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Abstract

In this document we motivate the restriction α < 1 used in the paper (where α ≡ −UkK/Ukk

is the slope of the best response). We first explain why this restriction is essentially equivalent

to uniqueness of equilibrium under complete information (Section A1). We then discuss the role

of this restriction for comparative statics (Section A2).

A1. Uniqueness

To understand the role of α < 1 for equilibrium determinacy, it is useful to consider the following

two modifications of our model.

(i) There is a finite number of players, J ≥ 2. The payoff for player i is

ui = U(ki,K−i, σ−i, θ),

where K−i ≡
1

J−1

∑

j 6=i kj is the mean, and σ−i ≡ [ 1
J−1

∑

j 6=i(kj −K−i)
2]1/2 the standard deviation,

of the actions taken by i’s opponents. As in the paper, U is quadratic and its partial derivatives

satisfy Ukσ = UKσ = Uθσ = 0, Uσ (ki,K−i, 0, θ) = 0 for all (ki,K−i, θ), Ukk < 0 and Ukθ 6= 0.

(ii) Actions are bounded : k ∈ [−M,+M ], for some M ∈ (0,∞).

Our model can be viewed as the limit when both J and M become infinite. We will build on

this connection in a moment. We first show that, for any finite J and M, the following is true.

Proposition A1. Let α ≡ −UkK/UkK . Under complete information, the equilibrium is unique for

all θ if and only if

− (J − 1) < α < 1.

When instead α ≤ − (J − 1) or α ≥ 1, there is a non-empty set Q such that multiple equilibria

exist whenever θ ∈ Q; moreover, when α > 1, Q = [−M,+M ], so that the region of multiplicity is

independent of J, increases with M , and converges to the entire real line as M → ∞.
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Proof. Consider the function f(k, θ) ≡ Uk(k, k, 0, θ). f is a linear function with fk = Ukk +UkK =

(1−α)Ukk and fθ = Ukθ 6= 0. When α = 1, f is flat in k, while it is monotonic in θ. It follows that

there exists a (unique) θ̂ such that Uk(k, k, 0, θ) = 0 for any k when θ = θ̂. This implies that any

symmetric strategy profile is an equilibrium when θ = θ̂, which proves the claim for the case α = 1.

In the rest of the proof, we thus consider α 6= 1, in which case f is monotonic in k and hence the

condition Uk(k, k, 0, θ) = 0 necessarily admits a unique solution κ = κ(θ) ∈ R, for any θ. Following

the same steps as in the proof of Proposition 1, we then have that the best response of agent i is

ki =















M if (1 − α) θ + αK−i > M

(1 − α) θ + αK−i if (1 − α) κ(θ) + αK−i ∈ [−M,+M ]

−M if (1 − α) θ + αK−i < −M

(1)

Without any loss of generality, we henceforth normalize κ (θ) = θ.1

The rest of the proof proceeds in two steps. Step 1 shows that there exist multiple equilibria for

a non-empty interval of θ whenever either α > 1 or α ≤ − (J − 1) , and that this interval converges

to the entire real line as M → ∞ when α > 1. Step 2 shows that − (J − 1) < α < 1 is, not only

necessary, but also sufficient for uniqueness, which completes the proof of the proposition.

Step 1. First consider α > 1. For any θ ∈ [−M,+M ], we have that

(1 − α) θ + α (−M) ≤ −M < M ≤ (1 − α) θ + αM,

which implies that, along with ki = θ for all i, the following are also equilibria: ki = M and

ki = −M for all i. Hence, α > 1 implies multiplicity for any θ ∈ Q, with Q = [−M,+M ].

Next, consider α < − (J − 1) . Pick any Ĵ ∈ {1, ..., J − 1}, let

θ(Ĵ ;M) ≡
M

1 − α

[

(J − 1 + α) + α(J − 2Ĵ)

J − 1

]

,

θ̄(Ĵ ;M) ≡
M

1 − α

[

− (J − 1 + α) + α(J − 2Ĵ)

J − 1

]

,

and note that J − 1 + α < 0 ensures that θ(Ĵ ;M) < θ̄(Ĵ ;M). The following is then true for any

θ ∈ [θ(Ĵ ;M), θ̄(Ĵ ;M)]:

(1 − α) θ+α
ĴM + (J − Ĵ − 1) (−M)

