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We first introduce some notation. First, non-strict counterparts of Ps and ≻c are denoted by
Rs and �c, respectively. For any pair of matchings µ and µ′ and for any c ∈ C, we write µ ≻c µ′

if and only if µ(c) ≻c µ′(c). Similarly, for any s ∈ S, we write µPsµ
′ if and only if µ(s)Psµ

′(s).
Without loss of generality, we assume the set of colleges C are ordered in decreasing popularity :
if c′ < c, then pc′ ≥ pc. With abuse of notation, we write c = m, c > m and c < m for m ∈ N to
mean, respectively, that c is the mth college, c is ordered after the mth college and c is ordered
before the m college. We sometimes write pm, which is the probability associated with the mth
college.

A Appendix A: Additional results

A.1 Manipulation via pre-arranged matches

When colleges seek more than one student, there is concern for manipulation not only within the
matching mechanism, but also outside the formal process. Sönmez (1999) introduces the idea
of manipulation via pre-arranged matches. Suppose that c and s arrange a match before the
central matching mechanism is executed. Then s does not participate in the centralized match-
ing mechanism and c participates in the centralized mechanism with the number of positions
reduced by one. The SOSM is manipulable via pre-arranged matches, or manipulable
via pre-arrangement, that is, for some market (S, C, P, q), college c ∈ C and student s ∈ S
we have

φ(S \ s, C, P−s, (qc − 1, q−c))(c) ∪ s ≻c φ(S, C, P, q)(c), and

cRsφ(S, C, P, q)(s).

In words, both parties that engage in pre-arrangement have incentives to do so: the student
is at least as well off in pre-arrangement as when she is matched through the centralized mecha-
nism, and the college strictly prefers s and the assignment of the centralized mechanism to those
without pre-arrangement. Sönmez (1999) shows that any stable mechanism is manipulable via
pre-arrangement.

In some markets, matching outside the centralized mechanism is discouraged or even legally
prohibited. Even so, the student and college can effectively “pre-arrange” a match by listing
each other on the top of their preference lists under stable mechanisms such as the SOSM. Thus
the scope of manipulation via pre-arrangement is potentially large.

However, we have the following positive result in large markets.

Theorem 3. Suppose that the sequence of random markets is regular. Then the expected
proportion of colleges that can manipulate the SOSM via pre-arranged matches (when other
colleges do not manipulate) goes to zero as the number of colleges goes to infinity.
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The intuition is similar to that of Theorem 1. It can be shown that any student involved in
pre-arrangement under the SOSM is strictly less preferred by c to any student who would be
matched in the absence of the pre-arrangement (Lemma 8). Therefore, in order to profitably
manipulate, c should be matched to a better set of students in the central matching. By a
similar reasoning to Theorem 1, the probability of being matched to better students in the
centralized mechanism is small in a large market for most colleges.

A.2 Manipulation via capacities and pre-arranged matches without
sufficient thickness

The next example shows that, when we do not have sufficient thickness, manipulations via
capacities or pre-arrangement may be profitable for some colleges even in a large market.

Example 3. Consider the following market Γ̃n for any n. |Cn| = |Sn| = n. qc1 = 2 and qc = 1
for each c 6= c1. c1’s preference list is

Pc1 : s1, s2, s3, s4, . . . ,

and s1 ≻c1 {s2, s3} (and hence {s1, s4} ≻c1 {s2, s3}).
c2’s preferences are

Pc2 : s3, s1, s2, . . . .

Further suppose that pn
c1

= pn
c2

= 1/3 and pn
c = 1/(3(n − 2)) for any n and each c 6= c1, c2.

With the above setup, with probability [pn
c1

pn
c2

/(1−pn
c2

)]×[pn
c1

pn
c2

/(1−pn
c1

)]3 = 1/64, students
preferences are given by

Ps1 : c2, c1, . . . ,

Ps2 : c1, c2, . . . ,

Ps3 : c1, c2, . . . ,

Ps4 : c1, c2, . . . .

If everyone is truthful, then c1 is matched to {s2, s3}. Now

(1) Suppose that c1 reports a quota of one. Then c1 is matched to s1, which is preferred to
{s2, s3}.

(2) Suppose that c1 pre-arranges a match with s4. Then c1 is matched to {s1, s4}, which is
preferred to {s2, s3}.
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Since the probability of preference profiles where this occurs is 1/64 > 0 regardless of n ≥ 3,
the opportunity for manipulations via capacities or pre-arrangement for c1 does not vanish
when n becomes large.1

A.3 Examples of sufficiently thick markets

The following is a leading example of sufficient thickness.

Example 4 (Nonvanishing proportion of popular colleges). The sequence of random markets
is said to have nonvanishing proportion of popular colleges if there exists T ∈ R and
a ∈ (0, 1) such that for large n

pn
1/p

n
[an] ≤ T,

where [x] denotes the largest integer that does not exceed x. This condition is satisfied if there
are not a small number of colleges which are much more popular than all of the other colleges.

There are even sufficiently thick markets where the proportion of popular colleges converges
to zero, provided that the convergence is sufficiently slow. We present one such example next.

Example 5. Consider a sequence of random markets such that there exists T ∈ R such that
for large n,

pn
1/p

n
[γn/ ln n] ≤ T

where γ > 0 is a sufficiently large constant.

Proposition 1. The sequences of random markets in Examples 4 and 5 are sufficiently thick.

The intuition for this proposition is the following. By assumption, there are a large number
of ex ante popular colleges. With high probability, a substantial part of the positions of these
colleges will be vacant. This makes the market thick by having a large number of vacant
positions in fairly popular colleges in expectation.

A.4 Equilibrium analysis with incomplete information

The main text of the paper investigated ε-Nash equilibrium under complete information about
college preferences. Our result also can be stated in terms of a Bayesian game, in which college
preferences are private information.

1Manipulation via preference list is also possible in this example. Suppose c1 reports preferences declaring
s2 and s3 are unacceptable, such that

P ′
c1

: s1, s4, . . . .

Then c1 is matched to {s1, s4}, which is preferred to {s2, s3}.
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The Bayesian game is specified by (C, S, (Uc)c∈C , F, k,D), where Uc is the set of possible
utility functions for college c, and F :

∏

c∈C Uc → [0, 1] is the distribution of utility types. We
assume that each uc ∈ Uc is an additive function uc : 2S → R on the set of subsets of students.
More specifically, we assume that

uc(S
′)

{

=
∑

s∈S′ uc(s) if |S ′| ≤ qc,

< 0 otherwise,

where uc(s) = uc({s}). We assume that sPcs
′ ⇐⇒ uc(s) > uc(s

′). If s is acceptable to c,
uc(s) > 0. If s is unacceptable, uc(s) < 0. Further, we suppose that supn∈N,s∈Sn,c∈Cn,uc∈Uc

uc(s)
is finite.

The set of players is C, with von Neumann-Morgenstern expected utility functions in (Uc)c∈C

drawn from distribution F . All the colleges move simultaneously. College c submits a pref-
erence list and quota pair (P ′

c, q
′
c) with 1 ≤ q′c ≤ qc after its realization of utility uc, but

without observing the utilities realized by the other colleges. A strategy for college c is a report
(P ′

c(uc), q
′
c(uc)) for each possible utility function uc ∈ Uc.

After colleges submit a preference profile, random preferences of students are realized ac-
cording to the given distribution D. The outcome is the assignment resulting from φ under
reported preferences of colleges and realized students preferences. We assume the distribution
of college preferences is independent of the distribution of student preferences, and both dis-
tributions are common knowledge. Moreover, a college does not know realizations of student
preferences. As in the main text, we assume that students are passive players and always
submit their preferences truthfully.

