefore straightforward to verify that any rest point of our
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evolutionary process will yield the outcome (1,1)–the Nash equilibrium outcome of the

underlying game. This can be achieved as a combination of player 1 developing an ac-

curate perception and subjective rationality and player 2 responding with LL, or player

1 developing a misperception and subjective irrationality and player 2 again responding

with LL.

In essence, when agents are limited to subjective rationality, misperceptions provide

commitment. However, once we allow the evolution of “play” (how perceptions are

mapped into behavior) as well as perceptions, players can undo their misperceptions by

modifying their degree of subjective rationality. This destroys the commitment value

of misperceptions. The crucial difference here is between the observability of misper-

ceptions and the non-observability of play. As is standard in game theory, we do not

(and cannot) allow strategies to depend on the strategies of other players. So while

which action a player chooses can depend on his and his opponents’ perceptions and

past actions, it cannot depend on the exact mapping that his opponents use to translate

these perceptions into actions (e.g., it cannot depend on their actions in the future or

the actions they could have taken in other situations).

The sense in which the resulting behavior is “rational” needs elaboration. Evolution-

ary forces take us back to equilibrium outcomes of the underlying game, but this could

be supported either by accurate perceptions and subjective rationality, or by mispercep-

tions and subjective irrationality. This explains our choice of terminology: “effectively”

rational behavior may be a combination of inaccurate perceptions and subjective irra-

tionality. So, in practice we may observe agents with systematic biases in how they

perceive the world or how they make decisions. But these biases will be undone by other

biases they develop and will not shape their important decisions (their decisions affecting

long-run fitness). The notion of “rational behavior” that emerges is therefore weaker

than the usual definition of rationality as it allows misperceptions.8

Yet agents are also rational in the stronger sense of effectively having a common

prior. Although agents may appear to have systematic misperceptions, viewing the same

situation in different ways, they will behave as if they all share the same beliefs. For

example, suppose a certain behavior, say risk-taking, has a fitness benefit. Some agents
8It is also weaker than the usual definition because it requires behavior to be effectively rational

with limited information–that is, rational given the information set of agents, which may not feature
full information. See below.
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may view this behavior as “too risky”, while others view it as “fun” and well worth the

risk. But at the end, both groups will undertake the activity as if they had the same

beliefs (and preferences). In this sense, our analysis also provides a foundation for the

“common prior” assumption: even though agents may have different perceptions, they

will act as if they have effectively common priors.

Consider an example to illustrate this point further. Suppose that each of two agents

have to take one of three actions, a, b and c, and there are three possible states of the

world, A, B and C. For simplicity, ignore strategic interactions and assume that each

agent’s payoff is only a function of his own action and the state of the world. Each agent

receives a payoff of 1 when the action matches the state of the world, and a payoff of 0

otherwise. Clearly, one possible evolutionary equilibrium involves each agent recognizing

the underlying state of the world correctly, and choosing the action corresponding to

the state of the world he perceives (e.g., a if the state of the world is A). In this

case, both agents will share the same perception. However, under the assumption that

each agent’s perceptions are observable, there are other evolutionary equilibria where

agents will have different (and inaccurate) perceptions, but act as if they have common

perceptions. For example, suppose that both agents perceive A and C accurately, but

agent 1 misperceives B as A, and agent 2 misperceives B as C. In this case, neither

agent has accurate perceptions, and moreover, their perceptions differ. But consider the

following behavior for both agents: play a if agent 2’s perception is A, play b if agent

1’s perception is A and agent 2’s perception is C, and play c if agent 1’s perception

is C. This perception-play combination will give the same evolutionary fitness as the

perception-play combination where each agent recognizes the underlying world correctly

and responds to it. Therefore, in this simple example, it is possible for both players to

have different (and incorrect) perceptions, but act as if they have common priors, and

obtain the maximum payoffs.

Finally, it is useful to give an example where behavior is effective rational only with

limited information; it does not correspond to equilibrium play of the underlying full-

information game. This can happen because of suppression of information by all players.

To illustrate this, consider once again a simple example. Suppose that players 1 and 2

play the following game:
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Suppression of information
(Game 3):

1\2 L R
l 3,3 -1,1
r w,-5 0,0

Here w is a random variable, which takes the value 0 and 5, each with probability

1/2. Both players observe w before making their decisions. It is clear that when w =

5, the unique Nash equilibrium outcome is (0,0), while when w = 0, there is also a

Nash equilibrium with players receiving (3,3). Now imagine both players develop the

misperception that w = 0 all the time. Then, the (true) payoffs of the perceived game

become

1\2 L R
l 3,3 -1,1
r 2.5,-5 0,0

and there is now an equilibrium with (l, L) all the time. So in this game developing

a particular systematic misperception to suppress information will benefit both players

and will not be eliminated by evolutionary forces. Because the agents are still playing

according to the equilibrium of some coarsend version of the underlying game, the out-

come is still effectively rational with this limited information, but does not correspond

to the Nash equilibrium of the underlying full-information game.

The result regarding suppression of information relies on the assumption that there is

a perfect mapping between players’ true perceptions and what others observe about the

players. When perceptions are not observable, there will still be evolutionary forces

leading to effectively rational behavior, but we no longer obtain the suppression of

information as an evolutionarily stable outcome.

2.2 Related Literature

This paper is related to a large body of research on evolutionary game theory. Whether

evolution will lead to Nash equilibrium is a central question of this literature, and it

is well-known that any rest point of a monotonic evolutionary process over types pro-

grammed to play different strategies corresponds to a Nash equilibrium outcome (see

Weibull, 1997, or Samuelson, 1997, for surveys).

To the best of our knowledge, however, there has been little work on meta-games

where evolution occurs over perceptions and the mapping of perceptions into actions.
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The notable exceptions are Blume and Easley (1992) and Sandroni (2000) who analyze

the benefits of developing accurate perceptions in non-game-theoretic situations,9 and

Dekel, Ely and Yilankaya (1998), who study the evolution of preferences under the

(implicit) assumption of subjective rationality. Dekel et. al. (1998) show that, when

agents’ preferences are observable, any “stable” outcome will yield the same average

payoff as that of the “efficient strategy.” For example, in the Prisoners’ Dilemma game,

the unique stable outcome will be mutual cooperation.10

A number of contributions, including Banerjee and Weibull (1993), Dekel, Ely and

Yilankaya (1998), Ely and Yilankaya (1999), and Ok and Vega-Rodondo (2000) show

that in these types of models, when preferences are not observed, evolution takes us back

to Nash equilibria. Our results are related to these findings, but enable us to analyze the

co-evolution of perceptions and play. Furthermore, they are not driven by the assumption

that preferences are unobserved. In fact, for the most part, we assume that perceptions

are perfectly observed. Instead, our results follow because we relax the “subjective

rationality” assumption embedded in many analyses of evolution of preferences. As a

result, evolution favors effectively rational play, but does not wipe out misperceptions

or systematic subjective irrationality. Agents can hold systematic misperceptions, and

in interviews and experimental settings will display a variety of biases. This type of

behavior would not be consistent with models of evolution of preferences, which leads

to the same preferences for all agents.

