- (1) Dampening GE: from Micro to Macro
- (2) Forward Guidance without Common Knowledge

George-Marios Angeletos* Chen Lian**

Chicago Booth: April 10, 2017

*MIT and NBER. **MIT

Motivation

- GE effects key to macroeconomics (and elsewhere)
 - limit usefulness of PE intuitions
 - limit usefulness of micro-based estimates a la Mian-Sufi
 - drive interpretations of business cycles
 - drive policy predictions (and some puzzles)

Motivation

- GE effects key to macroeconomics (and elsewhere)
 - limit usefulness of PE intuitions
 - limit usefulness of micro-based estimates a la Mian-Sufi
 - drive interpretations of business cycles
 - drive policy predictions (and some puzzles)
- But: how potent/fast is GE adjustment?
 - standard practice assumes "perfect" and "instantaneous"
 - hardwired in solution concept + info assumptions

This talk, part 1: Dampening GE

- Goals/contribution:
 - formalize notion "GE Adjustment is Weak / Takes Times"
 - reduce gap between micro and macro elasticities
- Context: simple, abstract, Walrasian economy (Econ101)
- Two alternative methods:
 - 1. depart from REE concept
 - 2. relax Common Knowledge
- Clarify similarities/differences of two methods

This talk, part 2: Forward Guidance

- Topical Context: NK economy at ZLB
- Identify and attenuate GE effects
- Disentangle
 - PM's ability to manage expectations of policy
 - PM's ability to manage expectations of inflation, income, etc
- Lessen FG puzzle and paradox of flexibility, too
- Justify "front-loading" in monetary and fiscal policy

Dampening GE: from Micro to Macro

Contribution

- Goals:
 - formalize notion "GE Adjustment is Weak / Takes Times"
 - reduce gap between micro and macro elasticities
- How?
- Define and characterize an appropriate "frictionless benchmark"
 - assumes REE+CK, replicates Arrow-Debreu
- Depart from this benchmark in two possible ways
 - replace REE with cognitive/behavioral concepts
 - maintain REE but remove CK

Framework

- Elementary Walrasian economy
 - with decentralized and sequential trading
- Two periods: "morning" and "afternoon"
 - proxy for "present" vs "future"
 - t and t+1 in multi-period extension
- Three goods = numeraire + morning good + afternoon good
 - numeraire can be land, capital, money,
 or leisure as in Lagos-Wright, Guerrieri-Lorenzoni, etc

Framework

- A continuum "marketplaces" $m \in [0,1]$
 - can, but do not have to, be correlated with geographic regions
- Every agent trades in a single marketplace in each period
 - t = 1: morning good against numeraire
 - t = 2: afternoon good against numeraire
- But: agents may "relocate" as time passes
 - GE interdependence across markets

Framework

Demand, Supply, and Fundamentals

- in the paper: details of micro-foundations
 - preferences, endowments, technology
- here: work with (log-linearized) demand and supply functions
 - morning markets: $c_m = D(\cdot)$ $q_m = S(\cdot)$
 - afternoon markets: $c_m^* = D^*(\cdot)$ $q_m^* = D^*(\cdot)$
- "fundamentals" = exogenous shifter to demand and supply
 - θ_m = average fundamental of agents originally in marketplace m
 - $\bar{\theta}=$ economy-wide average fundamental

Standard Practice vs This Paper

- Elementary assumptions: for every m,
 - (1.a) individual rationality and market clearing
 - (1.b) knowledge of (θ_m, p_m) in own marketplace
 - (1.c) same subjective beliefs within each marketplace
 - (1.d) knowledge that (1.a)–(1.c) hold in own marketplace

Standard Practice vs This Paper

- Elementary assumptions: for every m,
 - (1.a) individual rationality and market clearing
 - (1.b) knowledge of (θ_m, p_m) in own marketplace
 - (1.c) same subjective beliefs within each marketplace
 - (1.d) knowledge that (1.a)–(1.c) hold in own marketplace
- Standard practice: the above plus
 - (2) Common Knowledge (CK) of entire $\{\theta_m, p_m\}_{m \in [0,1]}$
 - (3) Rational Expectations Equilibrium (REE)
 - \Rightarrow \cdot CK of individual rationality and of market clearing
 - · subjective beliefs = objective expectations
 - · identical beliefs both within and across marketplaces

