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Abstract

We develop a concept of weak identification in linear IV models in which the number of instru-

ments can grow at the same rate or slower than the sample size. We propose a jackknifed version

of the classical weak identification-robust Anderson-Rubin (AR) test statistic. Large-sample in-

ference based on the jackknifed AR is valid under heteroscedasticity and weak identification. The

feasible version of this statistic uses a novel variance estimator. The test has uniformly correct

size and good power properties. We also develop a pre-test for weak identification that is related

to the size property of a Wald test based on the Jackknife Instrumental Variable Estimator. This

new pre-test is valid under heteroscedasticity and with many instruments.
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1 Introduction

Recent empirical applications of instrumental variables (IV) estimation often involve many

instruments that together may or may not be strongly relevant. For example, in a promi-

nent paper by Angrist and Krueger (1991) that started the weak IV literature, the authors

construct 180 instruments by interacting dummies for the quarter of birth with state and

year of birth, and use these instruments to study the effect of schooling on wage. Other ex-

amples include papers that employ an empirical strategy known as “judge design” (Maestas

et al., 2013; Sampat and Williams, 2015; Dobbie et al., 2018). Fueled by rich administra-

tive data, these papers use the exogenous assignment of cases to judges as instruments for

treatment. Since each judge can only process a certain number of cases out of the total

court cases, the number of judges (the number of instruments) is usually proportional
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to the sample size. Another example is the famous Fama-MacBeth procedure in Asset

Pricing (Fama and MacBeth, 1973; Shanken, 1992), which is equivalent to IV estimation

procedure with the number of instruments proportional to the number of assets.

This paper answers three questions in an environment with many instruments: how

to define weak identification, what to do if identification is weak, and how to pre-test for

weak instruments. We model many-instrument asymptotics by allowing the number of

instruments to grow at most proportionally with the sample size. Firstly, we define weak

identification for linear IV models with many instruments by providing necessary and

sufficient conditions for the existence of a consistent test. Secondly, we introduce a test

that works when there are many instruments, but is also robust to weak identification and

heteroscedasticity. Finally, we propose a pre-test for weak identification. This pre-test

forms the basis for a two-step procedure that is analogous to that of Stock and Yogo

(2005). The two-step test controls size distortion under many-instrument asymptotics,

regardless of the strength of identification or the presence of heteroscedasticity.

We define weak identification as a situation where an analog of the concentration

parameter divided by the square root of the number of instruments stays bounded in

large samples. We prove that even in a homoscedastic model with known covariance, an

asymptotically consistent test does not exist if the ratio of the concentration parameter

over the square root of the number of instruments stays bounded in large samples. Thus,

a necessary condition for a consistent test to exist is that the concentration parameter

grows faster than the square root of the number of instruments. Later, we show that this

is also a sufficient condition by constructing a robust test that becomes consistent when

this condition is satisfied.

We propose a new jackknifed version of the Anderson-Rubin (AR) test which is robust

to both weak identification and heteroscedasticity in a model with many instruments. The

new test uses an asymptotic approximation based on a Central Limit Theorem (CLT) for

quadratic forms. The new AR test has the correct size regardless of identification strength

and becomes consistent as soon as the concentration parameter grows faster than the

square root of the number of instruments.

As an important technical contribution, we introduce a novel variance estimator for the
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quadratic form CLT in the absence of a consistent estimator for the structural parameter.

The target variance is a quadratic form of the individual (heteroscedastic) variances of

errors. We apply cross-fitting (Newey and Robins, 2018; Kline et al., 2020) to produce

unbiased proxies for the individual variances of errors. We adjust the quadratic form to

remove the bias due to correlations between proxies. We prove the consistency of the

new estimator under the null and local alternatives under a wide range of identification

scenarios.

Finally, we propose a new pre-test for weak identification which is easy to use and is

consistent with our definition of weak identification. An empirical researcher can use our

pre-test to decide between employing our jackknife AR test if the pre-test suggests that

the identification is weak or a Wald test based on the Jackknife Instrumental Variable

Estimator (JIVE, Angrist et al., 1999) if the pre-test suggests that the identification is

strong. We guarantee the size of this two-step procedure. Chao et al. (2012) prove

that JIVE is consistent in a heteroscedastic model when the concentration parameter

grows faster than the square root of the number of instruments. Chao et al. (2012)

also derive a consistent estimator of the JIVE standard error. The two-step procedure is

appealing because when identification is strong, the JIVE-Wald is more efficient and easy

to implement and report.

Our pre-test is in the spirit of Stock and Yogo (2005), but it differs from theirs in

two important ways. Firstly, our pre-test allows for a general form of heteroscedasticity,

while the pre-test proposed in Stock and Yogo (2005) works only under conditionally

homoscedastic errors. Secondly, the Stock and Yogo (2005) pre-test is designed for a small

number of instruments and is based on the Two-Stage Least Squares (TSLS) estimator.

With many instruments TSLS is consistent only when the concentration parameter grows

faster than the number of instruments, which makes the Stock and Yogo (2005) pre-test

not very informative.

We apply our pre-test to Angrist and Krueger (1991) and find that their identification

is strong. Consequently the JIVE confidence set is reliable (has coverage within 5%

tolerance level of the declared coverage). Our weak identification-robust jackknife AR

confidence set is somewhat wider than the JIVE confidence set but is still informative.
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Relation to the Literature. Our paper contributes to both the literature on weak

IV and the literature on many instruments. The weak IV literature relates identification

strength to the size of the concentration parameter and proposes robust tests that work

only when there are a small number of instruments. Generalizations to many weak in-

struments either strongly restrict the number of instruments (Andrews and Stock, 2007)

or work only under homoscedasticity (Anatolyev and Gospodinov, 2011). Crudu et al.

(2020) recently proposed a jackknife-type AR test that is robust towards weak identifica-

tion and heteroscedasticity. While employing a similar statistic, their test uses a variance

estimator different from ours, that can be shown to lead to a power loss at distant alter-

natives and inconsistency of the test in some settings where our test is consistent.

The many weak instruments literature started with a prominent paper by Bekker

(1994). It mostly establishes conditions for consistency and asymptotic gaussianity for

particular estimators. For example, Chao and Swanson (2005) show that in a homoscedas-

tic model limited information maximum likelihood (LIML) and bias-corrected TSLS

(BTSLS) are consistent when the concentration parameter grows faster than the square

root of the number of instruments. In a heteroscedastic model, consistency of LIML

and BTSLS requires that the concentration parameter grows faster than the number of

instruments. By contrast, JIVE remains consistent when the concentration parameter

grows faster than the square root of the number of instruments (Chao et al., 2012). Our

paper shows that the condition in Chao et al. (2012) is necessary for consistency and if

it is violated it is impossible to consistently distinguish between any two values of the

structural parameter.

The remainder of this paper is organized as follows. Section 2 summarizes our proposal

for empirical researchers. In Section 3 we introduce our definition of weak identification in

an environment with many instruments. In Section 4 we construct the jackknife AR test

and establish its power properties. In Section 5 we present the pre-test and prove that it

controls size. Section 6 conducts a simulation exercise inspired by Angrist and Frandsen

(2019), and Section 7 concludes. Some proofs and additional results may be found in the

Supplementary Appendix.
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2 Many Weak Instruments: Empirical Practice

In empirical applications using instrumental variables, concerns about weak identification

are widespread. The current consensus practice is to report the first stage F statistic

and as long as it is above 10, researchers are allowed to rely on standard t-statistics

inferences. This practice has foundations in Stock and Yogo (2005) which showed that

the concentration parameter fully characterizes the size distortion of the TSLS-Wald test,

and empirically the concentration parameter can be judged based on the first stage F

statistics. This result has been obtained under the assumptions of homoscedasticity and

for a fixed number of instruments.

While the first stage F pre-test provides reasonable classification for homoscedastic

IV models with a small number of instruments, it is inadequate for settings with many

instruments. Hansen et al (2008) argue that the TSLS estimator should not be used in

applications with many instruments as it becomes very biased. They also argue that a

low first stage F statistic is not always indicative of a weak identification issue and t-

statistics inferences based on more appropriate estimators other than TSLS, along with

corrected standard errors, may still be reliable. Estimators with known good properties in

heteroscedastic settings with many instruments include JIVE (Chao and Swanson, 2005)

and heteroscedasticity-robust Fuller (Hausman et al, 2012).

While theoretical econometrics literature provides recommendations on the choice of

estimator, it is largely silent on how to determine whether the concerns of weak identi-

fication are valid in a given data set with many instruments. This prompted empirical

researchers to formulate econometric arguments and perform simulation studies to sup-

port their usage of t-statistics. For example, Bhuller et al (2020), recently published in the

Journal of Political Economy, used judges design instruments to study the effects of incar-

ceration on recidivism and employment. Concerned about potentially having many weak

instruments, Bhuller et al (2020) included a 10-page-long Appendix D with a simulation

study to support their usage of the JIVE t-statistic.

