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This paper shows that the problem of testing hypotheses in moment condition mod-
els without any assumptions about identification may be considered as a problem of
testing with an infinite-dimensional nuisance parameter. We introduce a sufficient
statistic for this nuisance parameter in a Gaussian problem and propose conditional
tests. These conditional tests have uniformly correct asymptotic size for a large class
of models and test statistics. We apply our approach to construct tests based on quasi-
likelihood ratio statistics, which we show are efficient in strongly identified models and
perform well relative to existing alternatives in two examples.
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1. INTRODUCTION

MANY ECONOMETRIC TECHNIQUES identify and draw inferences about a struc-
tural parameter 6 based on a set of moment equalities. In particular, many
models imply that some function of the data and model parameters has mean
zero when evaluated at the true parameter value 6. The current economet-
ric literature devotes a great deal of energy to investigating whether a given
set of moment restrictions suffices to uniquely identify the parameter 6, and
to studying inference under different identification assumptions. The goal of
this paper is to develop a wide variety of tests for the hypothesis that a specific
value 6, is consistent with the data without making any assumptions about the
point identification or strength of identification of the model.

We treat moment equality models as having a functional nuisance parame-
ter. Much work in econometrics focuses on 6 as the unknown model parame-
ter, typically belonging to a finite-dimensional parameter space. This is consis-
tent with the tradition from classical statistics, which studied fully parametric
models where the unknown parameter 6 fully described the distribution of the
data. By contrast, in moment condition models the joint distribution of the
data is typically only partially specified, and in particular the mean of the mo-
ment condition at values 6 other than 6, is typically unknown. In light of this
fact we suggest a reconsideration of the parameter space in these semipara-
metric models and view the mean function as an unknown (and often infinite-
dimensional) parameter. The structural parameter 6, corresponds to a zero of
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this unknown function, and any hypothesis about 6, can be viewed as a com-
posite hypothesis with an infinite-dimensional nuisance parameter, specifically
the value of the mean function for all other values 6. The mean function deter-
mines the identification status of the structural parameter 6. Treating the mean
function as a parameter thus allows us to avoid making restrictive assumptions
about identification. Corresponding to this infinite-dimensional parameter, we
base inference on observation of an infinite-dimensional object, namely the
stochastic process given by the sample moment function evaluated at different
parameter values 6.

This perspective allows us to study the behavior of a wide variety of tests
for the hypothesis that the mean function is equal to zero at 6,. In a point-
identified setting this hypothesis corresponds to testing that 6, is the true pa-
rameter value, while when point identification fails it corresponds to testing
that 6, belongs to the identified set. The existing literature proposes a number
of tests for this hypothesis but most of these procedures depend on the ob-
served process only through its value, and potentially derivative, at the point 6.
Examples include the Anderson—Rubin statistic, Kleibergen’s (2005) K statis-
tic, and generalizations and combinations of these. A major reason for restrict-
ing attention to tests that depend only on behavior local to 6, is that the distri-
butions of these test statistics are independent of the unknown mean function
or depend on it only through a finite-dimensional parameter. Unfortunately,
however, restricting attention to the behavior of the process local to 6, ignores
a great deal of information and so may come at a significant cost in terms of
power. Further, this restriction rules out many tests known to have desirable
power properties in other settings. In contrast to the previous literature, our
approach allows us to consider tests that depend on the full path of the ob-
served process.

In this paper we introduce a large class of tests that may depend on the
data in more complicated ways than has been allowed in the previous litera-
ture. To ensure size control we introduce a sufficient statistic for the unknown
mean function in a Gaussian problem and condition inference on the realiza-
tion of this sufficient statistic. The idea of conditioning on a sufficient statistic
for a nuisance parameter is a longstanding tradition in statistics and was pop-
ularized in econometrics by Moreira (2003), who applied this idea in weakly
identified linear instrumental variables (IV) models. The contribution of our
paper is to show how this technique may be applied in contexts with an infinite-
dimensional nuisance parameter, allowing its use in a wide range of econo-
metric models. Since the nuisance parameter in our context is a function, our
sufficient statistic is a stochastic process. Our proposed approach to testing is
computationally feasible and is of similar difficulty to other simulation-based
techniques such as the bootstrap.

One test allowed by our approach is the conditional quasi-likelihood ratio
(QLR) test. This test makes use of the full path of the observed stochastic pro-
cess, and its distribution under the null depends on the unknown mean func-
tion, which greatly limited its use in the previous literature on inference with
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nonstandard identification. We make no claim about optimality of the condi-
tional QLR test in general. QLR tests are, however, known to have good prop-
erties in some special cases: in well identified (point-identified and strongly
identified) models QLR tests are asymptotically efficient, while they avoid the
power deficiencies of Kleibergen’s (2005) K and related tests under weak iden-
tification. Moreover, in linear IV with a single endogenous regressor and ho-
moscedastic errors Andrews, Moreira, and Stock (2006) showed that Moreira’s
(2003) conditional likelihood ratio (CLR) test, which corresponds to the con-
ditional QLR test in that context, is nearly uniformly most powerful in an im-
portant class of tests.

Conditioning on a sufficient statistic for a nuisance parameter, while widely
applied, may incur a loss of power by restricting the class of tests permitted.
We show, however, that no power loss occurs in well identified models, as in
this case our conditional QLR test is asymptotically equivalent to the uncondi-
tional QLR test and thus is efficient. We also point out that if one is interested
in similar tests (that is, tests with exactly correct size regardless of the mean
function) and the set of mean functions is sufficiently rich, all similar tests must
be conditional tests of the form we consider.

To justify our approach we show that the conditional tests we propose have
uniformly correct asymptotic size over a broad class of models, which imposes
no restriction on the mean function and so includes a wide range of identifi-
cation settings. We further extend these results to allow for concentrating out
well identified structural nuisance parameters.

We apply our approach to inference on the coefficients on the endogenous
regressors in the quantile IV model studied by Chernozhukov and Hansen
(2005, 2006, 2008) and Jun (2008). We examine the performance of the condi-
tional QLR test in this context and find that it has desirable power properties
relative to alternative approaches. In particular, unlike Anderson—Rubin-type
tests, the conditional QLR test is efficient under strong identification, while un-
like tests based on the K statistic, it does not suffer from nonmonotonic power
under weak identification. We find particularly large power gains for the QLR
test relative to existing alternatives in cases when the mean function is highly
nonlinear. In the Supplemental Appendix (Andrews and Mikusheva (2016b))
we also examine the performance of the conditional QLR test in linear IV
with nonhomoscedastic errors, find that it outperforms the K and generalized
method of moments (GMM-M) tests of Kleibergen (2005), and discuss addi-
tional results showing that it is competitive with other tests recently proposed
for linear IV motivated by optimality considerations.

As an empirical application of our method we compute confidence sets for
nonlinear Euler equation parameters based on U.S. data. We find that our ap-
proach yields much smaller confidence sets than existing alternatives, and in
particular allows us to rule out high values of risk aversion allowed by alter-
native methods. There is, however, evidence of substantial misspecification in
this context that may affect the relative performance of different procedures.
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In Section 2 we introduce our model and discuss the benefits of formulat-
ing the problem using an infinite-dimensional nuisance parameter. Section 3
explains and justifies our conditioning approach and relates our results to pre-
vious work. We also discuss power benefits from using information away from
the tested structural parameter value. Section 4 establishes the uniform asymp-
totic validity of our method and proves the asymptotic efficiency of the condi-
tional QLR test in strongly identified settings, while Section 5 discusses the
possibility of concentrating out well identified nuisance parameters. Section 6
reports simulation results for the conditional QLR test in a quantile IV model
and gives confidence sets for nonlinear Euler equation parameters based on
U.S. data, and Section 7 concludes. Some proofs and additional results may be
found in the Supplemental Appendix.

In the remainder of the paper we denote by A, (A) and Aya(A) the mini-
mal and maximal eigenvalues of a square matrix A, respectively, while || 4| is
both the operator norm for a matrix and the Euclidean norm for a vector.

2. MODELS WITH FUNCTIONAL NUISANCE PARAMETERS

Many testing problems in econometrics can be recast as tests that a vector-
valued random function of model parameters has mean zero at a particular
point. Following Hansen (1982) suppose we have an economic model that
implies that some k& x 1-dimensional function ¢(X,; 0) of the data and the
q x 1-dimensional parameter 6 has mean zero when evaluated at the true pa-
rameter value 6y, E[¢(X,, 6y)] = 0. Define g7(-) = % Zthl o(X,,-) and let

mr(-) = E[gr(X,,-)]. Under mild conditions (see, e.g., van der Vaart and
Wellner (1996) for independent and identically distributed (i.i.d.) data and
Dedecker and Louhichi (2002) for time series), empirical process theory im-
plies that

(1) gr(0) L my(0) + G(0) + rr(0),

where G(-) is a mean-zero Gaussian process with consistently estimable co-
variance function 3(6, §) = EG(6)G(6)', and ry is a residual term that is neg-
ligible for large T in the sense that the process g7 (-) — mr(-) weakly converges
to G(-) as T — oo. We are interested in testing that 6, belongs to the identified
set, which is equivalent to testing H, : mr(6,) = 0, without any assumption on
identification of the parameter 6.

This paper considers equation (1) as a model with an infinite-dimensional
nuisance parameter, namely m(6) for 6 # 6,. Thus our perspective differs
from the more classical approach that focuses on 6 as the model parameter.
This classical approach may be partially derived from the use of paramet-
ric models in which 6 fully specifies the distribution of the data. By contrast
many of the methods used in modern econometrics, including the generalized
method of moments (GMM), only partially specify the distribution of the data,
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and the behavior of mr(6) for 0 outside of the identified set is typically nei-
ther known nor consistently estimable (due to the /7 term embedded in the
definition). To formally describe the parameter space for my, let M be the
set of functions m(-) that may arise in a given model.” Let M, be the sub-
set of M containing those functions satisfying mr(6,) = 0. The hypothesis of
interest may be formulated as H, : mr € M,, which is in general a composite
hypothesis with a nonparametric nuisance parameter.

The distribution of most test statistics under the null depends crucially on the
nuisance function my(-). For exg\mple the distribution of the quasi-likelihood

ratio (QLR) statistic, which for ¥ an estimator of 3 takes the form
() QLR=gr(60)3 (0, 00) " gr(60) — infgr(6)3(6, )~ gr(6),

depends in complex ways on the true unknown function m(-) except in spe-
cial cases like the strong identification assumptions introduced in Section 4.2.
The same is true of Wald or ¢-statistics, or of statistics analogous to QLR con-

structed using weightings other than 3(0, #)~', which we call QLR-type statis-
tics. In the literature to date this dependence on m has greatly constrained
the use of these statistics in nonstandard settings, since outside of special cases
(for example, linear IV or the models studied by Andrews and Cheng (2012))
there has been no way to calculate valid critical values.

Despite these challenges there are a number of tests in the literature that
control size for all values of the infinite-dimensional nuisance parameter
my(-). One well known example is ﬂf S test of Stock and Wright (2000), which

is based on the statistic S = g7(6y)'3(6y, 6y)"'g7r(6y). This is a generalization
of the Anderson—Rubin statistic and is asymptotically y; distributed for all
my € M,. Other examples include Kleibergen’s (2005) K test and its general-
izations. Unfortunately, these tests often have deficient power in overidentified
settings or when identification is weak, respectively. Several authors have also
suggested statistics intended to mimic the behavior of QLR in particular set-
tings, for example the GMM-M statistic of Kleibergen (2005), but the behavior
of these statistics differs greatly from that of true QLR statistics in many con-
texts of interest.

