Forward Guidance without Common Knowledge

George-Marios Angeletos* Chen Lian**

* MIT and NBER, ** MIT

Forward Guidance: A Pretext?

- How does the economy respond to news about the future?
 - e.g., future interest rates or government spending
- Key mechanisms:
 - expectations of choices of others (e.g., of inflation and spending)
 - GE effects (e.g., Keynesian multiplier, *π*-*y* feedback)

Forward Guidance: A Pretext?

- How does the economy respond to news about the future?
 - e.g., future interest rates or government spending
- Key mechanisms:
 - expectations of choices of others (e.g., of inflation and spending)
 - GE effects (e.g., Keynesian multiplier, π-y feedback)
- Standard practice: RE with CK
- This paper: RE without CK
 - formalizes frictional coordination
 - structured substitute to relaxing RE

- Removing CK
 - anchors expectations of the choices of others
 - attenuates GE effects
- Effects increase with horizon
 - <u>as if extra discounting</u> on future outcomes
- Application to ZLB context
 - anchors $\mathbb{E}[\pi]$ and $\mathbb{E}[y]$, for given $\mathbb{E}[R]$ or $\mathbb{E}[g]$
 - lessen forward guidance puzzle
 - offer rationale for the front-loading of fiscal stimuli
 - ...

- 1. Recast IS and NKPC as Dynamic Beauty Contests
- 2. Show GE Attenuation and Horizon Effects
- 3. Application to Forward Guidance and Fiscal Stimuli
- 4. Related Work

- Starting point: textbook NK model
 - key ingredients: forward-looking $c \mbox{ and } \pi$
- Main departure: remove CK of news about future R or g
- Auxiliary: enough "noise" to prevent revelation through prices
 - variant: rational inattention
- Key friction: uncertainty about how others will respond
 - not uncertainty about the policy per se
 - to understand how it matters \rightarrow IS and NKPC as beauty contests

 $c_t = -E_t[r_{t+1}] + E_t[c_{t+1}]$

•
$$\Rightarrow$$
 $c = f$ (expected path of r)

$$\boldsymbol{c_{t}} = -\left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[\boldsymbol{r_{t+k}}]\right\} + (1-\beta) \left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[\boldsymbol{c_{t+k}}]\right\}$$

- \Rightarrow c \neq f(expected path of r)
- Key: E[behavior of other consumers]

 $\pi_t = mc_t + \beta E_t \left[\pi_{t+1} \right]$

•
$$\Rightarrow \pi = f$$
 (expected path of *mc*)

$$\pi_{t} = \mathbf{mc}_{t} + \left\{ \sum_{k=1}^{+\infty} \left(\beta\theta\right)^{k} \bar{E}_{t}^{f}[\mathbf{mc}_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} \left(\beta\theta\right)^{k} \bar{E}_{t}^{f}[\pi_{t+k}] \right\}$$

- $\Rightarrow \pi \neq f(expected path of MC)$
- Key: E[behavior of other firms]

- So far:
 - represent IS and NKPC as dynamic beauty contests
- What's next:
 - consider a more abstract setting
 - develop broader insights

An Abstract Dynamic Beauty Contest

Euler-like condition:

$$a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$$

- $\theta_t = \text{fundamental}, a_{it} = \text{individual outcome}, a_t = \text{aggregate outcome}$
- $\gamma > 0$ parameterizes PE (e.g., response to <u>own</u> interest rates)
- α > 0 parameterizes GE (e.g., effect through aggregate income)

An Abstract Dynamic Beauty Contest

Euler-like condition:

$$a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$$

- $\theta_t = \text{fundamental}, a_{it} = \text{individual outcome}, a_t = \text{aggregate outcome}$
- $\gamma > 0$ parameterizes PE (e.g., response to <u>own</u> interest rates)
- α > 0 parameterizes GE (e.g., effect through aggregate income)
- With $CK \Rightarrow$ representative-agent Euler