Our paper proposes a new recipe for empirical researchers to gauge weak identification

in applications with many instruments. Specifically, we argue that theoretically, the

strength of identification is measured by the concentration parameter divided by the square
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root of the number of instruments. This is in contrast to the first stage F statistics from

Stock and Yogo (2005), which implicitly divide the concentration parameter by the number

of instruments. We suggest applied researchers calculate a new pre-test F̃ (see equation

(6)) and compare it to a cutoff of 4.14. If F̃ is above the cutoff then the researcher can rely

on the JIVE t-statistic with the caveats analogous to Stock and Yogo (2005): Namely, the

size distortions of the JIVE t-statistic are within 5% tolerance level of the nominal size. If

F̃ is below the cutoff we suggest researchers report a confidence set obtained by inversion

of our newly proposed weak-identification robust jackknife AR test (see Equation (2)).

As discussed in Section 5 , applied researchers may also choose other cutoffs depending

on their tolerance level of size distortions. Here we illustrate this recipe with an example

from Angrist and Krueger (1991) (hereafter referred to as AK91).

AK91 provided a motivating example for the weak identification literature, starting

with the seminal work by Bound et al. (1995). Staiger and Stock (1997) suggested that

the relatively low value of the first stage F statistic can be seen as a sign of potentially

weak instruments in the AK91 application. Hansen et al. (2008) argued that many

instruments may be a more relevant description of the identification issue encountered in

AK91. They suggested that estimators other than the TSLS may restore the reliability

of standard inferences. We resolve the controversy of whether the instruments are weak

in this example utilizing a formal pre-test.

The original AK91 application estimated the effect of schooling (Xi) on log weekly

wage (Yi) using quarter of birth as instruments in a sample from the 1980 census of

329,509 men born in 1930-39. There are multiple specifications in the original AK91

study. We focus on the specification with 180 instruments and also on an extension of

this specification using 1,530 instruments. The 180 instruments include 30 quarter and

year of birth interactions (QOB-YOB) and 150 quarter and state of birth interactions

(QOB-POB). For the second specification with 1,530 instruments, we also include full

interactions among QOB-YOB-POB. Table 1 reports the first stage F statistics (FF), our

proposed pre-test statistics F̃ , 5% and 2% confidence sets based on the JIVE t-statistic

and the jackknife AR statistic proposed in this paper.

While the first stage F statistic is below 10 and the current empirical practice would
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point towards weak identification for both specifications, the instruments turn out to be

strong in both specifications based on our pre-test. According to the results of this paper

discussed in Section 5, both of the reported confidence sets based on a nominal 5% JIVE

t-test are reliable with the same caveats as in Stock and Yogo (2005), namely, the actual

rejection rate under the null hypothesis does not exceed 10%. This pre-test is based on the

statistic F̃ and rejects whenever F̃ > 4.14. Based on the pre-test, the empirical researcher

may report the JIVE confidence set only, and not the identification-robust AR confidence

set.

This two-step procedure is similar to that popularized by Stock and Yogo’s (2005).

Choosing between JIVE and AR confidence set to report based on the pretest in the

first step guarantees that the reported confident set from this two-step procedure has an

overall size of 15%. If the applied researcher prefers that the two-step procedure has an

overall size of 5%, results in Section 5 suggest using a higher cutoff of 9.98 for F̃ and

smaller nominal sizes to construct the confidence sets. Specifically, the applied researcher

should choose between a nominal 98%-level JIVE confidence set and a nominal 98%-level

AR confidence set. In this case, for the specification with 180 instruments, the applied

researcher can still report the JIVE confidence set as the corresponding F̃ is greater than

9.98. However, for the specification with 1530 instruments, the applied researcher needs

to report the identification-robust AR confidence set instead as the corresponding F̃ is

less than 9.98.

An alternative to pre-test is to always report a robust confidence set, which would be

the 5% jackknife AR confidence set in this case. We do see that the AR confidence sets

are wider, yet still informative.

3 Weak Identification with Many Instruments

We study the linear IV regression with a scalar outcome Yi, a potentially endogenous

scalar regressor Xi and a K × 1 vector of instrumental variables Zi: Yi = βXi + ei,

Xi = Πi + vi,
(1)
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FF F̃ JIVE-t Jackknife AR JIVE-t Jackknife AR
(5%) (5%) (2%) (2%)

180 instruments 2.43 13.42 [0.066,0.13] [0.008,0.20] [0.059,0.14] [0.0003, 0.21]
1530 instruments 1.27 6.17 [0.024,0.12] [-0.047, 0.20] [0.015,0.13] [ -0.066,0.22]

Table 1: AK91 Pre-test Results
Notes: Results on pre-tests for weak identification and confidence sets for the IV specification underlying
Table VII Column (6) of Angrist and Krueger (1991) using the original data. FF is the first stage F
statistic of Stock and Yogo (2005), F̃ is the statistic introduced in (6). The jackknife AR confidence set
is based on analytical test inversion. The confidence sets reported by the two-step procedure with Stock
and Yogo’s guarantee are in bold. The confidence sets reported by the two-step procedure with overall
size of 5% is in italic.

for i = 1, ..., N. We denote Y to be the N × 1 vector of outcome and X to be the N × 1

vector of endogenous regressors. We collect the transpose of Zi in each row of Z, a N×K

matrix of instruments. We denote Πi = E[Xi|Zi] and allow the instruments to affect the

endogenous regressor in a non-linear way. All results in this paper hold conditionally on a

realization of the instruments. Thus, we treat the instruments as fixed (non-random) and

Πi as some constants. We collect Πi in Π, a N × 1 vector. The mean-zero errors (ei, vi)

are independent across i but not identically distributed and may be heteroscedastic. We

assume without loss of generality that there are no controls included in our model as they

may be partialled out.

Weak identification under small K is studied extensively in the weak IV literature.

For Gaussian homoscedastic errors (ei, vi) and linear first stage (Πi = π′Zi), the strength

of the instruments corresponds directly to the concentration parameter, π′Z′Zπ
σ2
v

where

σ2
v = V ar(vi). The concentration parameter equals the signal-to-noise ratio in the first-

stage regression and is related to the bias of the TSLS estimator and the quality of

Gaussian approximation for the TSLS t-statistic. For the general case with homoscedastic

errors, Staiger and Stock (1997) introduced weak instrument-asymptotics in which one

considers a sequence of models so that the concentration parameter converges to a constant

as N →∞. Under this asymptotic embedding, neither a consistent estimator of β nor a

consistent test of the null hypothesis that β equals some scalar exists, and the test based

on the TSLS t-statistic severely over-rejects.

The magnitude of the concentration parameter is not a good indicator of identification

strength when the number of instruments is large. Inspired by Bekker (1994), we model
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large K by considering K →∞ as N →∞, with the only restriction that K is at most a

fraction of N . Under this many instrument-asymptotics, Theorem 1 below shows that the

re-scaled concentration parameter π′Z′Zπ
σ2
v

√
K

provides a characterization of weak identification

in terms of the consistency of tests.

Theorem 1 Assume we have a sample from model (1) with linear first stage Πi = π′Zi.

Consider the reduced-form errors (ui, vi) where ui = Yi − βπ′Zi. Assume the reduced-

form errors are independently drawn from a Gaussian distribution N (0,Ω) with a known

nonsingular covariance matrix Ω. Assume that the K ×K matrix Z ′Z has rank K and

K → ∞ as N → ∞. For any sample of size N let ΨN be the class of all tests of size

α for testing the hypothesis H0 : β = β0, that is, any ψ ∈ ΨN is a measurable function

from {(Yi, Xi, Zi), i = 1, ..., N} to the interval [0, 1] such that Eβ0,πψ ≤ α for any value of

π ∈ RK. Then for any β∗ 6= β0 we have

lim sup
N→∞

max
ψ∈ΨN

 min
π:π
′Z′Zπ
σ2
v
√
K

=C

Eβ∗,πψ

 < 1.

The setting considered in Theorem 1 is quite favorable: the first stage is linear, errors

are Gaussian and homoscedastic with known covariance matrix. So the only unknown

parameters are β and π. Theorem 1 states that even in this favorable setting there exists

no test that consistently differentiates any β∗ from β0 if the ratio of the concentration

parameter to the square root of the number of instruments is bounded. Indeed, for

any test ψ we can find its guaranteed power Eβ∗,πψ by minimizing over the alternatives

(β∗, π) with bounded ratio of the concentration parameter over
√
K. We show that

even in this favorable setting the test that achieves the maximum guaranteed power

has guaranteed power strictly less than one asymptotically. With heteroscedasticity of

unknown form, sufficient statistics of low dimensions are not known, making the setting

even less favorable. Later we show that in a more general heteroscedastic model we can

construct a robust test that becomes consistent when Π′Π√
K
→∞.

Theorem 1 can also be used to characterize weak identification in terms of consistent

estimation since it implies there exists no consistent estimator for β when the ratio of the

concentration parameter to
√
K is bounded. Our result complements the literature on esti-
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mation with many instruments. Chao and Swanson (2005) show that with homoscedastic

errors, when K grows proportionally to the sample size the TSLS estimator is consis-

tent only if the concentration parameter grows faster than the number of instruments

K, while LIML and BTSLS estimators are consistent when the concentration parameter

grows faster than
√
K. However, under heteroscedasticity, even when π′Z′Zπ√

K
→∞, LIML

and BTSLS become inconsistent, but JIVE is still consistent, according to Chao et al.

(2012).

