Myopia and Anchoring

George-Marios Angeletos
MIT

Zhen Huo Yale University

Friday 6th December, 2019

Angeletos & Huo 1/16

Belief Frictions = Myopia and Anchoring

Starting point: representative-agent model of the form

$$a_t = \varphi \xi_t + \delta \mathbb{E}_t[a_{t+1}]$$

- o nests: AP, Dynamic IS, NKPC, investment/entry in large industries
- o underneath: dynamic beauty contest
- Add: dispersed private information or RI
 - o imperfect knowledge of, or attention to, shocks (first-order uncertainty)
 - o doubts about attention and responsiveness of others (higher-order uncertainty)

Angeletos & Huo 2/16

Belief Frictions = Myopia and Anchoring

Starting point: representative-agent model of the form

$$a_t = \varphi \xi_t + \delta \mathbb{E}_t[a_{t+1}]$$

- nests: AP, Dynamic IS, NKPC, investment/entry in large industries
- o underneath: dynamic beauty contest
- Add: dispersed private information or RI
 - o imperfect knowledge of, or attention to, shocks (first-order uncertainty)
 - o doubts about attention and responsiveness of others (higher-order uncertainty)
- Main result: under conditions, observational equivalence with

$$a_t = \varphi \xi_t + \omega_f \delta \mathbb{E}_t \left[a_{t+1} \right] + \omega_b a_{t-1}$$

- $\omega_f < 1$ (myopia) and $\omega_b > 0$ (anchoring)
- both distortions increase with strategic complementarity/GE
 - may loom at macro level but may not be easily detected in usual micro data

Angeletos & Huo 2/16

Framework

Aggregate outcome satisfies

$$a_t = \overline{\mathbb{E}}_t \left[\sum_{k \ge 0} \beta^k \varphi \xi_{t+k} \right] + \gamma \overline{\mathbb{E}}_t \left[\sum_{k \ge 0} \beta^k a_{t+k+1} \right]$$

- a_t is endogenous outcome $(\pi_t, C_t, I_t, \text{ asset price } ...)$
- \circ ξ_t is exogenous fundamental (marginal cost, dividend ...)
- \circ γ controls GE feedback, or strategic complementarity

Angeletos & Huo 3/16

Framework

Aggregate outcome satisfies

$$a_t = \overline{\mathbb{E}}_t \left[\sum_{k \geq 0} \beta^k \varphi \xi_{t+k} \right] + \frac{\gamma}{\mathbb{E}}_t \left[\sum_{k \geq 0} \beta^k a_{t+k+1} \right]$$

- a_t is endogenous outcome $(\pi_t, C_t, I_t, \text{ asset price } ...)$
- $\circ \xi_t$ is exogenous fundamental (marginal cost, dividend ...)
- \circ γ controls GE feedback, or strategic complementarity
- Same as game with continuum of long-lived players and best responses

$$a_{it} = \mathbb{E}_{it} \left[\varphi \xi_t + \frac{\beta}{\beta} a_{it+1} + \frac{\gamma}{\gamma} a_{t+1} \right]$$

 $\beta > 0, \gamma > 0, \beta + \gamma < 1$

Angeletos & Huo 3/16

Departure: Incomplete Information and Higher-Order Uncertainty

• Why this particular departure?

- o dispersed private information (Hayek, Lucas)
- o rational inattention and costly cognition (Sims)
- doubts about others' awareness and response (higher-order uncertainty)
- a form of bounded rationality consistent with REE

Key implications:

- expectations of future outcomes ≠ expectations of future fundamentals
- outcomes depend on HOB (higher-order beliefs)
- $_{\circ}\,$ PE and GE play distinct roles, γ regulates relative importance of HOB

Angeletos & Huo 4/16

Baseline Specification

Fundamental follows AR(1)

$$\xi_t = \rho \xi_{t-1} + \eta_t = \frac{1}{1 - \rho L} \eta_t$$

where $\eta_t \sim \mathcal{N}(0,1)$ and $\rho \in (0,1)$

o Information given by history of private signals:

$$x_{it} = \xi_t + u_{it},$$

where $u_{it} \sim_{\mathsf{iid}} \mathcal{N}(0, \sigma^2)$ and $\sigma \geq 0$ parameterizes the friction

Angeletos & Huo 5/16

Equivalence Result

Proposition (Observational Equivalence)

Incomplete-info outcome is replicated by a complete-info economy in which

$$a_t = \varphi \xi_t + \delta \omega_f \mathbb{E}_t \left[a_{t+1} \right] + \omega_b a_{t-1}$$

for a unique pair of (ω_f, ω_b) which is such that $\omega_f < 1$ and $\omega_b > 0$.