J − 1
< −M < M < (1 − α) θ+α

(Ĵ − 1)M + (J − Ĵ) (−M)

J − 1
. (2)

The fraction ĴM+(J−Ĵ−1)(−M)
J−1 in the furthest left side of (2) is simply the average action of player i’s

opponents when Ĵ players other than i play M and the remaining J−1− Ĵ play −M . Similarly, the

fraction (Ĵ−1)M+(J−Ĵ)(−M)
J−1 on the furthest right side is the average action of player i’s opponents

1One can always re-scale θ so that κ(θ) = θ. To see this, let θ̃ ≡ κ(θ) = κ0 + κ1θ and Ũ(k, K, σ, θ̃) ≡

U(k, K, σ, θ̃/κ1 − κ0/κ1); then, by construction, Ũk(k, k, 0, θ̃) = 0 if and only if k = θ̃.
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when Ĵ − 1 players other than i play M and the remaining J − Ĵ play −M. Combined with (1),

condition (2) implies that the best response for player i is to play ki = −M in the former case and

ki = M in the latter. It follows that, for any Ĵ ∈ {1, ..., J −1} and any θ ∈ [θ(Ĵ ;M), θ̄(Ĵ ;M)], there

exists an asymmetric equilibrium in which Ĵ agents play k = M and J − Ĵ play k = −M . Because,

for any Ĵ ∈ {1, ..., J−1}, −M < θ(Ĵ ;M) < θ̄(Ĵ ;M) < M, for any θ ∈ [θ(Ĵ ;M), θ̄(Ĵ ;M)], there also

exists a symmetric equilibrium in which ki = θ for all i. We conclude that, when α < − (J − 1) ,

there are multiple equilibria whenever θ ∈ Q, where Q ≡
⋃

Ĵ∈{1,...,J−1}[θ(Ĵ ;M), θ̄(Ĵ ;M)], with

Q 6= ∅ and Q ⊂ (−M,+M).

It is easy to show that multiplicity pertains also for α = − (J − 1) , which completes the proof

of the second part of the proposition.

Step 2. We now show that − (J − 1) < α < 1 is, not only necessary, but also sufficient for

uniqueness.

Take any strategy profile and pick any arbitrary player i. Then, for any given θ, there are

exactly three possibilities:

(C1) −M ≤ (1 − α) θ + αK−i ≤ +M

(C2) (1 − α) θ + αK−i > M

(C3) (1 − α) θ + αK−i < −M

In the following, we show that (C1) can be satisfied by an equilibrium strategy profile for some θ

and some i if and only if θ ∈ [−M,+M ] and kj = θ for all j. Similarly, (C2) can be satisfied for

some θ and some i if and only if θ > M and kj = M for all j. Finally, (C3) can be satisfied for

some θ and some i if and only if θ < −M and kj = −M for all j. Together these properties imply

that the unique equilibrium strategy profile is the symmetric one given by

ki =















M when θ > M

θ for θ ∈ [−M,+M ]

−M for θ < −M.

(3)

Consider first (C1). If a strategy profile satisfies (C1) for some i and some θ and this profile

is an equilibrium, then, by (1), it must be that ki = (1 − α) θ + αK−i for the particular θ and the

particular player i. Noting that K−i = 1
J−1

∑J
l=1 kl −

1
J−1ki, we have that

ki =
1

1 + α
J−1

(1 − α) θ +
α

J−1

1 + α
J−1

J
∑

l=1

kl, (4)

in which case condition (C1) can be restated as

−M ≤
1

1 + α
J−1

(1 − α) θ +
α

J−1

1 + α
J−1

J
∑

l=1

kl ≤ M. (5)
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We now argue that (5) ensures −M ≤ (1 − α) θ + αK−j ≤ M also for any j 6= i. Suppose,

towards a contradiction, that (1 − α) θ +αK−j > M [resp., (1 − α) θ +αK−j < −M ] for some j, in

which case kj must equal M [resp., −M ]. But then combining (1 − α) θ + αK−j > M = kj [resp.,

(1 − α) θ +αK−j < −M = kj ] with K−j = 1
J−1

∑J
l=1 kl −

1
J−1kj and 1/ [1 + α/ (J − 1)] > 0 (where

the latter is true because − (J − 1) < α), gives

1

1 + α
J−1

(1 − α) θ +
α

J−1

1 + α
J−1

J
∑

l=1

kl > M [resp., < −M ],

which contradicts (5).