Standard Practice vs This Paper

- Elementary assumptions: for every m,
 - (1.a) individual rationality and market clearing
 - (1.b) knowledge of (θ_m, p_m) in own marketplace
 - (1.c) same subjective beliefs within each marketplace
 - (1.d) knowledge that (1.a)–(1.c) hold in own marketplace
- Standard practice: the above plus
 - (2) Common Knowledge (CK) of entire $\{\theta_m, p_m\}_{m \in [0,1]}$
 - (3) Rational Expectations Equilibrium (REE)
 - \Rightarrow · CK of individual rationality and of market clearing
 - · subjective beliefs = objective expectations
 - · identical beliefs both within and across marketplaces
- Our paper: maintain (1) but relax (2) and/or (3)
 - ⇒ preserve PE but modify GE

Shocks and Outcomes

Aggregate shock

$$\bar{\theta}_{old} \longrightarrow \bar{\theta}_{new} = \bar{\theta}_{old} + \Delta \bar{\theta}$$

Allow for differential exposure and local shocks

$$\Delta\theta_m = (1 + \frac{\delta_m}{\Delta\bar{\theta}})\Delta\bar{\theta} + z_m$$

- Question: how do morning quantities/prices respond to $\Delta \bar{\theta}$?
- Answer: depends on how shock affects, for every *m*,
 - demand and supply in own marketplace, for given beliefs
 - beliefs of outcomes in other marketplaces, for given fundamentals
- Preliminary step: market clearing with arbitrary subjective beliefs

Morning and Afternoon Markets

Lemma. For every m, the morning outcomes satisfy

$$\left(egin{array}{c} q_m \ p_m \end{array}
ight) = F\left(\hat{E}_m[ar{p}^*] \;,\; heta_m \;
ight)$$

where $\hat{E}_m[\cdot]$ denotes the subjective belief in marketplace m and \bar{p}^* denotes the average afternoon price.

Morning and Afternoon Markets

Lemma. For every m, the morning outcomes satisfy

$$\left(egin{array}{c} q_m \ p_m \end{array}
ight) = F\left(\hat{E}_m[ar{p}^*] \; , \; heta_m \;
ight)$$

where $\hat{E}_m[\cdot]$ denotes the subjective belief in marketplace m and \bar{p}^* denotes the average afternoon price.

Lemma. For every m, the afternoon outcomes satisfy

$$\left(egin{array}{c} q_m^* \ p_m^* \end{array}
ight) = extstyle F^* \left(
ho q_m + (1-
ho) ar q \ ,
ho heta_m + (1-
ho) ar heta \
ight)$$

where ρ is mass of native agents, $1-\rho$ is mass of agents relocating from other marketplaces,, and $\bar{\mathbf{x}}$ denotes economy-wide aggregates

Two-Way Feedback

Two-way feedback:

```
afternoon outcomes = function(realized morning outcomes) morning outcomes = function(beliefs of afternoon prices)
```

• What's next? How beliefs are formed and adjust to $\Delta \bar{\theta}$

Benchmark and Variants

- Frictionless Benchmark: REE + CK
 - replicates Arrow-Debreu despite sequential and decentralized trading
- Type-1 Variants: replace REE with solution concepts that capture
 - Tatonnement dynamics [main example]
 - Cobweb dynamics
 - Level-k Thinking
 - Reflective Equilibrium as in Garcia-Schmidt and Woodford (2015)
 - Discounting as in Gabaix (2016)
- Type-2 Variant: maintain REE but drop CK
 - in line with literature on HOB reviewed in our handbook chapter

Frictionless Benchmark

Assumption. Rational expectations plus commonly-shared information

Lemma. There exists a function $\mathcal T$ such that REE satisfies

$$\bar{p}^* = \mathcal{T} \left(\mathbb{E}[\bar{p}^*], \bar{\theta} \right)$$

Also, $\alpha \equiv \frac{\partial \mathcal{T}}{\partial \hat{p}} \in (0,1)$, which means that \mathcal{T} is a contraction mapping.