Given ε > 0, a strategy profile (P ∗
c (uc), q

∗
c (uc))c∈C,uc∈Uc

is an ε-Bayes Nash equilibrium
if there is no c ∈ C, uc ∈ Uc and (P ′

c, q
′
c) such that

E[uc(φ(S, C, (PS, P ′
c, (P

∗
c′(uc′))c′∈C\c),(q

′
c, (q

∗
c′(uc′))c′∈C\c)))]

> E[uc(φ(S, C,(PS, (P ∗
c′(uc′), q

∗
c′(uc′))c′∈C)))] + ε,

where the expectation is taken with respect to random preference lists of students and distri-
bution F of college preferences.

We say that a strategy (P ′
c(uc), q

′
c(uc)) is truth-telling if the college reports the preferences

(Pc, qc) represented by utility function uc, for each uc ∈ Uc. Now, we can restate Theorem 2 for
the Bayesian game.

Theorem 4. Suppose that the sequence of random markets is regular and sufficiently thick.
Then for any ε > 0, there exists n0 such that truth-telling by every college is an ε-Bayes Nash
equilibrium for any market in the sequence with more than n0 colleges.

Proof. From the proof of Theorem 2, we know that for any ε > 0, there exists n0 such that
for each realization of the utilities of colleges, truth-telling is an ε-Nash equilibrium for any
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market in the sequence with more than n0 colleges for that realization of colleges’ utilities.
Since the result holds for each realization of utilities and we can find n0 uniformly across utility
realizations, truth-telling by all colleges is an ε-Bayesian Nash as well.

A.5 Weakening distributional assumptions

In the main text, we have focused on a simple case in which student preferences are drawn from
the same distribution. This section extends our analysis to cases in which student preferences
are drawn from a number of different distributions.

The model is the same as before except for how student preferences are drawn. We now
defined a random market as Γ̃n = (Cn, Sn,≻Cn , kn, (Dn(r))Rn

r=1), where Rn is a positive integer.
Each random market is endowed with Rn different distributions. To represent student prefer-
ences, we partition students into Rn regions, where each student is a member of exactly one
region.2 Write Dn(r) = (pn

c (r))c∈Cn as the probability distribution on Cn for students in region
r. For each student s ∈ Sn in region r, we construct preferences of s over colleges as described
below:

• Step 1: Select a college independently according to Dn(r). List this college as the top
ranked college of student s.

In general,

• Step t ≤ k: Select college independently according to Dn(r) until a college is drawn that
has not been previously drawn in steps 1 through t − 1. List this college as the tth most
preferred college of student s.

We will refer to this method of generating student preferences as the model with het-
erogenous student preference distributions. The case with Rn = 1 for all n corresponds
to our earlier model with one distribution for student preferences.

Our regularity assumptions extend naturally: in addition to conditions in the previous defi-
nition, we also require that, for some positive integer R̄, Rn = R̄ for every n in a regular market.
Finally, our assumption of sufficient thickness generalizes easily to the current environment. Let

VT (n) = {c ∈ Cn|pn
1 (r)/pn

c (r) ≤ T for all r, |{s ∈ Sn|cPss}| < qc},
YT (n) = |VT (n)|.

2We frame the heterogeneity of student preferences in terms of multiple regions where students live. Of
course alternative interpretations are possible, such as heterogeneity depending on medical specialties, gender,
race or academic performance or combinations of these characteristics.
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Definition 4. A sequence of random markets is sufficiently thick if there exists T ∈ R such
that

E[YT (n)] → ∞,

as n → ∞.

Definition 4 is a multi-region generalization of sufficient thickness for one-region setting.
The following examples satisfy this version of sufficient thickness.

Example 6 (Two regions with opposite popularity). Fix an arbitrary quota qc for each college
c. There are two regions, R̄ = 2. Cn = {1, 2, . . . , n} and the probability distributions are:

p1
c(1) =

n − c + 1
∑

c′∈Cn(n − c′ + 1)
=

n − c + 1
n(n+1)

2

,

p1
c(2) =

c
∑

c′∈Cn c′
=

c
n(n+1)

2

.

Students in the first region prefer the first college over the second college and so forth on
average, while students in the second region have the opposite preferences. There is an extreme
form of differences in preferences in this market.

Example 7 (Multiple regions with within-region symmetry). Fix an arbitrary quota qc for
each college c. Assume there are R̄ regions, R̄ ≥ 2. Each college is based in one of the regions.
Let r(c) be the region in which college c is. Let p̃m(r), r, m ∈ {1, . . . , R̄} be strictly positive for
every r, m. From this, we define the probability pn

c (r) for any n ∈ N as follows:

pn
c (r) =

p̃r(c)(r)
∑

m∈R̄ p̃m(r)νn
m

,

where νn
m = |{c ∈ Cn|r(c) = m}| denotes the number of colleges in Γ̃n that is based in region m.

This environment has the following interpretation. Each college is based in one of the
regions, and each student lives in one region. Colleges in a given region are equivalent to one
another. The “base popularity” of a college in region m for a student living in region r is given
by p̃m(r). Then we normalize these to obtain pn

c (r) by the above equation. For any pair of
colleges c and c′ and region r, we have that

pn
c (r)/pn

c′(r) = p̃r(c)(r)/p̃r(c′)(r).

Such heterogeneous preferences may be present in labor markets or in large urban school
districts, where students in the same region have similar preferences while substantial differences
are present across regions.
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Proposition 2. Sequences of random markets in Examples 6 and 7 are sufficiently thick.

These are among the simplest examples incorporating heterogeneity. The two region case
shows that directly opposing preferences satisfy sufficient thickness. The multiple region case
illustrates that a great deal of heterogeneity in student preferences is allowed.

The equilibrium analysis in the one-region setting (Theorem 2) extends to heterogeneous
preference distributions such that the market is sufficiently thick.

Theorem 5. Consider the model where student preferences are from heterogeneous distribu-
tions. Suppose that the sequence of random markets is regular and sufficiently thick. Then for
any ε > 0, there exists n0 such that truth-telling is an ε-Nash equilibrium for any market with
more than n0 colleges.

A.6 Pre-arrangement in a sufficiently thick market

This section states and proves a result similar in spirit to Theorem 2 for pre-arrangement.

Theorem 6. Consider the model where student preferences are from heterogeneous distribu-
tions. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. Consider the SOSM. For any
ε > 0, there exists n0 such that for any n > n0 and c ∈ Cn, the probability that c can profitably
manipulate via pre-arrangement is smaller than ε.

Proof. In the proof of Theorem 3, we have shown that for each college c, the probability of
successful manipulation is at most πc. By Lemma 10 and sufficient thickness, there exists a T
such that

πc ≤
4 [T q̄(2q̄ − 1) + 1]

E[YT (n)]
.

Given ε, the definition of sufficient thickness implies that E[YT (n)] → ∞, so πc → 0.

A.7 Manipulations by coalitions

The basic model shows that individual colleges have little opportunity to manipulate a large
market. One natural question is whether coalitions of colleges can manipulate by coordinating
their reports. Formally, a coalition C̄ ⊆ C manipulates the market (S, C, P, q) if there exists
(P ′

C̄
, q′

C̄
) = (P ′

c, q
′
c)c∈C̄ such that

φ(S, C, (P ′
C̄, P−C̄), (q′C̄ , q−C̄)) ≻c φ(S, C, P, q),

for some c ∈ C̄.
The notion of coalitional manipulation we consider allows for a broad range of coalitions,

for a coalition is said to manipulate even if only some of its members are made strictly better
off and others in the coalition are made strictly worse off when they misreport their preferences
jointly.
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Theorem 7. Consider the model where student preferences are from heterogeneous distribu-
tions. Suppose that the sequence of random markets is regular and sufficiently thick. Consider
the SOSM. Then, for any positive integer m and any ε > 0, there exists n0 such that for any
n > n0 and C̄ ⊆ Cn with |C̄| ≤ m, the probability that C̄ can profitably manipulate is smaller
than ε.