EXAMPLE 1: Consider the nonlinear Euler equations studied by Hansen and

Singleton (1982). The moment function identifying the discount factor 6 and
the coefficient of relative risk aversion vy is

1 & C, \7"
0) = — o = R, —1)Z, 6=(,7),
=23 (5(gs) R-1)z 0=

“Note that the set of functions M = My may change with the sample size, but we drop the
subscript for notational simplicity.
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where C, is consumption in period ¢, R, is an asset return from period ¢ — 1
to ¢, and Z, is a vector of instruments measurable with respect to information
at t — 1. Under moment and mixing conditions (see, for example, Theorem 5.2
in Dedecker and Louhichi (2002)), the demeaned process gr(-) — Egr(-) will
converge to a Gaussian process.

For true parameter value 6, = (6, v,) we have mr(6y) = Egr(6,) = 0. The
value of m7(6) = Egr(6) for 0 # 6, is in general unknown and depends in a
complicated way on the joint distribution of the data, which is typically nei-
ther known nor explicitly modeled. Further, m7(68) cannot be consistently es-
timated. Consequently the distribution of QLR and many other statistics that
depend on my(-) is unavailable unless one is willing to assume the model is
well identified, which is contrary to extensive evidence suggesting identifica-
tion problems in this context.

2.1. The Mean Function my in Examples

Different econometric settings give rise to different mean functions m(-),
which in turn determine the identification status of 6. In set-identified models
the identified set {6 : my(0) = 0} might be a collection of isolated points or
sets, or even the whole parameter space. In well identified settings, by contrast,
mz(-) has a unique zero and increases rapidly as one moves away from this
point, especially as T becomes large. Common models of weak identification
imply that even for T large mr(-) remains bounded over some nontrivial region
of the parameter space.

Consider, for example, the classical situation (as in Hansen (1982)) where
the function E¢(X,, ) is fixed and continuously differentiable with a unique
zero at 6, and the Jacobian W has full rank. This is often called a strongly
identified case, and (under regularity conditions) will imply the strong identi-
fication assumptions we introduce in Section 4.2. In this setting the function
mr(0) =vVTE@(X,, 0) diverges to infinity outside of 1/ JT neighborhoods of
6 as the sample size grows. Many statistics, like Wald- or QLR-type statis-
tics, use gr(-) evaluated only at some estimated value 6 and 6y, and thus in
the classical case depend on g only through its behavior on a 1/+/T neigh-
borhood of the true 6. Over such neighborhoods mr(-) is well approximated

by w -T(6 = 6y), the only unknown component of which, w, is
usually consistently estimable. Reasoning along these lines, which we explore
in greater detail in Section 4.2, establishes the asymptotic validity of classical
tests under strong identification. Thus in strongly identified models the nui-
sance parameter problem we study here does not arise.

In contrast to the strongly identified case, weakly identified models are of-
ten understood as those in which even for T large the mean function my
fails to dominate the Gaussian process G over a substantial portion of the
parameter space. Stock and Wright (2000) modeled this phenomenon using a
drifting sequence of functions. In particular, a simple case of the Stock and
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Wright (2000) embedding indexes the data-generating process by the sample
size and assumes that while the variance of the moment condition is asymptot-
ically constant, the expectation of the moment condition shrinks at rate 1/+/7,
so Eo(X,,0) =Ere(X,,0) = %f(@) for a fixed function f(6). In this case
mz(0) = f(0) is unknown and cannot be consistently estimated, consistent es-
timation of 6 is likewise impossible, and the whole function m(-) is important
for the distribution of QLR-type statistics.

By treating my as a nuisance parameter, our approach avoids making any
assumptions about its behavior. Thus, we can treat both the strongly identified
case described above and the weakly identified sequences studied by Stock and
Wright (2000), as well as set identified models and a wide array of other cases.
As we illustrate below this is potentially quite important, as the set M of mean
functions can be extremely rich in examples.

We next discuss the sets M in several examples. As a starting point we con-
sider the linear IV model where the nuisance function can be reduced to a
finite-dimensional vector of nuisance parameters and then consider examples
with genuine functional nuisance parameters.

EXAMPLE 2—Linear IV: Consider a linear IV model where the data consist
of i.i.d. observations on an outcome variable Y;, an endogenous regressor D,,
and a vector of instruments Z,. Assume that the identifying moment condi-
tion is E[(Y; — D.6,)Z,] = 0. This implies that m(8) = ~/TE[Z,D.1(6, — 6)
is a linear function. If E[Z,D)] is a fixed matrix of full column rank, then
0, is point identified and can be consistently estimated using two-stage least
squares, while if E[Z,D'] is of reduced rank the identified set is a hyperplane
of dimension equal to the rank deficiency of E[Z,D]. Staiger and Stock (1997)
modeled weak instruments by considering a sequence of data-generating pro-
cesses such that E[Z,D] = % for a constant unknown matrix C. Under these
sequences the function my(6) = C(6, — 6) is linear and governed by the un-
known (and not consistently estimable) parameter C.

In contrast to the finite-dimensional nuisance parameter obtained in linear
IV, in nonlinear models the space of nuisance parameters m(-) is typically of
infinite dimension.

EXAMPLE 1—Continued: In the Euler equation example discussed above,

-y
mT(O)zﬁE[(S(l—i—Rz)(CCt) —1)2}

t—1

Assume for a moment that § is fixed and known, and that R, and Z, are con-
stant. In this simplified case the function my(vy) is a linear transformation of
the moment-generating function of log(C,/C,_;), implying that the set M, of
mean functions is at least as rich as the set of possible distributions for con-
sumption growth consistent with the null.
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EXAMPLE 3—Quantile I'V: Suppose we observe i.i.d. data consisting of an
outcome variable Y;, an almost-surely positive endogenous regressor D,, and
instruments Z,. For U, a zero-median shock independent of Z,, suppose Y,
follows Y, = yD, 4+ (D, + 1)U,. These variables obey the quantile IV model of
Chernozhukov and Hansen (2005) for all quantiles, and satisfy

E[({Y, — 6,D, <0} —1/2)Z,] =0

for 6, = vy, so we can use this moment condition for inference. This moment
restriction holds for arbitrary joint distributions of (D,, Z,, U,) provided U,
and Z, are independent and U, has median zero. However, different dis-
tributions produce different mean functions. In the Supplemental Appendix
we consider a weakly identified example with Z, = %F ZH+ 1 - #)nt
and D, = exp{Z’ — U,}, where Z*, U,, and 7, are mutually independent and
E[F(Z;)] = E[n,] =0. In this setting we show that

my(6y+8) = VTE[(I{Y, — (8, + 8)D, <0} — 1/2) Z/]
= E[F(2))Fu(x(5, ¢ 7)),

where Fy(-) is the cumulative distribution function (c.d.f.) of U and x(y, b)
solves (1 4+ be*)x = y. Depending on F and the marginal distributions of U,
and Z; one can end up with a wide variety of mean functions in this setting,
many of which are highly nonlinear.

Our results also apply outside the GMM context as long as one has a model
described by equation (1). In Section 5.1, for example, we apply our results
to a quantile IV model where we plug in estimates for nuisance parameters.
Our results can likewise be applied to the simulation-based moment condi-
tions considered in McFadden (1989), Pakes and Pollard (1989), and the sub-
sequent literature. More recently Schennach (2014) has shown that models
with latent variables can be expressed using simulation-based moment condi-
tions, allowing for the treatment of an enormous array of additional examples
including game-theoretic, moment-inequality, and measurement-error models
within the framework studied in this paper.

3. CONDITIONAL APPROACH

To construct tests we introduce a sufficient statistic for m;(-) € M, in a
Gaussian problem and suggest conditioning inference on this statistic, thereby
eliminating dependence on the nuisance parameter. Moreira (2003) showed
that a conditioning approach could be fruitfully applied to inference in lin-
ear instrumental variables models, while Kleibergen (2005) extended this ap-
proach to GMM statistics that depend only on g7(-) and its derivative both
evaluated at 6. In this section we show that conditional tests can be applied far
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more broadly. We first introduce our approach and describe how to calculate
critical values, and then justify our procedure in an exact Gaussian problem
and discuss power. In Section 4 we show that our tests are uniformly asymptot-
ically correct under more general assumptions.

3.1. Conditional Inference

Consider model (1) and let 3(-, -) be a consistent estimator of the covariance
function 3(-, -). Let us introduce the process

3) hr(0) = H(gr, 2)(0) = gr(0) — 2(6, 00)3(6y, 60) ' g7 (60).

We show in Section 3.2 that this process is a sufficient statistic for my(-) € M,
in a Gaussian problem where the residual term in model (1) is exactly zero
and the covariance of G(-) is known (g(', -y = 3(-,-)). Thus the conditional
distribution of any statistic R = R(gr, >) given hz(-) does not depend on the
nuisance parameter mr(-). Following the classical conditioning approach (see,
e.g., Lehmann and Romano (2005)) we create a test by comparing R with quan-
tiles of its conditional distribution given the process /7 (-) under the null.

To simulate the conditional distribution of statistic R given A7 (-) we take
independent draws & ~ N (0, 3(6y, 6y)) and produce simulated processes

(4) g3(0) = hr(0) + 30, 00)3(00, 05) ' &".

We then calculate R* = R(g5, f), which represents a random draw from the
conditional distribution of R given Ay under the null in the exact Gaussian
problem. In practice our conditional test can be calculated by simulation as fol-
lows. First, take a large number of draws &; ~ N (0, 3(6,, 6,)) forb=1, ..., B.
Then, for each draw calculate the statistic Ry = R(g7,, f) using the process

g7, defined as in equation (4) with &; in place of &*. Finally, for R{,, the bth

smallest value among {R},b =1, ..., B}, the test rejects if R(gr, f) exceeds

*
R( [(1—a)B1)*

3.2. Exact Gaussian Problem

In this section we consider an exact Gaussian problem that abstracts from
some finite-sample features but leaves the central challenge of inference with
an infinite-dimensional nuisance parameter intact. Consider a statistical exper-
iment in which we observe the process gr(6) = mr(6) + G(6), where mr(-) €
M is an unknown deterministic mean function, and G(-) is a mean-zero Gaus-
sian process with known covariance (6, ) = EG(0)G(0)'. We again let M
denote the set of potential mean functions, which is in general infinite dimen-
sional, and wish to test the hypothesis Hy : m7(6,) = 0.
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Lemma 1 below shows that the process 47(-) is a sufficient statistic for the
unknown function m(-) under the null m7(-) € M,. The validity of this state-
ment hinges on the observation that under the null the process g7(-) can be de-
composed into two independent random components—the process /() and
the random vector gr(6y),

) gr(0) = h(6) + 2(6, 60)2(6, 6) ' g7 (6),

with the important property that the distribution of g7(6,) ~ N (0, 3(6, 6,))
does not depend on the nuisance parameter my(-). In particular, this implies
that the conditional distribution of any functional of gr(-) given A7(-) does not
depend on my(-).

