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NOTES AND COMMENTS

SIMPLE FINITE HORIZON BUBBLES ROBUST TO HIGHER
ORDER KNOWLEDGE

BY JOHN R. CONLON1

An asymmetric information model of a finite horizon “nth order” rational asset price
bubble is presented, where (all agents know that)n the asset is worthless. Also, the
model has only two agents, so the first order version of the bubble is simpler than other
first order bubbles in the literature.
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1. INTRODUCTION

OBSERVERS OFTEN INTERPRET wide fluctuations in asset markets, such as recent US
equity price movements, as due to speculative bubbles (Shiller (2000) and Ofek and
Richardson (2003)). As Warren Buffett (2001) suggests, investors in these markets
sometimes resemble “Cinderella at the ball. They know that overstaying the festivi-
ties � � � will eventually bring on pumpkins and mice,” but they “all plan to leave just
seconds before midnight. There is a problem, though: they are dancing in a room in
which the clocks have no hands.” Observers frequently relate this to a “greater fools”
phenomenon (Kindleberger (2000, p. 111, and note 13, p. 256)), where people hold
overpriced assets in hopes of selling them to greater fools before the bubble bursts.

While there are many approaches to modeling asset price bubbles in the literature,2
the model of Allen, Morris, and Postlewaite (1993) captures this greater fools dynamic
especially well. They use asymmetric information and short sale constraints to model a

1The paper benefited greatly from suggestions by Franklin Allen, Michael Belongia, Sumali
Conlon, Douglas Cook, Joseph Fu, Christopher Hanes, Yang Li, Stephen Morris, Pat Peavy,
Paul Pecorino, Andrew Postlewaite, David Reeb, Sudipta Sarangi, Harris Schlesinger, Mark
Stegeman, Robert Van Ness, and Hugh Wilson, as well as from seminars at the University of
Alabama, LSU, VPI, the University of Georgia Math Department, and the 2003 Summer Econo-
metric Society meetings at Northwestern. I am especially grateful for suggestions from Ron
Harstad. Comments from three referees and the editor also significantly improved the paper.
In particular, one referee suggested a dramatic improvement in the presentation. Support from
NSF Grant SES-0215631 is also gratefully acknowledged. Remaining errors are mine.

2Blanchard and Watson (1982) consider a model of randomly bursting bubbles, though peo-
ple hold overpriced assets only because they believe they will be overpriced forever in expected
value. Loewenstein and Willard (2000) model a finite horizon bubble in continuous time, on
an asset with zero net supply, which cannot be short sold due to wealth constraints. They also
present an example of a finite horizon bubble in positive net supply, which they seem to consider
pathological because the deflated wealth process is ill behaved. Other finite horizon bubble mod-
els building on some sort of infinity include Kamihigashi (1998) and Montrucchio and Privileggi
(2001). Additional bubble models include Tirole (1985), Santos and Woodford (1997), Abreu and
Brunnermeier (2003), Scheinkman and Xiong (2003), Allen and Gorton (1993), Allen and Gale
(2000), and Allen, Morris, and Shin (2002). For an excellent review of the literature, see Chapter 2
of Brunnermeier (2001). For opposing views on the empirical relevance of bubbles, see Shiller
(2000) and Garber (2000), among many others. See also Hunter, Kaufman, and Pomerleano
(2003).
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rational bubble in a finite state, discrete time economy that lasts only three periods. In
their bubble state, agents hold a worthless asset at a positive price in the first period,
in hopes of selling it in the second period to someone else who thinks it may be worth
something. In short, they develop a greater fools model of bubbles, but with everyone
rational, so the standard tools of economic theory apply.