The proof of Theorem 1 builds on several classical papers. Following the approach

of Andrews et al. (2006), we first reduce the class of tests to those based on a sufficient

statistic. Among these tests, the minimal power is achieved by a test invariant to rotations

of the instruments. This observation allows us to further reduce our attention to invariant

tests, which depend on the data only through its maximal invariant under rotations. Then

we derive a limit experiment for K → ∞ similar to that derived in Andrews and Stock

(2007). In this limit experiment the minimax power is less than one. Finally we use the

argument of Müeller (2011) to bound the desired asymptotic minimax power using the

minimax power obtained in the limit experiment.

4 Jackknife AR

The goal of this section is to introduce a test robust to weak identification in the het-

eroscedastic IV model when the number of instruments, K, is large.

The existing weak IV literature proposes several weak identification-robust tests of

the null hypothesis H0 : β = β0, when K is small. These tests have correct size when

the identification is weak and become consistent when the identification is strong. One

example is the AR test. Specifically, the IV model (1) implies that under a given null

hypothesis H0 : β = β0, the exogeneity assumption holds E[Z ′e(β0)] = 0 for the im-

plied error e(β0) = Y − β0X. Then under mild assumptions, the scaled sample analog
1√
N
Z ′e(β0) ⇒ N(0,Σ) satisfies a K-dimensional CLT. The AR statistic is defined as

1
N
e(β0)′ZΣ̂−1Z ′e(β0), where Σ̂ is a consistent estimator of V ar

(
1√
N
Z ′e
)
. The AR test

rejects the null hypothesis when the AR statistic exceeds the (1− α) quantile of the χ2
K
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distribution. The AR test has asymptotically correct size regardless of the value of the first

stage coefficients Πi and is asymptotically consistent when an analog of the concentration

parameter grows to infinity.

Generalizing the AR statistic to the large-K setting is challenging for multiple reasons.

Firstly, the covariance matrix Σ has dimension K × K. Its consistent estimation is

problematic if not impossible under general heteroscedasticity. Secondly, the AR statistic

under the null has an improperly centered limit distribution because χ2
K has a very large

mean. Thirdly, theK-dimensional CLT provides a poor approximation to the AR statistic

when K is large.

We propose an analog of the AR test that is heteroscedasticity-robust and weak

identification-robust in the presence of a large number of instruments. Denote the projec-

tion matrix P = Z(Z ′Z)−1Z ′. Our test rejects the null of H0 : β = β0 when the jackknife

AR statistic

AR(β0) =
1

√
K
√

Φ̂

N∑
i=1

∑
j 6=i

Pijei(β0)ej(β0) (2)

exceeds the (1−α) quantile of the standard normal distribution. We defer the discussion

of the estimator of the variance Φ̂ to the next subsection.

To address the challenges with the existing AR statistic, the AR statistic we propose

uses the default homoscedasticity-inspired weighting (Z ′Z)−1 in place of Σ̂−1. With the

(Z ′Z)−1 weighting, the existing AR statistic has a quadratic form e(β0)′Pe(β0). However,

this quadratic form is not centered at zero as it contains the term
∑N

i=1 Piie
2
i , and each

summand has positive mean. We thus remove this term from the quadratic form. This

re-centering can be referred to as leave-one-out or jackknife. In the context of consistent

estimation under many instruments, this leave-one-out idea was introduced by Angrist et

al. (1999) and fruitfully exploited in a number of papers including Hausman et al. (2012)

and Chao et al. (2012). Recently, this idea has been used in Chao et al. (2014) and

Crudu et al. (2020). In order to create a test of correct size based on our AR statistic,

we use a CLT for quadratic forms proved in Chao et al. (2012) that is restated below.

Assumption 1 Assume P is an N×N projection matrix of rank K, K →∞ as N →∞

and there exists a constant δ such that Pii ≤ δ < 1.
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Lemma 1 (Chao et al., 2012) Let Assumption 1 hold for matrix P . Assume the errors

ηi are independent, Eηi = 0, and there exists a constant C such that maxi Eη4
i < C, then

1√
K
√

Φ

N∑
i=1

∑
j 6=i

Pijηiηj ⇒ N (0, 1),

where Φ = 2
K

∑N
i=1

∑
j 6=i P

2
ijV ar(ηi)V ar(ηj).

The assumption Pii ≤ δ < 1 implies that K
N

= 1
N

∑N
i=1 Pii ≤ δ < 1. This assumption

is often referred to as a balanced design assumption. In the case of group-dummies

instruments, Pii is equal to the ratio of the size of the group that observation i belongs

to over N . Assumption 1 can be checked for any specific design.

While Lemma 1 requires K → ∞, the Gaussian approximation may work well for

smaller K as well. For example, if K is fixed and errors are homoscedastic, then

1√
K
√

Φ

N∑
i=1

∑
j 6=i

Pijηiηj ⇒
χ2
K −K√

2K
as N →∞.

We prove this statement in the Supplementary Appendix S4. While the limit here is

not Gaussian it is very well approximated by a standard normal distribution even for

relatively small K. The random variable χ2
K−K√

2K
exceeds the 95% quantile of the standard

normal distribution at most 7% of the time for all K, and at most 6% of the time for

K > 40.

4.1 Variance estimation

In order to conduct asymptotically valid inference based on the normal approximation in

Lemma 1, we need an estimator for the scale parameter Φ, which is consistent under the

null. One ‘naive’ estimator that achieves this is Φ̂1 = 2
K

∑N
i=1

∑
j 6=i P

2
ije

2
i (β0)e2

j(β0), which

uses the square of the implied error as an estimator for the i-th error variance. Under

the null when ei(β0) = ei, the estimator Φ̂1 is consistent under relatively mild conditions.

However, using Φ̂1 in a test would result in poor power. To see this, note that under an

alternative value of the parameter β = β0 +∆, we can plug in the first stage and write the
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implied error ei(β0) = Yi − β0Xi as the sum of a non-trivial mean ∆Πi and a mean-zero

random term ηi = ei + ∆vi:

ei(β0) = ∆Πi + ηi. (3)

The AR statistics of a form similar to (2) with Φ̂1 has been recently and independently

proposed by Crudu et al. (2020). The aforementioned paper establishes robustness of

their proposed test towards weak identification and heteroscedasticity in terms of size.

While squaring ei(β0) makes it an unbiased estimator for V ar(ei) under the null, it is

biased under the alternative when ∆ 6= 0. The bias in Φ̂1 grows at the same order as the

fourth power of ∆, which brings down the power of the test against distant alternatives.

In Section 4.2, we discuss the power implications of the ‘naive’ estimator in more detail.

In order to remove the bias in e2
i (β0) under the alternatives, one may residualize the

implied error before squaring. However, this introduces a bias under the null. Denote

M = I−P and letMi be the ith row ofM . Even under the null, the squared residualized

error is biased E(Mie)
2 6= V ar(ei). This is because the squared residual contains not only

the squared error ei but also the square of regression estimation mistake. The latter can

be large when the number of regressors K is large.

This bias can be removed successfully using the cross-fit variance estimator suggested

in Kline et al. (2020) and Newey and Robins (2018). Namely, they show that a product

of the implied error and residual achieves both goals: it removes the linearly predictable

part of the implied error and remains an unbiased estimator of the variance

E
[
eiMie

Mii

]
= V ar(ei).

Our challenge is that the scale parameter Φ defined in Lemma 1 is a quadratic form

with a double summation. Residuals Mie(β0) and Mje(β0) are correlated since they

contain the same estimation mistake. One can show that

E [eiMieejMje] = (MiiMjj +M2
ij)V ar(ei)V ar(ej).
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Our proposed estimator of the scale parameter Φ re-weights each term in the summation

to remove the bias described above:

Φ̂ =
2

K

N∑
i=1

∑
j 6=i

P 2
ij

MiiMjj +M2
ij

[ei(β0)Mie(β0)] [ej(β0)Mje(β0)] . (4)

We establish the consistency of Φ̂ under the null and extend this result to local alternatives.

Assumption 2 Errors εi, i = 1, ..., N are independent with Eεi = 0, maxi E‖εi‖6 < ∞,

and for some constants c∗ and C∗ that do not depend on N

c∗ ≤ min
i

min
x

x′V ar(εi)x

x′x
≤ max

i
max
x

x′V ar(εi)x

x′x
≤ C∗.

Theorem 2 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ei,

then for β = β0, we have Φ̂
Φ
→p 1 as N →∞.

Theorem 2 combined with Lemma 1 implies that under the null H0 : β = β0 our proposed

AR statistic has an asymptotically standard normal distribution. Since no assumption

about identification is made, the resulting AR test has asymptotically correct size regard-

less of the strength of identification.

Theorem 3 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors εi =

(ei, vi)
′, and Π′MΠ ≤ C

K
Π′Π. Then for β = β0 + ∆, where ∆ may depend on N such that

∆2 · Π′Π
K
→ 0, we have Φ̂

Φ
→p 1 as N →∞.