Assume we wish to construct a test that rejects the null hypothesis when
the statistic R = R(gr, ), calculated using the observed g7(-) and the known
covariance 3(-, -), is large. Define the conditional critical value function ¢, (/7)
by

co(h) = min{c: P{R(gr, 3) > c|lhr = fz} <a}.

Note that the conditional quantile c¢,(-) does not depend on the unknown
mz(-), and that for any realization of /47(-) it can be easily simulated as de-
scribed above.

LEMMA 1: In the exact Gaussian problem the test that rejects the null hypothe-
sis Hy : my € My when R(gr, Y) exceeds the (1 — «) quantile c,(hr) of its con-
ditional distribution given hr(-) has correct size. If the conditional distribution of
R given hr is continuous almost surely, then the test is conditionally similar given
hr(+). In particular, in this case for any mr € M, we have that almost surely

P{R(gr, 3) > ca(hp)lhr (1)} = P{R(gr, 3) > calhp)} =

The conditional quantiles c,(/7) can be interpreted as data-dependent crit-
ical values. Under an almost sure continuity assumption the proposed test is
conditionally similar in that it has conditional size « for almost every realiza-
tion of A7. It is worth emphasizing that the conditional critical values are sim-
ulated assuming the null is true and require no assumption about the behavior
of the GMM sample moments under any alternative.

The are many ways to represent a given test using different statistics and
data-dependent critical values. In particular, for any statistic S(gr) such that
the test that rejects when S(g7) > 0 has correct size, the test that rejects when
the statistic R(gr, 3) exceeds the random critical value R(gr, 3) — S(gr) will
have correct size as well, and indeed will be the same test in that it rejects
for precisely the same realizations of the data. Nonetheless, there is a sense in
which the test we suggest, which rejects when R(gr, ) > c,(hr), is particularly
associated with the test statistic R. Specifically, it is the conditionally similar
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test most associated with large values of R under any distribution consistent
with the null and can be viewed as a best approximation (within the class of
size-a conditionally similar tests) to any test based on R that uses a fixed critical
value. These properties are formalized in Lemma 2 below, and are discussed
further in the Supplemental Appendix. This result builds on the approach of
Moreira and Moreira (2011), though we provide a separate proof.

Let @, denote the class of (potentially randomized) size-« tests of H, :
my(60y) = 0 that are conditionally similar given A;. For a given realization of
the data, a test from this class may use an auxiliary randomization to pro-
duce an outcome cZ) € {0, 1} while also satisfying the conditional size restriction
E[$|h] = a under any my € M,

LEMMA 2: Assume that the conditional distribution of R given hr is almost-
surely continuous. For any nondecreasing function F(-) and any my € M, the
test ¢ =I{R > c,(hr)} solves the problem max; g . . E[(},‘;F(R)]. If F(-) is strictly
increasing, then ¢ is the almost-surely unique solution. Moreover, the test ¢ solves
the approximation problem ming g E [(¢ — ¢)?] for ¢* =T{R > c*} any test
based on R with a nonrandom critical value c*.

Conditional similarity is a very strong restriction and may be hard to justify
in some cases as it greatly reduces the class of possible tests. If, however, one
is interested in similar tests (tests with exact size « regardless of the value of
the nuisance parameter), all such tests will automatically be conditionally sim-
ilar given a sufficient statistic if the family of distributions for the sufficient
statistic under the null is boundedly complete; we refer the interested reader
to Moreira (2003) and Section 4.3 of Lehmann and Romano (2005) for further
discussion of this point.

If the parameter space for 6 is finite (@ = {6y, 6, ..., 6,}) the conditions
for bounded completeness are well known and easy to verify. In particular,
in this case our problem reduces to that of observing a k(n + 1)-dimensional
Gaussian vector gr = (gr(6v)’, ..., gr(6,)") with unknown mean (0, u; =
mr(60,), ..., u, =mr(6,)) and known covariance. If the set M of possible
values for the nuisance parameter (uj, ..., u,)" contains a rectangle with a
nonempty interior, then the family of distributions for 47 under the null is
boundedly complete, and all similar tests are conditionally similar given /Ay.
A generalization of this statement to cases with infinite-dimensional nuisance
parameters is provided in the Supplemental Appendix.

While similarity is still a strong restriction, similar tests have been shown to
perform well in other weakly identified contexts, particularly in linear IV: see
Andrews, Moreira, and Stock (2008). On a practical level, as we detail below,

3Section 3.5 in Lehmann and Romano notes that one can always represent a randomized test
in this way.
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the presence of the infinite-dimensional nuisance parameter my € M, renders
many other approaches to constructing valid tests unappealing in the present
context, as alternative approaches greatly restrict the set of models considered,
the set of test statistics permitted, or both.

3.3. Relation to the Literature

Moreira (2003) pioneered the conditional testing approach in linear IV
models with homoscedastic errors, which are a special case of our Example 2.
If we augment Example 2 by assuming that the instruments Z, are nonran-
dom and the reduced form errors are Gaussian with mean zero and known
covariance matrix {2, we obtain a model satisfying the assumptions of the exact
Gaussian problem in each sample size. In particular, for each 7' we observe the
process gr(6) = % ZzT=1(Yt — D)0)Z,, which is Gaussian with mean function

my(0) = ﬁ Z[T:] E[Z,D)](6y — 6) and covariance function

T
3(6,0) = (% > z,z;) (1,-0)02(1, -0
t=1

In this case the mean function my(-) and the process gr(-) are both linear in 6.
The conditioning process /7(-) (derived in the Supplemental Appendix) is

/

[z'y, z Dl (00) B(0 — 6y),

hr(6) = I,

1
VT(1,-6,)0(1, —6))

where B is a full rank p x p matrix. Thus, A7 is linear as well. Moreira
(2003) proposed conditioning inference in this model on the statistic [Z'Y,
Z'D107'(6,,1,). Thus, in this context the conditioning we propose is equiva-
lent to that suggested by Moreira (2003), and our approach is a direct gener-
alization of Moreira (2003) to nonlinear models. Consequently, when applied
to the QLR statistic in homoscedastic linear IV our approach yields the CLR
test of Moreira (2003), which Andrews, Moreira, and Stock (2006) showed is
nearly uniformly most powerful in a class of invariant similar two-sided tests in
the homoscedastic Gaussian linear IV model with a single endogenous regres-
SOr.

Kleibergen (2005) generalized the conditioning approach of Moreira (2003)
to nonlinear GMM models. Kleibergen (2005) restricts attention to tests that
depend on the data only through g+(6,) and % gr(6y), which he assumes to be
jointly asymptotically Gaussian. To construct valid tests he makes inferences
conditional on a statistic he referred to as Dy, which can be interpreted as the
part of % gr(6y) that is independent of g7(6,). One can easily show, however,

that Kleibergen’s Dy is the negative of %hT(OO). Moreover, one can decom-
pose hr(-) into the random matrix %hr(eo) and a process that is independent



CONDITIONAL INFERENCE 1583

of both %hT(Oo) and gr(6o), so the conditional distribution of any function
of gr(6y) and % gr(6y) given hr(-) is simply its conditional distribution given
dighT(Ho). Thus, for the class of tests considered in Kleibergen (2005) our con-
ditioning approach coincides with his.* Unlike Kleibergen (2005), however, our
approach can construct tests that depend on the full process gr(-), not just on
its behavior local to the null. In particular our approach allows us to consider
conditional QLR tests, which are outside the scope of Kleibergen’s approach
in nonlinear models. Kleibergen (2005) introduces what he terms a GMM-M
statistic, which coincides with the CLR statistic in homoscedastic linear IV and
is intended to extend the properties of the CLR statistic to more general set-
tings, but this statistic unfortunately has behavior quite different from that of
a true QLR statistic in some empirically relevant settings, as we demonstrate
in Section 6.2 in an empirical application to the Euler equation in Example 1
and in the Supplemental Appendix in the linear IV simulations with nonho-
moscedastic errors.

Unconditional Tests With Nuisance Parameters

In models with finite-dimensional nuisance parameters, working alternatives
to the conditioning approach include least favorable and Bonferroni critical
values. Least favorable critical values search over the space of nuisance param-
eters to maximize the (1 — «) quantile of the test statistic, and this approach
was successfully implemented by Andrews and Guggenberger (2009) in mod-
els with a finite-dimensional nuisance parameter. Unfortunately, however, in
cases with a functional nuisance parameter the least-favorable value is typically
unknown and a simulation search is computationally infeasible, rendering this
approach unattractive. Bonferroni critical values are similar to least-favorable
values, save that instead of searching over the whole space of nuisance pa-
rameters we instead search only over some preliminary confidence set. Again,
absent additional structure this approach is typically only feasible when the nui-
sance parameter is of finite dimension. In related work, Andrews and Cheng
(2012) show that in the settings they consider the behavior of estimators and
test statistics local to a point of identification failure is controlled by a finite-
dimensional nuisance parameter and use this fact to construct critical values
for QLR and Wald statistics that control size regardless of the value of this
parameter.

Common ways to calculate critical values in other contexts include subsam-
pling and the bootstrap. Both of these approaches are known to fail to control
size for many test statistics even in cases with finite-dimensional nuisance pa-
rameters, however (see Andrews and Guggenberger (2009)), and thus cannot

“The CQLR tests suggested by Andrews and Guggenberger (2014) are also in this class, and
depend on the data only through the moment condition and its derivative at the null.
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be relied on in the present setting. Indeed, it is straightforward to construct ex-
amples demonstrating that neither subsampling nor the bootstrap yields valid
critical values for the QLR statistic in general.

3.4. Is There Useful Information Outside 6,?

By allowing tests depending on gr(-), rather than just on gr(6,) and
% gr(6y), our results enlarge the class of tests and weakly increase the attain-
able power against any alternative. It is reasonable to ask, however, whether
enlarging the class of tests in this way offers any strict power improvements.
A full comparison of power envelopes for tests that use the whole process
gr(-) against those that use only the information at 6, is beyond the scope
of the present paper, but in this section we consider the simpler problem of
testing the null that the true structural parameter value is 6, against the alter-
native that it is 6*. In this context, we show that a feasible test using nonlocal
information can have power exceeding an infeasible power envelope for the
tests studied in the previous literature.