In the Allen, Morris, and Postlewaite model, people hold an overpriced asset be-
cause they think that others might believe that this assets is valuable. In many historical
cases where bubbles are thought to have existed, however, the possible overpricing of
assets was widely discussed at the time.3 It is therefore plausible, not only that peo-
ple believed that assets were overpriced, but that they believed that most other people
believed that assets were overpriced. This raises the question of whether a bubble can
exist if everyone knows that the asset is overpriced, everyone know that everyone else
knows that the asset is overpriced, and so on. That is, are “higher order” bubbles possi-
ble? This question was raised, but not resolved, in Morris, Postlewaite, and Shin (1995).

This paper shows that such higher order bubbles are possible in models with ratio-
nal agents and a finite number of states and periods, where, like Allen, Morris, and
Postlewaite, we use asymmetric information and short sale constraints to model these
bubbles. Thus, bubbles can exist even if people know that others are skeptical about
asset prices. That is, bubbles are robust to agents knowing a lot about one anothers’
beliefs.

The model may also be of interest because it shows that bubbles are possible even
if there is common knowledge of the pattern of trade, contradicting an argument in
Allen, Morris, and Postlewaite (1993). It therefore requires only two agents, while
Allen, Morris, and Postlewaite believed that at least three agents were needed to model
a finite horizon bubble. This makes the first order version of the present bubble model
simpler than the example in Allen, Morris, and Postlewaite. In fact, the present
model may be simple enough to use in applied work.

Section 2 introduces the basic framework. Section 3 presents an nth order bubble for
arbitrary finite n, as well as an example of a first order bubble. Section 4 concludes.

2. THE BASIC FRAMEWORK

This section presents the basic asset market model with asymmetric information and
short sale constraints.4 The next section then presents the higher order bubble.

There are two risk neutral agents in this market, Players 1 and 2, and a finite set of
states of the world, Ω. The typical state of the world is ω ∈ Ω. Player i’s prior probability
distribution over Ω is denoted by πi(ω), i = 1�2. We allow π1(ω) and π2(ω) to differ,

3For example, in 1999, during the technology stock boom, Steve Ballmer, President of
Microsoft, maintained in a Wall Street Journal article that “there is such an overvaluation of tech-
nology stocks that it is absurd � � � and I’d put our company’s stock in that category” (quoted in
Bond and Cummins (2000)).

4This basic framework follows Allen, Morris, and Postlewaite (1993) closely, except that infor-
mation partitions are replaced by public and private signals. Models of this sort go back before
Kreps (1977). Note also that short sale constraints are assumed in many models of asset markets
(e.g., Harrison and Kreps (1978), Tirole (1982), and Allen, Morris, and Postlewaite (1993)). On
the other hand, put options can play a role very similar to that of short sales.
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in order to give Players 1 and 2 an incentive to trade.5

The market lasts for T periods, so 1 ≤ t ≤ T� but there is no discounting. There
is a riskless asset, money, and a risky asset, X. A unit of X will ultimately pay a single
dividend of d(ω) in state ω. Player i is initially endowed with state dependent amounts,
mi

0(ω) of money, and ai
0(ω) of X.

Denote Player i’s net sales of X in period t by xi
t(ω). Thus, if ai

t(ω) is her holdings
of X at the end of period t, then ai

t(ω)= ai
t−1(ω)−xi

t(ω). In the same way, if mi
t(ω) is

Player i’s money holdings at the end of period t, and pt(ω) is the price of X in period t,
then mi

t(ω)= mi
t−1(ω)+pt(ω)xi

t(ω).
There are no short sales of X, so ai

t(ω) ≥ 0 for all i, t, and ω. Also, the price of
the consumption good in terms of money is fixed at one. Since players are risk neutral,
Player i’s expected payoff can be normalized to Ei[mi

T (ω)+ ai
T (ω)d(ω)], where Ei is

the expectation with respect to Player i’s prior πi .
Before trade begins, Players 1 and 2 receive initial private signals, s1(ω) and s2(ω),

respectively. Then, in each period t, both players receive a public signal rt(ω). Players
can also learn from the market price pt(ω), but in the examples below, the information
structure is chosen so that prices reveal no additional information.