Theorem 3 establishes the consistency of the variance estimator when the null hy-

pothesis does not hold. We use Theorem 3 to derive local power curves of the AR test

discussed in the next section. The variance estimator (4) residualizes the implied errors

Mie(β0) to remove non-trivial mean of e(β0) under the alternative. The residualization

is complete if the first stage is linear Πi = π′Zi. We do not impose such an assumption

in Theorem 3. Instead we require that the approximation of Πi by a linear combination

of instruments improves with the number of instruments as measured by the norm of

the approximation mistake, Π′MΠ. In their Assumption 4, Chao et al. (2012) impose

that Π′MΠ
N
→ 0, which may be weaker or stronger than our assumption Π′MΠ ≤ C

K
Π′Π

14



depending on the identification strength. The variance estimation in Chao et al. (2012)

is valid only under strong identification as it relies on the consistency of the JIVE esti-

mator. The residuals from structural equation, with the JIVE estimate for β plugged in,

approximate the structural errors well. In contrast, our variance estimator remains valid

under weak identification when no consistent estimator for β exists. This is why we need

stricter assumptions on the linear approximation to produce reliable residuals under weak

identification.

4.2 Power of the Jackknife AR test

Let us introduce a jackknife measure of the information contained in the instruments:

µ2 =
N∑
i=1

∑
j 6=i

PijΠiΠj.

For the linear first stage Πi = π′Zi, we have µ2 = π′Z ′Zπ−
∑N

i=1 Pii(π
′Zi)

2. Assumption 1

guarantees that (1−δ)π′Z ′Zπ ≤ µ2 ≤ π′Z ′Zπ. Thus, the two measures µ2
√
K

and π′Z′Zπ√
K

are

of the same order and increase to infinity or not simultaneously. In the general case where

the instruments may affect the endogenous regressor in an arbitrarily non-linear way, the

linear IV regression only uses the projection of Π onto the linear space of the instruments.

Thus the projection matrix appears naturally in our measure of identification strength.

The parameter µ2 can be considered as a jackknife generalization of the parameter π′Z ′Zπ

to non-linear case.

Theorem 4 Let Pβ be a probability measure describing the distribution of AR(β0) defined

in (2) and (4) under model (1) with parameter β = β0 + ∆. Assume that the sequence of

first stage parameters Π satisfies the following assumptions: Π′MΠ ≤ C
K

Π′Π and Π′Π
K
→ 0

as N →∞. If Assumption 1 holds and the errors εi = (ei, vi)
′ satisfy Assumption 2, then

for any positive constant c we have:

lim
N→∞

sup
|∆|2≤c

sup
z

∣∣∣∣Pβ{AR(β0) < z} − F
(
z − ∆2µ2

√
KΦ

)∣∣∣∣ = 0, (5)

where F (·) is the standard normal cdf. If the sequence of first stage parameters additionally
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satisfies the condition µ2
√
KΦ
→ ∞, then for any fixed ∆ 6= 0 the jackknife AR test is

asymptotically consistent:

lim
N→∞

Pβ{AR(β0) ≥ z1−α} = 1

where z1−α is the (1− α) quantile of the standard normal distribution.

Equation (5) of Theorem 4 characterizes the local power curves of the jackknife AR test.

The power under the alternative β = β0 + ∆ is a function of the distance ∆ between the

alternative β and the null β0, the number of instruments K, a measure of identification

strength µ2 and the degree of uncertainty
√

Φ. Our jackknife AR statistic can be negative,

unlike the AR statistic from the small-K case which is always non-negative. We reject

the null when AR(β0) exceeds the (1 − α) quantile of the standard normal distribution.

Under the alternative β = β0 + ∆, the AR statistics has a positive drift and produces

non-trivial power for both positive and negative ∆. The second statement of Theorem 4

shows that the AR test consistently distinguishes β from β0 as long as µ2
√
K
√

Φ
→∞.

Theorem 4 implies that µ2
√
K
→ ∞ is a sufficient condition for the consistency of the

jackknife AR test in a model with a linear first stage . This complements Theorem 1 which

implies that π′Z′Zπ√
K
→∞ is necessary for the consistency of any test. This condition has

appeared before in Chao et al. (2012) as a sufficient condition for the consistency of

the JIVE estimator and asymptotic validity and consistency of the JIVE t-test. The

important difference between the proposed jackknife AR test and the JIVE t-test is that

even under weak identification (π′Z′Zπ√
K
6→ ∞), the former maintains asymptotically valid

size, while the latter does not. It is worth noticing that the condition Π′Π
K
→ 0 imposed

by Theorem 4 is quite weak as it covers both weakly and strongly identified cases.

Power implications of variance estimation. While the leave-one-out AR test with

our proposed cross-fit variance estimator is consistent against fixed alternatives when

identification is strong, the same test with a ‘naive’ variance estimator Φ̂1 is in general not

consistent. The difference between the implied error ei(β0) and ηi as defined in equation

(3) results in that the difference between Φ̂1 and Φ is a fourth degree polynomial of ∆.

This makes the stochastic shift for the AR statistic with the naive variance estimator to
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stabilize at the finite level when ∆→ ±∞:

∆2µ2

√
K

√
Φ̂1

≈ ∆2µ2

√
K
√

Φ

√
Φ

c∆4 + Φ
→ C± as ∆→ ±∞,

while it increases unboundedly for the statistic with the cross-fit variance estimator. Here

c = 2
K

∑N
i=1

∑
j 6=i P

2
ijΠ

2
iΠ

2
j .

Theoretical inconsistency of a test may or may not result in power differences of

empirical relevance for commonly used significance levels. This depends partially on

whether the level at which the stochastic shift stabilizes is above the typically used critical

values. In very strongly identified cases where µ2
√
K

is large, we may detect no significant

difference between two statistics for alternatives with relatively small ∆, implying a small

power difference. While there is an increasingly large difference in realized values of

statistics for large ∆, such a difference might not translate to a power difference either since

both tests would reject. For example, in the AK91 example discussed in Section 2, using

the ‘naive’ variance estimator Φ̂1 would yield nearly identical jackknife AR confidence

sets. For the specification that uses 1530 instruments, jackknife AR confidence sets based

on the ‘naive’ variance estimator are [−0.048, 0.202] (5%) and [−0.662, 0.224] (2%), which

are very close to the ones based on Φ̂ as reported in Table 1.

We find larger power differences for moderately weak instruments under a sparse first

stage. The divergence between two statistics depends positively on parameter c. While

large values of the first stage coefficients Πi tend to produce large values of both µ2
√
K

and c, the relation between the last two is not proportional. A more sparse first stage

tends to produce higher values of c (and larger power differences) for the same level of

the identification strength µ2
√
K
, and therefore more stark power loss from using the ‘naive’

variance estimator. Based on a simple simulation design, Figure 1 plots the power curves

for the leave-one-out AR test with different variance estimators under a sparse first stage

(a) and a dense first stage (b). We include additional power comparisons in Section 6 and

in the Supplementary Appendix.
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Figure 1: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse vs. dense first stage. The instruments are K = 40 balanced group indicators.
Sample size is N = 200. Number of simulation draws is 1,000. Details of the simulation design can be
found in the Appendix.

5 Pre-test for Weak Identification

In a prominent paper, Stock and Yogo (2005) introduced a pre-test for weak identification

that has gained enormous popularity in applied work. In homoscedastic IV models with

small K, the concentration parameter fully characterizes the worst bias of the TSLS as a

fraction of the OLS bias and the worst rejection rate of TSLS-Wald test. Stock and Yogo

(2005) suggest a set of cut-offs for the first stage F statistic, above which a researcher

can guarantee with high (prespecified) probability that the bias of TSLS is not larger

than 10% of the OLS bias, or that the TSLS-Wald statistic does not over-reject by more

than 5%. The cut-offs depend on the goal (bias or size) and the number of instruments.

However, these details seem to be mostly disregarded in empirical practice that uses a

cut-off of 10, regardless of the goal or the number of instruments.

As with any procedure of such generality, the Stock-Yogo pre-test suffers from multi-

ple drawbacks. First, the pre-test is valid only if the model is homoscedastic. Andrews

(2018) shows that in models calibrated to commonly-used data sets with heteroscedas-

ticity one may find cases with the first stage F statistics exceeding 1000, that have large

over-rejections of the TSLS-Wald test. Second, the TSLS estimator is less robust to weak

identification when K is large. In a homoscedastic model when K is growing proportion-
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ally to the sample size, the TSLS estimator is consistent only if π′Z′Zπ
K
→∞, while LIML

and BTSLS estimators are consistent when π′Z′Zπ√
K
→ ∞ as shown in Chao and Swanson

(2005). In this case, the pre-test becomes too conservative. Indeed, if π′Z′Zπ√
K
→ ∞ but

π′Z′Zπ
K

9∞, then the pre-test most likely declares weak identification as the expectation

of the first stage F equals to π′Z′Zπ
Kσ2

v
+ 1, even though there exist consistent estimators and

a reasonable Wald-test can be constructed.

We propose a new pre-test for weak identification, that allows us to assess the reliability

of the JIVE-Wald test. Our pre-test uses statistic

F̃ =
1

√
K
√

Υ̂

N∑
i=1

∑
j 6=i

PijXiXj, (6)

here Υ̂ = 2
K

∑
i

∑
j 6=i

P 2
ij

MiiMjj+M2
ij
XiMiXXjMjX is an estimate of the variance Υ defined

in (13). The JIVE-Wald test uses the JIV2 estimator introduced in Angrist et al. (1999):

β̂JIV E =

∑N
i=1

∑
j 6=i PijYiXj∑N

i=1

∑
j 6=i PijXiXj

.