We believe that an analysis of the evolution of perceptions and play is interesting,

in part, because the whole discipline of psychology and the recent emerging field of

behavioral economics are explicitly concerned with agents’ perceptions and how these

affect behavior. Moreover, such an analysis enables us to relax the subjective rational-
9For example, in Blume and Easley (1992) and Sandroni (2000) agents make forecasts and saving

decisions, which affect market prices, but there is no further game-theoretic interaction. Blume and
Easley (1992) compute agents’ wealth in the long-run and drive a corresponding fitness function. They
show that, when the preferences do not coincide with this fitness function, rational agents may lose their
wealth and “irrational” agents may determine the prices in the long run, consistent with our argument
that subjective rationality does not have an evolutionary basis when there are misperceptions. In the
same vein, in an overlapping-generation model with risk averse agents, De Long et al. (1991) suggest
that agents with inaccurate beliefs about the future prices may drive the agents with accurate beliefs
out when the strategies imitated on the basis of ex-post wealth they generate rather than the ex-ante
expected utility level.
10Similarly, Kockesen et al., 1999, analyze a class of games in which evolution rewards “negatively

interdependent preferences”.
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ity assumption, which does not have good evolutionary foundations in the presence of

misperceptions. Whether subjective irrationality is imposed or not has important impli-

cations regarding what types of behavior will be evolutionarily stable. Also, using this

framework, we can investigate whether players have a common prior, which is of central

importance to the game theory literature.

Our analysis is also related to recent independent work by Samuelson (2001), who

illustrates that in the presence of deviations from Bayes’ rule, an agent can increase

his evolutionary fitness by distorting his utility function (e.g., by including the others’

consumption levels to his own utility function). Nevertheless, our notion of “effective

rationality despite misperceptions” is different from this idea. To see this, consider an

agent who maximizes his fitness by distorting his utility function. According to our

terminology, this agent has “accurate perceptions,” since he will identify his preferred

actions with those that maximize his fitness. In contrast, agents with inaccurate percep-

tions in our setup will report to prefer actions that do not maximize their fitness, but

nevertheless end up taking actions that are good for their long-run fitness.

Finally, our results are also related to analyses of evolutionary dynamics with pre-

play communication (e.g., Warneyrd, 1993, Kim and Sobel, 1995, Banerjee and Weibull,

2000) because perceptions are similar to signals sent by players before the game is

played. In these models, when observed signals do not restrict agents’ characteristics or

behavior, neutral stability leads to Nash equilibrium outcomes of the underlying game

(see Banerjee and Weibull, 2000).11 Nevertheless, perceptions are different from cheap

talk because they also encapsulate what players know about the world, and whether

they can distinguish between different worlds. In particular, when the underlying game

consists of many different worlds or subgames–as we have here, a player’s perceptions

will restrict his possible plays by confining him to play the same (mixed) sub-strategy

at any two worlds that are perceived to be the same. This is important in some of our

results, in particular, for the result that jointly beneficial suppression of information may

survive evolutionary pressure.
11When observed signals restrict agents’ behavior, evolution may lead to non—Nash outcomes, as in

Robson (1990), and to strictly dominated strategies as in Banerjee and Weibull (1993).
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3 The Single-agent case

We start by analyzing the evolution of perceptions and play in a single-agent decision

problem–i.e., in a setting without strategic interactions. This analysis will introduce

some of the key concepts and illustrate the reasoning we use in the multi-agent case.

Throughout the paper we consider a large set of agent types subject to evolution-

ary selection, and assume that there is a process of replicator dynamics that relates

the frequency of different agent types to a monotonic function of their fitness. We are

interested in the stable outcomes of the replicator dynamics. Like many other evolu-

tionary analyses, we limit ourselves to Neutrally Stable Strategies, which correspond

to Lyapunov stable points of (strictly) monotonic replicator dynamics (see Bomze and

Weibull, 1995, or Weibull, 1997).

Assume a world where we have a set C of consequences and a finite set S of strategies

(actions) s : Ω → C with uncertain consequences for some state-space Ω. The set of

possible “worlds” is assumed to be finite and denoted by W with a generic member w.

Intuitively, different worlds correspond to different types of decision problems that the

individual is faced with, and the same action may have different payoff consequences in

different worlds. We denote the probability distribution over W by Q, with Q (w) > 0

for each w. The expectation with respect to Q will be denoted by EQ. For each w ∈W ,
we consider a pair (uw, qw) of a utility function uw : C → R on the consequences, and
a probability distribution qw on Ω. The pair (uw, qw) represents the base preferences on

actions, or the agent’s evolutionary fitness. From a strict evolutionary point of view,

qw measures the frequency of the events and uw (c) is the evolutionary fitness following

consequence c. We summarize the base preferences of the agent by

v̂ (s;w) ≡ Eqw (uw ◦ s)

at each s ∈ S and w ∈ W , where Eq denotes the expectation with respect to q. This
notation will be used extensively in the next section.

Analogously to the base preferences of the agent, for any probability distribution q

and preferences u, we define the payoff function

v (s) ≡ Eq (u ◦ s)

This function gives the (“perceived”) payoff of choosing action s given preferences u
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and probability distribution q. We consider a finite set V ⊂ RS of payoff functions
v : S → R. We define a perception as a function

π : W → V.

Intuitively, a perception π (w) is an interpretation of a world w as a (possibly different)

world w0. The set of actual worlds that can be realized is naturally contained in the set

of possible worlds that the agent can perceive (i.e., V ⊃ {v̂ (·, w) : w ∈W}).
We call a perception π∗ with π∗ (w) = v̂ (·, w) at each w as accurate. Intuitively,

an accurate perception enables the decision-maker to correctly recognize the world he

is confronted with. Given any π and w, we say that there is a misperception at w if

π (w) 6= v̂ (·, w). This corresponds to either to the perceived probability distribution
differing from the underlying frequencies, i.e., q 6= qw, or the perceived utility function
differing from fitness function, i.e., u 6= uw.12
Every time a world w is drawn, the agent perceives the world as π (w) and takes an

action s ∈ S, determining his fitness. Any function σ : V → S is called a play, and the

set of all plays is denoted by Σ = SV .

Definition 1 A play σ is said to be subjectively rational if and only if

σ (v) ∈ argmax
s∈S

v (s) .

A subjectively rational play maximizes the agent’s perceived payoff. This is the

standard definition of rationality in Game Theory. For many, this is a tautology, for the

perceptions (or beliefs) are merely expressions of the choice, derived from the choice func-

tion using the principle of revealed preferences. In this paper, we take the perceptions

and choice independent. We will take σ∗ as a generic subjectively rational play.

Definition 2 A pair (π, σ) of a perception and play is said to be effectively rational

(with full information) if and only if σ ◦ π = σ∗ ◦ π∗ for some subjectively rational σ∗
and accurate π∗, i.e.,

σ (π (w)) ∈ argmax
s∈S

v̂ (s;w)

at each w ∈W .
12Accurate perceptions may also correspond to a pair (u, q) 6= (uw, qw) of inaccurate probability

distribution and an inaccurate utility function, such that Eqw (uw ◦ s) = Eq (u ◦ s). For an example,
see Samuelson (2001).
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That is, a pair (π, σ) of a perception and a play is effectively rational if we can never

distinguish the resulting choice from that of an individual who perceives accurately and

behaves rationally. Here, we use a strong notion of accurate perception; it implies that

the agent distinguishes each state from the others (hence our qualification, with full

information). In our next section, we will also define effective rationality with limited

information, which only requires an agent to maximize his expected fitness, given the

information available. Our next example illustrates that there will be many combinations

of misperception and subjectively irrational play that yield a rational choice.

