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Abstract

It is commonplace to argue that persistent ine¢ ciency in the healthcare system is
due to the presence of health insurance. In this paper, we consider another source
of ine¢ ciency: the failure of health insurers and other payers to write e¢ cient cost-
sharing contracts with providers. The absence of such contracts is widely believed to
inhibit investments in integrated care and so to contribute to ine¢ cient organizational
fragmentation. Important public policy initiatives, such as Medicare�s Accountable
Care Organizationse (ACOs), aim to induce e¢ cient contracting between insurers and
providers, but the underlying market failure justifying intervention has not been well-
articulated or analyzed.
This paper argues that common-agency problems may impede e¢ cient contracting

between insurers and providers. We �nd that common agency can lead to a coordina-
tion failure when incentive contracts aim to elicit organizational innovations involving
lumpy investments or �xed costs. This coordination failure leads to an ine¢ cient equi-
librium in which contracts o¤er no incentives at all.
Although these results apply to many common-agency problems, they have speci�c

implications for healthcare policy. Interventions such as Medicare�s ACOs ameliorate
the common-agency market failure in two ways: but subsidizing investments by agents
and by jumpstarting more e¢ cient contracting by private payers. Subsidies crowd out
private incentives either partially or fully. Jumpstarting can do better, but only if the
market is stuck in an ine¢ cient equlibrium and only if the contracts ACOs o¤er are
su¢ ciently high-powered and aggressive. Weak ACO contracts are likely to have no
e¤ect at all.
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1 Introduction

The U.S. healthcare system is famously ine¢ cient, but the causes are poorly understood

(Baicker and Chandra, 2011). It is commonplace to argue that persistent ine¢ ciency in

the healthcare system is due to the presence of health insurance. In this paper, we consider

another source of ine¢ ciency: the failure of health insurers and other payers to write e¢ cient

cost-sharing contracts with providers due to a common-agency problem among insurers.

As we discuss below, the absence of such contracts is widely believed to inhibit invest-

ments in integrated care and so to contribute to ine¢ cient organizational fragmentation.

Important public policy initiatives, such as Medicare�s Accountable Care Organizations

(ACOs), aim to induce e¢ cient contracting between insurers and providers, but the un-

derlying market failure justifying intervention has not been well-articulated or analyzed.

Although our work is motivated by a speci�c economic setting and a speci�c set of policy

issues, the market failure we analyze is quite general and should apply to many other settings.

Our analysis is motivated by the problem of organizational fragmentation in the U.S.

healthcare system. Organizational fragmentation refers to the ine¢ ciencies that result when

care delivery is spread out across a large number of poorly coordinated providers.1 The

ine¢ ciencies from poor coordination could, in principle, be ameliorated by e¤orts to better

integrate care. Integration, however, requires providers to make substantial investments

in modern digital technologies as well as new managerial practices and new organizational

structures (Burns and Pauly, 2002).2

The persistence of organizational fragmentation poses an important challenge for eco-

nomics.3 If fragmentation is truly associated with meaningful ine¢ ciencies, one would expect

1For discussions of organizational fragmentation from an economic perspective see: Cebul, Rebitzer,
Taylor, and Votruba (2008). For recent analyses of di¤erent aspects of fragmentation in the medical literature
see Hussey, Schneider, Rudin, Fox, Lai, and Pollack (2014), Milstein and Gilbertson (2009), and Romano,
Segal, and Pollack (2015).

2A partial list of these includes investments in health information technology infrastructure and electronic
health record systems and clinical decision making support; investments in managerial and �nancial systems
such as payment methods, prospective budgets and resource planning, measures of provider performance,
methods of disbursing shared savings to providers and back o¢ ce assistance; investments in new organiza-
tional processes such as care coordination across service settings, providers and specialties; and investments
to create new standards of care and protocols that focus more on primary care physicians and non-physician
providers as well as patient wellness and prevention . As this list makes clear, some of the investments
required to create integrated delivery involve tangible assets, but others require much less-tangible e¤orts at
restructuring relationships between providers.

3In 1933 the Committee on the Cost of Medical Care, a blue ribbon commission investigating the cause
of the then-high cost of health care, recommended that comprehensive medical services be provided by
structured groups of providers, preferably organized around hospitals (Ross, 2002). An analysis of the
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the normal process of competition to compel providers to make investments that promote

e¢ cient integrated care (Stigler, 1958). Why does this not happen?

One possible answer is that the claimed ine¢ ciencies resulting from fragmentation are

overstated. Another possibility, however, is that there are factors inhibiting the operation

of normal market forces.4 We analyze this second possibility via a theoretical model of

market failures in contracting between the payer and provider. Payers such as Medicare

and commercial insurers have an obvious interest in having providers deliver cost-e¢ cient

care, but it is the providers who have the knowledge and ability to direct investments that

can achieve that goal. In addition, the investments required for integration are so multi-

faceted, complex and hard to observe that it is infeasible for insurers to condition payments

directly on these investments. Traditional fee-for-service payment arrangements provide little

incentive for providers to make these investments, as all savings accrue to payers. If instead,

payers write incentive contracts that allow providers to keep a fraction of the savings they

generate from improving the e¢ ciency of their operations, providers have some incentive to

make investments. From this perspective, the problem of organizational fragmentation can

be analyzed as a principal-agent problem between payers and providers.

The core of our argument� that integration in a fragmented healthcare delivery sys-

tem requires substantial up-front investments and that these may not be forthcoming when

the health insurance system has weak incentives to control costs� will be familiar to many

physicians, health services researchers, health economists and other observers of the health

care market.5 Indeed, concern about the role of incentives is the prime motivator for the

modern healthcare system by Baker, Bundorf, and Royalty (2014) points to a continued paucity of integrated
care delivery. They estimate that as late as 1998, 29% of physicians worked in solo practices and 55% in
practices of 9 or fewer physicians. A great deal of care is still delivered via small practices. According to
the 2010 National Ambulatory Care Survey, 31.5% of o¢ ce visits were to solo practices, and 67.5% were to
o¢ ces with �ve or fewer physicians. Only 22.6% of o¢ ce visits were to multi-specialty groups (Centers for
Disease Control, 2010, Table 2). There is some evidence of a sharp increase in the fraction of physicians who
are o¢ ce-based but a¢ liated with hospitals since the year 2000 (Moses, Matheson, Dorsey, George, Sado¤,
and Yoshimura, 2013), but it is not yet clear whether growing hospital a¢ liations re�ect true integration in
the delivery of care (Burns and Pauly, 2002).

4In earlier eras one could have pointed to legal strictures that sustained fragmentation� especially the
corporate practice of medicine laws that made it illegal for physicians to be employed by other organizations,
especially hospitals (Robinson, 1999). The legal impact of these laws, however, has nearly disappeared over
time� so other explanations are required (Cebul, Rebitzer, Taylor, and Votruba, 2008; Rebitzer and Votruba,
2011).

5Crosson (2009), for example, makes a similar argument informally in Health A¤airs. Another noteworthy
example is Burns and Pauly (2002) who argue that the decline of the ACO-like Integrated Delivery Networks
of the 1990s was the due in part to the absence of su¢ cient up-front investments combined with the fact that
the networks entered capitated contracts on a piecemeal basis with only a few payers. Blumenthal (2011)
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widespread application of principal-agent models to analyzing health care delivery.

Our analysis di¤ers from conventional principal-agent analysis, however, in one key re-

spect. Providers typically have multiple payers and so their incentives for making invest-

ments in integrated care depend on the shared savings contracts they have with all their

payers. This complication creates a �common agency�problem because multiple principals

are simultaneously trying to in�uence the behavior of a common agent.

Prior analyses of common agency have found that the market failures are more severe

than the distortions produced by having a single principal and a single agent. This literature

has highlighted the free-riding problem that emerges when multiple principals attempt to

elicit costly e¤ort from a common agent. In our setting this free-riding problem emerges

if payer A decides to share cost savings with providers to reduce costs, as some of the

providers� cost-saving e¤orts may accrue to other payers. In equilibrium, this free-riding

leads to ine¢ ciently weak incentives.6

Our research has uncovered an additional distortion that emerges when incentive con-

tracts elicit actions involving �lumpy�investments and �xed costs. These sorts of contracts

can produce a previously overlooked market distortion: a coordination failure in which some

equilibria are highly ine¢ cient and have essentially no incentives at all. Under these condi-

tions common agency poses an especially problematic barrier to organizational innovation.

To see the issue, consider the problem of a payer who would like a provider to invest in a

health IT system to reduce costs. An e¤ective system involves a large �xed-cost investment

in hardware and software and then other variable costs resulting from the new processes,

routines, and protocols required to e¤ectively operate the system. The payer is not in a

good position to understand the right ways to invest or implement such a system, so it

instead o¤ers the provider a share of the savings such investments would generate. The

provider�s incentive to undertake the investment, however, is determined by the collective

e¤ect of all the incentive contracts they have with their payers. If each payer believes that

it will be the only one to o¤er a cost-sharing contract with meaningful incentives, then it

is not willing to shoulder the entire burden of getting the provider to invest and so it will

argues that the fee-for-service payment system fails to reward improved e¢ ciency that investments in health
information technology enable.

6The �common agency�models we present have been studied since the mid-1980s and are well suited
to analyzing provider-insurer relationships, but have rarely been applied in the health care setting (for an
important exception see Glazer and McGuire, 2002). The seminal paper is Bernheim and Whinston (1986b).
Much of the subsequent literature on common-agency models focuses on problems of lobbying and in�uence
in political settings. See for example Dixit, Grossman, and Helpman (1997), Besley and Coate (2001); and
Kirchsteiger and Prat (2001).
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be better o¤ sticking with a traditional fee-for-service contract. In contrast, if each insurer

believes that others will o¤er contracts that reward cost-savings, its incentive to break from

traditional fee-for-service contracts increases. The result is a coordination problem in which

some equilibria involve signi�cantly less cost-sharing incentives than others. We �nd that

a necessary condition for coordination failures to arise under common agency is that the

actions contracts seek to involve �lumpy�investments or �xed costs.