A competitive equilibrium in this market consists of a state dependent price, pt(ω),
each period, and state dependent net trades, xi

t(ω), i = 1�2, each period, such that:
(i) pt(ω) depends only on information possessed by market participants through

time t, i.e., on s1(ω), s2(ω), and rt′(ω) for t ′ ≤ t;
(ii) Player i’s net sales, xi

t(ω), in period t depend only on information he/she pos-
sesses at that time, i.e., on si(ω), and on pt′(ω) and rt′(ω) for t ′ ≤ t;

(iii) the market clears, so x1
t (ω)+ x2

t (ω)= 0; and
(iv) each agent’s net trades are optimal, given his/her information, prices, short sale

constraints, and his/her (correct) beliefs about the other’s strategy rule.
Next, as in Allen, Morris, and Postlewaite (1993), a strong bubble exists at state ω if

all agents know that X is overpriced for sure, i.e., pt(ω
′) > d(ω′) for all ω′ any agent

thinks is possible at ω. Finally, an nth order bubble exists at ω for a given finite n
if, at ω, everyone knows that X is overpriced for sure, everyone knows that everyone
knows that X is overpriced for sure, � � � , and (everyone knows that)n X is overpriced
for sure.

3. HIGHER ORDER BUBBLES

This section presents a model of an nth order bubble. The model involves only two
agents, so bubbles can exist even though the pattern of trade is common knowledge,
contrary to a suggestion by Allen, Morris, and Postlewaite (1993).6 We also illustrate

5As Allen, Morris, and Postlewaite (1993) show, motives for trade could also be modeled by
assuming that different agents have different marginal utilities of consumption in different states
of the world, due, say, to random future labor income. Thus, while we assume that potential gains
from trade arise from differing prior probabilities, one could just as easily have assumed that they
arise from risk sharing or insurance motives.

6Morris, Postlewaite, and Shin (1995) show that at least T = n + 2 periods are required to
construct an nth order bubble. Our model involves exactly n+2 periods, so this bound is tight. On
the other hand, the model involves more states than needed, to make it more symmetrical. Thus,
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the general model with the case of a first order bubble. This example may be of inde-
pendent interest since it is simpler than previous models of first order bubbles in the
literature.

We first present the state space and information structure in (1)–(4), and then give
an intuitive interpretation of this structure.7 Next we present the prior probabilities,
describe the equilibrium, and check the equilibrium conditions.

The model has two players, Player 1 and Player 2, T = n+ 2 periods, and the follow-
ing T 2 + T − 1 states of the world:

Ω= {
ω1

22�ω
τ
j(j+1)�ω

τ
(j+1)j : 2 ≤ j ≤ T�1 ≤ τ ≤ j

}
�(1)

Thus, the state space consists of state ω1
22, together with the states ωτ

jk with |j − k| = 1
and 1 ≤ τ ≤ min(j�k). Here ω1

22 will be the nth order bubble state. Players 1 and 2
initially own one unit of X each in all states, so ai

0(ω) = 1 for i = 1�2 and all ω ∈ Ω.
X only pays a dividend in states ωT

T(T+1) and ωT
(T+1)T , and this dividend is 2T−1, so

d(ω) =
{

2T−1 if ω= ωT
T(T+1) or ωT

(T+1)T ,
0 otherwise.

(2)

The players’ information structure is given as follows. In state ωτ
jk, Players 1 and 2

are initially told j and k, respectively, so Players 1 and 2 receive the signals

s1(ω
τ
jk) = j and s2(ω

τ
jk) = k�(3)

respectively. Then, in each period t both players are told rt(ω), defined as

rt(ω
τ
jk) =

{
1 if τ ≥ t,
0 if τ < t.