Example 1 Consider the case W = {w}, S = {a, b} with v̂ (a) = 1 and v̂ (b) = 0.

Suppose also that V = {v1, v2} such that v1 (a) = 1 and v1 (b) = 0, and v2 (a) = 0 and
v2 (b) = 1. Therefore, v1 corresponds to accurate perception, while v2 is a misperception.

Then, there are four combinations of perceptions and play:

1. agent perceives accurately plays subjectively rationally, and chooses a;

2. he inaccurately perceives b better than a, and plays subjectively rationally, choos-

ing b;

3. he accurately perceives a better than b, but plays subjectively irrationally, and

chooses b;

4. he inaccurately perceives b better than a, but plays subjectively irrationally, and

chooses a.

Combinations 1 and 4 are effectively rational with full information, and yield higher

fitness than that of the other two perception-play combinations. With any monotonic

replicator dynamics, effectively rational agents will survive, while the rest will die away.

Some of these effectively rational players will hold misperceptions, they will make clearly

irrational choices given their perceptions, but the overall choice will maximize their

fitness.

More importantly, the concept of subjective rationality loses its appeal in the presence

of misperceptions: the subjectively irrational agents in 4 do better than the subjectively

rational agents in 2. Therefore, in a world where the agents may have misperceptions,

subjective rationality does not necessarily have an evolutionary foundation.
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Now, given a play σ, we can define effectively accurate perceptions, which are not

necessarily accurate.

Definition 3 Given any play σ, a perception π is said to be (effectively) σ-accurate if

and only if σ ◦ π = σ ◦ π∗.

With this terminology, (π, σ) is effectively rational if and only if π is σ-accurate.

Given any σ, we define the one-person meta-game

Gσ = (Π, g (·; σ))

where

g (π; σ) = EQ [v̂ (σ (π (w)) ;w)] ≡ EQ [Eqw [uw (σ (π (w)))]]
at each π ∈ Π. Note that g (π; σ) is the agent’s expected payoff with respect to the
base preferences, given that, at each w, the agent’s perceptions will be π (w) and he

will play σ and choose σ (π (w)). In game Gσ, σ is fixed but the perceptions can vary.

Even though Gσ is technically a game with a strategy space Π, it is not a usual game

since the perceptions π ∈ Π are not chosen; the agent happens to have them, perhaps
because they inherited them or as a result of mutations. For this reason, we refer to it

as a meta-game. When g (π;σ) < g (π0; σ), given that he will choose according to σ, his

evolutionary fitness will increase if his perceptions happen to change from π to π0.

We also consider the meta-game

G = (Π×Σ, g)

where g (π; σ) is defined as above. This game depicts a situation where both the per-

ceptions and the play evolve together.

Definition 4 Given any play σ, a perception π ∈ Π is Neutrally Stable (NS) for Gσ iff
g (π;σ) ≥ g (π0; σ) at each π0 ∈ Π. Likewise, (π,σ) ∈ Π × Σ is NS for G iff g (π; σ) ≥
g (π0; σ0) at each (π0, σ0) ∈ Π× Σ.

This definition simply states that a perception, or a combination of perception and

play, will be Neutrally Stable if no other alternative gives higher fitness. Therefore, we

require that there are no forces taking the system away from this configuration. This is a
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simpler version of the definition of Neutral Stability we give below for meta-games with

strategic interactions. Our interest in Neutrally Stable outcomes is motivated by the

fact that the set of Lyapunov stable outcomes with respect to any monotonic replicator

dynamics will be the set of Neutrally Stable outcomes (see, e.g., Weibull, 1997).

Proposition 1 Given any subjectively rational σ∗, any perception π ∈ Π is NS for Gσ∗
iff it is σ∗-accurate.

The proof of Proposition 1 is combined with that of Proposition 2. Proposition 1

states that under subjective rationality, the surviving agents will hold accurate percep-

tions (and will choose effectively rational behavior). This result implies that the example

of misperceptions we found in Game 1 of Section 2 is due to strategic interactions and

cannot happen in the single-agent case. This is intuitive, since as noted in Section 2,

misperceptions are useful because they provide commitment, and in this single-agent

meta-game, commitment has no value.

Next, we see that when the requirement of subjective rationality is relaxed, there

will be some other effectively rational agents who, despite their misperceptions, do as

well as these agents.

Proposition 2 Any (π, σ) ∈ Π×Σ is Neutrally Stable for G iff it is effectively rational
with full information.

Proof. Take any effectively rational (π̂, σ̂) and any (π,σ) ∈ Π×Σ. At each w ∈W ,
by definition, we have v̂ (σ̂ (π̂ (w)) ;w) = maxs∈S v̂ (a;w) ≥ v̂ (σ (π (w)) ;w). Hence,

g (π̂, σ̂) = EQ [v̂ (σ̂ (π̂ (w)) ;w)] ≥ EQ [v̂ (σ (π (w)) ;w)] = g (π, σ), showing that (π̂, σ̂) is
Neutrally Stable for G. Conversely, if (π, σ) is not effectively rational, then the former

inequality will be strict at some w0 with Q (w0) > 0, rendering the latter inequality

strict, and showing that (π,σ) is not Neutrally Stable for G.

To prove Proposition 1, observe that (π,σ∗) is effectively rational iff π is σ∗-accurate.

Hence, taking σ̂ = σ = σ∗ above, we obtain Proposition 1.
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4 The Multi-person Case

In this section we analyze evolution when there are many players strategically interacting

with each other.13 In that case, when the perceptions are observable, under subjective

rationality, a player may gain from his misperception, a fact that we established in

Section 2 using Game 1 as an example. Nevertheless, we have also seen that in the

presence of misperceptions, subjective rationality is no longer supported by evolution.

Therefore, here we focus on a process in which both perceptions and play evolve together.

4.1 The environment

We consider a set N = {1, 2, . . . , n} of players and a set S =Qi∈N Si of strategy profiles.

For each w ∈ W , we consider an underlying game (N,S, v̂ (·;w)), where v̂ (s, w) =
(v̂1 (s,w) , v̂2 (s,w) , . . . , v̂n (s, w)) ∈ Rn is the players’ base payoff vector at a strategy
profile s ∈ S. Here v̂i (s, w) measures the evolutionary fitness of a player i ∈ N when

the strategy profile s is played at w. The set of all feasible payoff functions is taken to

be a finite set V ⊂ (Rn)S that contains

EQ [v̂|W 0] =
1P

w∈W 0 Q (w)

X
w∈W 0

v̂ (·, w)Q (w)

for each non-empty W 0 ⊂W .
By a perception, we mean any function from π : W → V . The set of all perceptions

is, once again, denoted by Π = V W . By a perception profile, we mean any vector

π = (π1, π2, . . . , πn) ∈ ΠN of perceptions. We write πji (s, w) for the payoff of player

j as perceived by player i when strategy profile s is played at world w. By a mixed

perception we mean any probability distribution x on the set of perceptions. Here, x (π)

can be considered as the proportion of population who has perception π.