Corrolary. The equilibrium exists and is unique. Furthermore,

$$\mathbb{E}[\bar{p}^*] = \bar{p}^* = \mathcal{P}(\bar{\theta}).$$

Micro vs Macro, and PE vs GE

Proposition

There exists scalars ϵ^{micro} and ϵ^{Macro} such that

$$egin{aligned} \Delta ar{q} &= \epsilon^{ extit{Macro}} \Delta ar{ heta} \ \Delta q_{ extit{m}} &= \Delta ar{q} + \epsilon^{ extit{micro}} \left(\delta_{ extit{m}} \Delta ar{ heta} + z_{ extit{m}}
ight) \end{aligned}$$

PE vs GE

$$\epsilon^{\it micro} = {\rm PE} \qquad \epsilon^{\it Macro} = {\rm PE} + {\rm GE}$$

- ullet PE effect = holding beliefs of $ar p^*$ fixed = as if idiosyncratic shock
- GE effect = adjustment in beliefs of \bar{p}^*

Micro vs Macro, and PE vs GE

Proposition

There exists scalars ϵ^{micro} and ϵ^{Macro} such that

$$egin{aligned} \Delta ar{q} &= \epsilon^{ extit{Macro}} \Delta ar{ heta} \ \Delta q_{ extit{m}} &= \Delta ar{q} + \epsilon^{ extit{micro}} \left(\delta_{ extit{m}} \Delta ar{ heta} + z_{ extit{m}}
ight) \end{aligned}$$

PE vs GE

$$\epsilon^{\textit{micro}} = \mathsf{PE} \qquad \epsilon^{\textit{Macro}} = \mathsf{PE} + \mathsf{GE}$$

- PE effect = holding beliefs of \bar{p}^* fixed = as if idiosyncratic shock
- GE effect = adjustment in beliefs of \bar{p}^*
- Two scenarios:
 - GE amplifies PE $\Leftrightarrow \epsilon^{\textit{Macro}} > \epsilon^{\textit{micro}}$ (e.g., AD multipliers)
 - $\qquad \qquad \text{GE offsets PE} \quad \Leftrightarrow \ \epsilon^{\textit{Macro}} < \epsilon^{\textit{micro}} \ \text{(e.g., competing for resources)}$

PE effect

GE offsets PE

GE attenuates PE

Connection to Empirical Work

- Recent empirical macro:
 - exploit cross-sectional variation in δ_m , exposure to aggregate shocks
 - avoid contamination of aggregate time series by other shocks
 - e.g., Mian-Sufi, Nakamura-Steinsson, Beraja-Hurst-Ospina, etc
- Mind the gap!

• what is of interest: ϵ^{Macro} • what is estimated: ϵ^{micro}

- Problem: time fixed effect removes, not only the contaminating shocks, but also the GE effect of the shock of interest
- Our contribution (in the sequel): lessen the gap by dampening GE

Method 1: Beyond REE

- Allow for *irrational* conjectures of how $\Delta \bar{\theta}$ affects
 - relevant future prices and/or
 - current activity in other marketplaces
- Conjectures, however, are not entirely arbitrary
- They are generated by cognitive processes that
 - capture Tatonnement, Level-k, or other plausible algorithms
 - can be indexed by "depth of reasoning"
 - converge to REE as depth of reasoning becomes infinite