 $a_t = \theta_t + (\gamma + \alpha) E_t[a_{t+1}]$

 \Rightarrow distinction between PE and GE is irrelevant

An Abstract Dynamic Beauty Contest

Euler-like condition:

$$a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$$

- $\theta_t = \text{fundamental}, a_{it} = \text{individual outcome}, a_t = \text{aggregate outcome}$
- $\gamma > 0$ parameterizes PE (e.g., response to <u>own</u> interest rates)
- α > 0 parameterizes GE (e.g., effect through aggregate income)
- Without $CK \Rightarrow$ dynamic beauty contest

$$\mathbf{a}_{t} = \theta_{t} + \gamma \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\theta_{t+k}] \right\} + \alpha \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}\left[\mathbf{a}_{t+k}\right] \right\}$$

 \Rightarrow distinction between PE and GE becomes crucial

- How does a_t responds to news about θ_{t+T} ?
 - c_t and π_t to news about R_{t+T} or g_{t+T}
- Formally:
 - hold $heta_{ au}$ constant (say, at 0) for all au
 eq t + T
 - treat $\theta_{t+\tau}$ as a random variable (Normally distributed with mean 0)
 - specify information structure about θ_{t+T}
 - study $\phi_T \equiv$ projection coefficient of a_t on $\overline{E}_t[\theta_{t+T}]$

- By iterating, we can express a_t as a linear function of
 - 1st-order beliefs: $\overline{E}_t \left[\theta_{t+T} \right]$
 - 2nd-order beliefs: $\overline{E}_t \left[\overline{E}_\tau \left[\theta_{t+\tau} \right] \right] \quad \forall \tau : t < \tau < t + T$
 - 3rd-order beliefs: $\overline{E}_t \left[\overline{E}_{\tau'} \left[\overline{E}_{\tau'} \left[\theta_{t+\tau} \right] \right] \right] \quad \forall \tau, \tau' : t < \tau < \tau' < t + T$
 - and so on, up to beliefs of order T
- Understanding \overline{E}_t of a_{t+k} (e.g., inflation or income)

= understanding HOB of θ_{t+T} (e.g., interest rate after the ZLB)

Three Basic Insights

- 1. Expectations of outcomes = HOB of fundamentals
 - by iterating, we can express $\overline{E}_t[a_{t+k}]$ in terms of HOB of θ_{t+T}
 - this is true regardless of info structure
 - but CK controls how much $\bar{E}_t[a_{t+k}]$ moves relative to $\bar{E}_t[\theta_{t+T}]$

Three Basic Insights

- 1. Expectations of outcomes = HOB of fundamentals
 - by iterating, we can express $\overline{E}_t[a_{t+k}]$ in terms of HOB of θ_{t+T}
 - this is true regardless of info structure
 - but CK controls how much $\bar{E}_t[a_{t+k}]$ moves relative to $\bar{E}_t[\theta_{t+T}]$
- 2. HOB vary less than FOB
 - "unless I am 100% sure that you heard and paid attention to the news, I am likely to think that your beliefs moved less than mine"

Three Basic Insights

- 1. Expectations of outcomes = HOB of fundamentals
 - by iterating, we can express $\overline{E}_t[a_{t+k}]$ in terms of HOB of θ_{t+T}
 - this is true regardless of info structure
 - but CK controls how much $\bar{E}_t[a_{t+k}]$ moves relative to $\bar{E}_t[\theta_{t+T}]$
- 2. HOB vary less than FOB
 - "unless I am 100% sure that you heard and paid attention to the news, I am likely to think that your beliefs moved less than mine"
- 3. Longer horizons raise the relative importance of HOB
 - the distant future enters through multiple rounds of GE effects:

$$R_{t+T}
ightarrow (c_{t+T}, \pi_{t+T})
ightarrow (c_{t+T-1}, \pi_{t+T-1})
ightarrow ...
ightarrow (c_t, \pi_t)$$

- but this is akin to ascending the hierarchy of beliefs!
- longer horizons therefore raise the load of HOB on outcomes

Results

- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

"CK maximizes GE effect"

Results

- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

- "CK maximizes GE effect"
- 2. Attenuation effect increases with the horizon
 - ϕ_T/ϕ_T^* decreases in T

Results

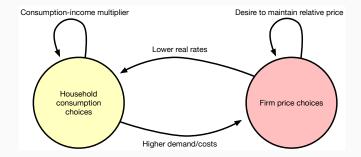
- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

- "CK maximizes GE effect"
- 2. Attenuation effect increases with the horizon
 - ϕ_T/ϕ_T^* decreases in T
- 3. Attenuation effect grows without limit
 - $\phi_T/\phi_T^*
 ightarrow 0$ as $T
 ightarrow \infty$ even if noise is tiny*