Our result shows that successful coalitional manipulation is rare: with high probability, not
a single college in the coalition is made strictly better off. Thus it is hard for coalitions to
manipulate even when monetary transfers are possible among colleges.

A.8 Manipulating the Boston mechanism in large markets

The following example shows that students have incentives to manipulate the Boston mechanism
even in large markets.

Example 8. Consider market Γ̃n, where |Sn| = |Cn| = n for each n. qn
c = 1 for every n and

c ∈ Cn. Preference lists are common among colleges and given by

Pc : s1, s2, . . . , sn,

for every c ∈ Cn.

Let pn
c1 = (1/2)1/n, pn

c2 = (1 − (1/2)1/n)(1/2)1/n, and pn
c = (1 − pn

c1 − pn
c2)/(n − 2) for each

c 6= c1, c2. Then, with probability [pn
c1

pn
c2

/(1 − pn
c1

)]n = 1/4, students preferences are

Ps : c1, c2, . . . ,

for each s ∈ Sn. If every student is truth-telling, then s1 and s2 are matched to c1 and c2,
respectively, and other students are matched to their third or less preferred choices. If s 6= s1, s2

deviates from truth-telling unilaterally and reports preference list

Ps : c2, . . . ,

then s is matched to her second choice c2, which is preferred to the match under truth-telling.
This occurs with probability of at least 1/4, and every student except s1 and s2 has an incentive
not to be truth-telling.
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B Appendix B: Proofs

B.1 Proof of Theorem 1

We prove Theorem 1 through several steps. Specifically, we prove three key lemmas, Lemmas
1, 3 and 7 and then use them to show the theorem. For the proof of Lemmas 1 and 3, we keep
the set of students and colleges fixed, and refer to markets in terms of preference profiles only.

Let (Pc, qc) be a pair of the true preference list and true quota of college c. A report (P ′
c, qc)

is said to be a dropping strategy if (i) sPcs
′ and sP ′

c∅ imply sP ′
cs

′, and (ii) ∅Pcs implies
∅P ′

cs. A dropping strategy does not modify quotas and simply declares some students who are
acceptable under Pc as unacceptable. It does not change the relative ordering of acceptable
students or declare unacceptable students as acceptable.

B.1.1 Lemma 1: Dropping strategies are exhaustive

Given a stable mechanism ϕ, denote the matching under ϕ with respect to reported profile
(P, q) by ϕ(P, q). The formal statement of Lemma 1 in the main text is as follows.

Lemma 1. Consider an arbitrary stable mechanism ϕ. Fix preference profile (P, q). For some
report (P̃c, q̃c) of c, suppose that ϕ((P̃c, P−c), (q̃c, q−c)) = µ. Then there exists a dropping strategy
(P ′

c, qc) such that ϕ((P ′
c, P−c), q) �c µ.

Proof. Construct dropping strategy (P ′
c, qc) such that P ′

c lists all the students it is matched to
under µ who are acceptable ({s ∈ µ(c)|sPc∅}) in the same relative order as in Pc, and reports
every other student as unacceptable. Let (P ′, q) = (P ′

c, P−c, q).
We will show ϕ(P ′, q)(c) is equal to {s ∈ µ(c)|sPc∅}. This equality implies that ϕ(P ′, q) �c

µ, since ϕ(P ′, q)(c) can only differ from µ(c) in having no unacceptable students under the true
preference list Pc. The proof proceeds in two steps.

First, consider the matching µ′ obtained from µ by having c keep only the students in µ(c)
that are acceptable under Pc. That is,

µ′(c′) =

{

{s ∈ µ(c)|sPc∅} c′ = c,

µ(c′) c′ 6= c.

Consider the properties of µ′ under (P ′, q). First, µ′ is individually rational under (P ′, q).
Second, there is no blocking pair involving c, since µ′(c) is exactly the set of students acceptable
under P ′

c. However, there may be a blocking pair involving another college and students who
are unmatched. In this case, we can define a procedure which ultimately yields a matching that
is stable under (P ′, q):3

3This procedure parallels Blum, Roth and Rothblum (1997)’s analogous vacancy-chain procedure for one-
to-one matching markets and Cantala (2004)’s algorithm for many-to-one markets.

11



Starting from µ′
0 ≡ µ′, let S0 be the set of students that can be part of a blocking pair in

µ′
0. Pick some s ∈ S0. Let college c′ be the college that student s prefers the most within the

set of colleges that can be part of a blocking pair with s. Construct µ′
1 by assigning student s

to c′ and if |µ′
0(c

′)| = qc′, then let c′ reject its least preferred student. By construction, µ′
1 is

individually rational, college c is matched to the same set of students, college c′ strictly prefers
µ′

1(c
′) over µ′

0(c
′) and the assignments of all other colleges are unchanged. As with µ′

0, the only
blocking pair of µ′

1 involves unmatched students. If there are blocking pairs of µ′
1, then repeat

the same procedure to construct µ′
2, and so on.

At each repetition, the new matching is individually rational, college c is matched to the
same set of students, one other college strictly improves and the remaining colleges are not
worse off since each blocking pair involves an unassigned student. Since colleges can strictly
improve only a finite number of times, this procedure terminates in finite time. The ultimate
matching µ′′ is stable in (P ′, q) because it is individually rational and there are no blocking
pairs. Moreover, since college c obtains the same matching in each repetition,

µ′′(c) = µ′(c). (1)

The second step of the proof utilizes the fact that for any college, the same number of
students are matched to it across different stable matchings (Roth 1984a). Since µ′′ is stable
in (P ′, q) and ϕ(P ′, q) is stable in (P ′, q) by definition, |µ′′(c)| = |ϕ(P ′, q)(c)|. Since there are
just |µ′′(c)| acceptable students under P ′

c, this implies that

µ′′(c) = ϕ(P ′, q)(c). (2)

Equations (1) and (2) together imply that

ϕ(P ′, q)(c) = µ′(c) = {s ∈ µ(c)|sPc∅}.
As a result,

ϕ(P ′, q)(c) �c µ(c),

since ϕ(P ′, q)(c) can only differ from µ(c) in having no unacceptable students under the true
preference list Pc.

B.1.2 Lemma 3: Rejection chains

For preference profile (P, q), let µ be the student-optimal stable matching. Let B1
c be an

arbitrary subset of µ(c). The rejection chains algorithm with input B1
c is defined as follows.

Algorithm 1. Rejection Chains

(1) Initialization:
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(a) µ is the student-optimal stable matching, and B1
c is a subset of µ(c). Let i = 0. Let

c reject all the students in B1
c .

(2) Increment i by one.

(a) If Bi
c = ∅, then terminate the algorithm.

(b) If not, let s be the least preferred student by c among Bi
c, and let Bi+1

c = Bi
c \ s.

(c) Iterate the following steps (call this iteration “Round i”).

i. Choosing the applied:

A. If s has already applied to every acceptable college, then finish the iteration
and go back to the beginning of Step 2.

B. If not, let c′ be the most preferred college of s among those which s has not
yet applied while running the SOSM or previously within this algorithm. If
c′ = c, terminate the algorithm.

ii. Acceptance and/or rejection:

A. If c′ prefers each of its current mates to s and there is no vacant position,
then c′ rejects s; go back to the beginning of Step 2c.