Tatonnement

Assumption. Fix a $T \in (0, \infty)$. For all m,

$$\hat{E}_m[\bar{p}^*] = \hat{p}^* = \hat{P}^*(T)$$

where \hat{P}^* is obtained by solving the following ODE:

$$\frac{d\hat{P}^*(t)}{dt} = N\left(\hat{P}^*(t), \bar{\theta}_{new}\right) \quad \forall t \geq 0$$

where N measures excess aggregate demand for afternoon goods

- Description of an instantaneous mental process
- t indexes iterations, not calendar time
- T defines depth of reasoning

Tatonnement: GE adjustment

Lemma. Price conjectures satisfy

$$\hat{p}^* = \bar{p}_{old}^* + w(T) \cdot (\bar{p}_{new}^* - \bar{p}_{old}^*)$$

where w continuous and increasing, with w(0)=0 and $w(\infty)=1$, and \bar{p}_{old}^* and \bar{p}_{new} are the pre- and post-shock REE prices

By varying cognitive depth T, vary extent of GE adjustment

Tatonnement: Spanning the Micro-Macro Gap

Proposition

Macro response given by

$$\Delta \bar{q} = \epsilon^{Tat} \cdot \Delta \bar{\theta}$$

where

$$\epsilon^{Tat} = \epsilon^{micro} + w(T) \cdot (\epsilon^{Macro} - \epsilon^{micro})$$

- By varying T, span gap between ϵ^{micro} and ϵ^{Macro}
 - lower depth of reasoning $\Rightarrow \epsilon^{Tat}$ closer to ϵ^{micro}

Method 2: Lack of Common Knowledge

- Key insight: lack of CK arrests adjustment in beliefs
 - recasts previous result from "off equilibrium" to "on equilibrium"
 - accommodates GE attenuation along REE
- Key applied lesson: Once again, span gap between ϵ^{micro} and ϵ^{Macro}

Method 2: Lack of CK

Assumption. Agents form Rational Expectations, but do not have CK of either the aggregate shock or the resulting outcomes in other marketplaces. Instead, info in market *m* modelled as a local signal

$$s_m = \Delta \bar{\theta} + v_m$$

where v_m is i.i.d., Normal, mean 0, variance $\sigma_v^2 > 0$

- $\quad \text{HOB satisfy $\bar{\mathbb{E}}^h[\bar{\theta}]$} = \bar{\theta}_{\textit{old}} + {\color{red}\lambda^h} \Delta \bar{\theta} \quad \text{where} \quad {\color{red}\lambda} = \frac{1}{1+(\sigma_V^2/\sigma_\theta^2)} \in (0,1)$
- → parametrizes degree of CK
- Note: HOB are anchored! $\bar{\mathbb{E}}^h[\bar{\theta}] \to \bar{\theta}_{\textit{old}} \text{ as } h \to \infty \text{ regardless of how close } \lambda \text{ is to } 1$

Equilibrium Characterization

Lemma. REE now satisfies

$$\bar{p}^* = \mathcal{T}(\bar{\mathbb{E}}[\bar{p}^*], \bar{\theta})$$

where \mathcal{T} same contraction mapping as before

• Iterating \Rightarrow equilibrium beliefs of prices = HOB of fundamentals

$$\bar{\mathbb{E}}\left[\bar{p}^*\right] = \gamma(1-\alpha) \sum_{h=1}^{\infty} \alpha^{h-1} \bar{\mathbb{E}}^h \left[\bar{\theta}\right]$$

- Key implication (1): anchored HOB ⇒ anchored price expectations
- Key implication (2): higher $|\alpha|$ implies
 - stronger GE under CK
 - but also more weight on anchored HOB without CK

Lack of CK as GE attenuation

Lemma. REE satisfies

$$\bar{\mathbb{E}}\left[\bar{p}^*\right] = \bar{p}_{old}^* + \pi(\lambda)\left(\bar{p}_{new}^* - \bar{p}_{old}^*\right)$$

where π is continuous and strictly increasing, $\pi(0)=0$, and $\pi(1)=1$.