We use the following estimator of the JIVE variance, that is a cross-fit version of the

estimator derived in Chao et al. (2012):

V̂ =

∑N
i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj(∑N

i=1

∑
j 6=i PijXiXj

)2 ,

where êi = Yi−Xiβ̂JIV E and P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij
. TheWald statistic is defined asWald(β0) =

(β̂JIV E−β0)
2

V̂
. Our choice of JIVE is based on two considerations. First, according to Haus-

man et al. (2012), in a heteroscedastic IV model, when π′Z′Zπ√
K
→ ∞, LIML and BTSLS

become inconsistent, but JIVE is consistent. Second, the JIVE estimator is a ratio of

two quadratic forms similar to the jackknife AR statistic, which motivates the following

characterization.

Theorem 5 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors εi =
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(ei, vi)
′. Assume that Π′MΠ ≤ CΠ′Π

K
and Π′Π

K2/3 → 0 as N →∞. Then for β = β0,

sup
x,y

∣∣∣∣∣P{Wald(β0) ≤ x, F̃ ≤ y
}
− P

{
ξ2

1− 2% ξ
ν

+ ξ2

ν2

≤ x, ν ≤ y

}∣∣∣∣∣→ 0, (7)

where ξ and ν are two normal random variables with means 0 and µ2
√
K
√

Υ
, unit variances

and correlation coefficient % defined in equation (13).

Theorem 5 shows that the distribution of the JIVE-Wald statistics can be quite dif-

ferent from its conventional χ2
1 limit when µ2

√
K
√

Υ
is small. If µ2

√
K
√

Υ
is large, then most

realizations of the random variable ν are large as well and the limit of the JIVE-Wald is

close to the distribution of ξ2, which is χ2
1. This suggests that µ2

√
K
√

Υ
is a good measure

for identification strength. The assumption Π′Π
K2/3 → 0 is somewhat restrictive but covers

both weakly and strongly identified cases.

Using Theorem 5 we create a pre-test for one definition of weak identification following

Stock and Yogo (2005), which stipulates whether the actual size of the conventional 5%

JIVE Wald test could exceed 10%. First, we calculate the worst asymptotic rejection rate

of the JIVE-Wald test for a given theoretical strength of identification S = µ2
√
K
√

Υ
:

Rmax
α (S) = max

%∈[−1,1]
PS,%

{
ξ2

1− 2% ξ
ν

+ ξ2

ν2

≥ χ2
1,1−α

}
,

where PS,% is the probability distribution of (ξ, ν) as described in Theorem 5. The quantity

Rmax
α can be straightforwardly obtained from simulations (the maximum rejection occurs

at % = 1). Specifically S = µ2
√
K
√

Υ
> 2.5 implies Rmax

5% (S) < 10%.

The strength of identification parameter as measured by S = µ2
√
K
√

Υ
is unknown in

practice. Theorem 5 also allows us to construct a 5%-test for the null hypothesis that the

unknown strength of identification parameter S = µ2
√
K
√

Υ
is lower than 2.5. This test is

based on the statistic F̃ and rejects whenever F̃ > 4.14. This test is therefore the analog

to Stock and Yogo (2005) first stage F pre-test, which tests whether the actual size of the

conventional 5% JIVE Wald test could exceed 10%.

An advantage of the new pre-test based on F̃ for weak identification is that when it

is combined with any weak identification robust test, such as our jackknife AR test, to
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be used when F̃ is below the cut-off, we can guarantee that the size of such two-step

procedure is within a tolerance bound of 10% from the declared nominal size.

Corollary 1 Let all assumptions of Theorem 5 hold. Then a two-step test for the null

hypothesis H0 : β = β0 that accepts the null if F̃ > 4.14 and Wald(β0) < χ2
1,0.95 or if

F̃ ≤ 4.14 and AR(β0) < z0.95, has an asymptotic size smaller than 15%.

The attraction of the two-step procedure is that confidence sets based on the JIVE-Wald

test are relatively easy to construct and are well understood by the practitioners. As

we illustrate in simulations, the jackknife AR confidence sets tend to be wider than the

JIVE-Wald confidence sets when identification is strong. Simulations also suggest the

Bonferroni bounds derived in Corollary 1 tend to be conservative, as the actual size of

the two-step test does not exceed 7%.

The 5% Wald confidence set with 10% tolerance described in Corollary 1 is the leading

case considered by Stock and Yogo (2005). However, Theorem 5 also allows us to create

a two-step procedure with the overall size of 5% or 10% by adjusting the cut-off for F̃

and using Wald and the jackknife AR confidence sets with smaller nominal sizes (and

correspondingly larger critical values). Table 2 tabulates a few combinations of valid cut-

offs and critical values. As an example of a 5% two-step procedure, the researcher may

compare the F̃ statistic with 9.98. If F̃ exceeds the cut-off, the researcher reports a JIVE-

Wald confidence set that uses the 98% quantile of the χ2
1 as the critical value. Otherwise,

the researcher reports a jackknife AR confidence set that uses the 98% quantile of the

standard normal distribution as the critical value. We apply this procedure to the AK91

example discussed in Section 2 and report the results in Table 1 in italic.

6 Return to Education: Monte Carlo Simulations

In this section we conduct Monte Carlo simulations to show that the jackknife AR and

the pre-test we develop are robust to many weak instruments unlike canonical IV estima-

tors. To maintain the practical relevance, we attempt to preserve the structure of AK91

as described in Section 2. Specifically, we adopt the simulation design by Angrist and

Frandsen (2019). There is very little endogeneity in the original AK91, which makes it

21



Cut-off for F̃ Wald-JIVE Jackknife AR Overall Size
7.15 5.41 (2%) 2.32 (1%) 5%
9.98 5.41 (2%) 2.05 (2%) 5%
12.86 5.41 (2%) 1.96 (2.5%) 5%
5.01 3.84 (5%) 2.05 (2%) 10%
7.65 3.84 (5%) 1.75 (4%) 10%

Table 2: Critical Values for Two-step Procedure
Notes: The two-step procedure switches between the Wald-JIVE test and the jackknife AR test based
on the cut-off for F̃ . When F̃ is greater than the cut-off, the Wald-JIVE test is conducted. When F̃

is less than the cut-off, the jackknife AR test is conducted. In the parentheses we list the nominal size
associated with the critical values. The last column reports the overall size for the two-step procedure.

N K Avg. F̃ µ2
√
K
√

Υ
OLS 2SLS 2SLS LIML LIML JIVE JIVE
bias bias size bias size bias size

4,923 154 4.99 4.91 0.26 0.17 96.6% -0.001 0.6% -0.03 5%
3,209 135 3.35 3.29 0.26 0.19 95.7% -0.05 2.7% -0.06 5.2%
1,599 111 1.77 1.74 0.26 0.21 92.3% -0.89 14.5% 1.22 3.6%

Table 3: AK91 Simulation Results: Bias of Different Estimators and Size of Non-robust Tests

hard to study the biases of different estimators. Thus, we follow Angrist and Frandsen

(2019) to introduce additional omitted variable bias to the simulated data. The simu-

lated data has a nonlinear first stage and is heteroscedastic. We deviate from Angrist

and Frandsen (2019) in two respects. First, we vary the sample size N of the simulated

data to be 1.5%, 1% and 0.5% of the original sample size. This is to vary the identifica-

tion strength. We report the identification strength by µ2
√
K
√

Υ
as well as the average F̃

across simulations. Simulations with sample size equal to 1.5% of the original sample size

produce strong identification in our definition, 1% still produce strong identification but

close to the weak identification region, while 0.5% produce weak identification.When we

reduce the sample size we also need to exclude the instruments of the groups that are no

longer populated. Second, both in data simulation and in estimation we do not include

controls in order to isolate the implications of many instruments. The Appendix provides

more details on our simulation design.

We evaluate the performance of common estimators and tests based on 1000 simulation

draws. In Table 3, we report the bias and size of Wald tests based on OLS, 2SLS, LIML

and JIVE estimators. For the Wald test based on the LIML estimator, we calculate the
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N K Avg. FF Avg. F̃ µ2
√
K
√

Υ
jackknife AR pre-test two-step test

4,923 154 1.63 4.99 4.91 5.1% 70.5% 5.8%
3,209 135 1.44 3.35 3.29 5.6% 26.7% 6.6%
1,599 111 1.24 1.77 1.74 6.3% 4.5 % 7.2%

Table 4: AK91 Simulation Results: Size of Robust Tests

standard errors as in Hansen et al. (2008). While Hansen et al. (2008) correct the

canonical standard error estimator to be robust to many instruments, this test is not

robust to heteroscedasticity as LIML itself is inconsistent under heteroscedasticity. For

the Wald test based on the JIVE estimator, we calculate the heteroscedasticity-robust

standard errors as described in Section 5.

We find that due to many instruments 2SLS has large bias even under strong identifi-

cation. While Hausman et al. (2012) show LIML is inconsistent under many instruments

and heteroscedasticity, LIML is not too biased in our simulated data, as long as identifi-

cation is not weak. We find that JIVE has low bias when identification is strong, but its

bias increases when identification is weak. The Wald test based on either LIML or JIVE

is not robust to many weak instruments, and we find substantial size distortion for LIML

under weak identification. Surprisingly we do not find large size distortion for JIVE.