B. If c′ has a vacant position or it prefers s to one of its current mates, then
c′ accepts s. Now if c′ had no vacant position before accepting s, then c′

rejects the least preferred student among those who were matched to c′. Let
this rejected student be s and go back to the beginning of Step 2c. If c′ had
a vacant position, then finish the iteration and go back to the beginning of
Step 2.

Algorithm 1 terminates either at Step 2a or at Step 2(c)iB. We say that Algorithm 1 does
not return to c if it terminates at Step 2a and it returns to c if it terminates at Step 2(c)iB.

Lemma 2. Consider college c and suppose that under (P, q), Algorithm 1 with every possible
subset of µ(c) as an input fails to return to c. For any dropping strategy (P ′

c, qc), let B1
c = {s ∈

µ(c)|∅P ′
cs} be non-empty and let µ′ be a matching obtained at the end of Algorithm 1 with input

B1
c . Then, under (P ′

c, P−c, q),

(1) µ′ is individually rational,

(2) no c′ 6= c is a part of a blocking pair of µ′, and

(3) if (s, c) blocks µ′, then [arg minPc
µ(c)]Pcs,

4 and

4For any binary relation R on X and X ′ ⊆ X , arg minR X ′ = {x ∈ X ′|yRx for any y ∈ X ′}.
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(4) if (s, c) blocks µ′ and µ′(c) is non-empty, then [arg minP ′

c
µ′(c)]P ′

cs.

Proof. Part (1): For c′ 6= c, c′ only accepts students who are acceptable in each step of the
SOSM and Algorithm 1. c rejects every student who is unacceptable under P ′

c at the outset of
Algorithm 1, and accepts no other student by the assumption that Algorithm 1 does not return
to c for any subset of µ(c) as an input. Therefore µ′ is individually rational.

Part (2): Suppose that for some s ∈ S and c′ ∈ C such that c′ 6= c, c′Psµ
′(s). Then, by

the definition of the SOSM and Algorithm 1, s is rejected by c′ either during the SOSM or in
Algorithm 1. This implies that |µ′(c′)| = qc′ and [arg minPc′

µ′(c)]Pc′s, implying that s and c′

do not block µ′.
Part (3): Suppose cPsµ

′(s) for some s ∈ S. As in Part (2), this implies that s is rejected
by c either during the SOSM or in Algorithm 1. Since Algorithm 1 does not return to c by
assumption, s is rejected either during the SOSM or at the beginning of Algorithm 1. In the
former case, if s is rejected during the SOSM, then [arg minPc

µ(c)]Pcs. In the latter case, (s, c)
is not a blocking pair because s is declared unacceptable under P ′

c.
Part (4): From Part (3), we have that

[arg min
Pc

µ(c)]Pcs. (3)

By definition, µ′(c) ⊆ µ(c) and expression (3) imply

[arg min
Pc

µ′(c)]Pcs, (4)

when µ′(c) is non-empty.
When µ′(c) is non-empty, µ′(c) is constructed by including only acceptable students in µ(c)

according to P ′
c, so

[arg min
P ′

c

µ′(c)]P ′
c∅. (5)

Expressions (4) and (5) and the definition of a dropping strategy yield

[arg min
P ′

c

µ′(c)]P ′
cs.

Lemma 3 (Rejection chains). For any market and any c ∈ C, if Algorithm 1 does not return
to c for any non-empty B1

c ⊆ µ(c), then c cannot profitably manipulate by a dropping strategy.

Proof. Consider an arbitrary dropping strategy (P ′
c, qc) and let B1

c = {s ∈ µ(c)|∅P ′
cs}. When

Algorithm 1 does not return to c, we show that µ = φ(P, q) is weakly preferred by college c to
φ(P ′

c, P−c, q). Let (P ′, q) = (P ′
c, P−c, q).

14



Let µ′ be the matching resulting from Algorithm 1 with input B1
c . In the first step of the

proof, we construct a new matching µ′′ by satisfying the blocking pairs involving college c such
that college c weakly prefers µ over µ′′ according to profile (P, q). The second step of the proof
shows that µ′′ is weakly preferred to φ(P ′, q) by college c. These two steps together will yield
our desired conclusion.

First, suppose that c does not block µ′ in (P ′, q). Then let µ′′ = µ′. It is clear that college c
weakly prefers µ over µ′′ because µ′′(c) = µ′(c) ⊆ µ(c). Otherwise, if c blocks µ′, construct µ′′

as follows: College c admits its most preferred students under P ′
c who are willing to be matched

possibly leaving the seats occupied by these students at other colleges vacant; that is,

µ′′(c′) =

{

µ′(c) ∪ arg max(P ′

c,qc−|µ′(c)|){s ∈ S|cPsµ
′(s)} c′ = c,

µ′(c′) \ µ′′(c) c′ 6= c,

where arg max(P ′

c,qc−|µ′(c)|) X denotes at most qc −|µ′(c)| students that are most preferred under
P ′

c in set X. Recall that µ′(c) ⊆ µ(c) by definition. Moreover, Part (3) of Lemma 2 shows that,
under µ′′, |µ′(c)| positions of c are filled with µ′(c) and the remaining |µ′′(c) − µ′(c)| positions
are filled with students less preferred to arg minPc

µ(c). Since preferences are responsive, we
obtain

µ(c) �c µ′′(c). (6)

In the second step of the proof, we demonstrate that µ′′ is weakly preferred to φ(P ′, q)
by college c. The proof works by comparing µ′′ to a stable matching µ′′′ in (P ′, q), that we
construct below:

Case 1: If µ′′ is stable in (P ′, q), then let µ′′′ = µ′′. In this case, it is obvious that µ′′(c) is weakly
preferred to µ′′′(c) under P ′

c.

Case 2: Otherwise, observe the following properties of µ′′:

1) Matching µ′′ is individually rational.

2) College c is not part of a blocking pair under µ′′.

3) The only blocking pairs in µ′′ involve colleges who have vacant seats.

Property (1) follows by construction. To establish Property (2), we consider two cases.
When µ′(c) is empty, µ′′(c) is college c’s most preferred students according to P ′

c who are
part of blocking pairs of µ′. College c is not part of a blocking pair under µ′′. When
µ′(c) is not empty, suppose college c is preferred by student s to µ′′(s). In this case, Part
(4) of Lemma 2 implies that s is less preferred than any student in µ′(c) under Pc′ and
is less preferred than students in arg max(P ′

c,qc−|µ′(c)|){s ∈ S|cPsµ
′(s)} by construction.
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Therefore, college c does not form a blocking pair with this student, and, hence, c is not
part of any blocking pair under µ′′. Finally, Property (3) follows by construction and by
Part (2) of Lemma 2.

With these properties in hand, we construct µ′′′. Let µ′′
0 ≡ µ′′. µ′′

0 may have a blocking
pair involving a college with a vacant seat. Construct µ′′

1 as follows. Let C0 be the set of
colleges that can be part of a blocking pair in µ′′

0. Pick some c′ ∈ C0. Let student s be the
student that college c′ prefers the most within the set of students involved in blocking pairs
with c′. Construct µ′′

1 by assigning college c′ to s, and if µ′′
0(s) 6= ∅, then s rejects µ′′

0(s),
leaving a vacant seat at college µ′′

0(s). Under µ′′
1, student s receives a strictly preferred

assignment and each other student’s assignment is unchanged. For college c, µ′′
1(c) is

weakly less preferred under P ′
c than the initial matching, µ′′

0(c), because the students are
better off in µ′′

1. Matching µ′′
1 is individually rational, and as with µ′′

0, the only blocking
pair of µ′′

1 involves colleges with vacant seats. If there are blocking pairs of µ′′
1, then we

repeat the same procedure to construct µ′′
2, and so on.