- o myopia : $\omega_f < 1$
- anchoring : $\omega_b > 0$
- both encompass HOB

Angeletos & Huo 6/16

Understanding Myopia ($\omega_f < 1$)

- o To illustrate: think of NKPC, fix $\xi_t=0$ for $t \neq 1$, and let $\xi_1 \sim \mathcal{N}(0,\sigma_\xi^2)$
- \circ Response of inflation at t=0 to news about MC at t=1

$$\begin{split} \pi_0 &= \kappa \delta \theta \ \overline{\mathbb{E}}_0[\xi_1] + \delta (1 - \theta) \delta \theta \ \overline{\mathbb{E}}_0[\pi_1] \\ &= \kappa \delta \theta \ \overline{\mathbb{E}}_0[\xi_1] + \delta (1 - \theta) \delta \theta \ \overline{\mathbb{E}}_0 \left[\kappa \overline{\mathbb{E}}_1[\xi_1]\right] \end{split}$$

Angeletos & Huo 7/16

Understanding Myopia ($\omega_f < 1$)

- o To illustrate: think of NKPC, fix $\xi_t=0$ for $t\neq 1$, and let $\xi_1\sim \mathcal{N}(0,\sigma_\xi^2)$
- Response of inflation at t=0 to news about MC at t=1

$$\begin{split} \pi_0 &= \kappa \delta \theta \ \overline{\mathbb{E}}_0[\xi_1] + \delta (1 - \theta) \delta \theta \ \overline{\mathbb{E}}_0[\pi_1] \\ &= \kappa \delta \theta \ \overline{\mathbb{E}}_0[\xi_1] + \delta (1 - \theta) \delta \theta \ \overline{\mathbb{E}}_0 \left[\kappa \overline{\mathbb{E}}_1[\xi_1]\right] \end{split}$$

- Information:
 - firm i observes $x_i = \xi_1 + \epsilon_i$ at t = 0;
 - \circ no learning at t=1
- Implied beliefs:

$$\begin{split} \mathbb{E}_{i,0}[\xi_1] &= \mathbb{E}_{i,1}[\xi_1] &= \lambda x_i \\ \overline{\mathbb{E}}_0[\xi_1] &= \overline{\mathbb{E}}_1[\xi_1] &= \lambda \xi_1 & \lambda \equiv \frac{\sigma_{\xi}^2}{\sigma_{\xi}^2 + \sigma_{\epsilon}^2} \\ \overline{\mathbb{E}}_0[\overline{\mathbb{E}}_1[\xi_1]] &= \lambda^2 \xi_1 \end{split}$$

⇒ as if the news is discounted, more discounting with HOB

Angeletos & Huo 7/16

Understanding Anchoring ($\omega_b > 0$)

- o Anchoring, or momentum, hinges on learning
- o Basic intuition: in Kalman filter, past belief shows up as a state variable

$$\overline{\mathbb{E}}_t[\xi_t] = (1 - G)\overline{\mathbb{E}}_{t-1}[\xi_t] + G\xi_t$$

- Similar logic in our setting except that
 - o anchoring reinforced by higher-order uncertainty
 - o relevant state variable is a_{t-1} (magic: a_{t-1} is a summary statistic of HOB)

Angeletos & Huo 8/16

The Role of GE Feedback

Proposition (GE)

Both distortions intensify $(\omega_f \downarrow, \omega_b \uparrow)$ with stronger complementarity/GE

- \circ Higher complementarity in price setting \to more backward-looking inflation
- \circ Larger Keynesian multiplier o more discounting and habit in Euler condition

Angeletos & Huo 9/16

Monetary Policy and Aggregate Demand

o Consumption function (PIH) plus market clearing (y = c) give

$$c_t = -\sum_{k=0}^{\infty} \chi^k \overline{\mathbb{E}}_t[r_{t+k}] + \underbrace{(1-\chi)}_{\gamma} \sum_{k=0}^{\infty} \theta^k \overline{\mathbb{E}}_t[c_{t+k+1}]$$