That −M ≤ (1 − α) θ + αK−j ≤ M in turn implies, by (1), that (4) must hold also for j 6= i.

But since the right-hand-side of (4) is identical for all j, it must be that kj is the same for all j.

Letting k1 = · · · = kJ = k in (4) for some k, we then have that k = θ, in which case (5) reduces to

θ ∈ [−M,+M ] . We conclude that, whenever (C1) is satisfied in equilibrium for some θ and some

i, it is necessarily the case that θ ∈ [−M,+M ] and kj = θ for all j.

Next, consider case (C2). If a strategy profile satisfies (C2) for some i and some θ and this

profile is an equilibrium, then, by (1), it must be that ki = M < (1 − α) θ + αK−i. From the same

steps as in case (C1), the latter implies that

M <
1

1 + α
J−1

(1 − α) θ +
α

J−1

1 + α
J−1

J
∑

l=1

kl. (6)

We now argue that (6) implies kj = M also for any j 6= i. Suppose, towards a contradiction,

that there is some j 6= i for which kj < M. Then, by (1), it must be that (1 − α) θ + αK−j ≤ kj ,

which together with kj < M implies

1

1 + α
J−1

(1 − α) θ +
α

J−1

1 + α
J−1

J
∑

l=1

kl ≤ kj < M,

contradicting (6). Hence, it must be that kj = M also for j. But then, from (1), kj = M for all j,

along with α < 1, implies θ > M. We conclude that, whenever condition (C2) holds in equilibrium

for some θ and some i, it must be that θ > M and kj = M for all j.

An argument symmetric to that for case (C2) implies that, whenever condition (C3) is satisfied

in equilibrium for some θ and some i, then necessarily θ < −M and kj = −M for all j.

Combining the above three cases, and noting that they exhaust all possibilities and correspond

to non-overlapping intervals of θ, we conclude that the strategy profile in which all players follow

the strategy in (3) is indeed the unique equilibrium whenever − (J − 1) < α < 1. QED

When α > 1, multiplicity emerges no matter the number of players J and the bound M.

Moreover, the region of θ for which multiplicity pertains is independent of J and is increasing in
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M, covering the entire real line as M → ∞. When instead, α < 1, uniqueness is ensured for any M

once J is large enough. In particular, any J ≥ 2 when α ∈ (−1, 1), and any J ≥ 1−α when α ≤ −1

suffices for uniqueness no matter M. Therefore, if we view our model as the limit in which both J

and M go to infinity (whatever the order), then the restriction α < 1 is “essentially” necessary and

sufficient for uniqueness.

To be precise, our model does not impose any bound on k and assumes a continuum of players.

If one takes this literally, then the best response, which reduces to k = (1 − α) θ + αK for all

(θ,K) , admits a unique fixed point in R if and only if α 6= 1. However, when α > 1 this uniqueness

is an artifact of the fact that there are no bounds for k. Indeed, if we were to introduce any

bound M < ∞, then multiple equilibria would emerge whenever α > 1 no matter how large M is.

Furthermore, the multiplicity would be more pervasive the larger M : for any θ ∈ (−M,+M), there

would exist three equilibria, the interior equilibrium in which k = θ, along with the two extreme

equilibria in which k = −M and k = +M. The interval of θ for which multiplicity emerges would

thus cover to the entire real line as M → ∞. At the same time, the two extreme equilibria diverge

to −∞ and +∞, which explains why these two extreme equilibria disappear in our model in which

there are no bounds.

In the paper, we impose no bounds on k so as to make the analysis tractable under incomplete

information, but we continue to restrict α < 1 so as to rule out the possibility that uniqueness is

an artifact of the unboundedness assumption.

Remarks. The preceding analysis did not address the role of α for the stability of the equi-

librium (in the sense of iterated best responses). It is easy to check that the equilibrium κ (θ) is

stable when α ∈ (−1, 1), but it is unstable when either α < −1 or α > 1.2 Clearly, none of the

results in the paper is affected if one restricts attention to α ∈ (−1, 1) so as to ensure stability.