• By varying degree of CK λ , vary extent of GE adjustment

Lack of CK: Spanning the Micro-Macro Gap

Proposition

There exists a scalar ϵ^{inco} such that

$$\Delta \bar{q} = \epsilon^{inco} \cdot \Delta \bar{\theta}$$

Furthermore.

$$\epsilon^{inco} = \epsilon^{micro} + \pi(\lambda) \cdot (\epsilon^{Macro} - \epsilon^{micro})$$

where π is continuous and strictly increasing, $\pi(0) = 0$, and $\pi(1) = 1$.

- By varying λ , span gap between ϵ^{micro} and ϵ^{Macro}
 - less CK $\Rightarrow \epsilon^{inco}$ closer to ϵ^{micro}

Equivalence: Lack of CK = Tatonnement

Corollary. $\forall T$ in Tatonnement, $\exists \lambda$ in incomplete-info variant s.t.

- rational expectations in latter = ad hoc conjectures in former
- same observables
- equal GE attenuation

The converse is also true.

- In this respect, removing CK is a substitute to relaxing REE
- Does this lesson extend to other relaxations of REE?

Cobweb and Level-k Thinking

Recast Walrasian economy as a Beauty-Contest Game

$$ar{p}^* = \mathcal{T}\left(\hat{E}[ar{p}^*], ar{ heta}
ight) \Longleftrightarrow ar{q} = \mathcal{BR}\left(\hat{E}[ar{q}], ar{ heta}
ight)$$

- ullet Cobweb dynamics = iterating on ${\mathcal T}$
- Level-k Thinking = iterating on \mathcal{BR}

Cobweb and Level-k Thinking

Recast Walrasian economy as a Beauty-Contest Game

$$\bar{p}^* = \mathcal{T}\left(\hat{E}[\bar{p}^*], \bar{\theta}\right) \Longleftrightarrow \bar{q} = \mathcal{BR}\left(\hat{E}[\bar{q}], \bar{\theta}\right)$$

- ullet Cobweb dynamics = iterating on ${\mathcal T}$
- Level-k Thinking = iterating on \mathcal{BR}

Corollary

Cobweb dynamics = Level-k Thinking but, in general, \neq GE attenuation

- Reason: conjectures can "overshoot" when $\epsilon^{Macro} < \epsilon^{micro}$
 - when GE offsets PE, GE effect can be amplified

Scenario 1: GE amplifies PE, or Strategic Complementarity

Scenario 2: GE offsets PE, or Strategic Substitutability

Reflective Equilibrium as in Garcia-Schmidt and Woodford (2015)

- Similar to Level-k Thinking
- But, instead of iterating on BR, let conjecture solve ODE

```
d[conjecture] = f(gap\ between\ conjecture\ and\ BR\ to\ it)
```

Perhaps unintentional: it cures "overshooting pathology"!

Corollary

Reflective Equilibrium = Lack of CK = GE attenuation

Discounting as in Gabaix (2016)

Assumption.

(perceived change in $\bar p^*$ or $\bar q) \ = \ \chi \cdot \mbox{(true change)}$ for some $\chi \in (0,1)$

- Implication: GE is attenuated
- But note: one is free to assume $\chi > 1$, in which case GE is amplified
 - a priori, why is it more plausible/desirable to assume that behavioral agents expect the others to under-react than to over-react?
- Same caveat with ϵ -equilibrium or Akerlof-Yellen
 - "near rationality" can either reduce or increase the micro-to-macro gap
- By contrast: with lack of CK, GE is necessarily attenuated

GE Takes Time

- Sought-after notion: GE takes time
 - GE effect is weak on impact, but gets stronger with time
 - gap between micro and macro elasticity is small only in SR
- Framework: example with trading over large number of periods
- Method 1: replace REE concept
 - requires additional assumption
 - that agents become "deeper thinkers" as time passes
- Method 2: relax CK assumption
 - follows naturally from endogenous learning
 - as agents observe past outcomes

GE Takes Time

Lessons and Applications

Take-Home Lessons

- GE attenuation = robust prediction of relaxing either REE or CK
- In this regard, lack of CK = substitute of relaxing REE
- But, some differences:
 - 1. immune to Lucas critique
 - 2. ties degree of attenuation to informational proximity
 - 3. no ad hoc "default" point
 - 4. naturally implies that attenuation decays with time
 - 5. easier to adapt to stationary settings with recurring shocks
- In our view, this tilts the balance in favor of lack of CK

Applications (in companion papers)

- Forward guidance [next]
- Ricardian Equivalence and Fiscal Policy
- AD and Keynesian Multipliers without Nominal Rigidity
- · ...