- \circ Reduces to $c_t = -r_t + \mathbb{E}_t[c_{t+1}]$ with complete info, but not without
- Applying our result ⇒ myopia toward future MP + habit

$$c_t = -r_t + \omega_f \mathbb{E}_t[c_{t+1}] + \omega_b c_{t-1}$$

- $_{\circ}$ both distortions increase with slope of Keynesian cross (captured by γ)
- o suggests role of expectations particularly important in HANK
- see also Farhi and Werning (2018)

Angeletos & Huo 10/16

Forward Guidance (Angeletos and Lian, AER 2018)

- o Application: ZLB up to t=T-1, response to news about R_t at t=T
- Full NK model: additional feedback between AD and AS (multi-layer game)

- \circ Even a tiny perturbation can have huge effects as $T \to \infty$
- o Front-loading fiscal stimuli, paradox of flexibility, neo-Fisherian effects...

Angeletos & Huo 11/16

Macro vs Micro

- Pervasive gap between macro and micro
 - C: estimated habit much smaller in micro data (Havranek et al, 2017)
 - I: type of IAC used in DSGE inconsistent with standard Q theory as well as with literature that studies plant-level investment dynamics
 - π: menu-cost models that match price data (Golosov & Lucas etc) don't produce backward-looking feature of hybrid NKPC
 - o AP: Samuelson dictum (Jung and Shiller, 2005).
- Our results help merge the gap
 - mechanism: GE and HOB
 - distinct from, but complementary to, Mackowiak & Wiederholt (2009), inattention etc
- Also: usual micro-to-macro doesn't work!
 - need to augment standard micro data (choice date) with surveys of expectations (belief data)

Angeletos & Huo 12/16

Evidence on Expectations

o Coibion and Gorodnichenko (2015): average forecast error

$$\pi_{t+k} - \overline{\mathbb{E}}_t[\pi_{t+k}] = \underline{K_{CG}} \left(\overline{\mathbb{E}}_t[\pi_{t+k}] - \overline{\mathbb{E}}_{t-1}[\pi_{t+k}] \right) + v_{t+k,t}$$

- \circ $K_{CG}>0$: correlated forecast errors, under reaction to news
- o consistent with incomplete info, level-K thinking, and cognitive discounting

Angeletos & Huo 13/16

Evidence on Expectations

o Coibion and Gorodnichenko (2015): average forecast error

$$\pi_{t+k} - \overline{\mathbb{E}}_t[\pi_{t+k}] = \underline{K_{CG}} \left(\overline{\mathbb{E}}_t[\pi_{t+k}] - \overline{\mathbb{E}}_{t-1}[\pi_{t+k}] \right) + v_{t+k,t}$$

- \circ $K_{CG}>0$: correlated forecast errors, under reaction to news
- o consistent with incomplete info, level-K thinking, and cognitive discounting
- Bordalo, Gennaioli, Ma, Shleifer (2019): individual forecast error

$$\pi_{t+k} - \mathbb{E}_{it}[\pi_{t+k}] = K_{BGMS}(\mathbb{E}_{it}[\pi_{t+k}] - \mathbb{E}_{it-1}[\pi_{t+k}]) + v_{i,t+k}$$

- $K_{BGMS} < 0$: violation of rationality, over reaction to news
- o inconsistent with level-K thinking and cognitive discounting
- o consistent with incomplete information plus overconfidence

Angeletos & Huo 13/16

Extension: Adding Overconfidence

- \circ Over- (or under-) confidence: perceived frictions $\widehat{\sigma}$ differs from actual σ
 - in line with behavioral lit on overconfidence; see also Kohlhas and Broer (2019); but here GE implications
- With $\hat{\sigma} < \sigma$, consistent with both CG and BGMS
 - $_{\circ}$ CG: informative about $\widehat{\sigma}$ and aggregate IRFs
 - \circ BGMS: informative about σ and individual over/under-confidence, but uninformative about aggregate IRFs

Angeletos & Huo 14/16

Theory Meets Expectations Data (and vice versa)

Note: The distortions as functions of the proxy offered in CG (2015). The solid lines correspond to a stronger degree of strategic complementarity, or GE feedback, than the dashed one.

Angeletos & Huo 15/16

"Micro to Macro"

 $\begin{array}{l} \text{Predicted Inflation Response} \\ \rightarrow \text{Matches Estimated Hybrid NKPC} \end{array}$

Auxiliary economy: incomplete-info $\mathbb{E}[\xi]$ and complete-info $\mathbb{E}[\pi]$ \to Highlights Most Effect Due to GE / HOB

Angeletos & Huo 16/16