Our analysis of common-agency also has important implications for health care policy,

especially for Medicare�s Accountable Care Organization (ACO) program. ACOs are a high-

pro�le public policy initiative designed to promote e¢ cient integrated care. ACOs are entities

comprised of hospitals and/or other providers that contract with the Center for Medicare

Services (CMS) to provide care to a large bloc of Medicare Patients (5,000 or more). Although

the details vary and are complex, ACOs that come in under their speci�ed cost benchmarks

keep a fraction of the savings conditional on meeting stringent quality standards. The

intention of these incentives is twofold. The �rst is to subsidize new investments in technology

and organizational processes that promote more e¢ cient, integrated care. The second e¤ect

is to jump-start similar contracts with private insurers� thereby spreading cost-e¤ective,

integrated care throughout the healthcare system.7

The theory behind ACOs has not been well articulated. Our model enables us to identify

conditions under which these subsidies will be e¤ective and jump-starts will occur. Regarding

subsidies, we �nd that ACO contracts do in fact have the e¤ect of subsidizing investments

in integrated care, but they crowd out private contracts either partially or fully.

With respect to jump-start e¤ects, we �nd that these only appear when incentive con-

tracts elicit actions involving �lumpy� investments or �xed costs, as would be true for in-

vestments in the sort of technologies and management practices required for moving from

fragmented to integrated care. In this case, coordination failures can cause payers to become

stuck in a highly ine¢ cient equilibrium with fee-for-service type contracts that o¤er only

limited incentives to control costs. From such a starting point, ACOs can indeed jump start

a change in contracting throughout the private sector. But our model �nds that this does

not have to happen. Jump-start e¤ects require that the contracts written by Medicare ACOs

be su¢ ciently high-powered and aggressive. Weak interventions are likely to have no e¤ect,

and there will be no jump starting at all.

7Moses, Matheson, Dorsey, George, Sado¤, and Yoshimura (2013) report that there are more than 300
ACOs established in most regions of the United States with 8% of Medicare patients eligible to be served,
with a goal to have one-third of the Medicare recipients enrolled by 2018.
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The paper proceeds as follows. In Section 2, we present an extended example, which

illustrates the central applied lessons of our paper. Section 3 describes our general framework

and develops necessary and su¢ cient conditions for an action choice by an agent to be an

equilibrium action. In section 4, we examine properties of the equilibrium action set, and in

section 5, we show how public policy interventions a¤ect the equilibrium action set. Section

6 concludes.

Relationship to the Theoretical Literature on Common Agency. Our model of

common agency builds upon the seminal work of Bernheim and Whinston (1986a,b), but

it di¤ers from the models commonly used in the literature in several ways. Within the

common-agency literature, ours is a complete-information moral-hazard model with public

contracting variables, risk neutrality, and limits on transfers. In particular, we restrict the

contracting space to nonnegative, nondecreasing contracts. The agent�s outside option yields

a payo¤of zero, so he would never reject any subset of the contracts he is o¤ered. As a result,

our model can be viewed as either one of delegated or intrinsic common agency.

In the special case of our model with a single principal, the contracting friction is one that

arises in limited liability models due to limits on transfers� the resulting trade-o¤ is between

incentive provision and rent extraction (Sappington, 1983; Innes, 1990). In the terminology

of Martimort and Stole (2012), our contracting space is not closed under subtraction,8 which

requires us to depart from the standard analytical tools that rely on a bilateral e¢ ciency

requirement. Our objective is to characterize the entire set of equilibrium action choices by

the agent within a speci�c class of games, rather than to describe the distributional properties

of a subset of equilibria in a general class of games, which is the common approach in the

literature.

In contrast to existing common agency models of public contracting, multiplicity of equi-

librium actions is not ubiquitous and does not result from parties��exibility in specifying

o¤-path contractual payments. (Bernheim and Whinston, 1986a; Kirchsteiger and Prat,

2001; Besley and Coate, 2001; Martimort and Stole, 2009) This is because in our setting, all

contractible outcomes are generically reached with positive probability on the equilibrium

path due to a full-support assumption. Multiplicity cannot be re�ned away in the standard

way by focusing on truth-telling equilibria (Bernheim andWhinston, 1986a; Dixit, Grossman,

and Helpman, 1997; Martimort and Stole, 2009). Such equilibria generically do not exist in

our framework, because ours is a setting in which bilateral e¢ ciency cannot be separated

8A contracting space W is closed under subtraction if given w;w0 2 W, w � w0 2 W.
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from bilateral distribution. In our model, there is always at least one equilibrium action and

sometimes more than one. One of our objectives is to establish necessary conditions on the

Agent�s cost function for there to be more than one.

2 An Illustrative Example

In this section we develop a model of a common-agency market failure, and we use this model

to illustrate the e¤ects of policy interventions. To enable a visual representation of the model

we present a special case where agent actions have a �xed cost and quadratic variable costs.

Section 3 further develops, in a more general setting, the insights we illustrate in this section.

Previous work analyzing common-agency moral hazard problems have typically high-

lighted a single equilibrium outcome in which incentives are dampened as a result of a free-

rider problem among payers. Our approach in this section di¤ers in that we also identify

conditions under which common agency leads to multiple equilibria, some of which Pareto

dominate others. In this case a coordination failure can emerge in which payers become stuck

in an ine¢ cient equilibrium where contracts o¤er no incentives at all. Not only does this

coordination failure result in distinctly worse outcomes than conventional common-agency

games, it also has distinct implications for the e¤ects of policy interventions. The possibility

of coordination failures, it turns out, depends on a number of factors including: the cost to

providers of actions required to implement integrated care and whether these actions involve

�xed costs or �lumpy�investments; the e¢ ciency gains from integrated care; and the number

of distinct payers interacting with the provider.

2.1 Setup

In our model, an agent�s incentives to take an action depend on the contracts they have with

all the principals, and the principals set their contracts non-cooperatively and simultaneously.

In our case this means that a provider�s incentives to invest in e¢ cient integrated care depend

on the cumulative e¤ect of all the contracts they have with all their insurers. The actions

taken by the agent include investments in infrastructure, measurement and management

systems. These are su¢ ciently complex and hard to observe that contracting directly on

them is infeasible. Instead contracts are based upon successful outcomes, corresponding to

patients�healthcare costs or quality. We express the cost the provider incurs to achieve a

probability of success a 2 A = [0; 1] as c (a) = F + da2=2. The term F captures the �xed
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cost component, while da2=2 term captures increasing marginal costs.

Figure 1: Provider cost function (solid curve) and payer bene�t function (dotted line) as a function of the

action taken by the provider.

A provider�s successful implementation of integrated care improves outcomes for all her

patients. Assuming that a provider�s patients are equally distributed across N payers (the

principals, indexed by i), each payer receives a bene�t B=N in the event of a successful

outcome and zero otherwise. Figure 1 illustrates the provider�s cost function and a payer�s

bene�t function as a function of the action, a, taken by the provider. We assume B � F+d=2
so that it would be e¢ cient for the provider to choose a = 1 and guarantee success. The

payers cannot contract directly on the action; instead, each payer i (non-cooperatively and

simultaneously) o¤ers a non-negative bonus payment bi paid to the provider conditional on

a success, and no payment otherwise. After receiving the contract o¤ers, the provider takes

an action based on the total incentives provided by the aggregate contract, b =
P

i bi.

The provider responds to the aggregate contract o¤ered by the payers by choosing an

action a to solve:

a� (b) = argmax
a

ba� c (a) :

Because of the �xed cost F , the provider chooses a = 0 unless the incentives exceed a certain

threshold, b =
p
2dF , as the following expression for the provider�s best response shows:

a� (b) =

(
0 ; b < b

b=d ; b � b
: (1)

This expression also implies what the aggregate contract must be to induce a given action:

b� (a) =

(
fb : 0 � b < bg ; a = 0

da ; a � a :=
p
2F=d

:
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The expression for b� (a) shows what the aggregate contract b must be in order to induce the

provider to take action a. It implies that when there are �xed costs, only actions a = 0 and

a � a are incentive compatible.
To �nd the set of equilibria in this setting, consider �rst payer i�s choice of contract given

b�i, the sum of the contracts o¤ered by all payers besides i. Payer i�s choice of contract bi
can be equivalently cast as choosing the action a to induce from the provider. Given b�i,

the following expression gives the contract i must o¤er in order to induce a given action a:

b�i (a) =

(
fbi : 0 � bi < b� b�ig ; a = 0

da� b�i ; a � a
:

This expression implies the cost to payer i of implementing a given b�i:

Ci (a) := ab
�
i (a) =

(
0 ; a = 0

da2 � ab�i ; a � a
:

Payer i�s optimal choice of contract, or, equivalently, choice of action to implement, solves

max
a
aB=N � Ci (a) :

The action payer i chooses to implement depends on how the marginal bene�t of the action,

B=N , compares to the marginal costs (or savings) from increasing (or decreasing) the action.

In the absence of �xed costs, the marginal savings from reducing a is the same as the marginal

cost of increasing a. With �xed costs, however, the left and right derivatives of costs are not

the same when a = 0 and when a = a. Speci�cally, payer i chooses a = 0 if

0 � B=N � Ci (a)

a
=
p
2dF � b�i: (2)

The left-hand side of expression (2) re�ects the fact that a cannot fall below zero. The right-

hand side re�ects the marginal cost of the incentive payment required to move from a = 0

to a and no higher. Because of the discontinuity resulting from �xed costs, this marginal

cost is the same as the average cost of moving from a to a.