Provided the GMM model is correctly specified, testing 6, against 6* corre-
sponds to testing H, : mr(6,) = 0 against H, : mr(6y) # 0, mr(6*) = 0. Even in
this simplified setting both the null and the alternative are composite, with k-
dimensional nuisance parameters A = m7(60*) under the null and u = m7(6,)
under the alternative. In the Supplemental Appendix we derive three power
envelopes for tests based on gr(6,) alone. The first power envelope, which we
label PE-1, corresponds to the power of the most powerful test against alter-
native w. This test rejects when

(6) g7 (00)' 2(0o, 00) '/ /W2 (6o, 6) '

exceeds the 1 — a quantile of the standard normal distribution and is biased
(i.e., has power less than « against some alternatives). The second power en-
velope (PE-2) corresponds to the power of the most powerful unbiased test
against alternative w, which rejects when the square of the expression in (6) ex-
ceeds the 1 — a quantile of an y? distribution. Finally, the third power envelope
(PE-3) corresponds to the power of the uniformly most powerful test invariant
to linear transformations of the moments, which is the S or Anderson—Rubin
test rejecting when S(60y) = g7(6y)' (6, 00) ' g7(0,) exceeds the 1 —a quantile
of an x; distribution. These envelopes are strictly ranked, in that PE-1 always
exceeds PE-2, which in turn always exceeds PE-3. Of these three envelopes
only PE-3 is feasible, since PE-1 and PE-2 require knowledge of w. In the Sup-
plemental Appendix we show that PE-2 is an upper bound on the power of
most of the tests studied in the previous literature, including the K, JK, and
GMM-M tests of Kleibergen (2005).
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To demonstrate the value of nonlocal information we consider one of the
new tests allowed by our approach, which rejects when

(7) gr(60) 26, 60) ' g7(6y) — gr(O*),E(G*, 9*)716’7(9*) > cq(hr)

for hr the sufficient statistic for A under the null and ¢, (/) the conditional crit-
ical value discussed in this paper. This test is essentially the conditional QLR
test when we restrict attention to GMM parameter values {6, 6%}, so we term
this the pointwise QLR (pQLR) test. Note that the pQLR test does not require
knowledge of u and so is feasible in the two-point testing problem we consider
here. We show in the Supplemental Appendix that the pQLR test maximizes
weighted average power for a family of weight functions in this problem.

For power comparisons it is without loss of generality to normalize
3(6y, 6y) = 3(0%, 6*) = I,. To obtain a simple parametrization of the covari-
ance structure and to simplify power comparisons, we focus on the case where
(6, 0°) = pI;.> Under this restriction power functions of all tests considered
depend only on |u|l, k£, and p. In the Supplemental Appendix we show that
under this restriction the pQLR test is the uniformly most powerful similar
test based on (gr(6y), gr(6*)) that is invariant to linear transformations of the
moments, and further show that it is unbiased.

Figure 1 depicts the power comparison for k =5, p =0.3,0.6, 0.9, 0.99, and
a range of values [|u|. When p = 0 (not shown) the pQLR and S tests are
equivalent, while for p > 0 the power of the pQLR test exceeds that of the §
test (and thus PE-3). For small p the power curve of the pQLR test lies be-
low PE-2, while for large p the power of the pQLR test exceeds this power
envelope. Indeed, for p close to 1 the power function of the pQLR test ap-
proaches PE-1. Note that the assumed structure on (6, 6*) plays a role in
these results. While the pQLR test continues to have very good performance
overall even without this assumption there are some cases, for example, partic-
ular parameter values in the nonhomoscedastic IV simulations reported in the
Supplemental Appendix, where the power of the pQLR test may be less than
that of the S (or AR) test.

To summarize, the newly available pQLR test is unbiased when (6, 0%) =
pl; and for large p has greater power than the infeasible best unbiased test
(PE-2) based on g7(6y), which in turn bounds the power attained by most of
the tests suggested in the weak identification literature to date. Moreover, the
power of the pQLR test approaches the power envelope for the class of all tests
based on gr(6y) (PE-1) even though the tests yielding this envelope are biased
and based on knowledge of n while pQLR is unbiased and feasible. Thus, we
see that using information from gr(-) at points other than 6, allows power
improvements in testing one structural parameter value against another.

5The matrix (6, 6*) will be of this form if, for example, the covariance matrix of
(gr(6p), gr(6*)) can be written as the Kronecker product of a 2 x 2 matrix with a k x k& matrix.
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p=0.9 p=0.99

0 0
sign() |l sign(p)|

FIGURE 1.—Power envelope (PE-1) for the class of tests based on gr(6y) (dotted), power
envelope (PE-2) for the class of unbiased tests based on gr(6y) (dashed), power functions of the
conditional pQLR (pluses), and S (PE-3, solid) tests. Upper left panel, p = 0.3; upper right panel,
p = 0.6; lower left panel, p = 0.9; lower right panel, p = 0.99. All tests have size 5%.

In the Supplemental Appendix we generalize the stylized example above by
adding more points to the parameter space and considering the QLR rather
than pQLR test. We find that the QLR test is competitive with the infeasible
power envelope PE-2 for large p, though unlike the pQLR test it does not uni-
formly dominate PE-2 in any of the cases studied. Further, unlike in the previ-
ous section, the QLR test can be biased and there are regions of the parameter
space where it has less power than the S test.

We do not include power functions for tests that also use % gr(6y), such as
K or GMM-M, in Figure 1 since without further restrictions nearly any behav-
ior for the derivative of the sample moment is consistent with given values for
my(60y) and m7(60*). Since the power of the K and GMM-M tests will be very
sensitive to this choice, to ensure a realistic comparison we defer power simu-
lations with these tests to the quantile IV simulations below and to the linear
IV simulations in the Supplemental Appendix. This section instead considers
power envelope PE-2 that, as noted above, gives an upper bound on the power
of both the K and GMM-M tests, as well as on most of the other tests studied
in the previous literature. The next subsection discusses factors affecting the
power of tests in applications.

3.5. Power of Feasible Tests

The previous subsection considers the problem of testing one structural pa-
rameter value against another. In applications, however, we are typically in-
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terested in testing H, : 8 = 6, against the alternative H, : 6 # 6,, rather than
against a specific 6*. Consequently, rather than using the pQLR test (which,
unlike in the two-point testing problem considered above, will typically be
badly biased in this setting) we consider the conditional QLR test, which can
be viewed as a version of the pQLR test that attempts to “estimate” the alter-
native 6*. While common, this “plug-in” approach makes it difficult to obtain
finite-sample optimality results for likelihood ratio tests even in parametric
models, and we claim no optimality for the QLR test in general.

Since the true value of u is unknown, feasible tests trying to replicate PE-
2 must likewise approximate the direction of u in some way. If m(-) is lin-
ear in 0, then since m;(6*) = 0 at the true alternative 6*, we know that
mw=mr(60y) = ng(eo)(eo — 6*), so for 6 scalar (as we assume here for sim-
plicity) we can replace u in equation (6) by £ m7(6,) and obtain that the result-
ing test is the uniformly most powerful unbiased test based on g7(6,) against
any alternative 6*. Even when m7(-) is nonlinear in 6, tests constructed in this
manner will perform well provided the direction of d%mr(ﬁ’o) is similar to that
of my(6,). Even this test is infeasible, however, since %mr(ao) is unknown.
The term 4> g7(6,) gives an unbiased estimate of this quantity but, as noted by
Kleibergen (2005), = gr(6,) will typically be correlated with g7(6,), so simply
replacing u in equation (6) by Zgr(6,) leads to a test that does not in general
control size.

To avoid this issue, Kleibergen’s K test instead replaces u by

Jd J
Dy = %81(90) - COV(ﬁgT(Oo), gr(90))2(90, 60) ' g7(6o),

which as noted above is equal to —ﬁ%hT(Go) and is independent of gr(6,) by
construction. Under mild conditions Dy is approximate normally distributed
in large samples, Dy ~ N(up, 3p), where up = Zmz(6y) — Cov(gr(6o),
gr(60)2(0o, 6p)'m7(6y). As noted in Kleibergen (2005), the K test will be
locally asymptotically efficient in well identified models. By contrast, in weakly
identified models three distinct issues arise that may affect the power of this
and related tests: (i) D may be noisy, with 3, large relative to wp, (ii) Dy can
differ systematically from £ mz(6y), with wp ot Z-m7(6y), and (i) when m(6)
is nonlinear, the direction of a%mr(eo) may differ from that of mr(6,).

Problem (i) arises even in the linear IV model with homoscedastic errors.
In that setting it is always the case that wp oc my(6y) o ﬁ—”gmr(eo), but up may
be small relative to 35, with the result that the K test can have nonmonotonic
power and behave erratically at particular alternatives. The extent of the prob-
lem can be assessed based on the variance-normalized length of Dy, which is
precisely what the CLR test of Moreira (2003) does. In particular, Andrews
(2016) shows that the CLR test can be interpreted as a test based on a convex
combination of the § and K statistics, with the weight given to the K statistic
increasing in the length of Dy.
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Problem (ii) can arise in as simple a setting as linear IV with nonho-
moscedastic errors, since in that context it is not in general the case that
wp o Zmy(6y) (again, see Andrews (2016) for further discussion). This may
potentially result in poor power for the K test, as shown in the nonhomoscedas-
tic linear IV simulations given in the Supplemental Appendix. Furthermore,
while the CLR test is nearly optimal in homoscedastic linear 1V, its general-
izations, like the GMM-M test of Kleibergen (2005), can too closely resemble
the K test in the nonhomoscedastic case and thus have poor power. Issue (ii)
also arises in a wide range of nonlinear settings and is by no means unique to
linear I'V.

Problem (iii) is closely tied to nonlinearity of the mean function. In extreme
cases one could have that Zmy(60)3(6y, 6p)'mr(6,) =0, in which case the
“ideal” score test that replaces w in equation (6) by Zmz(6;) would have
power equal to size, and even without problems (i) and (ii) the K test would
perform poorly. By contrast the QLR test is not motivated by approximate
linearity and so may perform better in such cases. Further, Section 4.2 below
shows that the conditional QLR test remains locally asymptotically efficient in
the well identified case. In weakly identified models where the ﬁ—aﬁmT(HO) is ap-
proximately proportional to mr(6,), on the other hand, it seems plausible that
the K or GMM-M tests may outperform the QLR test by virtue of exploiting
this proportionality. The extent to which either of these possibilities is borne
out in practice, and how they interact with problems (i) and (ii) above, will de-
pend on the specifics of the model under consideration and it seems difficult
to draw general conclusions. We return to these questions in the quantile IV
simulations below.

4. ASYMPTOTIC BEHAVIOR OF CONDITIONAL TESTS
4.1. Uniform Validity

The exact Gaussian problem we study in the previous section assumes
away many finite-sample features relevant in empirical work, including non-
Gaussianity of g7 and error in estimating the covariance function 3. In this sec-
tion we extend our results to allow for these issues and show that our condition-
ing approach yields uniformly asymptotically valid tests over large classes of
models in which the observed process gr(-) is uniformly asymptotically Gaus-
sian.

Let P be a probability measure describing the distribution of g7(-), where
T denotes the sample size. For each probability law P there is a deterministic
mean function mr p(-), which in many cases will be the expectation Epgr(-)
of the process gr(-) under P. We assume that the difference gr(-) — mrp(-)
converges to a mean-zero Gaussian process Gp(-) with covariance function
3»(+, ) uniformly over the family P, of distributions consistent with the null.
We formulate this assumption using bounded Lipschitz convergence: see Sec-
tion 1.12 of van der Vaart and Wellner (1996) for the equivalence between
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bounded Lipschitz convergence and weak convergence of stochastic processes.
For simplicity of notation we suppress the subscript P in all expressions.

ASSUMPTION 1: The difference gr(-) — mr(-) converges to a Gaussian pro-
cess G(-) with mean zero and covariance function 3(-, ) uniformly over P € P,,
that is,

lim sup sup |E[f(gr —mn)] - E[f(G)]| =

T—00 pepy feBL,

where BL, is the set of functionals with Lipschitz constant and supremum norm
bounded above by 1.

ASSUMPTION 2: The covariance function 3, -) is uniformly bounded and pos-
itive definite:

1/X < inf inf Ay (2(6, 0)) < sup sup Amax(2(6, 0)) < A

PePy PePy 0O

for some finite A > 0.