- Information structure:
 - each agent receives a private Gaussian signal about θ_{t+T} at t
 - no other info arrives up to t + T, at which point θ_{t+T} becomes known
- Implication: a simple exponential structure for HOB

 $\bar{E}_t^h[\theta_{t+T}] = \lambda^{h-1} \cdot \bar{E}_t[\theta_{t+T}]$


where $\lambda \in (0,1]$ is decreasing in the amount of noise

- Back to our question: How does a_t vary with $\overline{E}_t[\theta_{t+T}]$?
- Answer: Same as in a representative-agent model with

 $a_t = \theta_t + (\gamma + \lambda \alpha) E_t[a_{t+1}]$

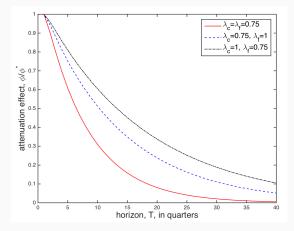
- GE effect reduced from α to $\lambda \alpha$
- <u>as if</u> myopia / extra discounting

Back to the NK model: Three GE Mechanisms

- Removing CK dulls all these feedback loops
 - <u>as if</u> fewer loops or level-k thinking (but consistent with RE)

ZLB and Forward Guidance

- Let *T* index length of liquidity trap and horizon of FG
 - t < T 1: ZLB binds and $R_t = 0$ for all
 - $t \ge T + \Delta$: "natural level" and $y_t = \pi_t = 0$
 - let $\Delta = 1$ for simplicity
- Forward guidance
 - policy announcement at t = 0 of likely R_T
 - modeled as $z = R_T + noise$
- Our twist: lack of CK about z
 - credibility = precision of z, or how much $\overline{E}_0[R_T]$ varies with z
 - we bypass this and focus on how y_0 varies with $\overline{E}_0[R_T]$
 - think of this as studying the response of spending and inflation relative to the response of the term structure of interest rates


- Gaussian private signals about R_T, no endogenous learning
 - degree of CK indexed by $\lambda \in (0,1]$ such that $\overline{\mathbb{E}}^h[R_T] = \lambda^{h-1}\overline{\mathbb{E}}^1[R_T]$
 - consumers vs firms: λ_c vs λ_f
- The power of FG: there exists a function ϕ such that

$$y_0 = -\phi\left(\lambda_c, \lambda_f; T\right) \cdot \bar{E}_0[R_T]$$

- measures how much y moves relative to expectations of R
- CK benchmark nested with $\phi^*(T) = \phi(1, 1; T)$

A Numerical Illustration

- Standard parameters as in Gali's textbook
- Modest friction: 25% prob that others failed to hear announcement
- Large effect: at T = 5 years, ϕ is less than 1/10 of ϕ^*

- Three GE effects at work:
 - (1) inside IS: income-spending feedback
 - (2) inside NKPC: inflation-inflation feedback
 - (3) across two blocks: inflation-spending feedback
- All three attenuated when removing CK, but
 - in textbook version of NK, most quantitative bite for (2) and (3)
 - (1) becomes more relevant with short horizons or liquidity constraints

- Standard NK prediction:
 - fiscal stimuli work because they trigger inflation
 - better to back-load so as to "pile up" inflation effects
- Our twist:
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - rationale for front-loading: "minimize coordination friction"

- Removing CK
 - accommodates frictional coordination
 - attenuates GE effects
 - anchors expectations of inflation and income
 - lessens forward guidance puzzle (and paradox of flexibility too)
 - justifies front loading of fiscal stimuli
 - ...

Related Work

- Related work that arrests GE by dropping RE
 - cognitive discounting as in Gabaix (2016)
 - level-k as in Garcia & Woodford (2015), Farhi & Werning (2017)
- Our approach has similar implications, but:
 - robust to settings in which GE=strategic substitutability
 - consistent with RE \Rightarrow immune to Lucas critique, plus no conundrum with what agents do when they see the actual outcomes
 - implies not only discounting but also backward-lookingness
 ⇒microfoundation of hybrid NKPC, IAC, habit
- Companion papers:
 - "Dampening GE" with Chen Lian
 - "Anchored Expectations" with Zhen Huo
 - ...