We focus on games where the realization of the payoff perceived by each player,

πi (·, w) for all i, is observable. That is, all agents see the payoff matrix as perceived by
other agents. This is motivated by the discussion in the introduction where we pointed

out that nonrational behavior is most likely to arise as an evolutionary stable outcome

when perceptions/preferences are observed. With this assumption, a player’s strategy

will be a function that maps from the perception profiles into strategies: σi : V N →
13This corresponds to frequency-dependent evolution in the terminology of Maynard-Smith (1982).
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∆ (Si), where ∆ (Si) denotes the space of the probability distributions on Si. Notice that

any such strategy profile σ : V N → ∆ (S) can also be thought as a solution concept, since

it determines how the game will be played given the perceptions. It is also important

that it is the realizations of the perceptions, πi (·, w), not the perception function, πi,
itself that is observable.14

We consider a process in which at each date each player is randomly allocated to play

role i in a randomly selected underlying game (N,S, v̂ (·;w)). Each agent with perception
π perceives the payoff function as π (w). We then have a profile (π1 (w) , · · · ,πn (w))
of perceived payoff functions where πi (w) denotes the payoff function perceived by the

player who plays role i. Observing his role i and the profile (π1 (w) , · · · , πn (w)) ∈ V n
of perceived payoff functions, a selected player plays some (possibly mixed) strategy

σi (π1 (w) , · · · ,πn (w)) ∈ ∆ (Si) in the underlying game (N,S, v̂ (·;w)). Given any v ∈
V n and any si ∈ Si, σi (si, v) denotes the probability of playing si according to σi (v) ∈
∆ (Si). Since σ already depends on the player’s own perceptions, a mixed strategy can

be defined simply as a pair (x, σ) of a mixed perception and a mixed play. Finally,

given any two strategies (x, σ) and (y, µ), the mixture λ(x, σ) + (1− λ) (y, µ) = (λx +
(1− λ) y,λσ + (1− λ)µ) for any λ ∈ [0, 1] is also a strategy.
To formalize the evolution of perception and play, we consider the meta-game G

where a mixed strategy of a player is a pair (x, σ) of a perception x ∈ ∆(V W ) and a
play σ : V N → ∆ (S) determining which strategy σi (v) he will play at each role i and at

each profile v = (π1 (w) , · · · ,πn (w)) of perceived payoff functions. The expected payoff
of a player with (x, σ) in a population with aggregate distribution (y, µ) of perception

and play is

U ((x,σ), (y, µ)) =
1

n

X
i∈N

X
w∈W

X
s∈S

X
π∈Πn

v̂i (s, w)Q (w)σi (si,π (w))
Y
j 6=i
µ (sj ,π (w)) x (πi)

Y
j 6=i
y (πj) ,

where s = (s1, . . . , sn) and π = (π1, . . . , πn). This equation states the following. The

agent will be selected to play a role i (with probability 1/n) in a randomly drawn

underlying game (N,S, v̂ (·;w)) (with probability Q (w)). He will have perception πi
14If the perception function were observed, players would know not only how an agent perceives the

current world, but also how he would have perceived each w ∈W . For our qualitative results, it is not
important whether the entire perception function or only the realization of this function is observable
(so long as a player does not observe more about his perception than the others do–such “informational
asymmetry” may allow agents to always distinguish between all w ∈W , see Section 5).
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with probability x (πi), while every other player j will have some perception πj with

probability y (πj). Observing the profile π (w) = (π1 (w) , . . . , πn (w)), he will play some

si ∈ Si with probability σi (si,π (w)), while every other player j will play some strategy
sj with probability µ (sj,π (w)). The agent’s true contingent payoff for such a play will

be v̂i (s, w).

Definition 5 A pair (x,σ) is said to be Neutrally Stable for G iff, for each (y, µ), there

exists some ²̄ > 0 such that

U ((x, σ), ²(y, µ) + (1− ²) (x, σ)) ≥ U ((y, µ), ²(y, µ) + (1− ²) (x,σ))

for each ² ∈ (0, ²̄).

As noted above, neutral stability corresponds to the Lyapunov stability in replicator

dynamics. It is also clear that when (x, σ) is neutrally stable, ((x,σ) , (x, σ)) is a Nash

equilibrium in the meta-game G, i.e., U ((x,σ), (x, σ)) ≥ U ((y, µ), (x,σ)) for each (y, µ)
(see for example Weibull, 1997).

As in the single-agent case, we can define a meta-game to describe the evolution of

perceptions for a fixed solution concept and the evolution of the solution concept (or

play) given a fixed set of perceptions. The discussion of Game 2 in Section 2 illustrates

that when evolution is only limited to perceptions, misperceptions can arise as (neu-

trally) stable outcomes of evolutionary processes. Here we discuss the evolution of both

perceptions and play. To this end, we first analyze evolution of play under a common

(and fixed) perception, and then show that any combination of uncommon perceptions

actually embed a common perception. Using this insight, we then provide a general

characterization of the simultaneous evolution of perceptions and play.

4.2 Evolution of play under a common perception

Consider the case where all agents are restricted to have a common perception of the

payoff function, while how they play the game (given the perception) evolves according

to the process we defined above. In this case, the common prior (perception) assumption

holds by construction.

Consider a meta-game Gπ where all agents share a fixed pure perception, π, and

where the strategy of an agent is some σπ : V → ∆ (S) determining which strategy σπi (v)
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he will play at each role i when the commonly perceived payoff function is v. Define

π̄ = (π, π, . . . ,π) as the perception profile that assigns the common perception π to all

players. Let also σ : V N → ∆ (S) be such that σπ (., π (w)) = σ (., π̄ (w)), and similarly,

let µ : V N → ∆ (S) and µπ : V → ∆ (S) be such that µπ (., π (w)) = µ (., π̄ (w)).

That is, σ and µ induce the same behavior as σπ and µπ when all players have common

perception. Then, we can define expected (true) fitness in the meta-game Uπ as:

Uπ (σπ, µπ) = U ((π̄,σ) , (π̄, µ)) =
1

n

X
i∈N

X
w∈W

X
s∈S

v̂i (s, w)Q (w) σi (si, π̄ (w))
Y
j 6=i
µj (sj , π̄ (w)) ,

where π̄ = (π, π, . . . , π). Definition 5 immediately implies that a play σ is Neutrally Sta-

ble for Gπ iff, for each µ, there exists some ²̄ > 0 such that U ((π̄,σ) , ² (π̄, µ) + (1− ²) (π̄,σ)) ≥
U ((π̄, µ) , ² (π̄, µ) + (1− ²) (π̄,σ)), or alternatively such that Uπ (σ, ²µ+ (1− ²) σ) ≥
Uπ (µ, ²µ+ (1− ²)σ) for each ² ∈ (0, ²̄).
The information incorporated in a common perception π is represented by the infor-

mation partition

Iπ =
©
π−1 (π (w)) |w ∈Wª .

The cell that contains a given w is denoted by Iπ (w) = π−1 (π (w)). No w0 ∈ Iπ (w)
can be distinguished from w using the knowledge of π. Knowing the function π and the

realization π (w), a Bayesian can infer that the true world is in Iπ (w) = π−1 (π (w)),

but when Iπ (w) is not a singleton, he cannot distinguish between different worlds con-

tained in Iπ (w). Therefore, the expected true fitness given the realization π (w) and the

function π is

EQ [v̂|Iπ (w)] ≡ 1P
w0∈Iπ(w)Q (w0)

X
w0∈Iπ(w)

v̂ (·, w0)Q (w0) .

In the case where π is an invertible function, π−1 (π (w)) = w, and EQ [v̂|Iπ (w)] =
v̂ (·;w). If Bayesian players knew only the perception function π and the perceived

payoffs π (w), using this coarse information they could compute expected payoffs as

EQ [v̂|Iπ (w)].