(4)

Thus, in state ωτ
jk , rt(ωτ

jk) = 1 through period t = τ. Then, in period t = τ + 1, rt(ωτ
jk)

falls to zero and stays there. Here, rt(ω) = 0 is bad news, since, when rt(ω) = 0, it
becomes common knowledge that ω is not ωT

T(T+1) or ωT
(T+1)T , so X pays no dividend,

and the price should collapse. Conversely, rt(ω)= 1 is good news.
The signals s1(ω

τ
jk) = j and s2(ω

τ
jk) = k determine how optimistic Players 1 and 2

are, based on their initial information. Thus, Player 1 initially believes that the news
might stay positive through period t = min(j�T ), and Player 2 believes it might stay
positive through period t = min(k�T ). Thus, if j = k + 1, then Player 1 is more opti-
mistic than Player 2, and conversely if j = k− 1. Suppose, e.g., that the state is ωj

j(j+1),
with j < T . Then in period t = j, Player 1 knows that the news will turn bad next period,
but the more optimistic Player 2 does not know this. Thus, Player 1 will want to sell the
asset to Player 2 in period j, and Player 2 might be willing to buy it.

Note also that, if the price is initially positive at ω1
22, then this represents an nth order

bubble. For, at ω1
22, Player 1 knows that s1(ω)= 2, so the state is one of ω1

22, ω1
23, or ω2

23.
Similarly, Player 2 knows that s2(ω) = 2, so the state is one of ω1

22, ω1
32, or ω2

32. Thus,
both players know that both players’ signals, s1(ω) = j and s2(ω) = k, are at most 3.

while the first order bubble example below involves eleven states of the world, it is possible to
construct an example involving only eight states of the world. Details are available upon request.

7A referee’s suggestion has improved this presentation dramatically.
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Therefore, the state cannot be ωT
T(T+1) or ωT

(T+1)T , since T + 1 = n+ 3 ≥ 4. The asset is
therefore worthless, so a positive price represents a bubble.

Also, since both know that j�k ≤ 3, both know that both know that j and k are
at most 4, and so on. Proceeding in this way, (both know that)n j and k are at most
n + 2 = T . Thus, both know to this order that the state is not ωT

T(T+1) or ωT
(T+1)T . They

therefore know to this order that the asset pays no dividend, and so, is worthless. Thus,
if the price is initially positive at ω1

22, then there is an nth order bubble at ω1
22.

Finally, we choose prior probabilities for the two players to make a bubble equi-
librium work. Following Allen, Morris, and Postlewaite, assume that Players 1 and 2
have different prior probabilities over the states of the world. These different priors
are used to give the agents an incentive to trade, though other approaches also work
(see footnote 5). For Player 1 these priors are:

π1(ω
1
22) = π1(ω

1
23) = A� π1(ω

2
23) = 2A�(5)

π1

(
ωτ

j(j−1)

) = π1

(
ωτ

j(j+1)

) = 2j−τ−1A for 3 ≤ j ≤ T�1 ≤ τ ≤ j − 1�

π1

(
ω

j
j(j+1)

) = 2A for 3 ≤ j ≤ T�

π1
(
ωτ

(T+1)T

) = 2T−τ−1A for 1 ≤ τ ≤ T − 1�π1
(
ωT

(T+1)T

) = A�

where A = 1/(2T+1 + 2T−1 − 4). Player 2’s prior probabilities are given symmetrically.
We now consider the following prices and net trades, and show that they form an

equilibrium. First, the price in period t is

pt(ω)= 2t−1rt(ω)�(6)

Thus, the price starts in period 1 at p1(ω) = 1 for all ω. It then doubles each period
as long as rt(ω)= 1. If rt(ω) ever falls to zero, pt(ω) also falls to zero, and stays there
forever. Next, the net trades in state ωτ

jk are as follows:
(a) In period 1, there is no trade.
(b) In period t, 2 ≤ t ≤ T − 1, if rt(ω) > 0, and t and j have the same parity (both

even or both odd), then Player 1 sells all she owns of X to Player 2.
(c) In period t�2 ≤ t ≤ T −1, if rt(ω) > 0, and t and j have opposite parity (one even

and one odd), then Player 2 sells all he owns of X to Player 1.
(d) If rt(ω)= 0, so pt(ω)= 0, there is no trade.
(e) In period T there is no trade.
Thus, as long as the price is positive between periods t = 2 and t = T − 1, Players

1 and 2 trade X back and forth. Note that, in period 2, one unit of X is traded, while,
from period 3 on, two units of X are traded back and forth.