At each repetition, the new matching is individually rational and each blocking pair of the
new matching involves a college with a vacant seat. As a result, no additional students
are rejected when the blocking pair is satisfied, and in each repetition, one student strictly
improves and the remaining students do not change their assignment. Since students may
improve their assignment a finite number of times, the procedure ends in finite time.

The ultimate matching µ′′′ is stable in (P ′, q) because it is individually rational and
there are no blocking pairs. Moreover, for college c, each new matching is weakly less
preferred under P ′

c than the initial matching µ′′
0(c) as students weakly improve in each

new matching. Hence, µ′′(c) is weakly preferred to µ′′′(c) under P ′
c.

Since the matching produced by SOSM is the least preferred stable matching of every
college (attributed to Conway in Knuth (1976), φ(P ′, q)(c) is weakly less preferred to the stable
matching µ′′′ by college c under P ′

c. This implies that φ(P ′, q)(c) is weakly less preferred to
µ′′(c) under P ′

c, and since P ′
c is a dropping strategy of Pc,

µ′′(c) �c φ(P ′, q)(c). (7)

Equations (6) and (7) together allow us to conclude that

µ(c) �c φ(P ′, q)(c),

showing that (P ′
c, qc) is not a profitable strategy when Algorithm 1 does not return to c.
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B.1.3 Lemma 7: Vanishing market power

We are interested in how often Algorithm 1 returns to a particular college c for the case where
students draw their preferences from distribution Dn. Let

πc = Pr[Algorithm 1 returns to c for some B1
c ⊆ µ(c)].

Since Algorithm 1 returns to c for some B1
c whenever c can manipulate the SOSM (Lemmas

1 and 3), πc gives an upper bound of the probability that c can manipulate the SOSM when
others are truthful conditional on µ being realized as the matching under the SOSM. Here we
will show Lemma 7, which bounds πc for most colleges in large markets.

Consider the following algorithm, which is a stochastic variant of the SOSM.5

Algorithm 2. Stochastic Student-Optimal Gale-Shapley Algorithm

(1) Initialization: Let l = 1. For every s ∈ S, let As = ∅.

(2) Choosing the applicant:

(a) If l ≤ |S|, then let s be the lth student and increment l by one.6

(b) If not, then terminate the algorithm.

(3) Choosing the applied:

(a) If |As| ≥ k, then return to Step 2.

(b) If not, select c randomly from distribution Dn until c /∈ As, and add c to As.

(4) Acceptance and/or rejection:

(a) If c prefers each of its current mates to s and there is no vacant position, then c
rejects s. Go back to Step 3.

(b) If c has a vacant position or it prefers s to one of its current mates, then c accepts s.
Now if c had no vacant position before accepting s, then c rejects the least preferred
student among those who were matched to c. Let this student be s and go back to
Step 3. If c had a vacant position, then go back to Step 2.

5To be more precise this is a stochastic version of the algorithm proposed by McVitie and Wilson (1970),
which they show produces the same matching as the original SOSM proposed by Gale and Shapley (1962).

6Recall that students are ordered in an arbitrarily fixed manner.
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As records colleges that s has already drawn from Dn. When |As| = k is reached, As is the
set of colleges acceptable to s.

Under the SOSM, a student’s application to her tth most preferred college is independent of
her preferences after (t + 1)th choice on. Therefore the above algorithm terminates, producing
the student-optimal stable matching of any realized preference profile which would follow from
completing the draws for random preferences. Let µ be the student-optimal stable matching
obtained by the above algorithm.

Suppose that Algorithm 2 is run and the stable matching µ is obtained. Now fix a college
c ∈ C and let B1

c be an arbitrary subset of µ(c). The stochastic rejection chains associated
with B1

c is defined as follows. As the name suggests, this is a stochastic version of Algorithm 1.

Algorithm 3. Stochastic Rejection Chains

(1) Initialization:

(a) Keep all the preference lists generated in Algorithm 2. Also, for each s ∈ S, let As

be the set generated at the end of Algorithm 2. Let the student-optimal matching
µ be the initial match of the algorithm. Let B1

c be a given subset of µ(c). Let i = 0.
Let c reject all the students in B1

c .

(2) Increment i by one.

(a) If Bi
c = ∅, then terminate the algorithm.

(b) If not, let s be the least preferred student by c among Bi
c, and let Bi+1

c = Bi
c \ s.

(c) Iterate the following steps (call this iteration “Round i”.)

i. Choosing the applied:

A. If |As| ≥ k, then finish the iteration and go back to the beginning of Step 2.

B. If not, select c′ randomly from distribution Dn until c′ /∈ As, and add c′ to
As. If c is selected, terminate the algorithm.

ii. Acceptance and/or rejection:

A. If c′ prefers each of its current mates to s and there is no vacant position,
then c′ rejects s; go back to the beginning of Step 2c.

B. If c′ has a vacant position or it prefers s to one of its current mates, then
c′ accepts s. Now if c′ had no vacant position before accepting s, then c′

rejects the least preferred student among those who were matched to c′. Let
this rejected student be s and go back to the beginning of Step 2c. If c′ had
a vacant position, then finish the iteration and go back to the beginning of
Step 2.
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Algorithm 3 terminates either at Step 2a or at Step 2(c)iB. Similarly to Algorithm 1, we
say that Algorithm 1 returns to c if it terminates at Step 2(c)iB and does not return to c
if it terminates at Step 2a.

We are interested in how often the algorithm returns to c, as a student draws c from
distribution Dn. It is clear that the probability that Algorithm 1 returns to c is equal to the
probability that Algorithm 3 returns to c. That is,

πc = Pr[Algorithm 3 returns to c for some B1
c ⊆ µ(c)].

This latter expression is useful since we can investigate the procedure step by step, utilizing
conditional probabilities and conditional expectations. Recall that we have ordered the colleges
in terms of decreasing popularity. Our notation is that when c′ ≤ c, we mean that c′ is more
popular than c, or pc′ ≥ pc and when we write c > m, where m is a natural number, we mean
the index of college c is larger than m. Let

Vc = {c′ ∈ Cn|c′ ≤ c, c′ /∈ As for every s ∈ Sn at the end of Algorithm 2}, and

Yc = |Vc|.

Vc is a random set of colleges that are more popular than c ex ante but listed on no student’s
preference list at the end of Algorithm 2. Yc is a random variable indicating the number of
such colleges.7

Lemma 4. For any c > 4k, we have

E[Yc] ≥
c

2
e−8q̄nk/c.

Proof. Let Qn =
∑k

c=1 pn
c . Then the probability that c′ is not a student’s ith choice, denoted

c(i), given her first (i − 1) choices c(1), . . . , c(i−1) is bounded as follows:

1 − pn
c′

1 − ∑i−1
j=1 pn

c(j)

≥ 1 − pn
c′

1 − Qn
.

Let Ec′ be the event that c′ /∈ As for every s ∈ S at the end of Algorithm 2. Since there are at
most q̄nk draws from Dn in Algorithm 2, the above inequality implies that

Pr(Ec′) ≥
(

1 − pn
c′

1 − Qn

)q̄nk

.

7We abuse notation and denote a random variable and its realization by the same letter when there is no
confusion.
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If c′ > k, there are at least c′ − k colleges that are at least as popular as c′, but not among
the k most popular colleges, so we obtain

pn
c′ ≤

1 − Qn

c′ − k
.

The last two inequalities imply

Pr(Ec′) ≥
(

1 − 1

c′ − k

)q̄nk

. (8)

We now show that for any c′ > 2k,

(

1 − 1

c′ − k

)q̄nk

≥ e−2q̄nk/(c′−k). (9)

To see this, first note that

(

1 − 1

c′ − k

)q̄nk

≥ e−2q̄nk/(c′−k) ⇐⇒ 1 − 1

c′ − k
− e−2/(c′−k) ≥ 0.