Payer i instead chooses a = a if

p
2dF � b�i � B=N < 2da� b�i = 2

p
2dF � b�i: (3)

Finally, payer i chooses a > a to satisfy the �rst order condition

C 0i (a) = B=N (4)
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if

B=N > 2
p
2dF � b�i:

Conditions (2), (3), and (4) are, in fact, evaluations of the optimality condition that the

marginal bene�t to inducing higher action, B=N , be bounded by the left and right marginal

costs. Where the cost function Ci (a) is non-di¤erentiable, namely at a = 0 and a = a, the left

and right marginal costs di¤er, as the left and right sides of (2) and (3) show. Where Ci (a)

is di¤erentiable (a > a) the left and right marginal costs coincide and the usual �rst-order

condition (4) determines the optimum.

Equilibrium means all payers choose their bi to implement the same action a = �a given

all other players�contracts. A consequence of Corollary 2 in the Appendix is that for the

purposes of analyzing equilibrium actions �a, we can without loss of generality focus on

symmetric equilibria in which all payers o¤er identical contracts. With this simpli�cation,

expression (2) implies that a = 0 is an equilibrium action if

B=N �
p
2dF : (5)

The intuition for this condition is that if all the other payers anticipate a = 0, then the

marginal cost to a single payer of moving from a = 0 to a must be born entirely by the single

payer. In contrast, the marginal cost when all payers anticipate a = a is split equally among

the N payers. For this reason, expression (3) implies a = a is an equilibrium action if
p
2dF

N
� B

N
<

p
2dF (N + 1)

N
: (6)

Comparing (5) and (6), it is clear that there exists a value of B=N under which there are two

equilibrium actions, the �rst being much more ine¢ cient than the second because it o¤ers no

incentives. This is the essence of the coordination failure produced under common agency.

A necessary condition for this coordination failure is that the organizational innovation that

the payers wish to elicit from providers involves �xed costs. We develop this point more

generally in section 4.

Finally, the �rst-order condition (4) implies a = B
d(N+1)

is an equilibrium action if

B

N
�
p
2dF (N + 1)

N
: (7)

These equilibrium possibilities are illustrated graphically in Figure 2, which plots the marginal-

cost correspondence faced by payer i in a symmetric equilibrium at each candidate equilib-

rium action �a. The sections of the curve composed of vertical segments occur where Ci (a)
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is nondi¤erentiable and span the range between the left and right marginal costs. The point

at the origin and the thick solid line along the horizontal axis show the set of implementable

actions at a = 0 and a � a. The dotted horizontal line shows a possible value of B=N

corresponding to multiple equilibrium actions at a = 0 and a = a. Equilibrium actions

correspond to points where the horizontal line intersects the marginal-cost correspondence.

The �gure illustrates that a single equilibrium action at a = 0 is possible for B=N su¢ ciently

small, or a single equilibrium at a � a for B=N su¢ ciently large.

Figure 2: Equilibrium conditions in common agency example. The thick solid line along the horizontal axis

shows the support of implementable actions. The thick solid curve labeled MCi (�a) shows the marginal
cost correspondence faced by payer i in a symmetric equilibrium at each candidate equilibrium action level

�a. The dotted horizontal line shows a possible value of B=N corresponding to multiple equilibrium actions

a a = 0 and a = a.

These conditions illustrate two important consequences of common agency for our setting.

First, with several principals, both a = 0 and a = a are equilibrium actions if
p
2dF

N
� B

N
�
p
2dF ;

since both (5) and (6) are satis�ed in this case. Thus, payers may coordinate on an ine¢ cient

equilibrium (a = 0) although a Pareto-superior equilibrium exists� that is, coordination fail-

ures are possible. Figure 2 depicts an example of possible coordination failure. Second, even

when the bene�t of the investment is large enough to escape the possibility of coordination

failure (that is, B=N >
p
2dF ) the equilibrium choice of action is declining in N . This

illustrates the free-riding source of ine¢ ciency in common agency settings.
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2.2 Policy Interventions

This example can also illustrate how policy interventions such as incentives o¤ered to ACOs

in�uence equilibrium outcomes. Medicare�s ACO policy provides incentives to providers to

invest in e¢ cient care by sharing savings with the providers when cost targets are met subject

to quality thresholds. We capture ACO policy interventions in this example by augmenting

the provider�s objective function to be (b+ t) a� c (a). The quantity t represents the shared
savings distributed to the provider from Medicare if a success occurs, de�ned in terms of cost

and quality outcomes. The ACO policy in�uences equilibrium outcomes in several important

ways. First, a su¢ ciently aggressive policy can remove the possibility of coordination failure.

The equilibrium conditions for a = 0 to be an equilibrium action show this:

B=N + t �
p
2dF : (8)

Figure 3: Equilibrium conditions in common agency example with ACO intervention I . The thick solid
line along the horizontal axis shows the support of implementable actions. The thick solid curve labeled

MCi (�a) shows the marginal cost correspondence faced by payer i in a symmetric equilibrium at each

candidate equilibrium action level �a. The lower dotted horizontal line shows a possible value of B=N
corresponding to multiple equilibrium actions at a = 0 and a = a. The upper dotted horizontal line shows
that with ACO incentive of size I equilibria with a = 0 are eliminated.

Thus, when t >
p
2dF � B=N there cannot be an equilibrium with a = 0. Figure

3 illustrates graphically how this condition implies that ACO incentives can eliminate the

possibility of coordination failure. The �gure shows that an ACO incentive of size t has

the same e¤ect as increasing the marginal bene�t of the action by t, which can shift the
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point of intersection with the marginal cost correspondence out of the region where both

a = 0 and a = a are possible equilibrium actions. Thus, an ACO payout su¢ ciently large

ensures that a = 0 is not an equilibrium action, and eliminates the possibility of coordination

failure. In this way, Medicare�s ACO intervention can also spur private payers to o¤er more

powerful incentives for e¢ cient care, jump-starting a widespread move towards investments

in integrated care throughout the healthcare delivery system.

Expression (8) also o¤ers a more general framework for thinking about the supply side

e¤ects of disparate dimensions of health care policy. One of the major health care initiatives

early in the Obama presidency was a large-scale subsidy of investments in health information

technology, the Health Information Technology for Economic and Clinical Health Act, which

set aside up to $29 billion over ten years to support the adoption and meaningful use of

electronic health records (Blumenthal, 2011).

At the time these investments were justi�ed by the observation that the state of health

care information technology badly lagged the rest of the economy and that small physician

o¢ ces could not, on their own, a¤ord the substantial �xed costs such investments entail.

Public subsidies of health IT were also seen as part of the larger �scal stimulus required to

combat the very early stages of the severe 2008 recession (Blumenthal, 2011).

Whatever the economic merits of these explanations, expression (8) highlights another

economic aspect of these subsidies. Subsidies have the e¤ect of reducing the �xed or marginal

cost of providers�investments in integration, (captured by the parameters F and d), which

causes the right hand side of this expression to fall. To the extent that information technology

expenditures are an important component of F and d, subsidizing provider expenditures

on health IT will make it easier to transform the �least� equilibrium into one in which

providers write contracts that promote cost-e¢ cient care. The costs captured by F and d

ought also to include the costs of negotiating the rules, procedures and quality metrics that

providers and payers must agree upon to implement cost-sharing incentives. To the extent

that Medicare�s leadership and legitimacy in formulating rules and regulations makes these

private negotiations easier, they also reduce F or d and also make it easier to encourage

e¢ cient incentives in the �least�equilibrium

Our analysis also highlights a second implication for policy: Medicare�s ACO intervention

can crowd out private incentives for e¢ cient care. This crowd out is most stark when

the initial (prior to policy intervention) equilibrium action is a = a: A condition for an

equilibrium at a = a is that the average payer bene�t, B=N , be less than (N+1)
p
2dF�t

N
.
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Thus implementing policies with t < (N + 1)
p
2dF � B may not move the equilibrium

action taken by the provider at all, completely crowding out private incentives. Note that

this condition for complete crowd out is more likely to hold as the payer side of the game

becomes more fragmented (i.e. as N increases). Even when the equilibrium action is beyond

the sticking point at a = a policies still have a crowding out e¤ect. In this regime the

provider�s and payers��rst-order conditions imply that the equilibrium action does respond

to the policy, since the equilibrium action taken by the provider is increasing in t, as the

following expression shows:

a (t) =
B + t

d (N + 1)
:

Total private incentives, however, are partially crowded out, since the equilibrium incentive

contract o¤ered by payers is decreasing in t, as the following expression shows:

b (t) =
B �Nt
N + 1

:

The illustrative model we have developed in this section is limited in two important

ways. First, it restricts attention to a particular functional form of �xed and marginal

costs. This restriction greatly simpli�es the exposition of coordination failures and free-

riding because it concentrates the non-di¤erentiable �sticking points�at a = 0 and a = a,

allowing a stark distinction between regimes where coordination failures and free riding drive

the ine¢ ciencies. We show in the next section, however, that the main insights conveyed by

this example hold in a more general setting.

In the following sections, we present a generalized version of the common-agency model

we considered in this section. Our analysis di¤ers from prior analysis in that we identify

a set of nontrivial necessary conditions for coordination failures to emerge in a common-

agency moral hazard setting. As we detail below, these conditions require that the actions

agents take have a discrete component such as a �xed cost. In the healthcare context, orga-

nizational innovations involving new management structures, care processes, or information

technology systems likely meet these criteria. These criteria are not satis�ed in most prior

common-agency moral hazard models� when the agent�s cost function is well-behaved. Thus,

coordination failures should not arise when principals are trying to elicit greater e¤ort and

attention from a common agent.
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3 The Model

There are N risk-neutral Principals (denoted P1; : : : ; PN) and a single risk-neutral Agent

(denoted A). Principal i receives bene�t Bi if a binary outcome y = 1 and zero of y = 0.