Forward Guidance without Common Knowledge

Context

- A NK Economy at the ZLB
- Forward Guidance
 - promise to keep low rates in the future (after exiting ZLB)
- The Puzzle
 - quantitative large effect
 - effect increases with horizon
- It's all about GE
 - PE effect decreases with horizon

Main Findings

- Removing CK ⇒
 - attenuates GE effects
 - anchors E[y] and $E[\pi]$ for given E[R]
- In simple words:
 - "Hard for PM to shift expectations of inflation and income even if she can manage expectations of policy"
- Also: attenuation increases with horizon
 - lessens forward-guidance puzzle
 - justifies front loading' of either MP or fiscal stimuli
- Additional results
 - paradox of flexibility, discounted Euler/NKPC...

Roadmap

- 1. Framework
- 2. Review the Puzzle
- 3. Remove CK
 - recast IS and NKPC as Beauty Contests
 - unearth HOB
- 4. Revisit Forward Guidance
- 5. Robustness and Additional Results

Households

- Continuum of households/consumers
- Preferences

$$\mathcal{U}_i = \sum_{t=0}^{+\infty} \beta^t \left(\log c_{it} - \frac{1}{1+\epsilon} n_{it}^{1+\epsilon} \right),\,$$

Budget constraint

$$c_{it} + s_{i,t} = a_{it} + w_{it}n_{it} + e_{it}$$

$$a_{i,t} = (1 + r_t) s_{i,t-1} = \frac{1 + R_{t-1}}{1 + \pi_t} s_{i,t-1}$$

- incomplete markets in the sense of no risk-sharing
- but no liquidity constraints (only for simplicity)

Firms

Final goods produced by a competitive sector

$$y_t = \left(\int_0^1 \left(y_t^j\right)^{\frac{\varsigma-1}{\varsigma}} dj\right)^{\frac{\varsigma}{\varsigma-1}}$$

Each variety j produced by a monopolist

$$y_t^j = I_t^j$$

- Nominal rigidity a la Calvo
 - fraction $1-\theta$ changes price each period

Shocks

- Shocks to markups
 - μ_t^j at the firm level
 - μ_t at the aggregate level
- Shocks to wages
 - $w_t^j = w_t u_t^j$ at the firm level
 - $w_{it} = w_t \xi_{it}$ at the household level
- Modeling role of shocks: limit aggregation of information
- Note: henceforth work with log-linearized model

ZLB and Forward Guidance

- Let T index length of liquidity trap and horizon of FG
 - t < T 1: ZLB binds and $R_t = 0$ for all
 - $t \geq T + \Delta$: "natural level" and $y_t = \pi_t = 0$
 - let $\Delta = 1$ for simplicity
- Forward guidance
 - policy announcement at t = 0 of likely R_T
 - modeled as $z = R_T + noise$
- Standard model: common knowledge of z

The Standard NK Model

Nest standard NK model by imposing CK

$$y_{t} = -\{R_{t} + E_{t}[\pi_{t+1}]\} + E_{t}[y_{t+1}]$$

$$\pi_{t} = \kappa y_{t} + \beta E_{t}[\pi_{t+1}] + \mu_{t}$$

• Question: How does y_0 vary with $E_0[R_T]$?