Now, define a function f(x) = 1 − x − e−2x. This function f is concave, and f(0) = 0 and
f(1/2) = 1/2 − 1/e > 0. Therefore f(x) ≥ 0 for any x ∈ [0, 1/2]. Since c′ > 2k and k is a
positive integer, we have c′−k > k ≥ 1. Since c′−k is an integer, we thus obtain c′−k ≥ 2 and
hence 1/(c′−k) ∈ [0, 1/2]. Therefore 1−1/(c′−k)− e−2/(c′−k) = f(1/(c′−k)) ≥ 0, establishing
inequality (9).

Moreover, for any c′ > 2k,

e−2q̄nk/(c′−k) ≥ e−4q̄nk/c′. (10)

Combining inequalities (8), (9), and (10), we obtain:

Pr(Ec′) ≥ e−4q̄nk/c′.

Using the previous inequality, for any c > 4k, we have

E[Yc] =

c
∑

c′=1

Pr(Ec′) ≥
c

∑

c′=2k

e−4q̄nk/c′ ≥
c

∑

c′=c/2

e−8q̄nk/c =
c

2
e−8q̄nk/c.
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For B1
c ⊆ µ(c), let

πB1
c

c = Pr[Algorithm 3 with input B1
c returns to c|Yc > E[Yc]/2, µ].

π
B1

c
c gives an upper bound of the probability that c can manipulate the SOSM when others

are truthful, conditional on two events: µ is the realized matching under the SOSM with
truthful preferences and there are not too small a number of colleges (Yc > E[Yc]/2) that are
more popular than c and appear nowhere on students’ preference lists at the end of Algorithm
2.

Let c∗(n) = 16q̄nk/ ln(q̄n). We will see, in Lemma 7, that c∗(n) is the number of “very
popular colleges” in a market with n colleges. Note that c∗(n)/n converges to zero as n → ∞,
so the proportion of such colleges goes to zero. Except for these c∗(n) colleges, the following
lemma gives an upper bound for manipulability in a large market.

Lemma 5. Suppose that n is sufficiently large and c > c∗(n). Then we have

πB1
c

c ≤ 4q̄

E[Yc]
,

for any B1
c ⊆ µ(c).

Proof. Consider Round 1, beginning with the least preferred student s of B1
c ⊆ µ(c) (if B1

c = ∅,
then the inequality is obvious since π

B1
c

c = 0.). Since pn
c′ ≥ pn

c for any c′ ∈ Vc, Round 1 ends at
Step 2(c)iiB as a student applies to some college with vacant positions, at least with probability
1 − 1/(Yc + 1) > 1 − 1/(E[Yc]/2 + 1).

Now assume that all Rounds 1, . . . , i − 1 end at Step 2(c)iiB. Then there are still at
least Yc − (i − 1) colleges more popular than c and with a vacant position, since at most
i − 1 colleges in Vc have had their positions filled at Rounds 1, . . . , i − 1. Therefore Round i
initiated by the least preferred student in Bi

c ends at Step 2(c)iiB with probability of at least
1 − 1/(E[Yc]/2 − (i − 1) + 1). Note that

E[Yc]/2 − (i − 1) + 1 ≥ E[Yc]/4 > 0, (11)

for sufficiently large n. To see this, it is sufficient to show

E[Yc]/4 − (i − 1) + 1 ≥ 0.

Since there are at most q̄ rounds,

E[Yc]/4 − (i − 1) + 1 ≥ E[Yc]/4 − q̄ + 2.
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The definition of Yc implies that Yc is weakly increasing in c. Lemma 4 provides a lower bound
on E[Yc], which for c > c∗(n) implies

E[Yc]/4 − q̄ + 2 ≥ 2q̄kn
1
2

ln(n)
− q̄ + 2,

which is positive for sufficiently large n, showing inequality (11) for sufficiently large n.
Since there are at most q̄ rounds, Algorithm 3 fails to return to c with probability of at least

q̄
∏

i=1

(

1 − 1

E[Yc]/2 − (i − 1) + 1

)

≥
(

1 − 1

E[Yc]/4

)q̄

, (12)

for sufficiently large n and c > c∗(n), because of inequality (11).
Therefore we have that

πB1
c

c ≤ 1 −
(

1 − 1

E[Yc]/4

)q̄

≤ 4q̄

E[Yc]
,

where the last inequality holds since 1 − (1 − x)y ≤ yx for any x ∈ (0, 1) and y ≥ 1.8

We state without proof the following lemma (this is a straightforward generalization of
Lemma 4.4 of Immorlica and Mahdian (2005)).

Lemma 6. For every c, we have V ar[Yc] ≤ E[Yc].

Now we are ready to present and prove the last of the three key lemmas.

Lemma 7 (Vanishing market power). If n is sufficiently large and c > c∗(n), then

πc ≤
[q̄(2q̄ − 1) + 1] ln(q̄n)

2k
√

q̄n
.

Proof. By the fact that any probability is non-negative and less than or equal to one, the
Chebychev inequality, and Lemma 6, we have

Pr

[

Yc ≤
E[Yc]

2

]

≤ Pr

[

Yc ≤
E[Yc]

2

]

+ Pr

[

Yc ≥
3E[Yc]

2

]

= Pr

[

|Yc − E[Yc]| ≥
E[Yc]

2

]

≤ V ar[Yc]

(E[Yc]/2)2
≤ 4

E[Yc]
.

8Note that conditions for this inequality is satisfied since 4/E[Yc] ∈ (0, 1) for any sufficiently large n and
c > c∗(n).
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Since the probability of a union of events is at most the sum of the probabilities of individual
events (Boole’s inequality), Lemma 5 and the fact that there are at most 2q̄ − 1 non-empty
subsets of µ(c) imply

Pr[Algorithm 3 returns to c for some B1
c ⊆ µ(c)|Yc ≥ E[Yc]/2, µ]

≤
∑

B1
c⊆µ(c)

πB1
c

c

≤ 4q̄(2q̄ − 1)

E[Yc]
.

This inequality holds for any matching µ. Therefore, we have the same upper bound for
probability conditional on Yc > E[Yc]/2 but not on µ, that is,

Pr

[

Algorithm 3 returns to c for some B1
c ⊆ µ(c)|Yc ≥

E[Yc]

2

]

(13)

≤ 4q̄(2q̄ − 1)

E[Yc]
. (14)

By the above inequalities and the fact that probabilities are less than or equal to one,

πc ≤ Pr

[

Yc ≤
E[Yc]

2

]

+ Pr

[

Yc >
E[Yc]

2

]

× 4q̄(2q̄ − 1)

E[Yc]

≤ 4

E[Yc]
+

4q̄(2q̄ − 1)

E[Yc]

=
4[q̄(2q̄ − 1) + 1]

E[Yc]
.

Applying Lemma 4 and noting that E[Yc] is increasing in c so E[Yc∗(n)] ≤ E[Yc] for any
c > c∗(n) = 16q̄nk/ ln(q̄k), we complete the proof of Lemma 7.9

B.1.4 Theorem 1

Now we prove Theorem 1. Let

α(n) = E[#{c ∈ C|φ(S, C, (P ′
c, P−c), (q

′
c, q−c)) ≻c φ(S, C, P, q)

for some (P ′
c, q

′
c) in the induced market}|Γ̃n],

be the expected number of colleges that can manipulate in the market induced by random
market Γ̃n under φ when others report preferences truthfully. By Lemma 1, it suffices to consider

9Note that Lemma 4 can be applied since for sufficiently large n and c ≥ c∗(n), we have c > 4k.
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dropping strategies. By Lemma 3, the probability that c ∈ C can successfully manipulate by
some dropping strategy is at most πc. Thus we obtain

α(n)/n =

[

∑

c∈Cn

Pr[c successfully manipulates]

]

/n

≤ c∗(n)/n + [
n

∑

c≥c∗(n)

πc]/n

≤ c∗(n)/n + [
n

∑

c≥c∗(n)

[q̄(2q̄ − 1) + 1] ln(q̄n)

2k
√

q̄n
]/n (by Lemma 7)

≤ 16q̄k

ln(q̄n)
+

(q̄(2q̄ − 1) + 1) ln(q̄n)

2
√

q̄k
√

n
(by c∗(n) = 16q̄nk/ ln(q̄n)).