The probability of a successful outcome is determined by A�s action choice, a: Pr [y = 1ja] =
a 2 A � [0; 1], where A is compact. The action is costly to the Agent: choosing a costs c (a),
where c is lower semicontinuous and nonnegative. Principals simultaneously and noncooper-

atively o¤er contracts wi 2 W, where W = f(w (0) ; w (1)) : w (1) � w (0) � 0g is the set of
nonnegative, nondecreasing contracts. We will often represent feasible contracts equivalently

as a nonnegative salary component si � 0 and a nonnegative bonus component bi � 0, so

that si = wi (0) and si + bi = wi (1).

The Agent can decide whether to accept a subset of the contracts, and if he accepts no

contracts, he receives 0. Since contracts must pay a nonnegative amount to the Agent, we

can without loss of generality assume he accepts all contracts. As a result, the Agent cares

about the aggregate contract w = w1 + � � � + wN . The game is therefore a delegated
common-agency game with a public contracting variable and risk-neutral participants. We

assume throughout that if the Agent is indi¤erent among several action choices, he chooses

the highest action he is indi¤erent among.

The timing of the game is as follows:

1. P1; : : : ; PN simultaneously o¤er wi 2 W;

2. A chooses a 2 A at cost c (a);

3. y 2 f0; 1g is realized, and wi (y) is paid from Pi to A.

A subgame-perfect equilibrium of this game is a vector of contracts (w�1; : : : ; w
�
N),

where w�i 2 W and an action-choice function a� : W ! A such that: (1) given w��i and a
�,

Pi optimally o¤ers w�i ; and (2) given (w
�
1; : : : ; w

�
N), A optimally chooses a

� (abusing notation

slightly). We will say that w� = w�1 + � � � + w�N is an equilibrium aggregate contract,

b� = b�1 + � � �+ b�N is an equilibrium aggregate bonus, and a� is an equilibrium action

if they are part of an equilibrium. Denote A� � A to be the set of equilibrium actions.

Our objective is to characterize this set and to describe how it depends on properties of the

function c (�).
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3.1 Preliminaries

In this section, we will establish an equivalence between the set of equilibrium actions and

the solutions to a self-generating maximization program. To do so, we will introduce a few

pieces of terminology and notation. For a function f : [0; 1] ! R, the left- and right-
derivatives of f at x are denoted by @�f (x) and @+f (x). The convexi�cation of a

function f : A ! R+ is the largest convex function ~f : [0; 1] ! R+ such that ~f (x) � f (x)
for all x 2 [0; 1]. The set of incentive-feasible actions is the set of actions for which the
agent�s cost function coincides with its convexi�cation Afeas = fa 2 A : ~c (a) = c (a)g. The
set Afeas � A is compact, because c is lower semicontinuous and A is compact. We describe
below the sense in which Afeas corresponds to the set of implementable actions.
The single-principal cost functionC : A ! R+ is the solution to the cost-minimization

problem

C (a) = min
w2W

s+ ba

subject to the agent�s incentive-compatibility constraint

a 2 argmax
a0

s+ ba0 � c (a0) .

Because the Agent�s preferences are additively separable in money and costs, the solution to

this problem can always be written as C (a) = c (a)+R (a) for all a 2 Afeas, where R (a) are
the incentive rents required to get the agent to choose action a. Note that for all a 62 Afeas,
C (a) = +1, since if ~c (a) 6= c (a), then there does not exist a contract under which a is

incentive-compatible. We will say that a solution to this problem is a cost-minimizing

contract implementing action a and denote the resulting contract by w�a, the resulting

salary component by s�a, and the resulting bonus component by b
�
a. We show in Lemma 5 in

the Appendix that cost-minimizing contracts satisfy s�a = 0 and b
�
a = @

�~c (a). We will say

that Pi supports action a if she o¤ers the Agent the contract wi = w�a=N .

We introduce the following conditions that will be used in some of the results. We indicate

in the statement of each result where each condition is imposed. Our main results require

both conditions to hold, but several of our intermediate results apply more generally.

CONDITION S. Principals are symmetric, so that B1 = � � � = BN = B=N .

Because we are focusing on a restricted contracting space, we are only able to develop

necessary and su¢ cient conditions for a 2 A� when Condition S holds. When Condition S
does not hold, the conditions we identify are necessary but not su¢ cient.
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To state the next condition, de�ne the quantity

Z (a; a0) =
@�~c (a)� @�~c (a0)

a� a0 .

CONDITION Z. For each a; a0 2 Afeas with a � a0, Z (a; a0) is increasing in a and a0.

This condition implies that the rents that must be provided to the agent to choose action a

are convex-extensible on [0; 1],9 which allows us to characterize equilibrium outcomes using

marginal conditions. When c is everywhere thrice di¤erentiable, Condition Z is implied by

c000 (a) � 0. If c is strictly convex on A = [0; 1], then Condition Z implies c is di¤erentiable.
Finally, we will say that a cost function is well-behaved if it satis�es the following

condition.

CONDITION W. A = [0; 1], c is twice-di¤erentiable with c0; c00 > 0, and c000 � 0.

Before stating the main results, it will be useful to establish benchmarks to which to

compare equilibrium actions. A �rst-best action a social planner would choose is any

action satisfying

aFB 2 argmax
a2Afeas

Ba� c (a) .

It will always be the case that aFB 2 Afeas, since it is an action A would be willing to

choose if the aggregate bonus were b = B. Because actions are not directly contractible, the

�rst-best action will not typically be an equilibrium action.

A second-best action is any action a single principal would implement, or

aSB 2 argmax
a2Afeas;w2W

Ba� s� ba

subject to the agent�s incentive-compatibility constraint

a 2 argmax
a02A

s+ ba0 � c (a0) .

We can equivalently de�ne the second-best action using marginal conditions. De�neMC� (a) �
@� ~C (a) and MC+ (a) � @+ ~C (a), and de�ne the single-principal marginal-cost correspon-

dence

MC (a) =
�
xjMC� (a) � x �MC+ (a)

	
.

9R : Afeas ! R is convex-extensible on [0; 1] if R is the restriction of a convex function ~R : [0; 1]! R
to the domain Afeas. (See Kiselman and Samieinia (Forthcoming))
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The second-best action aSB satis�es B 2 MC
�
aSB

�
. In general, we will have that aSB �

AFB, because R (a) is increasing. As we establish below, aSB in general represents an upper

bound on equilibrium actions in the common-agency game.

3.2 Necessary and Su¢ cient Conditions for Equilibrium Actions

In this subsection, we will show that an action a� is an equilibrium action when there are

N � 2 Principals if and only if

a� 2 argmax
a2Afeas

1

N
Ba� Ci (a; a�) ,

for some function Ci (a; a�), which is described in Theorem 1 below, and which we will

now derive. Our analysis parallels Bernheim and Whinston�s (1986b), but it di¤ers in two

respects, because all contractual payments are required to be nonnegative. First, since the

Agent�s outside option yields a payo¤ of zero to the Agent, we can without loss of generality

assume that the Agent will accept all contracts he is o¤ered. In our setting, therefore, there

are no equilibria �without participation�as there are in Bernheim and Whinston�s setting.

Second, we cannot make use of Bernheim and Whinston�s two-step argument that each

Principal �undoes�all other Principals�contracts and puts in place her own contract with

the Agent, because the resulting contracts may be infeasible. It turns out that, nevertheless,

all equilibrium aggregate contracts are cost-minimizing contracts for some action. This

result, however, does not immediately imply that we can restrict attention to cost-minimizing

contracts when solving each Principal�s problem.

We are ultimately interested in describing when a particular action a� is an equilibrium

action, but a� is an equilibrium action if and only if there is an equilibrium aggregate contract

w� under which the Agent �nds it optimal to choose a�. Since the Principals�choices pertain

to contracts rather than directly to the Agent�s action choice, we have to �rst describe the

conditions under which an aggregate contract w� is an equilibrium aggregate contract. An

aggregate contract w� 2 W is an equilibrium aggregate contract if and only if there exists

w�1; : : : ; w
�
N , with w

�
i 2 W and

P
iw

�
i = w

� such that for each i, Principal Pi prefers to o¤er

contract w�i if she believes the other principals will o¤er contracts
�
w�j
	
j 6=i. Denote the sum

of the other principals�contracts by w��i =
P

j 6=iw
�
j . De�ne b

�
�i similarly. Let a (b) denote

the Agent�s choice of action when he faces an aggregate contract with aggregate bonus b.

We therefore have that w� is an equilibrium aggregate contract if and only if there exists
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feasible contracts w�1; : : : ; w
�
N such that

P
iw

�
i = w

� and for each i,

w�i 2 argmax
wi2W

1

N
Ba
�
bi + b

�
�i
�
� bia

�
bi + b

�
�i
�
� si.

Each Principal takes as given the contracts other Principals o¤er and chooses a contract

that maximizes her expected pro�ts. O¤ering a contract with a higher bonus increases the

amount that Pi will pay the Agent when success occurs, but it also may increase the action

the Agent will choose.

As is standard in the common-agency literature, we can perform a change of variables

and think of Pi as directly choosing the aggregate contract that the Agent will face: that is,

we can change Pi�s choice variable from wi to w = w��i + wi. In order for w to be feasible

for Pi given w��i, it has to be the case that w 2 W + w��i =
�
ŵ + w��i; ŵ 2 W

	
. Under this

change of variables, Pi�s optimal choice solves

w� 2 argmax
w2W+w��i

1

N
Ba (b)�

�
b� b��i

�
a (b)�

�
s� s��i

�
.