ASSUMPTION 3: There is a uniformly consistent estimator 3(-, -) of the covari-
ance function, in that for any € > 0,

lim supP{sup||2(0 0) - 3(6,0)] > e} =0.

T—oo PePy

Discussion of Assumptions 1-3

As previously discussed, Assumption 1 imposes a uniform central limit the-
orem uniformly over ;. Assumption 2 requires that the covariance function
be uniformly bounded and uniformly full rank, which rules out the reduced-
rank case considered in Andrews and Guggenberger (2014). The possibility of
extending the results of the present paper to contexts with possibly degener-
ate variance is an interesting question for future work. Assumption 3 requires
that we have a uniformly consistent estimate for the covariance function. Un-
der smoothness conditions pointwise laws of large numbers yield uniform laws
of large numbers as, for example, in Newey (1991). The same logic applies
to dependent data (see, for example, Wooldridge (1994)), but one must use a
heteroscedasticity and autocorrelation consistent- (HAC) type estimator.

Suppose we are interested in tests that reject for large values of a statistic
R that depends on the moment function gT( ) and the estimated covariance

2( , -). Consider the process ir(-) = H(gr, 2) defined as in equation (3). Since
the transformation from (g (-), 2(-, ) to (gr(6o), hr(-), 2(-, -)) is one-to-one,
R can be viewed as a functional of (g7(6y), A7 (-), 3(-, ).
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ASSUMPTION 4: The functional R(&, h(-),3(-,-)) is defined for all values
& € R¥, all k-dimensional functions h with the property that h(6,) =0, and all co-
variance functions 3(-, -) satisfying Assumption 2. For any fixed C > 0, R(¢, h, 3)
is bounded and Lipschitz in &, h, and 3 over the set of (&, h(-), 2(-,-)) with
£3(6,,00)'¢<C.

LEMMA 3: The QLR statistic defined in equation (2) satisfies Assumption 4.

AWe require that R be sufficiently continuous with respect to (gr(6y), ir(-),
3(-,+)), which rules out Wald statistics in many models but allows the QLR
statistic. Further, this assumption allows QLR-type statistics based on other
weighting matrices, and statistics constructed analogously to QLR that use
some other norm (for example the sup or L' norms) to assess the length of
gr(0).

To calculate our conditional critic/a}l values, given a realization of 47 we sim-
ulate independent draws & ~ N (0, 3(6,, 6y)) and (letting P* denote the simu-
lation probability) define

calhr, 3) =inf{c: P{£: R(€ hr(),3(, ) <c} = 1—al.
The test then rejects if R(gr(6y), hr, f) > co(hr, /2\).
THEOREM 1: If Assumptions 1-4 hold, then for any & > 0 we have

lim sup P{R(gr(6o), hr, /2\) > c,(hr, /E\) +e}<a

T—o0 PePy

Theorem 1 shows that our conditional critical value (increased by an arbi-
trarily small amount) results in a test that is uniformly asymptotically valid over
the large class of distributions P,. The need for the term & reflects the possibil-
ity that there may be some sequences of distributions in P, under which R — ¢,
converges in distribution to a limit that is not continuously distributed. If we
rule out this possibility, for example assuming that the distribution of R — ¢, is
continuous with uniformly bounded density for all 7" and all P € P, then the
conditional test with & = 0 is uniformly asymptotically similar in the sense of
Andrews, Cheng, and Guggenberger (2011).

4.2. Strong Identification Case

Restricting attention to conditionally similar tests rules out many procedures
and so could come at a substantial cost in terms of power. In this section, we
show that restricting attention to conditionally similar tests does not result in a
loss of power if the data are in fact generated from a strongly identified model,
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by which we mean one satisfying conditions given below. In particular, we es-
tablish that under these conditions our conditional QLR test is equivalent to
the classical QLR test using y? critical values and so retains the efficiency prop-
erties of the usual QLR test.

ASSUMPTION 5: Suppose there exists a subset Py C Py such that for some se-
quence of numbers 8 converging to zero and each P € Py, there exists a sequence
of matrices M such that for any € > 0, the following statements hold:

(i) We have limr_,  infpcp,, infg_g -5, m7r(6)' 2(0, )" mz(0) = oco.
(i) We have limy_ SUP pery, SUP|g_gy <57 |m7(0) — Mr(6 — 6y)| =0.

(iii) We have limy_, o infpepy, 87 Amin(M}3(69, 69) ™' M7) = c0.

(iv) We have limy_ .. Supp.p, SUPg_g<s, 12(6, 0) — 3(60, 00)ll = 0 and
M7 o SUPpp, SUP gy <5, 12(8, 80) — 2(60, 0p) ]| = 0.

(v) We have limy_, o, SUPpepy, P{supuef%nﬁar |G(0) — G(6y)] > e} =0.
(Vi) There exists a constant C such that sup,.p,  P{sup,.e |G(0)| > C} < e.

Discussion of Assumption 5

Assumption 5 defines what we mean by strong identification. Part (i) guar-
antees that the moment function diverges outside of a shrinking neighborhood
of the true parameter value and, together with assumption (vi), implies the
existence of consistent estimators. Part (ii) requires that the unknown mean
function m(0) be linearizable on a neighborhood of 6,, which plays a key role
in establishing the asymptotic normality of estimators. Part (iii) follows from
parts (i) and (ii) if we require my to be uniformly continuously differentiable at
0y, while parts (iv)—(vi) are regularity conditions closely connected to stochas-
tic equicontinuity. In particular, (iv) requires that the covariance function be
continuous at 6, while (v) requires that G be equicontinuous at 6, and (vi) re-
quires that G be bounded almost surely.

Parts (i)—(iii) of Assumption 5 are straightforward to verify in the classical
GMM setting. Consider a GMM model as in Section 2.1 that satisfies Assump-
tions 1 and 2 with mean function Egr(0) = mr(0) = T%“’m(e), where 0 < a <
% and m(6) is a fixed, twice-continuously-differentiable function with m(6) =0
if and only if 0 = 6,. Assume further that m(6) is continuously differentiable
at 6, with full-rank Jacobian ﬁiom(eo) = M, and that the parameter space @
is compact. For 87 = T, infys_g,1-5, mr(0)'2(6, 6)'mr(6) ~ CT'72*"* so if
0 <y < ; — a, then part (i) of Assumption 5 holds. Taylor expansion shows
that

7*m(0)
36,90,

2
T>

sup |mz(8) — Mr(6 — 6,)| < T"*"“q*supsup

10—01 <67 0cO i,j
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so for y > 1(3 — @) part (ii) holds. Finally, M7 = T"/*>*M, and thus part (iii)
holds if y < 1 — a. To summarize, parts (i)—(iii) hold for any y with 1( — @) <
y<i-a

This derivation assumes a common rate of estimation 1 — a for the full pa-
rameter vector 6. It is straightforward, however, to show that Assumption 5
may also be satisfied when different elements of the parameter vector are iden-
tified at different rates provided that all rates are above . This last restriction is
a sufficient condition for the existence of a common 67 = 77 satisfying all re-
quirements, and is what Antoine and Renault (2009) term the “nearly strong”
case.

THEOREM 2: Suppose Assumptions 1-3 and 5 hold. Then the QLR statistic
defined in equation (2) converges in distribution to a x; uniformly over Py as
the sample size increases to infinity, while at the same time the conditional critical

value c,(hy, X) converges in probability to the 1 — a quantile of a )(2 distribution.
Thus while the conditional QLR test controls size uniformly over Py, under strong
identification it is asymptotically equivalent to the classical unconditional QLR
test over Py.

Theorem 2 concerns behavior under the null but can be extended to local
alternatives. Define local alternatives to be sequences of alternatives that are
contiguous in the sense of Le Cam (see, for example, Chapter 10 in van der
Vaart and Wellner (1996)) with sequences in Py, satisfying Assumption 5.
By the definition of contiguity, under all such sequences of local alternatives
c.(hr, 3) will again converge to a x? critical value, implying that our condi-
tional QLR test coincides with the usual QLR test under these sequences.

5. CONCENTRATING OUT NUISANCE PARAMETERS

As highlighted in Section 2, processes g7 (-) satisfying Assumptions 1-3 arise
naturally when one considers normalized moment conditions in GMM estima-
tion. Such processes arise in other contexts as well, however. In particular, one
can often obtain such moment functions by “concentrating out” well identi-
fied structural nuisance parameters. This is of particular interest for empirical
work, since in many empirical settings one wishes to test a hypothesis concern-
ing a subset of the structural parameters, while the remaining structural (nui-
sance) parameters are unrestricted. In this section we show that if we have a
well behaved estimate of the structural nuisance parameters (in a sense made
precise below, and somewhat stronger than the conditions of Section 4.2), a
normalized moment function based on plugging in this estimator provides a
process gr(-) that satisfies Assumptions 1-3. We then show that these results
may be applied to test hypotheses on the coefficients on the endogenous re-
gressors in quantile I'V models, treating the parameters on the exogenous con-
trols as strongly identified nuisance parameters.
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In this section we assume that we begin with a (¢ + p)-dimensional struc-
tural parameter that can be written as (8, 0), where we are interested in testing
a hypothesis H, : 6 = 6, concerning only the g-dimensional parameter 6. We
assume that the parameter space for (8, 0) is the Cartesian product of their
individual parameter spaces. The hypothesis of interest is thus that there exists
some value B, of the nuisance parameter B8 such that the k£-dimensional mo-
ment condition Eg'"’(By, 6y) = 0 holds. Here we use superscript (L) to denote
the “long” or nonconcentrated moment condition and define a correspond-
ing “long” mean function m"’ (B, ). We assume there exists a function 8(#6),
which we call the pseudo-true value of parameter 3 for a given value of 0, sat-
isfying mT L B(0y), 6y) = 0. For values of 0 different from the null value 6, the
model from which B8(6) comes may be (and often will be) misspecified. This
presents no difficulties for us, as our only requirement will be the existence
of an estimator E (0) of B(6) that is ~/T-consistent and asymptotically normal
uniformly over 6. Under additional regularity conditions, we then show that
we can use the concentrated moment function gr(6) = (1‘) ( B(G) 0) to imple-
ment our inference procedure. In what follows we agaln drop the subscript P
for simplicity of notation.

ASSUMPTION 6: There exists a function B(60) that for all 6 belongs to the in-
terior of the parameter space for B and satzsﬁes m(L)( B(6y), 6y) =0, and an es-
timator B(6) such that (g (B, 6) — m\" (B, ), f(ﬁ(e) — B(0))) are jointly
uniformly asymptotically normal,

Ep [f ( (L}E(Zze) _:)((5)9))} —E[f(G)]‘ _

lim sup sup
T—00 pepy feBL,

where G = (G (B, 0), G3(0)) is a mean-zero Gaussian process with covariance
function 3, (B, 6, B1, 61), such that process G is uniformly equicontinuous and
uniformly bounded over P,.