In Table 4 we report the rejection frequency of the robust test we developed in this

paper based on the jackknife AR test statistic. We find that the jackknife AR controls

size even under weak identification. Our proposed pre-test also controls size and is able to

switch to the JIVE-Wald test when identification is strong. In contrast, the first stage F

statistics of Stock and Yogo (2005) (FF) are very small even under strong identification,

which makes it not very informative.

In Table 5 we compare the length of confidence intervals formed by inverting various

tests. In particular, when identification is strong, jackknife AR confidence sets are longer

(less efficient) but are not unreasonably long compared to the Wald tests based on LIML

and JIVE. In this case, a pre-test can improve the efficiency by switching to the Wald

test based on JIVE. As with the canonical AR test, the jackknife AR test can result in

confidence intervals with infinite length. We report the probability of infinite length in

the last column of Table 5, and note that such probability increases as identification gets

23



N K Avg. F̃ µ2
√
K
√

Υ
2SLS LIML JIVE jackknife AR infinite jackknife AR

4,923 154 4.99 4.91 0.18 1.14 0.81 1.66 1%
3,209 135 3.35 3.29 0.20 1.23 1.41 2.77 11%
1,599 111 1.77 1.74 0.24 1.46 5244 6.90 49.6%

Table 5: AK91 Simulation Results, Length of Confidence Interval

(a) “cross-fit” variance estimator

N K Avg. F̃ µ2
√
K
√

Υ
jackknife AR size two-step test CI length infinite CI

4,923 154 4.99 4.91 5.1% 5.8% 1.66 1%
3,209 135 3.35 3.29 5.6% 6.6% 2.77 11%
1,599 111 1.77 1.74 6.3% 7.2% 6.90 49.6%
796 77 0.92 0.91 6.5% 6.5% 10.26 74.4%

(b) “naive” variance estimator

N K Avg. F̃ µ2
√
K
√

Υ
jackknife AR size two-step test CI length infinite CI

4,923 154 4.99 4.91 4.9% 5.7% 1.81 1%
3,209 135 3.35 3.29 5.4% 6.5% 2.99 11.1%
1,599 111 1.77 1.74 5.9% 6.8% 6.95 51.1%
796 77 0.92 0.91 5.4% 5.4% 8.86 77.3%

Table 6: Angrist and Krueger (1991) Simulation Results, Comparison of Variance Estimation

weaker.

To complement the discussion in Section 4.2, we compare the performance of the jack-

knife AR test based on our proposed “cross-fit” variance estimator with that based on the

“naive” variance estimator. Since power loss does not show up with strong identification,

we further reduce the sample size to be 0.25% of the original size. In Table 6 we confirm

that the size is not affected by the choice of variance estimator. Figure 2 demonstrates

the difference in power for the jackknife AR tests with the cross-fit and the naive variance

estimators. The “cross-fit” variance estimator performs slightly better in terms of power

when identification is weak. As shown in the last two columns of Table 6, the power

difference is also reflected in fewer unbounded confidence intervals based on the jackknife

AR test, and shorter confidence intervals when the bounded using the “cross-fit" variance

estimator.
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(a) N = 1599,K = 111
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(b) N = 796,K = 77

Figure 2: Power curves with varying identification strength, H0 : β = 0.1

7 Conclusion

In this paper, we focus on identification for linear IV models with many instruments. In

this environment, we characterize weak identification as a situation where an analog of

the concentration parameter stays bounded relative to the square root of the number of

instruments in large samples. We introduce a jackknifed version of the AR test that is

robust to our definition of weak identification and heteroscedasticity. We also propose a

pre-test for weak identification and correspondingly a two-step testing procedure in the

spirit of Stock and Yogo (2005). Unlike the pre-test proposed by Stock and Yogo (2005),

our two-step test controls size distortion even under heteroscedasticity and with many

instruments. As an empirical example, our pre-test rejects weak identification in Angrist

and Krueger (1991) where up to 1,530 instruments are used.
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8 Appendix with Proofs

Let C be a universal constant (that may be different in different lines but does not depend

on N or K).

Proof of Theorem 1. Denote A to be an upper-triangular matrix, such that AΩA′ =

I2. The sufficient statistic in model (1) is

 ξ1

ξ2

 = (A⊗ IK) ·

 (Z ′Z)−1/2Z ′Y

(Z ′Z)−1/2Z ′X

 ∼ N

 β̃Π

Π

 , I2K

 (8)

where β̃ = (1, 0)A(β, 1)′ is a (known) linear one-to-one transformation of β. Denote the

corresponding null and alternative as β̃0 and β̃∗. We denote also Π = (Z′Z)1/2π
σv

, which

is one-to-one transformation of π. It is enough to restrict attention to the tests that

depend on the data through sufficient statistics only. Indeed, for any test ψ ∈ ΨN we may

construct a test ψS = E(ψ|ξ1, ξ2) which depends on the data only through the sufficient

statistics. Due to the law of iterated expectations the size and the power of ψS is the

same as the initial ψ.

Let U be the group of rotations on RK , that is U ∈ U are such U ′U = IK . No-

tice that the model is invariant to group U , namely if (ξ1, ξ2) satisfy model (8) with

parameters (β̃,Π) then (Uξ1, Uξ2) satisfy model (8) with parameters (β̃, UΠ). Note that

Π′Π = (UΠ)′(UΠ). This implies that for any function f we have E(β̃,Π)f(Uξ1, Uξ2) =

E(β̃,UΠ)f(ξ1, ξ2).

We call a test ψ = ψ(ξ1, ξ2) invariant to rotations iff for any U ∈ U we have

ψ(Uξ1, Uξ2) = ψ(ξ1, ξ2) for all realizations of (ξ1, ξ2). The maximum in Theorem 1 is

achieved at an invariant test. Indeed, take any test ψ ∈ ΨN that has size α, that is,

E(β̃0,Π)ψ(ξ1, ξ2) ≤ α for all Π. Let us consider a new test ψ∗(ξ1, ξ2) =
∫
U∈U ψ(Uξ1, Uξ2)dU,

where the integral is taken uniformly over the unit sphere in RK . By construction, ψ∗ is
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an invariant test as for any Ũ ∈ U , we have UŨ ∈ U for all U ∈ U so that

ψ∗(Ũξ1, Ũξ2) =

∫
U∈U

ψ(UŨξ1, UŨξ2)dU =

∫
U∈U

ψ(Uξ1, Uξ2)dU.

E(β̃0,Π)ψ
∗(ξ1, ξ2) =

∫
U∈U

{
E(β̃0,Π)ψ(Uξ1, Uξ2)

}
dU =

∫
U∈U

{
E(β̃0,UΠ)ψ(ξ1, ξ2)

}
dU ≤ α.

So, it has correct size. Now we check that the minimal power of ψ∗ achieved over alter-

natives (β̃∗,Π) with Π such that Π′Π√
K

= C is not smaller than that of ψ. Assume that the

minimum of power for test ψ is achieved at the alternative Π∗: minΠ′Π√
K

=C
E(β̃∗,Π)ψ(ξ1, ξ2) =

E(β̃∗,Π∗)ψ(ξ1, ξ2). Then, similarly to above:

min
Π′Π√
K

=C

E(β̃∗,Π)ψ
∗(ξ1, ξ2) = min

Π′Π√
K

=C

∫
U∈U

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU ≥

≥
∫
U∈U

min
Π′Π√
K

=C

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU = E(β̃∗,Π∗)ψ(ξ1, ξ2).

All invariant tests depend on the data only through maximal invariant. Thus, we should

only consider tests that depend on the data through statistics Q = (Q1, Q2, Q3) =

(ξ′1ξ1, ξ
′
1ξ2, ξ

′
2ξ2). If Π′Π/

√
K → C then Q converges to the following distribution:


ξ′1ξ1−K√

2K

ξ′1ξ2√
K

ξ′2ξ2−K√
2K

⇒ N




β̃2 C√
2

β̃C

C√
2

 , I3

 =


Q∞,1

Q∞,2

Q∞,3

 = Q∞. (9)

According to Theorem 1 of Müeller (2011) the limit of the maximal power of tests in

experiment based on Q is bounded above by the maximal power achieved in the limit

experiment described on Q∞ as defined in the right hand side of equation (9). Notice

that the maximal achievable power Eβ̃∗,Cψ
∗(Q∞) is strictly less than 1 for any fixed β∗

and fixed C. Indeed, the best achievable power in the limit experiment (9) is no more

than the best achievable power in the experiment when C is known. If C is known, the

optimal test follows from the Neyman-Pearson lemma, and its power is less than 1.
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Proof of Theorem 2. Assumptions 1 and 2 imply

1 ≥ 1

K

∑
i

∑
j 6=i

P 2
ij =

1

K

∑
i

∑
j

P 2
ij −

1

K

∑
i

P 2
ii ≥ 1− δ 1

K

∑
i

Pii = 1− δ.