Also, the preceding analysis did not address whether α < 1 is either necessary or sufficient for

equilibrium uniqueness under incomplete information. Once we restrict k in [−M,+M ] for some

M < ∞, it is easy to construct examples where α > 1 leads to multiplicity also under incomplete

information (at least for sufficiently precise public information).3 It is also possible to show that

α ∈ (−1, 1) suffices for uniqueness, following the same argument as in Morris and Shin (2002). What

is not obvious is whether uniqueness survives with incomplete information also when α < −1; we

have no reason to expect otherwise, but we have not proved it.

2To see this, consider the case with a continuum of players and unbounded actions, and let BR1 (K; θ) ≡

(1 − α) κ(θ)+αK and BRt (K; θ) ≡ BR1
�
BRt−1 (K; θ) ; θ

�
for t ≥ 2. The following are then true: when α ∈ (−1, 1),

as t → ∞, BRt (K; θ) → ∞ for any K 6= κ (θ) ; when instead α < 1 or α > 1, as t → ∞, BRt (K; θ) → ∞ for any

K > κ (θ) and BRt (K; θ) → −∞ for any K < κ (θ) .
3We considered a related example in Section 2 of Angeletos and Pavan (2004). For tractability, that example

assumed an upward discontinuity in the best response, which can be interpreted as the limit for α → ∞.
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A2. Comparative Statics

The aforementioned discussion focused on the role of the restriction α < 1 for the determinacy of

equilibria. We now discuss why the same restriction rules out comparative statics that would seem

to be paradoxical for applied purposes.

To see this, consider the investment example of Section 6.2 in the paper: the payoff of an agent

is U (k,K, σ, θ) = Ak − k2/2, where A ≡ (1 − a) θ + aK. Here k is interpreted as investment, A as

the return to investment, k2/2 as the cost to investment; the slope of the best response is α = a.

When α < 1, the return A, the best response BR (K; θ) , and the equilibrium κ (θ) are all

increasing in θ. When instead α > 1, the return to investment is decreasing in θ and, by implication,

the best response BR (K; θ) is also decreasing in θ for any given K; nevertheless, the equilibrium

κ (θ) = θ is increasing in θ. That is, the equilibrium investment moves in the opposite direction

than the return to investment. Why? Because the equilibrium is sustained by the belief that the

reduction in A caused by the increase in θ comes with a more-than-offsetting increase in others’

investment, so that at the end the total effect is a increase in A, which in turn makes everybody

invest more, thus making the belief self-fulfilling.

Clearly, this issue is closely related to multiplicity. To see this, think of a variant in which the

best-response function BR (K; θ) is continuous, differentiable, and strictly monotonic in both K

and θ, and satisfies, for any θ, limK→−∞ [BR (K; θ)− K] > 0 and limK→∞ [BR (K; θ) − K] < 0.

Let α (K; θ) ≡ ∂BR (K; θ)/∂K be the slope of the best response, which now may be a function

of K and/or θ. Then, whenever there is an unstable equilibrium (i.e., a fixed point to the best

response with α > 1), this equilibrium is necessarily surrounded by two stable equilibria (i.e., fixed

points with α < 1). While the former equilibrium has the opposite comparative statics with respect

to θ than the best response, the latter two equilibria have the same comparative statics. Although

this property need not be disturbing per se, it becomes unappealing once translated in specific

applications, which explains why it is standard practice in applied models with complementarities

to ignore unstable fixed points and focus on the stable ones.

Because such paradoxical comparative statics emerge only when α > 1, this result provides a

complementary reason for restricting the analysis to economies in which α < 1.4

A3. Summary

The combination of the aforementioned considerations led us to restrict attention to economies in

which α < 1. This is not to say that the case α > 1 is uninteresting—it is only to say that our

analysis is not appropriate for this case. First, one must recognize that α > 1 is endemic to multiple

4The aforementioned discussion focused on the case in which θ is commonly known; similar arguments apply to

the case of incomplete information.
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equilibria, in which case the information structure may matter, not only for the local comparative

statics of any given equilibrium, but also for the determinacy of equilibria. Second, even if one

is happy to select one particular equilibrium and focus on its local comparative statics, doing so

with the linear equilibrium identified in the paper may be problematic, for this equilibrium has the

opposite comparative statics than individual best responses, which seems unappealing for many

applied purposes.
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