To see that this is an equilibrium, first note that prices and net trades depend only
on each player’s information. Prices depend only on the public signal rt(ω), and net
trades depend only on the public signal rt(ω), and the parities of j and k, which
both players know, since j and k have opposite parities whenever trade occurs. Thus,
conditions (i) and (ii) of an equilibrium are met. It is also obvious that markets clear
(condition (iii)), and there are no short sales.

Next, consider the problem of Player 1, and suppose Player 1 sees the signal
s1(ω)= j. If j = 2, then Player 1 knows the state is one of ω1

22, ω1
23, or ω2

23. Thus,
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p1(ω) = 1, and Player 1 believes that pt(ω) will either double to 2 or fall to 0 in pe-
riod 2. Also, the probability pt(ω) doubles is

π1(ω
2
23)/π1(ω

1
22�ω

1
23�ω

2
23) = 2A/(A+A+ 2A) = 1/2�

so the expected value of p2(ω) is 1. Since Player 1 is risk neutral, she is then willing to
not trade in period 1, as in the equilibrium (part (a)). In period 2, if the price is still
positive, Player 1 knows that the state is ω2

23, so the price will fall to zero by period 3.
Thus, Player 1 strictly prefers to sell all of her endowment, as called for by the equilib-
rium (part (b); note that t = 2 has the same parity as j = 2). She can sell no more than
this since she is short sale constrained.

Next suppose 3 ≤ j ≤ T . Consider first period t with t ≤ j − 1. If the price is positive
in this period, then it is 2t−1. Also, Player 1’s expected period t + 1 price is

E1
t pt+1(ω)= 2tπ1

(
rt+1(ω)= 1|rt(ω) = 1

) = (2t )(1/2) = 2t−1�(7)

where the second step follows since

π1
(
rt+1(ω)= 1|rt(ω)= 1

) = π1({ωτ
j(j−1)�ω

τ
j(j+1) :τ ≥ t + 1})

π1({ωτ
j(j−1)� ω

τ
j(j+1) :τ ≥ t}) = 1

2
�(8)

from (5). Thus, since Player 1 is risk neutral, she is indifferent between buying, selling,
and doing nothing in period t ≤ j − 1. Next, in period t = j, if the price is still posi-
tive, then Player 1 knows that the state is ωj

j(j+1), so the price next period will be zero.
Thus, Player 1 strictly prefers to sell all she owns of X, as called for by the equilibrium
(part (b), where t = j so t and j have the same parity). She can sell no more than this
by the short sale constraint.

Next, when j = T + 1, calculations like (7) and (8) show that, if pt(ω) > 0 in pe-
riod t ≤ T − 1, then Player 1 is indifferent between buying, selling, and doing nothing,
as called for by the equilibrium. In period T , if pT(ω) > 0, Player 1 knows the state
is ωT

(T+1)T , so the dividend is 2T−1, which equals the price in this case. Thus, Player 1 is
willing to hold X in this period. Finally, if rt(ω) = 0, so pt(ω) = 0, then it is common
knowledge that X is worthless, so Player 1 is willing to not trade.

In short, Player 1 is willing to follow the supposed equilibrium. The same argument
applies to Player 2, so the above is an equilibrium. Since this equilibrium starts with a
positive price at ω1

22, there is therefore an nth order bubble at ω1
22.