Definition 6 Given any (π, σ̂), play σ̂ is said to be effectively rational with respect to

Iπ iff

σ̂ ∈ argmax
σi

X
s∈S

EQ
£
v̂i (s) |Iπ (w)¤σi (si)µ−i (s−i)
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for some belief µ−i about the other players’ play s−i for each i ∈ N and w ∈W . A play
σ̂ is said to be effectively rational with limited information iff it is effectively rational

with respect to some Iπ. A play σ̂ is said to be effectively rational with full information

iff it is effectively rational with respect to Iπ
∗
where π∗ (w) = w at each w.

Because σ̂ maximizes the agent’s utility given some belief, µ−i, regarding other play-

ers’ behavior, it also rules out the play of donated strategies given the information set

Iπ. In this sense, Definition 6 generalizes Definition 2 from previous section to the case

with strategic interactions. When the payoff to each agent is independent of the oth-

ers’ actions, the definition of effectively rational behavior with full information coincides

with that in Definition 2.

Next, given the limited information set Iπ (w), one can construct a new game

(N,S,EQ [v̂|Iπ (w)]) with a set of players N , strategy spaces S, and payoff functions
EQ [v̂|Iπ (w)], from the underlying game (N,S, v̂). We refer to this as a coarsened game,
since the payoff functions are the averages of the true payoff functions over an arbitrary

information set Iπ, which may not distinguish all underlying worlds from each other.

We now establish that there is a close link between the Nash equilibria of this derived

game and the neutrally stable outcomes of Gπ.

Proposition 3 Given any π : W → V and any σ̂ : V → ∆ (S), if σ̂ is neutrally

stable for Gπ, then σ̂ (π (w)) is a Nash equilibrium of game (N,S,EQ [v̂|Iπ (w)]) for each
w ∈W . Therefore, σ̂ ◦ π is effectively rational with limited information.

Proof. We will prove the contraposition of the first part. Let σ̂ : V → ∆ (S) be

such that σ̂ (π (w)) is not a Nash equilibrium of (N,S,EQ [v̂|Iπ (w)]) for some w ∈ W .
Then, there exists some k ∈ N and σk (π (w)) ∈ ∆ (Sk) such that

INC =
X
s∈S

EQ
£
v̂k (s, w) |Iπ (w)¤σk (sk, π (w))Y

j 6=k
σ̂j (sj ,π (w))

−
X
s∈S

EQ
£
v̂k (s, w) |Iπ (w)¤ σ̂k (sk, π (w))Y

j 6=k
σ̂j (sj, π (w)) > 0.

Now, consider σ̃ : V → ∆ (S) with

σ̃i (v) =

½
σk (π (w)) if i = k and v = π (w) ,
σ̂i (v) otherwise.
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Using the definitions, we compute that

Uπ (σ̃, σ̂) = Uπ (σ̂, σ̂) + INC · 1
n

X
w0∈Iπ(w)

Q (w0) > Uπ (σ̂, σ̂) ,

showing that (σ̂, σ̂) is not a Nash equilibrium of the meta game Gπ. But (σ̂, σ̂) is a Nash

equilibrium of Gπ whenever σ̂ is neutrally stable for Gπ. Therefore, σ̂ is not neutrally

stable forGπ. That σ̂◦π is effectively rational with limited information then immediately
follows from the fact that no dominated strategy is played in a Nash equilibrium.

This proposition implies that only Nash equilibrium strategies in the “coarsened”

game (N,S,EQ [v̂|Iπ (w)]) are candidate neutrally stable outcomes of the common per-
ception meta-game, Gπ. The intuition for why Nash equilibria of the underlying game

can be neutrally stable is straightforward: suppose all players share the same accurate

perception. Then, standard arguments from evolutionary game theory imply that Nash

equilibria of the underlying game will be stable outcomes of the meta-game Gπ, and

therefore, evolution leads to behavior that is effectively rational with limited informa-

tion. The same reasoning immediately generalizes to the case where π is not accurate:

even if players have misperceptions, what matters is their fitness, determined by payoffs

in the underlying game, v̂, and the information incorporated in these perceptions. Fi-

nally, to see why Nash equilibria of the “coarsened” game (N,S,EQ [v̂|Iπ (w)]) can be
neutrally stable, recall the example in the introduction where suppression of information

was mutually beneficial. When all players have the same perception not enabling them

to distinguish between different worlds, Nash equilibria of this coarsened game can also

be neutrally stable. We will provide a more detailed analysis of this in Example 2 below.

Motivated by the idea that agents can adjust their behavior much faster than their

preferences, Dekel, Ely and Yilankaya (1998) assume that agents will always play a

Nash equilibrium of the game where the payoffs are determined by their preferences,

even though these preferences may not reflect their true fitness. Our proposition, in

contrast, can be interpreted as showing that when players adjust their behavior faster

than their preferences (in the sense that their behavior can change while their preferences

are fixed), the play will approach a Nash equilibrium of the underlying game, where the

payoffs are players’ true fitness, not their perceived payoffs.

We next extend Proposition 3 to the case of a mixed common perception (rather than

a common pure perception). A mixed common perception is a probability distribution
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x ∈ ∆(Π) as in G. Unlike in G, however, we require the agents to share the same

perception π at each realization π. Thus, by construction, players always share a common

perception. Now construct the meta-game Gx with payoff function

Ux (σ, µ) =
X
π∈Π

Uπ (σ, µ)x (π)

=
1

n

X
π∈Π

X
i∈N

X
w∈W

X
s∈S

v̂i (s, w)Q (w) x (π)σi (si, π̄ (w))
Y
j 6=i
µj (sj, π̄ (w)) ,

where π̄ = (π, . . . , π). Naturally, a play σ is Neutrally Stable for Gx iff for each µ,

there exists some ²̄ > 0 such that Ux (σ, ²µ+ (1− ²)σ) ≥ Ux (µ, ²µ+ (1− ²)σ) for each
² ∈ (0, ²̄).
Take any commonly perceived payoff function v = π̂ (w) for some w ∈ W and π̂ with

x(π̂) > 0; the profile of perceived payoffs is (v, v, . . . , v). Denote the set of perception

functions that can lead to perceived payoff v by Πv = {π|π (w) = v for some w ∈W}.
Observing v and knowing the distribution x on perceptions, a Bayesian can update his

beliefs about the perception functions and compute the expected payoff functions given

this coarse information. Given any π ∈ Πv, the posterior probability that the common
perception function is π is

Pr (π|x, v) = x (π)

Pr (v|x) ≡
x (π)P

π0∈Πv x (π
0)
.

When π 6∈ Πv, we have Pr (π|x, v) = 0. Now, given any common perception π, and

the commonly perceived payoff v = π̂ (w), the expected true payoff (as perceived by a

Bayesian) will be EQ [v̂|π−1 (v)] = EQ
£
v̂|I π̂ (w)¤. Then, the expected payoff function

given v = π̂ (w) and x will be

E [v̂|x, v] =
X
π∈VW

Pr (π|x, v)EQ
£
v̂|π−1 (v)¤ = X

π∈VW
Pr (π|x, π̂ (w))EQ

£
v̂|I π̂ (w)¤ .

Effective rationality with respect to x is defined as in Definition 6, using E [v̂|x, v] as the
payoff function.