Equilibrium aggregate contracts have to satisfy what Martimort and Stole (2012) refer to

as the �aggregate concurrence principle�: in equilibrium, all Principals must agree on the

aggregate contract the Agent will face. We show in Corollary 2 in the Appendix that w� is

an equilibrium aggregate contract if and only if there is a symmetric equilibrium in which

w� is the resulting aggregate contract, so in characterizing the set of equilibrium aggregate

contracts, we can without loss of generality assume that w��i = (1� 1=N)w�.
Instead of fully characterizing the set of equilibrium aggregate contracts, we are able

to focus on the simpler problem of characterizing the set of equilibrium actions. To do

so, we �rst recognize (see Proposition 2A in the appendix) that all equilibrium aggregate

contracts are cost-minimizing contracts for some action a. This result parallels Bernheim

and Whinston�s (1986b) Theorem 1, but their results do not imply ours. In particular, their

result requires that each Principal is able to undo all other Principals�contracts and put in

place her own� and if she is going to do so, she will clearly put in place a cost-minimizing

contract for whichever e¤ort level she wants the Agent to choose. Such contracts are not in

general feasible in our setting.

The fact that equilibrium aggregate contracts are cost-minimizing contracts in our setting

follows from risk-neutrality. Since the Agent is risk-neutral, the set of contracts that get the

agent to choose a particular action a is a convex set. Suppose the equilibrium aggregate

contract is not cost-minimizing. Then the convex hull of the equilibrium aggregate contract
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and the cost-minimizing contract implementing that action must intersect the set of feasible

aggregate contracts. All aggregate contracts in the intersection are feasible and those in

the interior of this intersection necessarily must involve lower expected costs to Pi, since

she is also risk-neutral. Combined, these results show that if other Principals support an

equilibrium action a�, then it is a best response for Pi to support a�.

More generally, we show in Lemma 4 in the Appendix that, given other Principals put

in place a set of contracts that add up to w�i, it is a best response for Pi to put in place an

aggregate contract that is cost-minimizing relative to w�i. That is, we can think of Pi as

choosing an action a and the minimum-cost feasible aggregate contract, given that others�

o¤ers add up to w�i, under which the Agent chooses action a. It is therefore without loss

of generality to assume that each Principal chooses an action at minimum cost to herself,

even though the resulting contract need not be a cost-minimizing contract for that action.

In particular, if all other Principals support an action a, there is a minimum feasible action,

which we will denote amin (a) that Pi can implement by choosing wi = 0. The resulting

aggregate contract will involve aggregate bonus b = (1� 1=N) b�a, which may not be part
of a cost-minimizing contract for action amin (a). Denote the cost-minimizing contract for

action a relative to (1� 1=N)w�a� by b̂a;a�.
Combining these results, an action a� is an equilibrium action if and only if

a� 2 argmax
a�amin(a�)

1

N
Ba�

�
b̂a;a� �

�
1� 1

N

�
b�a�

�
a.

We can de�ne Principal i�s e¤ective cost function given �a as

Ci (a; �a) = max fC (a) ; (1� 1=N) b��aamin (�a)g � (1� 1=N) b��aa.

Finally, in order to state our �rst theorem, de�ne the set of optimal action choices for Pi
given others support action �a

â (�a) = argmax
a2Afeas

1

N
Ba� Ci (a; �a) .

The following theorem provides necessary and su¢ cient conditions for an action a� to be an

equilibrium action.

THEOREM 1. Suppose Condition S holds. Then a� 2 A� if and only if a� 2 â (a�).

PROOF OF THEOREM 1. See Appendix.
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Theorem 1 provides a complete characterization of the set of equilibrium actions. In

particular, it shows that we can characterize the set of equilibrium actions by looking for the

solutions to a problem of a single Principal choosing an action given a modi�ed cost function,

which in turn takes as a parameter a �proposed�equilibrium action. If the solution to the

problem coincides with the proposed equilibrium action a�, then a� is indeed an equilibrium

action. In other words, the set of equilibrium actions are the set of �xed points of the

operator de�ned by â (�). This operator indeed has a �xed point, so there is at least one
equilibrium action.

THEOREM 2. Suppose Condition S holds. The set of equilibrium actions A� is nonempty.

PROOF OF THEOREM 2. See Appendix.

Theorem 2 follows by an application of Tarski�s �xed-point theorem given the observation

that Ci (a; �a) satis�es decreasing di¤erences in a and �a, which we show in Lemma 7 in the

Appendix. When it comes to characterizing the set of equilibrium contracts, there is a sense

in which there are strategic substitutes and a sense in which there are strategic complements

across Principals. Given an action, there are strategic substitutes in contract o¤erings� if

others o¤er contracts that provide a higher bonus payment to the Agent, then Principal

i can implement the given action by o¤ering a lower bonus payment. However, when it

comes to characterizing the set of equilibrium actions, the formulation we derive in Theorem

1 suggests that there are, in some sense, strategic complements across actions: if other

principals support a higher action, then the marginal cost to Principal i of supporting a

higher action fall.

In the next section, we explore the conditions on the Agent�s cost function under which

complementarities across Principals is su¢ ciently strong to guarantee there will be multiple

equilibrium actions. In order to do so, we will now describe marginal conditions for an

action a� to be an equilibrium action. If Condition Z is satis�ed, the function C is convex-

extensible on [0; 1], which implies that C (a) = ~C (a) for all a 2 Afeas. Corollary 3 in
the appendix shows that this property is inherited by the function Ci (�; �a) given any �a 2
Afeas. De�ne MC�i (a; �a) � @� ~Ci (a; �a) and MC+i (a; �a) = @+ ~Ci (a; �a) and the marginal-cost
correspondence at a given �a by

MCi (a; �a) =
�
xjMC�i (a; �a) � x �MC+i (a; �a)

	
.

An action a� is an equilibrium action if and only if 1
N
B 2MCi (a�; a�). We can therefore �g-

ure out which actions are equilibrium actions by computing the marginal-cost correspondence
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MCi (�a; �a) for all �a. Each intersection of this correspondence with the value 1
N
B correspond

to an equilibrium action. We will make use of this characterization of equilibrium actions in

what follows.

4 Equilibrium, E¢ ciency, and Coordination Failures

Our �rst result in this section is that the market failures in common-agency games are

generally more severe than in conventional principal-agent models. Speci�cally, the highest

equilibrium in the common agency problem, a�H , is ine¢ cient in that it results in actions

that are no greater than second-best actions.

PROPOSITION 3. Suppose Conditions S and Z hold. The highest equilibrium action a�H is

bounded from above by aSB.

Proof of Proposition 3. See Appendix.

The ine¢ ciency in equilibrium actions stems from potentially three sources. The �rst is

the inability to contract on the provider�s action, combined with some contracting costs.10

This source accounts for the di¤erence between aFB and aSB. The second potential source

of ine¢ ciency is free riding among the principals. This source arises because the agents�

investments bene�t all the principals� whether or not the principals o¤ered contracts with

strong or weak incentives. The resulting free riding produces a lower than optimal set of

incentive contracts and so the highest equilibrium action will generally be less than the

second-best action. The third potential source of ine¢ ciency is due to possible coordination

failures. Coordination failures occur when there are multiple equilibrium actions.

As we demonstrated in our illustrative example, not all common-agency games result

in coordination failures. An important implication of our characterization of equilibrium

actions is that if c is well-behaved, then there is a unique equilibrium action. When c is well-

behaved, MCi (�a; �a) is a singleton and is equal to c0 (�a)+R0 (�a), both of which are increasing

in �a. We will say that there is a sticking point at a if @�~c (a) 6= @+~c (a). Proposition 4

provides necessary conditions for there to be multiple equilibrium actions.

PROPOSITION 4. Suppose Conditions S and Z hold. If there are multiple equilibrium

actions, a�L and a
�
H > a

�
L, then there is a sticking point at a

�
L. If, in addition, Condition W

holds, then there is a unique equilibrium action a�.
10In our set-up the contracting costs emerge from our stipulation that all elements of the incentive contract

are non-negative.
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Proof of Proposition 4. See Appendix.

This result means that the possibility of principals coordinating on an ine¢ cient action

when a more e¢ cient equilibrium exists can only arise when there is a nondi¤erentiability

in the (convexication of the) function mapping the desired action to the amount a single

principal would have to compensate the agent to induce that action. This nondi¤erentiability

condition appears to be a narrow and technical one, but it has broad and important economic

implications. For example, it is satis�ed in the case of discrete investments or (as in our

model in Section 2) when investments have a discrete component such as a �xed cost. In the

healthcare context, innovations involving new organizational structures, care processes or

information technologies appear likely to meet the nondi¤erentiability criteria. The criteria

will manifestly not be satis�ed, however, in the case most studied by prior common-agency

models� when the cost of the agent�s action is continuous. Thus coordination failures should

not arise when principals are trying to elicit greater e¤ort and attention from a common-

agent, unless e¤ort/attention involves a substantial �xed cost.

5 Policy Interventions

The source of ine¢ ciency� free riding or coordination failure� matters for policy. In this

section we analyze how an ACO-style market intervention a¤ects equilibrium incentives and

investment. Through ACO policies, Medicare in�uences providers� incentives to invest in

e¢ cient care practices by sharing realized savings. We show that in the absence of coordi-

nation failure� that is, when the ine¢ ciency is driven by free riding� the ACO intervention

has the unintended consequence of reducing the incentives for investments in e¢ cient care

o¤ered by other payers in the market. In some instances the ACO intervention completely

crowds out private incentives and has no impact on provider investment levels at all. In the

presence of coordination failure, however, ACO interventions have the potential to eliminate

ine¢ cient equilibria completely and trigger a shift towards stronger incentives and larger

investments in e¢ cient care. The particular market failure driving the ine¢ ciency therefore

has dramatic implications for the likely consequences of policy interventions like ACOs.