The Standard NK Model

Nest standard NK model by imposing CK

$$y_{t} = -\{R_{t} + E_{t}[\pi_{t+1}]\} + E_{t}[y_{t+1}]$$
$$\pi_{t} = \kappa y_{t} + \beta E_{t}[\pi_{t+1}] + \mu_{t}$$

- Question: How does y_0 vary with $E_0[R_T]$?
- Answer: There exists a function ϕ^* such that

$$y_0 = -\phi^*(T) \cdot E_0[R_T]$$

- ϕ^* measures power of FG under CK
- note: ϕ^* invariant to precision of z (credibility etc)

The Puzzle

- ϕ^* increases without bound as we increase T
 - the further into the future FG operates, the stronger its effect!
- ϕ^* quantitatively large even for T=few years
- Why? GE feedback between spending and inflation
 - as we iterate IS and NKPC backwards, effects keep pilling up!

What's Next

- Recast NK model as a multi-layer Beauty Contest
 - clarify GE mechanisms
 - recast them as dynamic strategic complementaries
 - unearth role of HOB
- Relax CK = anchor expectations = attenuate GE effects

Removing Common Knowledge

The IS Curve with Common Knowledge

$$y_t = -E_t[r_{t+1}] + E_t[y_{t+1}]$$

The IS Curve WITHOUT Common Knowledge

$$\mathbf{y_t} = -\left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[\mathbf{r_{t+k-1}}]\right\} + (1-\beta) \left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[\mathbf{y_{t+k}}]\right\}$$

The IS Curve WITHOUT Common Knowledge

$$\mathbf{y_t} = -\left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[\mathbf{r_{t+k-1}}]\right\} + (1-\beta) \left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[\mathbf{y_{t+k}}]\right\}$$

- dynamic beauty contest among consumers
 - follows from PIH and y = c
 - modern version of Keynesian income multiplier
 - optimal c depends on E of future real rates and income
 ⇒ equilibrium v depends on HOB of future R and π

The NK Philips Curve with Common Knowledge

$$\pi_t = \kappa y_t + \beta E_t \left[\pi_{t+1} \right] + \mu_t$$

The NK Philips Curve WITHOUT Common Knowledge

$$\boldsymbol{\pi}_{t} = \kappa y_{t} + \kappa \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[\boldsymbol{y}_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^{k} \bar{E}_{t}^{f}[\boldsymbol{\pi}_{t+k}] \right\} + \mu_{t}$$

The NK Philips Curve WITHOUT Common Knowledge

$$\boldsymbol{\pi_t} = \kappa \mathbf{y_t} + \kappa \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \, \bar{E}_t^f[\mathbf{y_{t+k}}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \, \bar{E}_t^f[\boldsymbol{\pi_{t+k}}] \right\} + \mu_t$$

- dynamic beauty contest among firms
 - follows from optimal pricing with Calvo
 - optimal reset prices depend on expectations of future MC \Rightarrow equilibrium π depends on HOB of future y and π

The NK Model without Common Knowledge

- IS = beauty contest *within* group of consumers
 - y as a function of HOB of R and π
- NKPC = beauty contest within group of firms
 - π as a function of HOB of y
- Overall equil = upper-layer beauty contest between two groups
 - feedback between y and π

Summary

- three GE effects
 - one "hidden" behind Euler/IS
 - another "hidden" behind NKPC
 - and third across the two
- standard practice: impose CK = maximize all GE effects
- our paper: relax CK = attenuate all GE effects

Revisiting Forward Guidance

Baseline Scenario

- Information structure
 - initial private signal

$$x_i = z + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

- ϵ_i can be interpreted as the product of rational inattention
- limit with no learning (large shocks)
- Degree of CK indexed by $\lambda \in (0,1]$
 - HOB satisfy $\bar{\mathbb{E}}^h[R_T] = \lambda \bar{\mathbb{E}}^{h-1}[R_T] \quad \forall h \geq 2$
 - consumers vs firms: λ_c vs λ_f
 - benchmark nested with $\lambda_c = \lambda_f = 1$

The Power of Forward Guidance

- Question: How does y_0 vary with $\bar{E}_0[R_T]$
- Answer: There exists a function ϕ such that

$$y_0 = -\phi \left(\lambda_c, \lambda_f, T \right) \cdot \bar{E}_0[R_T]$$

- note: answer orthogonal to how much $\bar{E}_0[R_T]$ itself varies
- comparison: ϕ vs ϕ^*