ASSUMPTION 7: Assume that the covariance function is uniformly bounded,
uniformly positive definite, and uniformly continuous in B along B(0). In partic-
ular, for fixed A > 0 and any sequence 61 — 0 we have

1/A < inf inf Ao (31 (B(0), 0. B(6), 0))

< SUp SUP A (31.(B(6), 6, B(6), 6)) < A

Pepy 6

lim supsup  sup sup [ 22(B, 6, B1, 61)

T=00 pepy 6,0, |B—BO)lI<87 I1B1—BODII<d7

- ZL(B(B), 0’ B(el)’ 01)” = 0
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ASSUMPTION 8: There is an estimator 3. (B, 0, B1, 0,) of 3.(B, 0, B1, 1)
such that

lim sup P{ sup [3.(8, 6, 1, 61) — 30.(8, 6, 1, 01)] > &} =0.

T=00 pep, B.6,B1,61

ASSUMPTION 9: For some sequence 87 — 0o, 87/~/T — 0, for each P € P,
there exists a deterministic sequence of k x p functions M1 (6) such that

lim supsup  sup  ||my’(B, 0) — my’ (B(6), 6)

T
TOPePy 0 JTIB—B(O)|<5T

~ My (ONT(B—B(O))| =

We assume that these functions Mr(0) are uniformly bounded,
SUPpcp, SUP, IM7(0)|| < oo, and that there exists an estimator M(0) such that

lim sup P{sup”MT(O) My (®)] > &} =0.

T—o0 PePy

Discussion of Assumptions

Assumptions 6-8 extend Assumptions 1-3, adding strong-identification con-
ditions for B. In particular, Assumption 6 states that there exists a consis-
tent and asymptotically normal estimator B(6) uniformly over 6. The uniform
equicontinuity and boundedness of G are as in Assumption 5(v) and (vi). As-
sumption 7 additionally guarantees that the rate of convergence for B(6) is
uniformly +/T, and Assumption 8 guarantees that the covariance function is
well estimable. The estimator E( #) may come from within the initial set of mo-
ment restrictions, from additional moment conditions not used for testing, or
even from another data set. For 6 # 6, the estimator E(O) may come from a
misspecified model and thus fail to consistently estimate the true SB,. This is
fine, as noted above, but we require that E(O) be /T-consistent for Bo when
evaluated at 6,. Note that if the estimator E (6) is obtained using some subset
of the initial moment conditions g%’ the covariance matrix 3, may be degen-
erate along some directions, violating Assumption 7. In such cases we should
reformulate the moment condition to exclude the redundant directions. For ex-
ample, suppose B(6) = argming 3~ (B, ) W (6) (TL)(,B 0), and let A*(6) be a

(k — p) x k matrix orthogonal to the p x k matrix agra;f 0’ W (6)|p=pcs- We can
use g(TL)(ﬁ 0) = AL(G)g(D(,B, 0) as the “long” moment condition.
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Assumption 9 supposes that m'~ is linearizable in 8 in the neighborhood

of B(6). In many GMM models m'" (B, ) = VTE@™ (X,, B, 6) and thus we
have

d
MT(G) = _EqD(L)(Xt’ :8’ 0)
&3 B=B(6)

This last expression is typically consistently estimable provided E¢o'“ (X, B, 0)
is twice-continuously-differentiable in 3, in which case Assumption 9 comes
from a Taylor expansion in 8 around B(8). Note the close relationship between
Assumption 9 and Assumption 5(ii).

THEOREM 3: Let Assumptions 6-9 hold. Then the moment function gr(0) =
g(TL)(B(f)), 0), mean function my(0) = m(TL)(B(B), 0), covariance function

38, 61) = (I, M7(8))3L(B(6), 6, B(61), 6:) (I, M1(61))
and its estimate

50, 6,) = (I, M7(8))3:(B(6), 6, B(61), 6:) (I, M1(61))
satisfy Assumptions 1-3.

The proof of Theorem 3 can be found in the Supplemental Appendix.

The assumption that the nuisance parameter g is strongly identified, specif-
ically the existence of a uniformly consistent and asymptotically normal esti-
mator B(6) and the linearizability of m{" (B, 6) in B, plays a key role here.
Andrews and Cheng (2012) and Andrews and Mikusheva (2016a) show that
in models with weakly identified nuisance parameters the asymptotic distri-
butions of many statistics will depend on the unknown values of the nuisance
parameter, greatly complicating inference. In such cases, rather than concen-
trating out the nuisance parameter we may instead use the projection method.
The projection method tests the continuum of hypotheses H : 6 = 6y, B = Bo
for different values of B, and rejects the null Hy : 6 = 6, only if all hypotheses
of the form H, : 0 = 6,, B = By are rejected. Thus, even in cases where the nui-
sance parameter may be poorly identified one can test Hy : 6 = 6, by applying
our conditioning method to test a continuum of hypotheses Hy : 6 = 6,, 8= Bo

provided the corresponding g’ (B, #) processes satisfy Assumptions 1-3.

5.1. Example: Quantile IV Regression

To illustrate our results on concentrating out nuisance parameters we build
on Example 3 above and consider inference on the coefficients on the en-
dogenous regressors in a quantile IV model, where we now allow for the
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possibility of additional exogenous regressors. This setting has been studied
in Chernozhukov and Hansen (2008), where the authors used an Anderson—
Rubin-type statistic, and in Jun (2008), where K and J statistics were suggested.
Here we propose inference using the conditional QLR test.

We consider an instrumental-variables model of quantile treatment effects
as in Chernozhukov and Hansen (2005). Let the data consist of i.i.d. observa-
tions on an outcome variable Y,, a vector of endogenous regressors D, a vec-
tor of exogenous controls C;, and a k x 1 vector of instruments Z,. Following
Chernozhukov and Hansen (2006) we assume a linear-in-parameters model
for the 7-quantile treatment effect, known up to parameter ¢ = (8, 6), and
will base inference on the moment condition

(8) E[(T—H{Y,gc;BOJrD;eO}) (2)] =0.

If we were interested in joint inference on the parameters (8, 6) we could
simply view this model as a special case of GMM. In practice, however, we are
often concerned with the coefficient 6 on the endogenous regressor, so B is a
nuisance parameter, and we would prefer to conduct inference on 6 alone. To
do this we can follow Jun (2008) and obtain for each value 0 an estimate B(6)
for B by running a standard, linear-quantile regression of Y, — D6 on C,. In
particular, define

3(0)_argmm—2p, —-D,9—CB),

where p.(-) is the 7-quantile check function. The idea of estimating E (0) from
simple quantile regression, introduced in Chernozhukov and Hansen (2008),
is easy to implement and computationally feasible. Under mild regularity con-
ditions, B(é)) will be a consistent and asymptotically normal estimator for the
pseudo-true value B(#) defined by

©  E[(-1{Y,= B0+ Do))C] =0

for each 0. If we then define the concentrated moment function

T

r(9) == Y (r=1{Y, < CB©O) + Do) Z.

t=1

mean function

my(0) =VTE[(r—1{Y, < C,(0) + D,8}) Z/],
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and the covariance estimator
T

Ew“@>=%§:uf_u&@w0ﬁg<op

t=1
x (7 —I{e/(B(62), 6;) <0})
x (Z,— A(6))C)(Z, — A(6:)C)) ],

where £(B, 0) = Y, — D,6 — C/8, A(0) = M(6)J(6), k(-) is a kernel, and

<&B@)@>

1 ([ e(B(6), )
ThT;C’C'k<—hT )

we show in the Supplemental Appendix that these choices satisfy Assumptions
6-9 under the following regularity conditions:

My (6) =

J(0) =

ASSUMPTION 10:

(i) The random variables (Y,, C,, D,, Z,) are i.i.d., E[|C,|*] + E[||D,||***] +
E[||Z,|*] is uniformly bounded above, and the matrix E[(C,, Z)(C, Z))'] is full
rank.

(ii) The conditional density f..(s|C:, D;, Z;) of €(6) =Y, — D6 — C/3(0)
is uniformly bounded over the support of (C,, D,, Z,) and is twice-continuously-
differentiable at s = 0 with a second derivative that is uniformly continuous in 6.

(iii) For each 6 the value of B(0) defined in equation (9) is in the interior of
the parameter space.

(iv) We have infy Ain(J(0)) > 0 for J(6) = E[f.)(0)C.C/].

(v) The kernel k(v) is such that suplk(v)| < oo, [|k(v)|dv < oo,
[k()dv=1,and [ k*(v)dv < cc.

Under Assumption 10, one may use the QLR statistic paired with condi-
tional critical values to construct confidence sets for 6 in this model. In Sec-
tion 6 we provide simulation results comparing the performance of the con-
ditional QLR test with known alternatives. Both Chernozhukov and Hansen
(2008) and Jun (2008) suggested Anderson—Rubin-type statistics for this model
that have stable power but are inefficient in overidentified models under strong
identification. To overcome this inefficiency, Jun (2008) introduced a K test
analogous to that of Kleibergen (2005). This test is locally efficient under
strong identification and has good power for small violations of the null hy-
pothesis regardless of identification strength. However, K tests often suffer
from substantial declines in power at distant alternatives. To overcome this de-
ficiency a number of approaches to combining the K and AR statistics have
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been suggested by different authors, including the JK test discussed by Jun
(2008), which is expected to improve power against distant alternatives but is
inefficient under strong identification. For general GMM models Kleibergen
(2005) proposes the GMM-M test, which is motivated by analogy to the CLR
test of Moreira (2003) and is based on a data-dependent combination of the
AR and K statistics. This test is locally efficient under strong identification,
though Jun (2008) does not generalize this approach to his setting. Our ap-
proach allows one to use the conditional QLR test, which retains efficiency
under strong identification without sacrificing power at distant alternatives.

6. NUMERICAL PERFORMANCE OF THE CONDITIONAL QLR TEST

In this section we examine the performance of the conditional QLR test
in numerical examples, first simulating performance in quantile IV and then
constructing confidence sets for Euler equation parameters in U.S. data via
test inversion.

6.1. Simulations: Quantile IV Model

We simulate the performance of the QLR test in a quantile IV model with
a single endogenous regressor and k instruments. As in Example 3 above we
generate outcome variable Y, from the location—scale model

Yi=vi+v.Di+ (ys+vsD)U,,

where D, is almost-surely positive, U, has median zero, and we have a vector
of instruments Z, that are independent of U,. For each quantile these variables
obey the linear quantile IV model of Chernozhukov and Hansen (2005) with
control variable C, = 1. For our simulations we focus on the median, 7 = %,
and use the moment condition (8) for By = y; and 6, = y,. We are interested
in inference on the coefficient § on the endogenous regressor, treating the
intercept B as a nuisance parameter as described in Section 5.1.

A wide array of distributions for (D,, U,, Z,) is consistent with the quan-
tile IV moment condition, and as shown in Example 3 above (for a simplified
model without an intercept), this can lead to a wide variety of potential mean
functions m7(-). As discussed in Section 3.5 the performance of tests based on
local information will depend, among other factors, on whether the direction
of my(6,) is well approximated by that of ‘7’”;—;9") When this approximation
is valid, derivative-based procedures like the K, JK, and GMM-M tests may
be expected to perform relatively well, while breakdown of this approxima-
tion is labeled problem (iii) in Section 3.5 and may yield poor power for these
tests. To compare the power of the tests developed in this paper relative to
those in the previous literature, we consider two different simulation designs
for (D,, U,, Z,). In the “symmetric” simulation design the direction of m;(6,)
coincides with that of ”’";—é"”), while in the “asymmetric” simulation design all
the issues discussed in Section 3.5 above arise.
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Symmetric Simulation Design
We first consider a simulation design in which the instruments play sym-

metric roles, in the sense that the joint distribution of (D,, U, Z, 1, ..., Z,x)
is invariant with respect to the relabeling of the instruments. This implies the
direction of the mean function my(6) is proportional to the vector (1,...,1)’

for all 6. In this case one can show that in the notation of Section 3.5 above
Up X %mT(OU) o myr(6y), so problems (ii) and (iii) discussed in Section 3.5
do not arise. This gives an advantage to the K and related tests that use this
proportionality, relative to the conditional QLR test that does not.