Thus, (1 − δ)(c∗)2 < Φ < (C∗)2 and it is sufficient to prove that Φ̂ − Φ →p 0. The last

statement holds due to Lemma 2 applied to ξi = (ei, ei, ei)
′. �

Lemma 2 Let Assumption 1 hold. Assume the errors ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i )′ are indepen-

dent mean zero random vectors with maxi E‖ξi‖6 < C. Then as N →∞, we have:

1

K

∑
i

∑
j 6=i

{
P 2
ij

MiiMjj +M2
ij

[
ξ

(1)
i Miξ

(2)
] [
ξ

(1)
j Mjξ

(3)
]
− P 2

ijE
[
ξ

(1)
i ξ

(2)
i

]
E
[
ξ

(1)
j ξ

(3)
j

]}
→p 0.

Proof of Lemma 2. Here we use the following notation P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij
. Notice that

1

K

∑
i

∑
j 6=i

P̃ 2
ijE
[
ξ

(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3)
]

=
1

K

∑
i

∑
j 6=i

P̃ 2
ijMiiMjjE

[
ξ

(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j

]
+

+
1

K

∑
i

∑
j 6=i

P̃ 2
ijM

2
ijE
[
ξ

(1)
i ξ

(2)
j ξ

(1)
j ξ

(3)
i

]
=

1

K

∑
i

∑
j 6=i

P 2
ijE
[
ξ

(1)
i ξ

(2)
i

]
E
[
ξ

(1)
j ξ

(3)
j

]

Define ξij = ξ
(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3) − E
[
ξ

(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3)
]
, then we need to prove that

1
K

∑
i

∑
j 6=i P̃

2
ijξij →p 0. Since 1

K

∑
i

∑
j 6=i P̃

2
ijξij has zero mean, it is sufficient to show that

the variance of each term in expression (10) defined below converges to zero (here I4 is a

summation over distinct indexes (i, i′, j, j′)):

E

(
1

K

∑
i

∑
j 6=i

P̃ 2
ijξij

)2

=
1

K2

∑
i

∑
j 6=i

P̃ 4
ijEξ2

ij+

+
1

K2

∑
i

∑
j 6=i

∑
i′ 6={i,j}

P̃ 2
ijP̃

2
ii′Eξijξii′ +

1

K2

∑
I4

P̃ 2
ijP̃

2
i′j′Eξijξi′j′ . (10)
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First, we prove that maxi,j Eξ2
ij < C. We expand ξij = A1,ij + A2,ij + A3,ij, where:

A1,ij =MiiMjj

(
ξ

(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j − E[ξ

(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j ]
)

+M2
ij

(
ξ

(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j − E[ξ

(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j ]
)
,

A2,ij =ξ
(1)
i ξ

(1)
j

∑
i′ 6={i,j}

(
MiiMji′ξ

(2)
i ξ

(3)
i′ +Mii′Mijξ

(2)
i′ ξ

(3)
i +MjjMii′ξ

(2)
i′ ξ

(3)
j +Mji′Mijξ

(2)
j ξ

(3)
i′

)
,

A3,ij =ξ
(1)
i ξ

(1)
j

∑
i′ 6={i,j}

∑
j′ 6={i,j}

Mii′Mjj′ξ
(2)
i′ ξ

(3)
j′ .

It is sufficient to show that maxi,j EA2
s,ij is bounded for all s = 1, 2, 3. The moment con-

dition implies EA2
1,ij ≤ C

(
MiiMjj +M2

ij

)2 ≤ C. Below we use that non-zero correlations

between summands in As,ij imply that some indexes must coincide. We also use Lemma

S1.1 from the Supplementary Appendix:

EA2
2,ij ≤ C

∑
i′

(MiiMji′ +Mii′Mij +MjjMii′ +Mji′Mij)
2 ≤ C,

EA2
3,ij ≤ C

∑
i′ 6={i,j}

∑
j′ 6={i,j}

(
P 2
ii′P

2
jj′ + |Pii′Pjj′Pij′Pji′|

)
≤ C.

Next notice that

P̃ 2
ij =

P 2
ij

MiiMjj +M2
ij

≤
P 2
ij

(1− Pii)(1− Pjj)
≤ 1

(1− δ)2
P 2
ij. (11)

Lemma B1 in Chao et al (2012) gives that
∑

i

∑
j 6=i P

4
ij ≤ K and

∑
i

∑
j 6=i
∑

j′ 6=i,j′ 6=j P
2
ijP

2
ij′ ≤

K. Thus, given the bound on maxi,j Eξ
2
ij < C and by Cauchy-Schwarz inequality

maxi,j,k |Eξijξik| < C, the first two terms in expression (10) converge to zero.

For the last term in (10), since i, i′, j, j′ are all distinct, we have EA1,ijAs,i′j′ = 0 for

s = 2, 3, and EA2,ijA3,i′j′ = 0. The non-zero terms in Eξijξi′j′ are

|EA2,ijA2,i′j′| ≤C |(MiiMjj′ +MijMij′)(Mi′i′Mjj′ +Mi′jMi′j′)|+

+C |(MjjMii′ +Mji′Mij)(Mj′j′Mii′ +Mj′i′Mij′)| .

|EA3,ijA3,i′j′ | ≤C(Pii′Pjj′ + Pij′Pi′j)
2.

Given inequality (11) and the symmetry of summation, and statements (a)-(e) proved
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in Lemma S1.2 in the Supplementary Appendix, we obtain that the last two terms in

equation (10) converge to zero. �

Proof of Theorem 3. Denote λi = MiΠ, then

Φ̂ =
2

K

∑
i

∑
j 6=i

P̃ 2
ij (ηi + ∆Πi) (Miη + ∆λi) (ηj + ∆Πj) (Mjη + ∆λj) .

Let us define Φ̂0 = 1
K

∑
i

∑
j 6=i P̃

2
ijηiMiηηjMjη. Assumption 2 guarantees that the variance

of ηi = ei+∆·vi is uniformly bounded. Lemma 2 with ξi = (ηi, ηi, ηi)
′ gives

∣∣∣Φ̂0 − Φ
∣∣∣→p 0

uniformly over bounded ∆. Lemma 3 with ξi = (ηi, ηi, ηi, ηi)
′ implies Φ̂− Φ̂0 →p 0. �

Lemma 3 Let ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i , ξ

(4)
i )′ be independent mean zero 4 × 1 random vectors,

such that E‖ξi‖4 < C. Let Assumption 1 hold. Assume that λ′λ ≤ C
K

Π′Π and ∆2 · Π′Π
K
→ 0

as N →∞. Then

1

K

∑
i

∑
j 6=i

P̃ 2
ij

(
ξ

(1)
i + ∆Πi

) (
Miξ

(2) + ∆λi
) (
ξ

(3)
j + ∆Πj

) (
Mjξ

(4) + ∆λj
)
−

− 1

K

∑
i

∑
j 6=i

P̃ 2
ijξ

(1)
i Miξ

(2)ξ
(3)
j Mjξ

(4) →p 0.

Proof of Lemma 3. We write the main expression of interest as a polynomial of fourth

power in ∆: ∆4A4+∆3A3+∆2A2+∆A1 and prove that all terms are negligible ∆lAl →p 0

by showing that their means and variances converge to zero. Notice that for expressions

with identical structure but different components of ξi, the proof of their negligibility is

exactly the same. Thus for simplicity we abuse the notation and drop the superscripts to

ξi when we can consolidate these expressions. For example, we write the expression for one

of the terms in A3 as 1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξj, which collects both 1

K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(1)
j
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and 1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(3)
j . We also treat ξi in all expressions below as scalar.

A4 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiλiΠjλj;

A3 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiλiλjξj +

1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiλiΠjMjξ;

A2 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiλjξiξj +

1

K

∑
i

∑
j 6=i

P̃ 2
ijλiξiΠjMjξ+

+
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiΠiξjMjξ +

1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiΠjMiξMjξ;

A1 =
1

K

∑
i

∑
j 6=i

P̃ 2
ijλiξiMjξξj +

1

K

∑
i

∑
j 6=i

P̃ 2
ijΠiMiξξjMjξ.

Term A4 is deterministic. We use bound (11) and Lemma S1.3 (d):

∆4|A4| ≤
C∆4Π′Πλ′λ

K
≤ C∆4(Π′Π)2

K2
→ 0.

Term A3 is mean zero. Using the inequality V ar(X+Y ) ≤ 2V ar(X)+2V ar(Y ) we have:

∆6V ar(A3) ≤ C∆6

K2

∑
j

(∑
i

P 2
ij|Πi||λi|

)2

λ2
j +

∑
k

(∑
i

∑
j 6=i

P̃ 2
ijΠiλiΠjMjk

)2
 ≤

≤ C∆6

K2

(
(λ′λ)2Π′Π +

∑
i,i′,j,j′

P 2
ij|ΠiλiΠj|P 2

i′j′ |Πi′λi′Πj′ |
∑
k

|MjkMj′k|

)
≤

≤ C∆6

K2

(
(λ′λ)2Π′Π + (Π′Π)2λ′λ

)
≤ C∆6(Π′Π)3

K3
→ 0.