For any perceived payoffs are v = π̂ (w), we can now construct another derived game

(N,S,E [v̂|x, v]). Once again, we are interested in this game because there is a close
link between the Nash equilibria of this derived game and the neutrally stable outcomes

resulting from evolution over play.
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Proposition 4 Given any mixed common perception x, and any π̂ with x(π̂) > 0, if

σ̂ : V → ∆ (S) is neutrally stable for Gx, then σ̂ (π̂ (w)) is a Nash equilibrium of game

(N,S,E [v̂|x, π̂ (w)]) for each w ∈W . Therefore, σ̂ ◦ π̂ is effectively rational with limited
information.

This proposition extends Proposition 3 to the case of mixed common perceptions. It

is useful because when we consider evolution over perceptions and play, we will encounter

mixed perceptions. We omit the proof of this proposition which is similar to that of

Proposition 3.

4.3 Co-evolution of perceptions and play

Now we consider the meta game G, where the perceptions and play evolve together,

and show that at any neutrally stable outcome the agents play a Nash equilibrium

of a coarsened version of the underlying game. Towards this goal, we first derive the

common mixed perception x̃ embedded in (possibly non-common) mixed perceptions x.

Loosely speaking, the common perception x̃ embedded in x will contain exactly the same

information regarding the underlying state as the initial uncommon (mixed) perception

profile x. We will then show that, for any neutrally stable (x, σ) in the meta-game G, the

play σ is neutrally stable for the meta-game Gx̃, where the agents’ perceptions are fixed

at the mixed common perception x̃ embedded in x. Proposition 4 proves that for each

neutrally stable (x, σ) for G, and for each realization π (w) of agents’ perception profile,

σ (π (w)) is a Nash equilibrium of the coarsened game (N,S,E [v̂|x̃, π̃ (w)]), where agents
have a common perception (prior), and estimate their payoffs via Bayes’ rule using all

available information. This will establish our claim in the introduction that despite

different perceptions, agents will play as if they share a common perception, and will

choose some effectively rational behavior with limited information.

We take a set Ṽ ⊃ V with cardinality |Ṽ | = |V n|. The set Ṽ will be the image of the
common perceptions embedded in any perception profile π.15 We also fix a one-to-one

and onto function

φ : V n → Ṽ .

15Note that this theory is useful when we approximate the contiunuum with grid V , in which case
|V n| and |V | will have the same limit.
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The function φ will provide the isomorphism between the perception profiles and the

common perceptions embedded in them.

Common perceptions embedded in perception profiles Given any perception

profile π = (π1, . . . , πn) ∈ ΠN , we consider a (generalized) perception π̃ :W → Ṽ with

π̃ = φ ◦ π.

The set of all such (generalized) perceptions is denoted by Π̃ = Ṽ W . For each such

perception π̃ ∈ Π̃, we also have the perception profile π = φ−1 ◦ π̃. We will say that the
common perception π̃ is embedded in the perception profile π: it contains exactly the

same information as the uncommon perception profile π. That is, at each w ∈ W , we
have

I π̃ (w) = π̃−1 (π̃ (w)) = π−1
¡
φ−1 (φ(π (w)))

¢
= π−1(π (w)) = Iπ (w) . (1)

Hence, the information partitions generated by π̃ and π are the same. Here, Iπ (w) =T
i∈N I

πi (w) = {w0|πi (w0) = πi (w)∀i ∈ N} is the set of all worlds, w0, that cannot be
distinguished from world w by looking at the realization of π.

The mixed common perceptions embedded in mixed (uncommon) perceptions are

defined similarly. For each mixed perception x, we define a mixed common perception

x̃ on Π̃ by setting

x̃ (π̃) = Pr
¡
φ−1 (π̃) |x¢ ≡Y

i∈N
x (πi) (2)

at each π̃ ∈ Π̃, where φ−1 ◦ π̃ = (π1, . . . , πn) ≡ π. The mixed common perception x̃ is
embedded in the mixed (uncommon) perception x in the sense that x̃ assigns the same

probability to the common perception π̃ = φ ◦π embedded in each perception profile π
as the x assigns to the probability profile π itself.

As was the case with π̃ and π, x̃ and x generate the same information partitions.

Given any π̃0 = φ◦π0, and any w ∈W , the probability that we have a common perception
π̃0 given x̃ and π̃ (w) is the same as the probability that we have perception profile π0

given x and π (w), i.e., Pr (π̃0|x̃, π̃ (w)) = Pr (π0|x,π (w)). Hence, by (1), we have

E [v̂|x̃, π̃ (w)] =
X
π̃0∈Π̃

Pr (π̃0|x̃, π̃ (w))EQ
£
v̂|I π̃ (w)¤

=
X
π0∈ΠN

Pr (π0|x,π (w))EQ [v̂|Iπ (w)] = E [v̂|x,π (w)] .
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That is, the expected payoff function given the perceived payoffs will be the same under

x and x̃.

The next lemma clarifies the relationship between the meta-game G, where the per-

ceptions and play evolve together, and the meta-game Gx̃, where the play evolves under

the mixed common perception x̃.

Lemma 1 Let σ̃ : Ṽ → ∆ (S), µ̃ : Ṽ → ∆ (S), σ : V N → ∆ (S), and µ : V N → ∆ (S)

be such that σ = σ̃ ◦ φ and µ = µ̃ ◦ φ. Then,

U x̃ (σ̃, µ̃) = U ((x, σ̃ ◦ φ) , (x, µ̃ ◦ φ)) = U ((x, σ) , (x, µ)) .

Proof. We have

U x̃ (σ̃, µ̃) =
1

n

X
π̃∈Π̃

X
i∈N

X
w∈W

X
s∈S

v̂i (s, w)Q (w) x̃ (π̃) σ̃i (si, π̃ (w))
Y
j 6=i
µ̃j (sj, π̃ (w))

=
1

n

X
π∈ΠN

X
i∈N

X
w∈W

X
s∈S

v̂i (s, w)Q (w)

"Y
i∈N
x (πi)

#
σ̃i (si,φ (π (w)))

Y
j 6=i
µ̃j (sj,φ (π (w)))

= U ((x, σ̃ ◦ φ) , (x, µ̃ ◦ φ)) = U ((x, σ) , (x, µ)) .

This lemma states that the outcome of the evolution of play in any situation with

widely differing beliefs and perceptions can be represented as the outcome of evolution of

play in a situation with common perceptions. Perhaps, the fact that there is a common

perception that captures the same information as a set of uncommon perceptions is not

surprising. But this lemma will enable us to next prove the stronger result that strategies

will evolve, and the long run, precisely as if all agents are using this common embedded

perception.

Evolution of perceptions We can now state and prove the main result of the paper,

which links the neutrally stable outcomes of G to neutrally stable outcomes of the com-

mon perception game Gx̃, and to Nash equilibria of a coarsened version of the underlying

game (N,S,E [v̂|x,π (w)]). We write Pr (π|x) for the probability of a perception profile
π under a mixed perception x, i.e., Pr (π|x) =Qi∈N x (πi).
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Proposition 5 For every neutrally stable (x,σ) for G, the play σ̃ = σ ◦φ−1 is neutrally
stable for Gx̃, where x̃ is the mixed common perception defined by (2). Therefore, given

any π with Pr (π|x) > 0, and any w ∈ W , σ (π (w)) is a Nash equilibrium of game

(N,S,E [v̂|x̃, π̃ (w)]), where π̃ = φ ◦ π. Therefore, σ ◦ π is effectively rational with

limited information.