Intuitively, if Player 1 sees s1(ω
τ
jk) = j ≤ T , say, then, as long as t < j, Player 1 does

not know whether she is more or less optimistic than Player 2. The probabilities are
then such that she is willing to buy, sell, or hold, as called for by the equilibrium. In pe-
riod t = j, if rt(ω), and so pt(ω), is still positive, Player 1 knows that the state is ωj

j(j+1).
She thus knows the price will crash, and so wants to sell. In this state, however, Player 2
is more optimistic than Player 1, and thinks the state might be ω

(j+1)
(j+2)(j+1). He is there-

fore willing to buy, and the equilibrium holds together.
We now illustrate all this with an example of a first order bubble. This bubble is

simpler than that in Allen, Morris, and Postlewaite (1993), and so, should be useful in
applied work.

EXAMPLE: Let n = 1, so T = 3. The above construction then yields eleven states:

Ω= {ω1
22�ω

1
23�ω

2
23�ω

1
32�ω

2
32�ω

1
34�ω

2
34�ω

3
34�ω

1
43�ω

2
43�ω

3
43}�
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TABLE I

PRIOR PROBABILITIES IN THE FIRST ORDER BUBBLE EXAMPLE

State ω1
22 ω1

23 ω2
23 ω1

32 ω2
32 ω1

34 ω2
34 ω3

34 ω1
43 ω2

43 ω3
43

Player 1 A A 2A 2A A 2A A 2A 2A A A
Player 2 A 2A A A 2A 2A A A 2A A 2A

The dividend is given by d(ω) = 4 if ω = ω3
34 or ω3

43, and is zero otherwise. The prior
probabilities for Players 1 and 2 are given in Table I, where A = 1/16.

In state ωτ
jk, Player 1 is initially told s1(ω

τ
jk) = j and Player 2 is initially told

s2(ω
τ
jk) = k. Thus, Player 1’s initial information partition is given by

P11 = {ω1
22�ω

1
23�ω

2
23}� P21 = {ω1

32�ω
2
32�ω

1
34�ω

2
34�ω

3
34}�

P31 = {ω1
43�ω

2
43�ω

3
43}�

with a similar partition for Player 2 (see Figure 1). For example, cell P11 contains states
where s1(ω) = 2. In period 2 both players are told whether or not r2(ω) = 1, and in
period 3 they are told whether or not r3(ω)= 1.

The equilibrium is then given as follows. The first period price, p1(ω) = 1 always.
The second period price, p2(ω

τ
jk) = 2 if τ ≥ 2, and equals zero otherwise. The third

period price, p3(ω)= 4 if ω is ω3
34 or ω3

43, and equals zero otherwise. There is no trade
in periods 1 or 3. In period 2, Player 1 sells her endowment to Player 2 in states ω2

23,
ω2

43, and ω3
43, where s1(ω)= j and t have the same (even) parity, while Player 2 sells his

endowment to Player 1 in states ω2
32, ω2

34, and ω3
34, where j and t have opposite parities.

Note that this follows parts (b) and (c) of the equilibrium, respectively.
Intuitively, P11 represents states where Player 1 is a “bad seller,” who knows that the

asset is worthless, and P31 represents states where Player 1 is a “good seller,” who thinks
that the asset may be valuable, i.e., may pay a positive dividend. Also, Player 2 cannot
distinguish between the good states from P31, and two of the bad states, ω1

23 and ω2
23,

from P11 (since s2(ω)= 3 in all these states). This is why Player 2 is willing to buy from
Player 1 in some of the states where Player 1 is bad.