For our symmetric design we draw (U,,D,, Z)) = (®(&y,,) — %,@(fm),
D&y, P(E7,.0)), where (Euis épis E2,05 -+ 5 €2,.4)" 1s @ Gaussian vector
with mean zero, all variances equal to 1, cov(&y, €p) = ps, cov(ép, fz,-) = 75,
and all other covariances are zero, and ® is the standard normal distribution
function. In this model ps; measures the endogeneity of the regressor D,: if
ps = 0, then there is no endogeneity, and a linear-quantile regression of Y,
on D, and a constant will yield consistent estimates of (83, 8). If, on the other
hand, ps # 0, then we need to adopt a quantile IV strategy to obtain consistent
estimates. The parameter g controls the strength of identification under the
quantile IV approach, and the model will be partially identified when g =0
and weakly identified when g is close to zero.

Asymmetric Simulation Design

The symmetry of the instruments in the simulation design above is quite
special, as each instrument brings an independent and equal amount of
information about D,. For our asymmetric design we draw (U,, D, Z)) =
(v, exp(2ép.), €245 22’” e E’[), where (&y, €pi, €2,1)' 1s @ Gaussian vec-
tor with mean zero, all variances equal to 1, cov(éu:, ép:) = Pa,
cov(ép,, é2..) = 74, and zero covariance between &, and &;,. Analogous
to the parameters ps and 75 in the symmetric simulation design, the param-
eters p4 and 74 control the degree of endogeneity and the strength of the
instruments, respectively. This design corresponds to a case where one begins
with a single instrument £, and then constructs a number of technical instru-
ments (polynomials in £ ,) to gain efficiency. While satistying the quantile IV
moment conditions this data generating process yields a quite nonlinear mean
function my(-), particularly when the degree of endogeneity p 4 is large. Thus
unlike in the symmetric case, issues (ii) and (iii) discussed in Section 3.5 both
arise in this context.

6.1.1. Simulation Results

We compare power of tests for H, : 6 = 6,. The conditional QLR test is
calculated as described in Section 5.1. For comparison we also calculate the
weak-instrument-robust AR, K, and JK tests of Jun (2008), which are based
on the same concentrated moment conditions. In Jun’s (2008) simulations the
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test suggested by Chernozhukov and Hansen (2008) performed quite similarly
to Jun’s AR test, so here we report results only for Jun’s tests. We also consider
a variant of the GMM-M test of Kleibergen (2005). As noted by Andrews and
Guggenberger (2014) the construction of GMM-M tests involves a choice of
rank statistic and two options, based on what they term the moment-variance
and Jacobian-variance weightings, have been proposed in the literature. Since
the derivation of the Jacobian-variance weighting requires a nontrivial exten-
sion of the results of Jun (2008), here we focus on GMM-M tests with the
moment-variance weighting. Finally, we report the power of the (infeasible)
pQLR test that tests 6, against the true alternative at each point.

Our simulations set y; = y; = v, = 1 and take the null value 6, to be 1. We
then vary the true value 6 by varying y,. We draw samples of 1,000 observations
from the models above, and vary the endogeneity parameters p and the identi-
fication parameters 7. Here we discuss results for models with 10 instruments,
while results for models with 5 instruments are given in the Supplemental Ap-
pendix.

Figures 2 and 3 plot power curves for nominal 5% tests in the sym-
metric and asymmetric simulation designs, respectively. Figure 2 exam-
ines (ps, ms) € {(0.25,0.05), (0.25,0.1), (0.5, 0.05), (0.9, 0.05)}, while Fig-
ure 3 considers (p4, 7m4) € {(0.25,0.2), (0.25,0.4), (0.5,0.2), (0.9,0.2)}. As
expected given the local asymptotic efficiency of the QLR, K, and GMM-
M tests in well identified models, power curves for these tests are quite close
together in well identified cases. Thus we focus here on designs where the in-
struments are relatively weak, while power curves for designs with stronger in-
struments are given in the Supplemental Appendix. Simulated size for most of
the tests studied is quite close to the nominal size in all designs considered, with
the exception of the K and JK tests, which have simulated size close to 8% in
the symmetric simulation design with ps = 0.9. The simulated size for all tests
is reported in the Supplemental Appendix. We also calculated size-corrected
power curves and found them qualitatively similar to the uncorrected results
(these results are available upon request).

In the symmetric simulation design, which favors tests using the orthogo-
nalized derivative Dy, we see that the conditional QLR test performs quite
competitively with, and in many cases preferably to, the other tests considered.
While the K and JK tests have good power close to the null, often exceeding
even the infeasible pQLR test, they suffer from substantial power declines at
more distant alternatives, which stem from the high variance of D relative to
its mean (issue (i) discussed in Section 3.5). By contrast the power of the AR,
GMM-M, and QLR tests typically increases as we consider alternatives more
distant from the null. The relative performance of the QLR test relative to the
AR and GMM-M tests depends on the parameter value considered, with the
QLR test generally performing better for higher degrees of endogeneity ps.

In the asymmetric simulation designs, where the derivative of the sample
moment condition is less informative about the behavior of m;(6,) under the
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alternative, we see that the power of the K and JK tests is systematically less
than that of the other tests considered, even for alternatives close to the null.
This is consistent with fact that all three issues discussed in Section 3.5 arise in
this design. Further we see that the QLR test generally has greater power than
the AR or GMM-M tests (with the difference between the QLR and GMM-M
tests as large as 19% for some parameter values) and that, as in the symmet-
ric simulation design, the difference in power is increasing in the degree of
endogeneity.

Finally, we compare the conditional QLR test with the infeasible pQLR test,
which as discussed in Section 3.4 is weighted average power optimal in a two-
point testing problem and so may be considered a benchmark. The pQLR test
has greater power than does the QLR test, though their power curves behave
similarly across the designs considered. The largest amount by which the power
of the QLR test falls short of that of the pOLR test in the designs reported
here is 11%, while the average power shortfall (with respect to uniform weights
on 6) never exceeds 5.5%.

6.2. Empirical Example: Euler Equation

As an empirical example, we invert the QLR and several other robust tests
to calculate identification-robust confidence sets based on the nonlinear Euler
equation specification discussed in Example 1. Both Stock and Wright (2000),
who introduced the concept of weakly identified GMM, and Kleibergen (2005),
who proposed the first identification-robust tests for GMM that are locally ef-
ficient under strong identification, used the nonlinear Euler equation as their
main empirical example. Though substantial evidence suggests that this model
may be misspecified, and Stock and Wright (2000) find that results in this con-
text are very sensitive to the choice of specification, the role of this example in
the literature nonetheless makes this a useful application to consider.

Following Stock and Wright (2000) we use an extension of the long annual
data set of Campbell and Shiller (1987). Our specification corresponds to the
constant relative risk aversion-1 (CRRA-1) specification of Stock and Wright
(2000), which takes C; to be aggregate consumption, R; to be an aggregate
stock market return, and Z, to contain a constant, C,_;/C;_,, and R,_y, result-
ing in a three-dimensional moment condition (k = 3); see Stock and Wright
(2000) for details.

While the model implies that +/Tg7(-) is a martingale when evaluated at
the true parameter value, the QLR statistic also depends on the behavior of
gr away from the null. To estimate all covariance matrices we use the Newey—
West estimator with one lag. We could use a martingale-difference covariance
estimator in constructing the S statistic, but doing so substantially increases
the volume of the joint S confidence set for (8, y) so we focus on the HAC
formulation for comparability with the other confidence sets studied. We first
construct a confidence set for the full parameter vector 6 = (8, y) and then
consider inference on the risk-aversion coefficient y alone.
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6.2.1. Confidence Sets for the Full Parameter Vector

We report joint 90% confidence sets for 6 = (8, y) based on inverting the
QLR, S, K, JK, and GMM-M tests of Stock and Wright (2000) and Kleibergen
(2005) in Figure 4.° As we can see, the QLR confidence set is substantially
smaller than the others considered, largely due to the elimination of discon-
nected components of the confidence set. To quantify this difference, note that
the S, K, JK, and GMM-M confidence sets cover 4.3%, 4.43%, 5.46%, and
4.5% of the parameter space (8, y) € [0.6, 1.1] x [—6, 60], respectively, while
the QLR confidence set covers only 0.64% of the parameter space.

We emphasize that the model is likely misspecified, which may effect the
relative sizes of confidence sets. A common critique of the § test is that it has
power against both violations of the parametric hypothesis and model misspec-
ification, making it difficult to interpret small confidence sets. The QLR statis-
tic is intended to test only the parametric restriction, under the maintained
hypothesis of correct specification, but is not itself robust to model misspec-
ification. Indeed, while we have based our choice of moments on Stock and
Wright (2000), as in that paper the results are sensitive to the precise moments
chosen, as well as to other factors like the number of lags used in HAC co-
variance estimation. This could be further evidence of misspecification in this
context, which may affect the relative performance of confidence sets here.

6.2.2. Confidence Sets for Risk Aversion

Stock and Wright (2000) argued that once one fixes the risk-aversion param-
eter vy the discount factor & is well identified. Under this assumption we calcu-
late conditional QLR confidence sets for y based on two approaches: first by
plugging in an estimator for é based on the moment condition instrumented
with a constant and then concentrating out 6 using the continuous-updating
estimator (CUE), where in each case we modify the moment conditions as dis-
cussed in Section 5 to account for this estimation. For comparison we consider
the S, K, JK, and GMM-M tests evaluated at the restricted CUE for 6 which,
as Stock and Wright (2000) and Kleibergen (2005) argue, allow valid inference
under the assumption that o is well identified. The resulting confidence sets
are reported in Table I. Unlike in the joint confidence set case we see that the
QLR confidence set is larger than the JK confidence set but is nonetheless the
second smallest confidence set out of the five considered. Further, we see that
in this application concentrating out the nuisance parameter using the CUE
results in a smaller confidence set than does plugging in the estimate based on
the moment condition instrumented with a constant.

®Note that our S confidence set differs from that of Stock and Wright (2000), which, in addition
to assuming that the summands in gr(6,) are serially uncorrelated, also assumes conditional
homoscedasticity.
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TABLE I

90% CONFIDENCE SETS FOR RISK-AVERSION PARAMETER v,
TREATING NUISANCE PARAMETER 8 AS WELL IDENTIFIED,
BASED ON ANNUAL DATA

90% Confidence Set Length
QLR-constant instrument [-2,1.7] 3.7
QLR CUE [—1.3,1.9] 32
S [—1.6,2.3] 39
K [—1.1,1.8] U [8, 12.3] 7.2
JK [-1.2,1.9] 3.1
GMM-M [—1.1,1.8] U [8, 12.3] 7.2

7. CONCLUSIONS

This paper argues that moment equality models without any identification
assumptions have a functional nuisance parameter. We introduce a sufficient
statistic for this nuisance parameter and construct conditional tests. Our re-
sults substantially expand the set of statistics available in weakly or partially
identified models, and in particular allow the use of quasi-likelihood ratio
statistics, which often have superior power properties compared to widely used
Anderson—Rubin type statistics. We show that our tests have uniformly correct
asymptotic size over a large class of models and find that the proposed tests
perform well in simulations in a quantile I'V model and give smaller confidence
sets than existing alternatives in a nonlinear Euler equation model.