Proof. Take any neutrally stable (x, σ) for G. Take any µ̃ : Ṽ → ∆ (S), and let

σ̃ = σ ◦φ−1 and µ = µ̃ ◦φ. Since (x, σ) is neutrally stable for G, there exists some ²̄ > 0
such that for each ² ∈ (0, ²̄),

U ((x, σ) , (x, ²µ+ (1− ²) σ)) ≥ U ((x, µ) , (x, ²µ+ (1− ²) σ)) .

But, by Lemma 1, we have

U x̃ (σ̃, ²µ̃+ (1− ²) σ̃) = U ((x, σ̃ ◦ φ) , (x, ²µ̃ ◦ φ+ (1− ²) σ̃ ◦ φ))
= U ((x, σ) , (x, ²µ+ (1− ²) σ))

and U x̃ (µ̃, ²µ̃+ (1− ²) σ̃) = U ((x, µ) , (x, ²µ+ (1− ²) σ)). Therefore, for each ² ∈ (0, ²̄),

U x̃ (σ̃, ²µ̃+ (1− ²) σ̃) ≥ U x̃ (µ̃, ²µ̃+ (1− ²) σ̃) ,

showing that σ̃ is neutrally stable for Gx̃.

The second statement follows from Proposition 4: since σ̃ = σ ◦ φ−1 is neutrally
stable for Gx̃, by Proposition 4 (for Gx̃), σ̃ (π̃ (w)) = σ (π (w)) is a Nash equilibrium of

(N,S,E [v̂|x̃, π̃ (w)]) at each w ∈W whenever x̃ (π̃) = Pr (π|x) > 0. Effective rationality
of σ ◦ π again immediately follows from the Nash equilibrium result.

This proposition states that evolution of play will ensure the emergence of behavior

corresponding to all agents having common perceptions and playing the Nash equilib-

rium behavior of some underlying game. That is, evolution will lead agents to play as

if they have a common prior and are effectively rational (in fact, they play an equi-

librium). This is despite the fact that each agent may hold different misperceptions

and act “irrationally” given their perceptions. Their behavior will effectively undo these

perception differences, leading to effectively rational behavior and to a situation with

effectively common perceptions.
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Notice that the proposition maps the neutrally stable outcomes of evolution to the

Nash equilibria of some coarsened game, yielding effectively rational behavior with lim-

ited information. This may not, however, correspond to the equilibrium of the full-

information game, because some suppression of information may take place (hence our

emphasis on limited information). This is because all agents may develop mispercep-

tions that suppress information that would reduce the payoff to all parties, destroying

some “insurance” opportunities–as in Game 3 of Section 2. We will now present such

a neutrally stable outcome of this game in more detail.

Example 2: Suppression of information Consider the same example as in Game

3 in the introduction, with true payoff function v̂ for this game is

1\2 L R
l 3,3 -1,1
r w,-5 0,0

where x can take values 0 and 5 with equal probabilities. We takeW = {w1 = 0, w2 = 5}
with Q (w1) = Q (w2) = 1/2, where w takes 0 at w1 and 5 at w2. We take V =

{v̂ (·;w1) , v̂ (·;w2) , v̄} as the set of possible payoff functions, where v̄ = (v̂ (·;w1) +
v̂ (·;w2))/2, which corresponds, in this case, to w = (0 + 5) /2 = 2.5. We consider the
pure perception-play pair (π̄, σ̄) where π̄ (w) = v̄ at each w ∈W and

σ̄i (v1, v2) =

½
(1, 0) if v1 = v2 = v̄,
(0, 1) otherwise

for each i ∈ N . Here, the first entry is the probability that σ̄i assign to the strategy l
or L when he plays rows or columns, respectively. According to this strategy, a player

plays l (or L) if each player perceives the game as the average game, and plays r (or R)

otherwise. When everyone has perception-play pair (π̄, σ̄), each player gets 3.

The only way a mutant may have a higher payoff is that when he is the row player

he chooses r at w2, and the column player continues to play L, giving him a payoff of 5.

Strategy σ̄i (v1, v2) dictates that the column player will play L only if its opponent, the

mutant in this case, perceives the payoff function at w2 as v̄. In that case, our mutant

must play r at (v̄, v̄). At w1, if the mutant’s perception differs from v̄, the column player

will play R, in which case the highest our mutant gets is 0 (when he plays r). Hence, if

he distinguishes w1 and w2, the highest our mutant can get is (0.5)(5)+(0.5)(0) = 2.5,

lower than his payoff of 3 under (π̄, σ̄).
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If the mutant does not distinguish w1 and w2, he must perceive the payoff function

as v̄ at w1, too. In that case, the profile of perceived payoff functions will always be

(v̄, v̄), hence the incumbents will always play L, and the mutant will always play r and

again obtain (0.5)(5)+(0.5)(0) = 2.5, lower than 3. In either case, a mutant gets strictly

lower payoff, unless his perception function is π̄ and he plays l at (v̄, v̄). Now we need to

check whether these mutants, who do as well as incumbents against incumbents, cannot

do any better when they meet each other. But, when any two such mutants meet, each

will get exactly 3, not higher than the incumbents’ payoff. Therefore, (π̄, σ̄) is neutrally

stable.

This example shows that some Nash equilibrium of a coarsened game may be neu-

trally stable (even when it does not correspond to a Nash equilibrium of the full-

information game). Not all Nash equilibria of all coarsened games can be neutrally

stable outcomes, however. For example, Proposition 2 shows that in one-person games,

each neutrally stable outcome leads to effectively rational behavior with full informa-

tion, ruling out all non-trivial coarsenings. We next investigate this issue in games with

strategic interactions.

4.4 A further restriction

In deriving Proposition 5, we considered only mutations of play, and did not consider

mutations of perceptions. We will now consider mutations of both perceptions and play,

and derive a stronger restriction on the set of neutrally stable outcomes.

Let us write

Uw (x, σ) =
1

n

X
i∈N

X
s∈S

X
π∈Πn

v̂i (s, w)
Y
j∈N

σj (sj ,π (w))
Y
j∈N

x (πj)

for the expected value of having perception x and playing σ, while all the other agents

do the same, given that the underlying world is w. We also define

Uw =
1

n

X
i∈N

min
σ−i

max
σi

X
s∈S

v̂i (s,w∗)
Y
j∈N

σj (sj)

as the minimum expected utility an agent gets if he recognizes that the underlying world

is w and gives his best response. Finally, write

Vx = {v = π (w) |x (π) > 0, w ∈ W}
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for the set of payoff functions perceived with positive probability under x.

Proposition 6 Let (x̂, σ̂) be neutrally stable for G. If Vx 6= V , then

Uw (x̂, σ̂) ≥ Uw

at each w ∈W .

Proof. Assume Vx 6= V and take any v̄ ∈ V \Vx̂. To derive a contradiction consider
a neutrally stable (x̂, σ̂) such that Uw

∗
> Uw

∗
(x̂, σ̂) for some w∗ ∈ W . Consider the

following mutant (x̄, σ̄):

1. he recognizes w∗: x̄ (π̄) = x̂ (π) for each π and π̄ with x̂ (π) > 0, π̄ (w∗) = v̄, and

π̄ (w) = π̂ (w) whenever w 6= w∗; and

2. he gives his best response at w∗: for each i ∈ N , when vi = v̄, σ̄i (v1, . . . , vn) ∈
argmaxσi

P
s∈S v̂

i (s, w) σi (si)
Q
j 6=i σj (sj, v1, . . . , vn), and σ̄i (v1, . . . , vn) = σ̂i (v1, . . . , vn)

otherwise.