FIGURE 1.—The two players’ information sets in the first order bubble example. Solid curves:
Player 1’s information sets. Dashed curves: Player 2’s information sets. Dotted curves: Dividend
paying states.
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4. DISCUSSION AND CONCLUSION

First, since there are only two agents in these examples, the pattern of trade is com-
mon knowledge (Player 1’s sales are Player 2’s purchases and visa versa). A bubble
nevertheless exists. That is, bubbles are consistent with common knowledge of the pat-
tern of trade, contrary to a suggestion in Allen, Morris, and Postlewaite (1993). The
necessary conditions for bubbles in models with a finite number of states and time pe-
riods, discussed in Allen, Morris, and Postlewaite (1993), can therefore be shortened
from four to three: (a) asymmetric information, (b) potential gains from trade between
agents, and (c) short sale constraints. The fourth condition suggested by Allen, Morris,
and Postlewaite, that agents’ trades not be common knowledge, is not necessary for a
bubble.8 This means that bubbles are possible with only two agents, so it is easier to
construct models of speculative bubbles.

To see the role played by the three remaining conditions, note that bubbles only oc-
cur if people have different information, so it is possible for someone to be optimistic
enough to buy an asset, even if someone else knows that it is overpriced (condition (a)).
However, a buyer only risks buying from a bad seller who knows an asset is overpriced,
if that buyer believes he might be buying from a good seller who does not believe the
asset is overpriced, and with whom there are nontrivial gains from trade (condition (b)).
Finally, short sale constraints (condition (c)) prevent sellers who know an asset is over-
priced from flooding the market, and so, revealing their private information.

Next, whenever max(j�k) ≤ T − 1, the states ωτ
jk are also bubble states, involving

bubbles of order T − max(j�k). In addition, prices rise in these states through period
t = τ, inclusive. It is therefore possible to model bubbles of arbitrarily high order in this
framework, which last for arbitrarily many periods.

Finally, in these states, for 2 ≤ t ≤ τ, people are trading the asset even though every-
one knows it is overpriced. In fact, agents actually buy an asset they know is overpriced,
in hopes of selling it in the future. Thus, even if everyone knows an asset is overpriced,
and everyone knows that everyone else knows this, etc., people may still be willing to
buy the asset in hopes of selling it in the future, before prices crash.

In future work it would be interesting to model a bubble that is robust to small
changes in parameters. Like the Allen, Morris, and Postlewaite (1993) model, the
bubbles in this paper are not robust in this way. This is because, if one changes the
probabilities slightly, for example, prices will vary with states in a way that reveals too
much private information to other players. To make a bubble robust, one must intro-
duce noise into the model, to hide this private information. See Conlon (2003) for a
start in this direction.

8The Allen, Morris, and Postlewaite argument builds on Geanakoplos (1994). Geanakoplos
shows that, if the pattern of trade is common knowledge, then there is a cruder symmetric infor-
mation structure that yields the same pattern of trade. Since information is symmetric under this
cruder structure, there can be no bubble under this cruder structure. The reason the bubble no
longer exists, however, is because agents no longer know, given their cruder information, that the
asset is worthless in the former bubble state. This does not prevent that state from being a bubble
state under the original finer information structure. Details are available upon request.

This result also has a (negative) policy implication. If common knowledge of trades had pre-
vented bubbles, one could have eliminated bubbles by informing agents of each others’ trades.
Since bubbles are consistent with common knowledge of trades, however, making trades public
may not be enough to eliminate bubbles.



FINITE HORIZON BUBBLES 935

Dept. of Economics, University of Mississippi, University, MS 38677, U.S.A.;
jrconlon@olemiss.edu.

Manuscript received January, 2003; final revision received August, 2003.

REFERENCES

ABREU, D., AND M. K. BRUNNERMEIER (2003): “Bubbles and Crashes,” Econometrica, 71,
173–204.

ALLEN, F., AND D. GALE (2000): “Bubbles and Crises,” Economic Journal, 110, 236–255.
ALLEN, F., AND G. GORTON (1993): “Churning Bubbles,” Review of Economic Studies, 60,

813–836.
ALLEN, F., S. MORRIS, AND A. POSTLEWAITE (1993): “Finite Bubbles with Short Sale Constraints

and Asymmetric Information,” Journal of Economic Theory, 61, 206–229.
ALLEN, F., S. MORRIS, AND H. S. SHIN (2002): “Beauty Contests, Bubbles and Iterated Expecta-

tions in Asset Markets,” Mimeo, Yale University.
BLANCHARD, O. J., AND M. W. WATSON (1982): “Bubbles, Rational Expectations, and Financial

Markets,” in Crisis in Economic and Financial Structure, ed. by P. Wachtel. Lexington, MA:
Lexington Books, 295–315.