We model the ACO intervention as an additional payment � to the provider in the event

of success. Including incentives o¤ered by the payers, the provider�s payo¤ is therefore w+ �

if y = 1 and zero otherwise. To make clear the equilibrium actions depend on the ACO

intervention, denote the least equilibrium action a�L (�) and the highest equilibrium action
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a�H (�). The equilibrium aggregate contract will be w� (�).

The consequences of the ACO incentive � for equilibrium investment levels depends on

what they would be in the absence of an intervention. First, in settings in which there are

no sticking points� that is, where free-riding is the only source of ine¢ ciency introduced by

common agency� the ACO intervention has the perverse e¤ect of reducing the incentives for

investment o¤ered by the payers, as the following proposition establishes.

PROPOSITION 5. Suppose Conditions S, Z, and W hold. Then for each � , there is a unique

aggregate equilibrium contract w� (�), which is decreasing in � .

Proof of Proposition 5. See Appendix.

Condition W implies that c is well-behaved and that there are no sticking points such as

those resulting from �xed costs in the agent�s cost function, and by Proposition 4, there is a

unique equilibrium action. In this setting the market failure responsible for ine¢ ciently low

incentives for investment is free riding among the multiple principals. The result says that

in such settings market interventions such as ACO policies will partially crowd out private

incentives. When free-riding drives the ine¢ ciency, policies may be less e¤ective than hoped.

When coordination failures drive the ine¢ ciency, however, ACO-style policies have the

potential to trigger large changes in equilibrium investment in e¢ cient care, as the following

proposition shows.

PROPOSITION 6. Suppose Conditions S and Z hold and suppose a�L (0) < a�H (0). Then

there exists some � � such that w�L (�) � w�H (0) for all � > � �.

Proof of Proposition 6. See Appendix.

Proposition 6 implies that when there are multiple equilibrium actions in the absence of

an ACO intervention� which by Proposition 4 requires the existence of sticking points or

�xed costs in the cost function� then there exists an ACO payout capable of ensuring that

the least equilibrium exceeds the original highest equilibrium action. Thus in a setting where

prior to an ACO intervention payers had been coordinating on an ine¢ cient equilibrium, the

introduction of ACOs has the potential to jump-start incentive provision by private payers.

5.1 Discussion

The model�s key implication for healthcare fragmentation is Proposition 4, which provides a

formal economic mechanism by which healthcare may remain persistently and ine¢ ciently
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fragmented. The result suggests that payers may provide little incentive for, and providers

may in turn undertake little investment in organizational innovations required for integrated

care, even though doing so could be Pareto-improving. The result says that a necessary

condition for this to be the case is that the cost function a single payer would face to induce

a given level of e¤ort from the provider be nondi¤erentiable at the lower level of e¤ort.

Put di¤erently, Proposition 4 implies that in a common-agency setting, the e¢ ciency

properties of outcomes depend critically on the nature of the task principals seek to elicit

from agents. The numerous �xed, indivisible investments in the form of health IT infrastruc-

ture, and measurement and management systems involved in adopting e¢ cient integrated

care would lead to very di¤erent outcomes than incentives aimed towards eliciting more ef-

fort or attention from agents. Intuitively, half of an electronic health record system delivers

no bene�t so these sort of investments are inherently �lumpy.�In this case incremental in-

centives that are insu¢ cient to cover the jump in costs will not increase investment, and

thus payers will not o¤er them. The result may be an equilibrium with virtually no incen-

tives to undertake the organizational innovation. In the healthcare setting, this equilibrium

corresponds to a status quo of fee-for-service payment arrangements with little coordination

or integration. Only if the aggregate incentives o¤ered by the other payers are high enough

will a payer be willing to o¤er the higher incentives needed to induce the higher investment

level from the provider. On the other hand, Proposition 4 also shows that if the investments

required to adopt e¢ cient, integrated care are, in fact, incremental or continuous in nature,

then coordination failures will not arise. Investment may still be ine¢ ciently low (i.e., less

than second-best), but because of free riding among the payers, not because of coordination

failures.

The model shows that the nature of the required investments, and thus the source of inef-

�cient fragmentation� coordination failure or moral hazard� also matters for policy. Propo-

sition 6 says that in the presence of coordination failures, policy interventions such as ACOs,

which provide additional incentives to providers to invest in e¢ cient care, have the potential

to eliminate ine¢ cient equilibria and shift the market towards an equilibrium with substan-

tial investments and for e¢ cient care. In this light, health reform initiatives such as ACOs or

health information technology subsidies can be seen as e¤ective policy responses to coordi-

nation failures. On the other hand, in the absence of coordination failures, such policies are

more likely to crowd out private incentives for investments in e¢ cient care, as Proposition 5

shows.
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6 Conclusion

The core of our argument is that integration in a fragmented healthcare delivery system

requires substantial up-front investments and that these may not be forthcoming when the

health insurance system has weak incentives to control costs. The weak incentives persist

because of common-agency problems among insurers.

Speci�cally we �nd that common agency leads to weaker incentives than found in con-

ventional principal-agent settings. This heightened ine¢ ciency has two sources. The �rst

is free-riding among payers because provider investments in integrated care bene�t all the

payers whether or not they o¤er providers cost-saving incentives. The second is coordination

failures in which payers become stuck in a highly ine¢ cient equilibrium and o¤er contracts

having no incentives at all even though Pareto dominating alternative equilibria are feasible.

The source of ine¢ ciency� free-riding or coordination failure� matters for policy. In a

setting with only free-riding, Medicare�s ACO intervention has the perverse e¤ect of reducing

incentives for investment o¤ered by private payers. Things are di¤erent when coordination

failures drive the ine¢ ciencies. Here ACO-style policies have the potential to trigger jump-

start changes in incentives throughout the private sector� provided that the intervention is

su¢ ciently high-powered and aggressive. If not, the policies may have no e¤ect at all.

Our results also have implications for the applied theory literature on common-agency.

We �nd that the possibility of multiple equilibria and coordination failure depend critically

on the sort of actions incentive contracts seek to elicit. When principals wish to encourage

more e¤ort, attention or similarly continuous actions, coordination failures will not appear.

Coordination failures may appear when contracts are aimed at inducing innovations involving

�xed costs or lumpy investments. E¤orts to move from fragmented to integrated care delivery

clearly require providers to undertake these sorts of investments.

Investigating other common-agency applications involving these sorts of investments is

an important area for future research.
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Appendix

This Appendix develops the arguments to prove the results in Sections 3 and 4, including
equilibrium existence and our characterization of the set of equilibria. The �rst subsection
develops Theorem 1, which characterizes the set of equilibrium actions A� as the solution to
a self-generating maximization program. In particular, we show that a� 2 A� if and only if

a� 2 â (a�) � argmax
a2Afeas

~� (a; a�) .

The second subsection shows that the operator â (�) is monotone, so it always has at least
one �xed point, proving Theorem 2.

Aggregate Representation

In this subsection, we develop necessary and su¢ cient conditions for an action a� to be an
equilibrium action. The results of this subsection hold for more general output spaces and
more general contracting spaces than we assume in our main model. Further, while our
su¢ cient conditions require Condition S to be satis�ed, our necessary conditions do not.
The results in the following subsections make use of our assumptions that the output space
is binary and contracts are nonnegative and nondecreasing.
Before we outline the argument, we de�ne some notation and terms that will be conve-

nient in the arguments. First, denote the distribution over output induced by action
a by � (a), and the Agent�s optimal action given aggregate contract w by a (w). Recall
our tie-breaking assumption on the Agent�s choice: if the Agent is indi¤erent among two or
more actions, he chooses the highest action he is indi¤erent among. The set of feasible
contracts that support action a is the subdi¤erential of c at a:

@c (a) = fw 2 W : w � � (a)� c (a) � w � � (a0)� c (a0) for all a0 2 Ag ;

where w � � (a) is the inner product of w and � (a). A cost-minimizing contract for a is
denoted by w�a, and it solves

w�a 2 argmin
w2W

fw � � (a) : w 2 @c (a)g :

The set of feasible actions relative to �w is denoted by

Afeas�w =
�
a 2 Afeas : w 2 @c (a) for some w 2 W+(1� 1=N) �w

	
:

A cost-minimizing contract for a 2 Afeas�w relative to �w, denoted by w�a; �w, solves

w�a; �w 2 argmin
w2W+(1�1=N) �w

fw � � (a) : w 2 @c (a)g
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Our analysis in this subsection proceeds in four steps:

1. We �rst extend the analysis of Martimort and Stole (2012) to a setting in which the
aggregate is not bijective, we will show that when Condition S is satis�ed, w� is an
equilibrium aggregate contract if and only if

w� 2 ŵ (w�) = argmax
w2W+(1�1=N)w�

�
1

N
B � w +

�
1� 1

N

�
w�
�
� � (a (w)) :

2. We then extend Theorem 1 of Bernheim and Whinston (1986b) to this setting, showing
that if w� 2 ŵ (w�), then w� is a cost-minimizing contract for some action a 2 Afeas.

3. Next, we show that given any aggregate contract �w, any w 2 ŵ ( �w) will be a cost-
minimizing contract for some action relative to �w.