APPENDIX

PROOF OF LEMMA 1: The proof trivially follows from equation (5) and the
observations that the distribution of g7(6y) ~ N (0, 3(6,, 6,)) does not depend
on mr(+), the function 3(6, 6¢)3(6,, 6;)~" is deterministic and known, and the
vector gr(6y) is independent of A7 (-). O.E.D.

PROOF OF THEOREM 1: Let us introduce the process
Gu(0) = H(G, 3)(0) = G(0) — 3(0, 0,) 2(6, 6y) "' G (6y)

and a random variable £ = G(6y) that is independent of G (-). First, we no-
tice that Assumptions 1-3 imply that ny = (g7(6y), Az (-) —mz(-), 2(-, -)) con-
verges uniformly to n = (¢, G,,(-), 2(-, -)), that is,

(10)  lim sup sup |Ep[f(nr)] = E[f(m)]|=0.

1
T—0 pep, feBL,
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We assume here that the distance on the space of realizations is measured as
follows: for ni= (gi’ Gh,i(')7 Zji(', )) (for = 17 2)7

dn, m) =& — &l + Sl;P” G1(0) — Gh,Z(G)”

+sup|| (6, 6) — 3,(6, H)] .
0,0

Statement (10) then follows from the observation that the function that takes
(G(), 3(+,+) to (&, Gu(+), 3(-,+)) is Lipschitz in (G, ) if |¢] < C for some
constant C, provided 3 satisfies Assumption 2.

Note that foL any nonrandom functions my(-), random processes sy =
(87(600), hr (), 2(-,+)) and S = (&, G4 (-) + mz, 3(-, -)) are one-to-one linear
transformations of ny and 7. Thus, since bounded Lipschitz functionals of s
can also be expressed as bounded Lipschitz functionals of 77, statement (10)
implies

(11) lim sup sup |Ep[f(sr)] — E[f(5p)]| =0.

—X PePy feBL;

Let us introduce the function F(x) =I{x < C} + cczz:gl [{C, < x < G} for
some 0 < C; < C, and consider the functional

RF(&: h’: 2) = R(f, ha Z)F(f/Z(Go, 00)715)7

which is a continuous truncation of the functional R(¢, h, 3) = R(g, 3). Con-
sider the conditional quantile function corresponding to the new statistic

cro(h, X)=inf{c: P*{&:Rp(&, h,3) <c} >1—a}.
As our next step we show that cx ,(h, ¥) is Lipschitz in A(-) and 3(-, -) for all
h with h(6y) =0 and ¥ satisfying Assumption 2.
Assumption 4 implies that there exists a constant K such that
”RF(f, hi, 3) — Rp(§, hy, 3) H <Kd(hy, hy)
for all &, hy, hy, and 3. Let ¢; = ¢po(h;, ¥). Then

1_a§P*{‘§RF(§7h172) Scl}
< P{&:Rp(&, hy, 3) < 1 + Kd(hy, hy)}.

Thus ¢, < ¢; + Kd(hy, h,). Analogously we get ¢; < ¢, + Kd(hy, h,), implying
that cr, is Lipschitz in 4. The same argument shows that ¢, is Lipschitz in 3.
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Assume the conclusion of Theorem 1 does not hold. Then there exists some
6 > 0, an infinitely increasing sequence of sample sizes 7;, and a sequence of
probability measures Pr. € P, such that for all 7,

Pr,{R(g7.(60), h1,, 3) > calhr, 3) + &) > a + 6.

Choose C; such that
. =3 -1 6
limsup Pr, {7, (60)'>(0o, 60) "' g7,(60) = Ci} < 7,

which can always be chosen since according to Assumption 1, gr(6,) converges
uniformly to N (0, 3(6,, 6y)). Since

Pr{R > x} < Pr{Rp > x} +Pr{gr(6’o)’§(90, 60)"'gr(60) = C1}

and cp,(h7, 3) <c,(hy, 3), we have that for all i,
~ ~ )
(12) PTi{RF(gTi(OO)ahT;,E)ZCF,a(hTiaz)+8} >C¥+§-

Denote by 77 a random variable distributed as Rp(&r, hr, 3) — cpo(hr, 3)
under the law Pr, and denote by 7, r a random variable distributed as
Rr (&, G+ mr, 2) — cro(Gy + mr, 3) under the law Pr. The difference be-
tween these variables is that the first uses the finite-sample distribution of

(ér, hr, g), while the latter uses its asymptotic counterparts (¢, G, + mr, ).
Equation (11) and the bounded Lipschitz property of the statistic Ry and the
conditional critical value imply that

(13)  lim sup |Ef(T7) — Ef (Tee.r)| =0.

7 feBLy

Since 77, is a sequence of bounded random variables, by Prokhorov’s theorem
there exists a subsequence 7; and a random variable 7 such that 7, = 7. By
equation (13), 7 7, = T Since equation (12) can be written as P{7r, > &} >
a+ 8/2, we have

liminf {7, 7, > 0} > P(T > 0} > P{T > &}
8
z limsup P(Tr, z e} z a+ 5.

However, from the definition of quantiles we have

P{7;0,Tf > O} =PT{RF(§’ Gh +mT’ 2) > cF,a(Gh +mT, 2)} <a,
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since the statistic 7., 7, is the statistic in the exact Gaussian problem and so
controls size by Lemma 1. Thus we have reached a contradiction. Q.E.D.

PROOF OF THEOREM 2: As shown in Theorem 1, Assumptions 1-3 imply
that the distribution of the QLR statistic is uniformly asymptotically approxi-
mated by the distribution of the same statistic in the exact Gaussian problem.
Thus, it suffices to prove the statement of Theorem 2 for the exact Gaussian
problem only, which is to say when gr(-) is a Gaussian process with mean m(-)
and known covariance 3. In our case QLR = R(g+(6y), hr, %), where

(14) R(& h, 2) = &3(00, 00) ¢
- ilgf(V(B)f +1(6)) 2(6, )" (V(0)¢ + h(6))

and V(6) = 3(6, 6,)2(6y, 6))"'. Denote by A the event A = {gr(6) x
(6, 00)'gr(6y) < C} and note that by choosing the constant C > 0 large
enough we can guarantee that the probability of A is arbitrarily close to 1.

Let 67 be the value at which the optimum in equation (14) is achieved (the
case when the optimum may not be achieved may be handled similarly, albeit
with additional notation). We first show that 67 —” 6. For any a, b we have

(a+b)*>% — b2 50
(15) (V(0)gr(6o) + hr(6))'3(6, 0)~'(V (0)gr(60) + hr(6))
1 ’ -1
= 5mr(6) (0, 0)" 'mr(6)

— (V(0)gr(6) + hr () — mr(6)) 2(6, 6)~"
x (V(0)gr(80) + hr(0) — mr(6)).

Assumptions 2 and 5(vi) guarantee that the second term on the right-hand side
of equation (15) is stochastically bounded, so denote this term A4(8). For any
probability € > 0 there exists a constant C such that

inf P{supA(O) <Cand A} >1—e.

Pepy 0cO

Assumption 5(i) implies that there exists 77 such that for all 7 > 7} and P € Py
we have

inf  mp(0)3(6,0) 'my(0) > 4C.

10—60lI>67

Putting the last three inequalities together we get that for 7 > 7} and all
Pe 730,

Pl inf (V(0)gr(00) + hr(9)) 3(0, 0)"

16—6oll>o7

x (V(0)gr(60) + hr(9)) > Cand A} = 1 &.
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This implies that SUPpcp, P{||§T — 6|l > 67} <eforall T > T,.
As our second step we show that for any ¢ > 0,

(16)  lim supP” inf  gr(0)3(6,0)'gr(6)

T—00 pep, 19—l <d7

- inf gT(H) 2(00, 00)7](@7‘(0)) > 8} =O7

16—6oll<d7
where we replace the process gr(0) = V' (0)gr(6y) + hr(6) by the process
gT(O) gr(0y) + my(60) with the same mean function my(60) and covariance
2(0 6,) = 3(6y, 0,) for all 0, 6,. For this new process we have V(O) =1 and
hT(H) mr(0). To verify equation (16), restrict attention to the event A for
some large C > 0. The functional that transforms (g (6y), h, 2(6, ),V (-)) to

infyg_gy<5, (V(0)87(6) + h(0))2(0, 0)"(V (0)gr(6) + h(0)) is Lipschitz in
h,V,and 3(0, 0) on A. Thus,

inf g7(6)3(60,0)"'gr(0) — inf §7(6)'3(60, 60)” gT(H)’

10—6oll<é7 l6—6pll <67
<K sup [hy(0) —mr(0)|+ K, sup [|2(6,6) — (6o, 6y)|
16—6pll<é1 16—6pll<é1
+K5 sup |36, 05) — 3(6o, 00)|.
ll6—6pll <7

Note, however, that h;(0) — m(0) = G(0) — 2(6, 60)2(60y, 6y) " G(6). As-
sumption 5(iv) and (v) therefore imply equation (16).

As our third step, we linearly approximate mr using Assumption 5(ii), which
implies that for any € > 0,

lim sup P{| inf (g7 (60) +mz(6)) 260, 60) (g1 (60) + mr(6))
—00 pep, l6—6oll<d7
= 0t (g7(00) + Mr(0 = 00)) Z(By, 09)”"

x (r(0) + M(0 — 60))| > e} =0.

Indeed, on the set A we have that infy_g 5, (87(60) + m(6))' (6o, 6y) " x
(gr(0) + m(0)) is Lipschitz in m.
So far we have shown that QLR is asymptotically equivalent to

QLR = g7(60)'>(60, 00)'gr(60) — inf  (gr(o) +Mr(0 - 00))

16—6oll<

x 3(60, 00) ' (87(80) + M7(8 — 6)),
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and, in particular, that QLR — QLR; —” 0 as T — oc. Note, however, that
statistic

QLR; = gr(69)'3(60, 60) ' gr(6p) — ilgf(gr(ﬁo) + M7 (6 — 90)),
x 3(6o, 60) "' (87(80) + M7(6 — 6y))

is Xfi distributed provided M7 is full rank. The difference between QLR; and
QLR; is in the area of optimization, and the optimizer in QLR; is

6" = (M;3(6y, 600)""Mr) " M;3(65, 60) " gr(60)
~ N(0, (M}3(6y, 60) "' M7) 7).

Assumption 5(iii) guarantees that || 6*|| /87 converges uniformly to 0 in proba-
bility, and thus that
lim sup P{|6* — 6, > 87} =0.

T—o0 PePy

As aresult, QLR — QLR; —* 0, which proves that QLR = x; uniformly over
‘Py. The convergence of the conditional critical values is proved in a similar
way. Q.E.D.
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