BOND, S. R., AND J. G. CUMMINS (2000): “The Stock Market and Investment in the New Econ-
omy: Some Tangible Facts and Intangible Fictions,” Brookings Papers on Economic Activity,
61–124.

BRUNNERMEIER, M. K. (2001): Asset Pricing under Asymmetric Information: Bubbles, Crashes,
Technical Analysis, and Herding. Oxford: Oxford University Press.

BUFFETT, W. E. (2001): “Letter to Shareholders, Berkshire Hathaway, February 28, 2001,” Avail-
able at www.berkshirehathaway.com/letters/2000pdf.pdf.

CONLON, J. R. (2003): “Bubble Bursting in a Robust Bubble Model,” Mimeo, University of Mis-
sissippi.

GARBER, P. M. (2000): Famous First Bubbles: The Fundamentals of Early Manias. Cambridge, MA:
MIT Press.

GEANAKOPLOS, J. (1994): “Common Knowledge,” in Handbook of Game Theory II, ed. by
R. J. Aumann and S. Hart. Amsterdam: Elsevier, 1437–1496.

HARRISON, J. M., AND D. M. KREPS (1978): “Speculative Investor Behavior in a Stock Market
with Heterogeneous Expectations,” Quarterly Journal of Economics, 92, 323–336.

HUNTER, W. C., G. G. KAUFMAN, AND M. POMERLEANO, EDS. (2003): Asset Price Bubbles: The
Implications for Monetary, Regulatory, and International Policies. Cambridge, MA: MIT Press.

KAMIHIGASHI, T. (1998): “Uniqueness of Asset Prices in an Exchange Economy with Unbounded
Utility,” Economic Theory, 12, 103–122.

KINDLEBERGER, C. P. (2000): Manias, Panics, and Crashes: A History of Financial Crises, Fourth
Edn. New York: John Wiley & Sons.

KREPS, D. M. (1977): “A Note on ‘Fulfilled Expectations’ Equilibria,” Journal of Economic The-
ory, 14, 32–43.

LOEWENSTEIN, M., AND G. A. WILLARD (2000): “Rational Equilibrium Asset-Pricing Bubbles in
Continuous Trading Models,” Journal of Economic Theory, 91, 17–58.

MONTRUCCHIO, L., AND F. PRIVILEGGI (2001): “On Fragility of Bubbles in Equilibrium Asset
Pricing Models of Lucas-Type,” Journal of Economic Theory, 101, 158–188.

MORRIS, S., A. POSTLEWAITE, AND H. S. SHIN (1995): “Depth of Knowledge and the Effect of
Higher Order Uncertainty,” Economic Theory, 6, 453–467.

OFEK, E., AND M. RICHARDSON (2003): “Dotcom Mania: The Rise and Fall of Internet Stock
Prices,” Journal of Finance, 58, 1113–1137.

SANTOS, M. S., AND M. WOODFORD (1997): “Rational Asset Pricing Bubbles,” Econometrica, 65,
19–57.



936 JOHN R. CONLON

SCHEINKMAN, J., AND W. XIONG (2003): “Overconfidence and Speculative Bubbles,” Journal of
Political Economy, 111, 1183–1219.

SHILLER, R. J. (2000): Irrational Exuberance. New York: Broadway Books.
TIROLE, J. (1982): “On the Possibility of Speculation under Rational Expectations,” Economet-

rica, 50, 1163–1181.
(1985): “Asset Bubbles and Overlapping Generations,” Econometrica, 53, 1499–1528.