4. Finally, we show that w� 2 ŵ (w�) if and only if w� = w�a� where

a� 2 â (a�) = argmax
a2Afeas

1

N
Ba� Ci (a; a�) :

In proceeding from the self-generating maximization program derived in Step 1 to the
simpler self-generating maximization program derived in Step 4, Step 2 is restricts the domain
of the contracting space that needs to be searched over, and Step 3 restricts the range. In
particular, Steps 2 and 3 show that both the domain and the range can, without loss of
generality, be restricted to a set that is isomorphic to the set of incentive-feasible actions,
which is a compact subset of [0; 1].

Step 1 Given w�i, Pi chooses wi to solve

max
wi2W

(Bi � wi) � � (a (w)) = max
wi2W

ui (wi; w) .

We can instead think of Pi as choosing w = wi +
P

j 6=iwj. Then wi 2 W if and only if
w 2 W +

P
j 6=iwj. Pi�s problem is therefore

max
w2W+

P
j 6=i wj

ui

 
w �

X
j 6=i

wj; w

!
.

If w� is an equilibrium aggregate contract, then for each i,

w� 2 argmax
w2W+w��w�i

ui

 
w �

X
j 6=i

w�j ; w

!
:
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Since w� solves this program for each i, it also solves these programs on average:

w� 2 argmax
w2\Ni=1W+w��w�i

NX
i=1

ui

 
w �

X
j 6=i

w�j ; w

!
.

De�ne the quantity

� (w; �w) =
1

N

NX
i=1

ui

 
w �

X
j 6=i

�wj; w

!
=
1

N

NX
i=1

 
Bi �

 
w �

X
j 6=i

�wj

!!
� � (a (w)) ;

or

� (w; �w) =

�
1

N
B � w +

�
1� 1

N

�
�w

�
� � (a (w)) :

Therefore, if w� 2 W is an aggregate equilibrium contract, then

w� 2 argmax
w2\Ni=1W+w��w�i

� (w;w�)

for some w�1; : : : ; w
�
N such that

PN
i=1w

�
i = w

�. This leads to the following Lemma.

LEMMA 1. If w� is an equilibrium aggregate contract, then

w� 2 argmax
w2W(w�)

� (w;w�) ,

where

W (w�) =
[

w�1+���+w�N=w�
w�i 2W

N\
i=1

W + w� � w�i .

The set W (w�) seems unwieldy, but it is simpli�ed by the fact that W is a convex cone,
as the following Lemmas show.

LEMMA 2. Suppose X1; : : : ; XN are convex cones. Then

N\
i=1

Xi �
NX
i=1

1

N
Xi.

PROOF OF LEMMA 2. Take x 2 \Ni=1Xi. Then x 2 Xi. SinceXi is a convex cone, 1N x 2 Xi

for each i. Therefore, x =
PN

i=1
1
N
x 2

PN
i=1

1
N
Xi.�

29



LEMMA 3. For any �x 2 X,

[
�x1+���+�xN=�x

�xi2X

N\
i=1

X + xi = X +
1

N
�x.

PROOF OF LEMMA 3. To prove (�), take x1; : : : ; xN such that
PN

i=1 xi = �x. From Lemma
2,

N\
i=1

X + xi �
NX
i=1

1

N
(X + xi) .

Since X is a convex cone, 1
N
X = X and

PN
i=1X = X, so

NX
i=1

1

N
(X + xi) = X +

NX
i=1

1

N
xi = X +

1

N
�x,

since xi are scalars. Since x1; : : : ; xN were arbitrary, this holds for all x1; : : : ; xN for whichPN
i=1 xi = �x. To prove (�), suppose x 2 X + 1

N
�x. Let xi = 1

N
x. Then

PN
i=1 xi = �x, and

1
N
x 2 X + 1

N
x.�

The following Corollary results from Lemmas 2 and 3.

COROLLARY 1. For any �w 2 W ,

W ( �w) =W + (1� 1=N) �w.

Putting these results together, if w� 2 W is an equilibrium aggregate contract, then

w� 2 argmax
w2W+(1�1=N) �w

� (w; �w) .

The converse holds if Condition S is satis�ed, as the following Proposition shows.

PROPOSITION 1A. Suppose Condition S is satis�ed. Then w� 2 W is an equilibrium
aggregate contract if and only if

w� 2 argmax
w2W+(1�1=N)w�

� (w;w�) .

PROOF OF PROPOSITION 1A. Necessity follows from Lemma 1 and Corollary 1. Now,
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suppose w� solves this program. Let w�i =
1
N
w� for i = 1; : : : ; N . Pi�s program is therefore

max
w2W+(1�1=N)w�

 
Bi �

 
w �

X
j 6=i

w�j

!!
� � (a (w))

= max
w2W+(1�1=N)w�

�
Bi �

�
w �

�
1� 1

N

�
w�
��

� � (a (w)) :

Since Bi = 1
N
B, this program is equivalent to

max
w2W+(1�1=N)w�

�
1

N
B � w +

�
1� 1

N

�
w�
�
� � (a (w)) = max

w2W+(1�1=N)
� (w;w�) .

Since w� solves the aggregate problem, it also solves each Principal�s problem.�
Proposition 1A completes the �rst step of the analysis. One immediate Corollary of

Corollary of Proposition 1A is that when Condition S is satis�ed, if w� is an equilibrium
aggregate contract, there is a symmetric equilibrium in which w� is the associated equilibrium
aggregate contract.

COROLLARY 2. Suppose Condition S is satis�ed. If w� is an equilibrium aggregate contract,
there is a symmetric equilibrium in which each Principal chooses w�i =

1
N
w�.

Step 2 We now turn to the second step, showing that any equilibrium aggregate contract
must be a cost-minimizing contract for some action, as long as the contracting space W is a
convex cone. This result is captured in Proposition 2A. Note in particular that Proposition
2A does not require that Condition S is satis�ed. It therefore shows that Theorem 1 of
Bernheim andWhinston (1986b) can be extended to environments with restricted contracting
spaces, as long as the contract space is a convex cone, and players are risk-neutral.

PROPOSITION 2A. Suppose Condition S is satis�ed and

w� 2 argmax
w2W+(1�1=N)w�

� (w;w�) .

Then w� = w�a for some a 2 Afeas.
PROOF OF PROPOSITION 2A. Suppose

w� 2 argmax
w2W+(1�1=N)w�

�
1

N
B � w +

�
1� 1

N

�
w�
�
� � (a (w)) .

Then w� implements some action a� = a (w�). In order to get a contradiction, suppose there
is some contract ŵ 2 W that also implements a� but ŵ � � (a�) < w� � � (a�). First, note
that if a (w�) = a (ŵ) = a, then for any � 2 [0; 1], a ((1� �) ŵ + �w�) = a. That is, if two
contracts implement the same action, then so does any convex combination. This is because
the Agent is risk-neutral.
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There are then two cases. First if ŵ 2 W+(1� 1=N)w�, then ŵ is feasible and does better
than w� in the aggregate program, so w� 62 ŵ (w�). Next, suppose ŵ 62 W + (1� 1=N)w�.
Then, we can always draw a line segment connecting ŵ and w�. This line segment will
intersect W + (1� 1=N)w�. Take �̂ such that �̂ŵ + (1� 1=N)w� is in the boundary of
W+(1� 1=N)w�. Then �̂ŵ+

�
1� �̂

�
w� is feasible and cheaper than w�, so w� 62 ŵ (w�).�

Proposition 2A e¤ectively restricts the domain over which we have to search when looking
for �xed points of the ŵ (�) operator. In particular, we only have to look for w�a such that
w�a 2 ŵ (w�a).

Step 3 We will now proceed to the third step, which shows that any contract in ŵ ( �w) is
cost-minimizing relative to �w. This result is described in the following Lemma.

LEMMA 4. Suppose Condition S is satis�ed and w 2 ŵ ( �w). Then w is cost-minimizing for
some a relative to �w.

PROOF OF LEMMA 4. In order to get a contradiction, suppose w is not cost-minimizing
for any action relative to �w. Let a = a (w). Since w�a; �w is a cost-minimizing contract for a
relative to �w, it is feasible, and we have that w�a; �w � � (a) < w � � (a), which implies that�

1

N
B � w�a; �w +

�
1� 1

N

�
�w

�
� � (a) >

�
1

N
B � w +

�
1� 1

N

�
�w

�
� � (a) ;

which contradicts the claim that w 2 ŵ ( �w).�
One implication of Lemma 4 is that in solving for ŵ ( �w), it is without loss of generality

to consider cost-minimizing contracts relative to �w. That is,

argmax
w2W+(1�1=N) �w

� (w; �w) = argmax
w�a; �w2W+(1�1=N) �w

� (w; �w) .

Proposition 2A restricts the domain over which we have to search when looking for �xed
points of the ŵ (�) operator. Lemma 4 shows that, given a cost-minimizing contract w��a,
we can restrict attention to looking for cost-minimizing contracts relative to w��a. Denote a
cost-minimizing contract for action a relative to w��a by w

�
a;�a, and denote the set of feasible

actions relative to w��a by A
feas
�a . Without loss of generality, we can therefore restrict attention

to a domain and a range that are each isomorphic to Afeas.

Step 4 Before we can state and prove Theorem 1A, de�ne the function

�Ci (a; �a) = w
�
a;�a � � (a)�

�
1� 1

N

�
w��a � � (a) .