When w 6= w∗, the mutant (x̄, σ̄) does as well as the incumbents. We will now show
that he will do strictly better than the incumbents at w∗. At w∗, the mutant gets

1

n

X
i∈N

X
v−i∈V n−1

Pr (v−i|x̂, w∗)max
σi

X
s∈S

v̂i (s,w∗) σi (si)
Y
j 6=i
σ̂j (sj , (v̄, v−i))

≥ 1

n

X
i∈N

X
v−i∈V n−1

Pr (v−i|x̂, w∗)min
σ−i

max
σi

X
s∈S

v̂i (s, w∗)
Y
j∈N

σj (sj)

=
1

n

X
i∈N

min
σ−i

max
σi

X
s∈S

v̂i (s,w∗)
Y
j∈N

σj (sj) ≡ Uw∗ > Uw∗ (x̂, σ̂) ,

where (v̄, v−i) is the vector of perceived payoff functions where i and any other j perceive

the payoff function as v̄ and vj, respectively, and Pr (v−i|x̂, w∗) is the probability of
(v̄, v−i) given that the incumbents have mixed perceptions x̂ and the underlying world is

w∗. (Note that
P

v−i∈V n−1 Pr (v−i|x̂, w∗) = 1; and at w∗, each incumbent gets Uw
∗
(x̂, σ̂).)

This establishes that his expected payoff will be strictly better than the incumbents’,

contradicting our hypothesis that (x̂, σ̂) is neutrally stable for G.

This proposition shows that in any Neutrally stable outcome an individual cannot

increase his payoff by introducing more information. This restricts the set of coarsened

games whose Nash equilibria can correspond to Neutrally stable behavior.
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5 Evolution When Perceptions Are Not Observable

We have so far limited the analysis to situations in which perceptions are observable.

The previous literature has also investigated situations in which agents’ preferences may

be only imperfectly observable (e.g., Dekel, Ely and Yilankaya, 1998, Ely and Yilankaya,

1999, and Ok and Vega-Rodondo, 2000). We now extend our analysis to this case.

Suppose that in addition to the observable perceived payoff function π (·, w), each
agent also has a private perception function πp. As a result, each agent will observe his

own πp (w), and can condition his behavior on this perception, but he will not observe the

private perception of other players. We can incorporate this into our analysis by simply

redefining the play function to have a larger domain, σ : V N+1 → ∆ (S). Similarly, we

define a perception profile for player in role j, πj, as πj=(πp,π1, ...,πn).16 This implies

that each agent can condition his play on all observed perceptions and his own private

perception. We can now state

Proposition 7 Given any neutrally stable (x̂, σ̂) for G and any π̂ with x(π̂) > 0,

σ̂ (π̂ (w)) is a Nash equilibrium of the underlying game (N,S, v̂ (·, w)) for each w ∈ W .
Therefore, σ ◦ π is effectively rational with full information.

Proof. An immediate generalization of Proposition 5 implies that all neutrally

stable outcomes correspond to Nash equilibria of some coarsened game. We only have

to rule out Nash equilibria of these coarsened games that are not Nash equilibria of the

underlying game (N,S, v̂ (·, w)). Suppose that (x̂, σ̂) is neutrally stable, and σ̂ (π (w∗))
is a Nash equilibrium of a game (N,S,EQ [v̂|x,π (w∗)]), but not a Nash equilibrium of

(N,S, v̂ (·, w∗)) for some w∗ ∈ W . This implies that there exist a role j, and a strategy
s0j such that

v̂j
¡
s0j ,σ−j (π (w)) , w

¢
> EQ

£
v̂j|x,π (w)¤

Now consider a mutant with πp = π∗, where π∗ is the accurate perception. This devi-

ation is not observed by other players, so their strategies are still given by σ̂−j (π (w)).

This then enables the mutant to choose s0j when he plays the role j at w
∗, increasing

his fitness. Hence, (x̂, σ̂) is not neutrally stable. Since σ̂ (π̂ (w)) is a Nash equilibrium of
16It will turn out to be redundant that (π1, ...,πn) are observable, given that πp is private information.

Nevertheless, this more general form highlights that adding a flexible piece of private information to
our setup so far removes many of the neutrally stable outcomes of Proposition 5.
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the full information game, it rules out the play of all dominated strategies, hence σ ◦ π
is effectively rational with full information.

Therefore, once we allow perceptions not to be observed, we obtain a stronger propo-

sition than Proposition 6: now only Nash equilibria of the underlying game are candidate

neutrally stable outcomes. This is intuitive, since starting from any outcome that is a

Nash equilibrium of some coarsened game, but not a Nash equilibrium of the underlying

game, a player can take a deviation to expand his information set and increase his payoff.

6 Concluding Remarks

There are many examples of potentially irrational behavior that may have evolutionary

benefits by acting as a commitment device. For example, the tendency to seek revenge

may be a useful commitment to punish those who break their promises. In this paper

we argue that a key link in this reasoning, that of subjective rationality, does not have

strong evolutionary foundations, undermining much of the appeal of this argument.

Subjective rationality requires that agents always choose actions that maximize their

perceived payoffs. Although this appears almost tautological, we show that when there

are misperceptions, subjectively irrational agents can have greater evolutionary success

than subjectively rational agents.

Once we allow mutations to lead to subjective irrationality as well as mispercep-

tions, we find that selection will lead to effectively rational behavior, albeit with limited

information: perceptions or preferences act as commitment devices only when they

are informative about future behavior, and relaxing subjective rationality breaks this

link. Thus somewhat paradoxically, subjective irrationality creates stronger evolution-

ary forces towards “rational behavior”.

Interestingly, there is no immediate link between rational behavior and accurate

perceptions. Evolution will select agents who will act “rationally”, but these agents will

have very different perceptions, and sometimes will make systematic mistakes (yet their

mistakes will cancel each other). This reasoning suggests that systematic misperceptions

in experimental settings or in situations with little relevance to long-run fitness do not

necessarily translate into widespread “irrational” behavior.

We also show that even though, in an “evolutionary equilibrium,” agents will have
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very different perceptions, they will possess effectively common perceptions of the game

and the payoffs, in the sense that they will play as if they have a common prior.

This result is of interest since there is disagreement over whether the common prior

assumption in game theory has good theoretical foundations. Our analysis suggests

that this assumption may have good evolutionary foundations.

It is important to emphasize that our analysis does not imply that agents will be-

have “rationally” in all situations. First, according to our results, when perceptions are

observable, behavior will be effectively rational only with limited information, and may

deviate from the Nash equilibrium of the full-information game. This is because sup-

pression of information may be mutually beneficial for all agents. Second, our analysis

has been limited to the case where there are no cognitive restrictions on behavior, and

therefore should be interpreted as implying that there will not be systematic biases given

the cognitive resources available to the agents. This does not rule out boundedly ratio-

nal behavior because of cognitive limitations. Finally, as with all evolutionary analyses,

our results apply in the “long run”, and adjustment, especially after important changes

in environments, may take a long time, during which behavior that is not neutrally or

evolutionarily stable can be observed.
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