Main Results

- 1. Attenuation for any horizon
 - $\bullet \phi < \phi^*$
 - lower λ_c or $\lambda_f \Rightarrow$ lower ϕ

Main Results

- 1. Attenuation for any horizon
 - $\bullet \quad \phi < \phi^*$
 - lower λ_c or $\lambda_f \Rightarrow$ lower ϕ

2. Attenuation effect increases with horizon

- ratio ϕ/ϕ^* decreases in T
- why? longer horizons = beliefs of higher order
- iterating on the equations of the model = iterating on HOB
- underscores sensitivity of related predictions

Main Results

- 1. Attenuation for any horizon

 - lower λ_c or $\lambda_f \Rightarrow$ lower ϕ
- 2. Attenuation effect increases with horizon
 - ratio ϕ/ϕ^* decreases in T
 - why? longer horizons = beliefs of higher order
 - iterating on the equations of the model = iterating on HOB
 - underscores sensitivity of related predictions
- 3. Attenuation effect grows without limit as $T \to \infty$
 - $\phi/\phi^* \to 0$ as $T \to \infty$, even if $\lambda \approx 1$
 - small friction can have large consequences
 - for λ_c small enough, $\phi \to 0$ in absolute, not only relative to ϕ^*

A Numerical Illustration

- Modest friction: $\lambda_c = \lambda_f = 0.75$
 - 25% prob that others have failed to hear announcement
 - all other parameters standard, as in McKay et al (2015)

A Decomposition

- Anchoring E[y] vs $E[\pi]$: which one matters most?
 - consumers: most action comes from anchoring $E[\pi]$ (i.e., E[r])
 - firms: anchoring E[y] (i.e, E[realMC]) relatively more important

• dashed line: $E[\pi]$ forced to be as in frictionless benchmark

Robustness

- Generalization to almost arbitrary information structures
 - learning through current and past outcomes
 - anticipation of future policy announcements
- Formalization of notion "longer horizons = beliefs of higher order"
 - corollary: argument for front-loading policy

Fiscal Stimuli: Back- vs Front-Loading

- Standard NK prediction:
 - fiscal stimuli work because they trigger inflation
 - better to back-load so as to "pile up" inflation effects
- Our twist:
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - better to front-load so as to minimize coordination friction

Paradox of Flexibility

- In standard NK model, ϕ^* increases with $1-\theta$
 - paradox: price flexibility makes MP more powerful
 - related: price flex exacerbates ZLB constraint/deflationary spiral
- Our twist: ϕ/ϕ^* decreases with $1-\theta$
 - price flexibility increases attenuation effect
 - lack of CK lessens paradox of flexibility
- Intuition: same causes (GE effects), same resolution

Discounted Euler and Discounted NKPC

As if representative agent discounts more heavily the future

$$y_t = \Lambda_t E_t [y_{t+1}] - \{R_t - \lambda_t E_t [\pi_{t+1}]\}$$

$$\pi_t = M_t \beta E_t [\pi_{t+1}] + m_t \kappa y_t$$

where Λ_t , M_t , $m_t \in (0,1)$.

- Reminiscent of McKay et al. (2015) and Gabaix (2016), but:
 - preserve micro-foundations and Euler at individual level
 - preserve Rational Expectations
 - learning ⇒ discounting is "transitory"
- Discounting = manifestation of anchored but rational beliefs

Conclusion

Conclusion

- Relaxing Common Knowledge
 - structured (superior?) substitute to certain non-REE approaches
 - attenuates or slows down GE mechanisms
 - increases relevance of empirical work a la Mian-Sufi
 - lessens NK puzzles
 - favors front-loading
- Related ongoing work
 - revisit Ricardian equivalence and effects of G, deficits
 - a theory of Keynesian multipliers without nominal rigidity
 - ...