Our main characterization theorem follows.
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THEOREM 1A. Suppose Condition S is satis�ed. a� is an equilibrium action if and only if

a� 2 â (a�) = argmax
a2Afeas

a�

1

N
Ba� �Ci (a; a

�) . (9)

PROOFOF THEOREM 1A. Suppose a� is an equilibrium action. Then w�a� is an equilibrium
aggregate contract (Lemma 3), which in turn implies that w�a� 2 ŵ (w�a�) (Lemma 1). Since
all w 2 ŵ (w�a�) are cost-minimizing relative to w�a� (Lemma 4), w�a� 2 ŵ (w�a�) implies that
a� 2 â (a�). Conversely, suppose a� 2 â (a�). Then w�a� is the best cost-minimizing contract
relative to w�a�, which implies that w

�
a� 2 ŵ (w�a�) (Lemma 4).�

Theorem 1A shows that instead of solving for �xed points of ŵ (�), an equivalent problem
is the simpler problem of solving for �xed points of â (�). This problem is simpler, because
the action space is simpler than the contracting space.

Monotonicity

In this subsection, we show that the operator â (�) is increasing, which in turn allows us
to make use of monotonicity-based �xed-point theorems to establish the existence of an
equilibrium action and to derive some properties of the set of equilibrium e¤ort levels. The
analysis in this subsection proceeds in four steps. Recall that we have denoted @�~c (a) and
@+~c (a) to be the left- and right-derivative of ~c at a, where ~c (a) is the convexi�cation of the
Agent�s cost function, c (a). @�~c (a) and @+~c (a) are also the inf and sup of the subdi¤erential
of c at a. By convention, we will denote @�~c (0) = 0.

1. For all a 2 Afeas, w�a (0) = 0 and w�a (1) = @�~c (a), so that we can write s�a = 0 and
b�a = @

�~c (a).

2. Next, we will show that

â (�a) = argmax
a2Afeas

1

N
Ba� Ci (a; �a) ,

where
Ci (a; �a) = max fC (a) ; (1� 1=N) b��aamin (�a)g � (1� 1=N) b��aa.

3. We will then show that Ci (a; �a) satis�es decreasing di¤erences in (a; �a) onAfeas, which,
by Topkis�s (1998) theorem, implies that â (�) is increasing.

4. Finally, by Zhou�s (1994) extension of Tarski�s (1955) �xed-point theorem, the set of
�xed points of â (�) is nonempty and compact.
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Step 1 Lemma 5 establishes the �rst result, solving for the set of cost-minimizing contracts
of the single-principal problem in our setting.

LEMMA 5. If w 2 @c (a), then there is a ~w 2 W with ~w (0) = 0 such that ~w 2 @c (a) and
~w � � (a) � w � � (a), so for each a 2 Afeas, w�a (0) = 0. Further, w�a (1) = @�~c (a).
PROOF OF LEMMA 5. Suppose w 2 @c (a). Then

@�~c (a) � w (1)� w (0) � @�~c (a) .

De�ne ~w = (0; w (1) ; w (0)). By construction, ~w 2 @c (a), and

[w (1)� w (0)] a � w (0) (1� a) + w (1) a = w (0) + [w (1)� w (0)] a;

since w (0) � 0. This inequality is strict, unless w (0) = 0, so w�a (0) = 0.
Next, in order for (0; w (1)) 2 @c (a), it has to be the case that @�~c (a) � w (1) � @+~c (a).

Let ~w = (0; @�~c (a)). Then ~w 2 @c (a), and

@�~c (a) a � w (1) a,

and therefore w�a (1) = @
�~c (a).

We will subsequently denote s�a = w
�
a (0) = 0 and b

�
a = w

�
a (1)� w�a (0) = @�~c (a).

Step 2 We now show that the maximization program (9) de�ned in Theorem 1A is solution-
equivalent to an unconstrained maximization program obtained by replacing �Ci (a; �a) with

Ci (a; �a) = max fC (a) ; (1� 1=N) b��aamin (�a)g � (1� 1=N) b��aa.

LEMMA 6. For all �a 2 Afeas, the solutions to maximization program de�ned in (9), â (�a),
coincide with

argmax
a2Afeas

1

N
Ba� Ci (a; �a) .

PROOF OF LEMMA 6. In this setting, we have Afeas�a = Afeas \ [amin (�a) ; 1], �Ci (a; �a) =
b�a;�aa� (1� 1=N) b��aa, and

b�a;�aa =

(
(1� 1=N) b��aa

C (a)

a = amin (�a)

a > amin (�a) .

By de�nition of amin (�a), for all a � amin (�a), b�a � (1� 1=N) b��a. We therefore have that for
all a 2 Afeas�a , �Ci (a; �a) = Ci (a; �a). Finally, for all a < amin (�a),

Ci (a; �a) � Ci (amin (�a) ; �a) ,
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so that
argmax
a2Afeas�a

1

N
Ba� Ci (a; �a) = argmax

a2Afeas

1

N
Ba� Ci (a; �a) ,

which completes the proof.�

Step 3 If Ci (a; �a) satis�es decreasing di¤erences in (a; �a) on Afeas, then ~� (a; �a) satis�es
increasing di¤erences in (a; �a) on Afeas. This is the case, as the following Lemma shows.
LEMMA 7. Ci (a; �a) satis�es decreasing di¤erences in (a; �a) on Afeas. Consequently, ~� (a; �a)
satis�es increasing di¤erences in (a; �a) on Afeas.
PROOF OF LEMMA 7. Let a � a0 and �a � �a0 with a; a0; �a; �a0 2 Afeas. De�ne the di¤erence
�(�a) � Ci (a; �a)�Ci (a0; �a) and the value � = (b��a � b��a0) (a� a0) � 0. There are six cases we
need to consider. They are tedious but straightforward.
Case 1. If C (a) � C (a0) � (1� 1=N) b��aamin (�a) � (1� 1=N) b��a0amin (�a0), then

�(�a)��(�a0) = �� � 0

Case 2. If C (a) � (1� 1=N) b��aamin (�a) � C (a0) � (1� 1=N) b��a0amin (�a0), then

�(�a)��(�a0) = C (a0)� (1� 1=N) b��aamin (�a)� � � 0

Case 3. If C (a) � (1� 1=N) b��aamin (�a) � (1� 1=N) b��a0amin (�a0) � C (a0), then

�(�a)��(�a0) = (1� 1=N) b��a0amin (�a0)� b��aamin (�a)� � � 0

Case 4. If (1� 1=N) b��aamin (�a) � C (a) � C (a0) � (1� 1=N) b��a0amin (�a0), then

�(�a)��(�a0) = C (a0)� C (a)� � � 0

Case 5. If (1� 1=N) b��aamin (�a) � C (a) � (1� 1=N) b��a0amin (�a0) � C (a0), then

�(�a)��(�a0) = (1� 1=N) b��a0amin (�a0)� C (a)� � � 0

Case 6. If (1� 1=N) b��aamin (�a) � (1� 1=N) b��a0amin (�a0) � C (a) � C (a0), then

�(�a)��(�a0) = �� � 0:

Since ~� (a; �a) = 1
N
Ba� Ci (a; �a), ~� (a; �a) satis�es increasing di¤erences in (a; �a) on Afeas.�

We can therefore apply Topkis�s theorem to show that â (�) is increasing.
LEMMA 8. â (�) is increasing on Afeas.
PROOF OF LEMMA 8. Follows directly from Topkis�s theorem.

The intuition behind Lemma 8 is that, given any cost-minimizing target contract, w��a,
each Principal Pi either wants to leave (1� 1=N)w��a in place by contributing wi = 0, or
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they want to tup up (1� 1=N)w��a. If they choose to top it up, they will top it up to a
cost-minimizing contract, which is feasible, because w�a is increasing in a.

Step 4 Our second theorem follows from Lemma 8.

THEOREM 2. Suppose Condition S holds. The set of equilibrium actions A� is nonempty
and compact.

PROOF OF THEOREM 2. By Lemma 8 and the fact that Afeas is a compact subset of
[0; 1], â (�) is a monotone operator on a complete lattice. By Zhou�s (1994) extension of
Tarki�s �xed-point theorem to correspondences, the set of �xed points of â (�) is a nonempty
complete lattice, which in turn implies that A� is a compact subset of [0; 1].�

6.1 E¢ ciency, Coordination Failures, and Policy

LEMMA 9. Let f : R ! R be convex and nondecreasing, and let g : Afeas ! R be convex-
extensible on [0; 1]. Then f � g : Afeas ! R is convex-extensible on [0; 1].

Proof of Lemma 9. Let ~g be the convexi�cation of g on [0; 1]. Then f � ~g is convex, and
f � g (a) = f � ~g (a) for all a 2 Afeas. Therefore, f � g is convex-extensible on [0; 1].�
COROLLARY 3. For any �a 2 Afeas, the function Ci (�; �a) is convex-extensible on [0; 1].
Proof of Corollary 3. Since f (x) = max fx; kg is convex and nondecreasing, Lemma 9
implies that f � C (a) is convex-extensible on [0; 1]. Ci (�; �a) is the sum of an a¢ ne function
and f � C (a) for k = (1� 1=N) b��aamin (�a) and is therefore convex-extensible on [0; 1].�
PROPOSITION 3. Suppose Conditions S and Z hold. The highest equilibrium action a�H is
bounded from above by aSB.

Proof of Proposition 3. TBA, but follows from the fact that MC (a) � N �MCi (a) in the
strong set order.

PROPOSITION 4. Suppose Conditions S and Z hold. If c is well-behaved, then there is a
unique equilibrium action a�. If there are multiple equilibrium actions, a�L and a

�
H > a�L,

then there is a sticking point at a�L.

Proof of Proposition 4. TBA.

PROPOSITION 5. Suppose Conditions S, Z, and W hold. Then for each � , there is a unique
aggregate equilibrium contract w� (�), which is decreasing in � .

Proof of Proposition 5. TBA.

PROPOSITION 6. Suppose Conditions S and Z hold and suppose a�L (0) < a�H (0). Then
there exists some � � such that w�L (�) � w�H (0) for all � > � �.
Proof of Proposition 6. TBA.
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