The first term is proportional to 1/ ln(q̄n) and the second term is proportional to ln(q̄n)/
√

n.
Since both expressions approach zero as n approaches infinity, we obtain α(n)/n → 0 as n → ∞,
completing the proof.

B.2 Proof of Theorem 3

In this section, we consider the possibility of pre-arrangement, so we reintroduce S and C as
arguments to the mechanism to avoid confusion.

B.2.1 Lemma 8

The following lemma says that a student that is involved in pre-arrangement is less preferred
by the college to any student who is matched to it without pre-arrangement.

Lemma 8. If c ∈ C can manipulate via pre-arrangement with s ∈ S, then

s′Pcs for every s′ ∈ φ(S, C, P, q)(c).

Proof. Let µ(c) = φ(S, C, P, q)(c). Theorem 2 of Sönmez (1999) implies that, for any stable
mechanism, if c can manipulate via pre-arrangement with student s, then either s ∈ µ(c) or
s′Pcs for every s′ ∈ µ(c). To show s /∈ µ(c), suppose on the contrary that s ∈ µ(c). Consider
matching µ′ given by

µ′(c′) =

{

µ(c) \ s if c′ = c,

µ(c′) otherwise.

It is easy to see, from stability of µ in (S, C, P, q), that µ′ is stable in (S \ s, C, P−s, qc − 1, q−c).
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Since the matching under the SOSM is weakly less preferred to any stable matching by
colleges and preferences are responsive,

φ(S, C, P, q)(c) = µ′(c) ∪ s

�c φ(S \ s, C, P−s, qc − 1, q−c)(c) ∪ s.

Therefore c cannot manipulate the student-optimal stable mechanism via pre-arrangement.
This is a contradiction, completing the proof.

To profitably manipulate, a college has to pre-arrange a match with a strictly less preferred
student. Then the disadvantage of being matched with a less desirable student should be
compensated by matching to a better set of students in the centralized matching mechanism
after pre-arrangement.

B.2.2 Theorem 3

Now we prove our result on pre-arrangement, Theorem 3. Start with matching φ(S, C, P, q),
and consider what happens when college c reduces capacity by one. There are two cases to
consider. First, the capacity reduction may not affect the matching of college c,

φ(S, C, P, qc − 1, q−c)(c) = φ(S, C, P, q)(c).

This happens when |φ(S, C, P, q)(c)| < qc, or the number of students assigned to college c is
less than its total capacity. Because there is an extra seat at college c, no student s would
prefer to be assigned to college c over her matching φ(S, C, P, q)(s) because there would be a
blocking pair, which contradicts the stability of φ(S, C, P, q)(s). Therefore, in the first case,
pre-arrangement is not successful.

Second, the capacity reduction may affect the matching of college c. In this case,
consider the rejection chain algorithm (Algorithm 1) starting with φ(S, C, P, q) with input
B1

c = arg minPc
φ(S, C, P, q)(c). We focus on the case where the rejection chain algorithm does

not return to college c. Denote the resulting matching by µ′. Under µ′, college c obtains
φ(S, C, P, q)(c) \ arg minPc

φ(S, C, P, q)(c).

We claim that µ′ is stable in (S, C, P, qc − 1, q−c). The ideas follow from Lemma 2.

First, we claim µ′ is individually rational. For c′ 6= c, c′ only accepts students who are
acceptable in each step of the SOSM and Algorithm 1. c is matched to φ(S, C, P, q)(c) \
arg minPc

φ(S, C, P, q)(c) at µ′, which is clearly individually rational for c under (Pc, qc−1).
Therefore, µ′ is individually rational.

Second, there is no blocking pair of µ′ involving a college other than c. Suppose that for
some s ∈ S and c′ ∈ C such that c′ 6= c, c′Psµ

′(s). Then, by the definition of the SOSM
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and Algorithm 1, s is rejected by c′ either during the SOSM or in Algorithm 1. This
implies that |µ′(c′)| = qc′ and [arg minPc′

µ′(c)]Pc′s, implying that s and c′ do not block
µ′.

Third, there is no blocking pair of µ′ involving college c. Suppose cPsµ
′(s) for some s ∈ S.

As in the previous paragraph, this implies that s is rejected by c either during the SOSM
or in Algorithm 1. Since Algorithm 1 does not return to c by assumption, s is rejected
either during the SOSM or at the beginning of Algorithm 1. In the former case, the fact
that s is rejected during the SOSM implies that [arg minPc

µ(c)]Pcs, so when college c has
capacity qc − 1, s will not form a blocking pair with student s because the other qc − 1
students who are matched to c are more preferred to [arg minPc

µ(c)]. In the latter case,
(s, c) is not a blocking pair because the student rejected at the beginning of Algorithm 1
is arg minPc

φ(S, C, P, q)(c) by our assumption, the other qc−1 students who are matched
to c are more preferred by college c, and the capacity of college c is qc − 1.

Therefore, µ′ is stable in (S, C, P, qc − 1, q−c).

The least preferred stable matching for colleges in (S, C, P, qc − 1, q−c) is equal to
φ(S, C, P, qc − 1, q−c)(c). Therefore, we can conclude that

µ′(c) = φ(S, C, P, q)(c) \ arg min
Pc

φ(S, C, P, q)(c) �c φ(S, C, P, qc − 1, q−c)(c). (15)

Since every college is made weakly better off under the SOSM when the set of participating
students increases (Gale and Sotomayor (1985)), we obtain

φ(S, C, P, qc − 1, q−c) �c φ(S \ s, C, P−s, qc − 1, q−c). (16)

Lemma 7 shows that the rejection chain algorithm (Algorithm 1) does not return with
probability at least 1 − πc. As a result, with probability 1 − πc,

φ(S, C, P, q)(c) �c φ(S, C, P, qc − 1, q−c)(c) ∪ arg min
Pc

φ(S, C, P, q)(c)

�c φ(S \ s, C, P−s, qc − 1, q−c)(c) ∪ arg min
Pc

φ(S, C, P, q)(c)

�c φ(S \ s, C, P−s, qc − 1, q−c)(c) ∪ s,

where the first relation follows from (15) and responsiveness of preferences, the second relation
follows from (16) and responsiveness, and the last relationship follows from Lemma 8 and
responsiveness.

Therefore the probability that c benefits via pre-arrangement is at most πc. Finally, by
Lemma 7 we complete the proof (this last argument is similar to the one for Theorem 1 and
hence omitted).
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B.3 Proof of Theorems 2 and 5

Since Theorem 5 is a multi-region generalization of Theorem 2, we prove only the former.

B.3.1 Lemma 10: Uniform vanishing market power

We have a variant of Lemma 7 under the sufficient thickness assumption, which plays a crucial
role in the proof of the theorems.

For B1
c ⊆ µ(c), let

πB1
c

c = Pr[Algorithm 3 associated with B1
c returns to c|YT (n) > E[YT (n)]/2, µ].

First we show a variant of Lemma 5.