For the first inequality, we apply Assumption 2 and bound (11). Then we use Cauchy-

Schwarz inequality for the first summand:
(∑

i P
2
ij|Πi||λi|

)2 ≤ Π′Πλ′λ. For the second

summand, we apply Lemma S1.1 (ii) and Lemma S1.3 (c). Finally, we apply Lemma S2.1

and S2.2 to get ∆2A2 →p 0 and ∆A1 →p 0. �
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Proof of Theorem 4. The infeasible version of AR statistics under β = β0 + ∆ is:

1√
K
√

Φ

∑
i

∑
j 6=i

Pijei(β0)ej(β0)

=
∆2

√
K
√

Φ

∑
i

∑
j 6=i

PijΠiΠj +
2∆√
K
√

Φ

∑
i

(∑
j 6=i

PijΠj

)
ηi +

1√
K
√

Φ

∑
i

∑
j 6=i

Pijηiηj. (12)

The first term in (12) is deterministic and equals to ∆2 µ2
√
K
√

Φ
. The second term has mean

zero and variance

∆2

KΦ

∑
i

(∑
j 6=i

PijΠj

)2

V ar(ηi) ≤
Cc2

KΦ

∑
i

w2
i ≤

CΠ′Π

K
→ 0.

Here we used that variance of ηi is bounded by Assumption 2,
∑

j 6=i PijΠi = wi, and

the final bound is proven in Lemma S1.4. Thus, the second term converges to zero in

probability uniformly over |∆|2 ≤ c. The third term in (12) is asymptotically standard

normal due to Lemma 1. Finally, we notice that

AR(β0) =

√
Φ

Φ̂

1√
K
√

Φ

∑
i

∑
j 6=i

Pijei(β0)ej(β0),

and apply Theorem 3. This finishes the proof of statement (5).

Now consider the case when µ2
√
K
√

Φ
→∞ and ∆ 6= 0 is fixed. Above we proved that

1√
K
√

Φ

∑
i

∑
j 6=i

Pijei(β0)ej(β0) =
µ2

√
K
√

Φ
∆2 + op(1) +Op(1).

Finally, Theorem 3 implies that Φ̂
Φ
→p 1. As a result, we have AR(β0) →p ∞ when

µ2
√
K
√

Φ
→∞ and ∆ 6= 0 is fixed. This lead to rejection probability converging to 1. �

Proof of Theorem 5. Denote

Q = (Qee, QXe, QXX)′ =
1√
K

N∑
i=1

∑
j 6=i

Pij (eiej, Xiej, XiXj)
′ .
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Lemma A2 in Chao et al. (2012) states that for any fixed 3 × 1 vector a we have

(a′Σa)−1/2
(
Qee, QXe, QXX − µ2

√
K

)
a⇒ N(0, 1). According to Cramér-Wold theorem, this

implies that

Σ−1/2

(
Qee, QXe, QXX −

µ2

√
K

)
⇒ N(0, I3)

where Σ is the asymptotic covariance matrix of Q, with some of its elements written

below:

Ψ =
1

K

N∑
i=1

∑
j 6=i

P 2
ijγiγj +

1

K

N∑
i=1

∑
j 6=i

P 2
ijσ

2
i ς

2
j +

1

K

N∑
i=1

(
∑
j 6=i

PijΠj)
2σ2

i = AV ar(QXe),

Υ =
2

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
i ς

2
j +

4

K

N∑
i=1

ς2
i (
∑
j 6=i

PijΠj)
2 = AV ar(QXX), (13)

τ =
2

K

N∑
i=1

∑
j 6=i

P 2
ijς

2
i γj +

2

K

N∑
i=1

γi(
∑
j 6=i

PijΠj)
2 = ACov(QXe, QXX), % =

τ√
Ψ
√

Υ
.

where σ2
i = V ar(ei), ς

2
i = V ar(vi), γi = cov(ei, vi). Note that êi = Yi − Xiβ̂JIV E =

ei −Xi(β̂JIV E − β) and (β̂JIV E − β0) = QXe/QXX . Thus,

Wald(β0) =
Q2
Xe∑N

i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj

,

where the denominator expands to

N∑
i=1

(∑
j 6=i

PijXj

)2
êiMiê

Mii

+
N∑
i=1

∑
j 6=i

P̃ 2
ijMiXêiMjXêj =

=


N∑
i=1

(∑
j 6=i

PijXj

)2
eiMie

Mii

+
N∑
i=1

∑
j 6=i

P̃ 2
ijMiXeiMjXej

−
− QXe

QXX


N∑
i=1

(∑
j 6=i

PijXj

)2(
eiMiX

Mii

+
XiMie

Mii

)
+ 2

N∑
i=1

∑
j 6=i

P̃ 2
ijMiXeiMjXXj

+

+
Q2
Xe

Q2
XX


N∑
i=1

(∑
j 6=i

PijXj

)2
XiMiX

Mii

+
N∑
i=1

∑
j 6=i

P̃ 2
ijMiXXiMjXXj

 .
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Applying Lemma S3.1 from the Supplementary Appendix to the expanded expression of

the denominator, we show the terms appearing in the braces converge to Ψ, 2τ and Υ

respectively. Then

Wald(β0) =
Q2
Xe

Ψ− 2 QXe
QXX

τ +
Q2
Xe

Q2
XX

Υ
(1 + op(1)) =

Q2
Xe/Ψ

1− 2 QXe/
√

Ψ

QXX/
√

Υ
%+

Q2
Xe

Q2
XX

Υ
Ψ

(1 + op(1)).

Lemmas 2 and 3 applied to Υ̂ with ξi = (vi, vi, vi, vi)
′ and ∆ = 1 give F̃ = QXX√

Υ
(1 +

op(1)). Thus, the statement of Theorem 5 holds where we denote
(
ξ, ν − µ2

√
K
√

Υ

)
to be

the Gaussian limit of (QXe√
Ψ
, QXX√

Υ
− µ2
√
K
√

Υ
). �

Proof of Corollary 1. Denote S = µ2
√
K
√

Υ
. If S > 2.5 then due to Theorem 5:

PS{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ PS{Wald(β0) ≥ χ2

1,0.95} ≤ 0.10.

If S ≤ 2.5 then due to the asymptotic gaussianity of F̃ :

PS{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ PS{F̃ > 4.14} ≤ 0.05.

Finally, for any S > 0:

PS {H0 is rejected } = P{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95}+

+P{F̃ ≤ 4.14 and AR(β0) ≥ z0.95} ≤ 0.10 + P{AR(β0) ≥ z0.95} ≤ 0.15.

8.1 Simulation Details

For results reported in Section 6. To create many instruments, we interact QOB

dummies with dummies for year of birth (YOB) and place (state) of birth (POB). Inter-

acting three QOB dummies with nine YOB and 50 POB dummies generates 180 excluded

instruments. The excluded instruments are

Zi = ((1{Qi = q, Ci = c})′q∈{2,3,4},c∈{31,...,39},1{Qi = q, Pi = p})′q∈{2,3,4},p∈{50 states})
′,
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where Qi, Ci, Pi are i’s QOB, YOB and POB respectively. Note, that Zi are not group

instruments in the strict sense as they are not mutually exclusive. We exclude instruments

with
∑N

i=1 Zij < 5 to satisfy the balanced instruments assumption (Assumption 1).

To increase the amount of omitted variable bias, we follow Angrist and Frandsen

(2019) by taking the LIML model as the ground truth, where the outcome variable is Yi

(income), the endogenous variable Xi (highest grade completed) is instrumented by Zi

and the control variables are a full set of POB-by-YOB interactions. Specifically, starting

with the full 1980 census sample, we compute the average Xi in each QOB-YOB-POB cell

s̄(q, c, p) . We then estimate LIML and retain ŷ(c, p), the second-stage fitted value after

subtracting β̂LIMLXi where β̂LIML is the LIML estimate of the returns to schooling. We

also retain the variance of LIML residuals ω(Qi, Ci, Pi) to mimic the heteroskedasticity.

The simulation model we consider is then

ỹi = ȳ + 0.1s̃i + ω(Qi, Ci, Pi)(νi + κ2εi)

s̃i ∼ Poisson(µi),

for independent standard normal νi and εi. Here ȳ = 1
N

∑
i ŷ(Ci, Pi) and µi = max{1, γ0 +

γ′ZZi + κ1νi} where γ0 + γ′ZZi is the projection of s̄(Qi, Ci, Pi) onto a constant and Zi.

We set κ1 = 1.7 and κ2 = 0.1 following Angrist and Frandsen (2019). The first stage is

therefore nonlinear non-linear in Zi as µi is a censored normal random variable. The first

stage error is heteroskedastic and the theoretical variance can be derived analytically.

For results reported in Section 4.2. The DGP is given by a homoscedastic linear

IV model (1) with a linear first stage Πi = Π′Zi. The instruments are K = 40 group

indicators, where the sample is divided into equal groups. The sample size is N = 200.

The error terms are generated i.i.d. as

 ei

vi

 ∼ N
 0

0

 ,

 1 ρ

ρ 1

 with ρ = 0.2.

We simulate a sparse first stage by setting one large coefficient πK = 2 and πk = 0.001 for

all k < K. The dense first stage has homogeneous first stage coefficients πk = 0.316 for

all k = 1, . . . , K. Identification strength is held the same at µ2
√
K

= 2.5 for both settings.

The results are reported in Figure 1.
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