Lemma 9. Suppose (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. Let T be such that E[YT (n)] →
∞ as n → ∞. Suppose that n is sufficiently large. Then we have

πB1
c

c ≤ 4T q̄

E[YT (n)]
,

for any c and B1
c ⊆ µ(c).

Proof. Consider Round 1, beginning with the least preferred student s of B1
c ⊆ µ(c) (if B1

c = ∅,
then the inequality is obvious since π

B1
c

c = 0.). Since pn
c′(r) ≥ pn

c (r)/T for any c′ ∈ VT (n)
and r = 1, . . . , R, Round 1 ends at 2(c)iiB as a student applies to some college with vacant
positions, at least with probability 1 − 1/(YT (n)/T + 1) > 1 − 1/(E[YT (n)]/2T + 1).

Now assume that all Rounds 1, . . . , i − 1 end at Step 2(c)iiB. Then there are still at least
YT (n) − (i − 1) colleges more popular than c and with a vacant position, since at most i − 1
colleges in VT (n) have had their positions filled at Rounds 1, . . . , i − 1. Therefore Round i
initiated by the least preferred student in Bi

c ends at Step 2(c)iiB with probability of at least
1−1/(E[YT (n)]/2T − (i−1)+1). Since there are at most q̄ rounds, Algorithm 3 fails to return
to c with probability of at least

q̄
∏

i=1

(

1 − 1

E[YT (n)]/2T − (i − 1) + 1

)

≥
(

1 − 1

E[YT (n)]/2T − q̄ + 2

)q̄

≥
(

1 − 1

E[YT (n)]/4T

)q̄

.

The first inequality follows since (Γ̃1, Γ̃2, . . . ) is sufficiently thick, n is sufficiently large and
i ≤ q̄ for each i. The second inequality holds since E[YT (n)]/2 − q̄ ≥ E[YT (n)]/4 > 0, which
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follows since (Γ̃1, Γ̃2, . . . ) is sufficiently thick and n is sufficiently large. Therefore we have that

πB1
c

c ≤ 1 −
(

1 − 1

E[YT (n)]/4T

)q̄

≤ 4T q̄

E[YT (n)]
,

where the last inequality holds since 1 − (1 − x)y ≤ yx for any x ∈ (0, 1) and y ≥ 1.

Lemma 10 (Uniform vanishing market power). Suppose that (Γ̃1, Γ̃2, . . . ) is regular and suffi-
ciently thick. For any sufficiently large n and any c ∈ C, we have

πc ≤
4 [T q̄(2q̄ − 1) + 1]

E[YT (n)]
.

Proof. By Lemma 9 and an argument similar that which leads to expression (13) in Lemma 7,
we obtain

Pr[Algorithm 3 returns to c|YT (n) > E[YT (n)]/2] ≤ 4T q̄(2q̄ − 1)

E[YT (n)]
.

Therefore we have

πc ≤ Pr [YT (n) ≤ E[YT (n)]/2] + Pr [YT (n) > E[YT (n)]/2] × 4T q̄(2q̄ − 1)

E[YT (n)]

≤ 4

E[YT (n)]
+

4T q̄(2q̄ − 1)

E[YT (n)]

≤ 4 [T q̄(2q̄ − 1) + 1]

E[YT (n)]
,

completing the proof.

B.3.2 Theorems 2 and 5

We only prove Theorem 5, since Theorem 2 is a special case when R = 1. Suppose that colleges
other than c are truth-telling, that is, any c′ 6= c reports (Pc′, qc′). Lemmas 1 and 3 apply here
since they do not rely on assumptions about student preferences. These lemmas imply that the
probability that c profitably manipulates is at most πc. By Lemma 10 and sufficient thickness,
for any ε > 0, there exists n0 such that for any market Γ̃n with n > n0, we have

Pr [u(φ(S, C, P ′
c, P−c, q)(c)) > u(φ(S, C, P, q)(c)) for some P ′

c] <
ε

q̄ supn∈N,s∈Sn,c∈Cn uc(s)
.
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Such n0 can be chosen independent of c ∈ Cn. For any n > n0, for any c ∈ Cn we have

Euc(φ(S, C, (P ′
c, P−c), (q

′
c, q−c))(c)) − Euc(φ(S, C, P, q))

<Pr [uc(φ(S, C, (P ′
c, P−c), (q

′
c, q−c))(c) > uc(φ(S, C, P, q)(c))] q̄ sup

n∈N,s∈Sn,c∈Cn

uc(s)

<ε,

which implies that truthful reporting is an ε-Nash equilibrium.

B.4 Proofs of Propositions 1 and 2

B.4.1 Proposition 1

Let a and T satisfy the condition of nonvanishing proportion of popular colleges. Let c = [an].
Then it is obvious that Vc ⊆ VT (n) and hence Yc ≤ YT (n). For sufficiently large n, Lemma 4
shows that

E[YT (n)] ≥ E[Yc] ≥
c

2
e−8q̄nk/c.

c = [an] implies that c
2
e−8q̄nk/c → ∞ as n → ∞ with the order O(n). Therefore E[YT (n)] → ∞

as n → ∞, completing the proof.
For Example 5, let c = [γn/ ln(n)]. Substituting into c

2
e−8q̄nk/c, we obtain

E[YT (n)] ≥ c

2
e−8q̄nk/c ≥

[

γn/ ln(n) − 1

2

]

n
−8q̄k

γ =
γn1− 8q̄k

γ

2 ln(n)
− 1

2
n− 8q̄k

γ .

Therefore, for γ > 8q̄k, then n1− 8q̄k

γ / ln(n) → ∞ and n− 8q̄k

γ → 0 as n → ∞. Thus, we conclude
that E[YT (n)] → ∞ as n → ∞.

B.4.2 Proposition 2

Let
V ∗

T (n) = {c ∈ Cn|pn
1 (r)/pn

c (r) ≤ T for all r ∈ {1, ..., R̄}}.
Then we have VT (n) = {c ∈ V ∗

T (n) : |{s ∈ Sn|cPss}| < qc}. Let ηr(c) = |{c′ ∈ Cn|pn
c (r) ≤

pn
c′(r)}| be the order of c with respect to popularity in distribution Dn(r). For example, if

college c is the most popular among students in region 1 and the least popular among those in
region 2, then η1(c) = 1 and η2(c) = n.

Part (1): Example 6. Let T = 4, for example. Then, V ∗
4 (n) = {n/4, n/4 + 1, . . . , 3n/4}.

Consider any college c ∈ V ∗
4 (n). Let s belong to region r ∈ {1, 2}. Since s picks colleges k times
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according to Dn(r), the probability that c does not appear in the preference list of student s,
denoted by Pr(Fc,s), is bounded as follows:

Pr(Fc,s) ≥
(

1 − pn
c (r)

1 − Qn(r)

)k

,

where
Qn(r) =

∑

c:ηr(c)≤k

pn
c (r).

For any sufficiently large n, we have that ηr(c) > 2k for any c ∈ V ∗
4 (n) and r = 1, 2 since

[n − 2k] > 3n/4 > c > n/4 > 2k. For such colleges,

pn
c (r) ≤ 1 − Qn(r)

ηr(c) − k
≤ 1 − Qn(r)

ηr(c)/2
.

So

Pr(Fc,s) ≥
(

1 − 2

ηr(c)

)k

.

Since ηr(c) ≥ n/4 for any c ∈ V ∗
4 (n) and any r = 1, 2, we have

Pr(Fc,s) ≥
(

1 − 8

n

)k

.

Let Ec be the event that c is not listed by any student. Then, since students draw colleges
independently, we have

Pr(Ec) =
∏

s∈Sn

Pr(Fc,s) ≥ (1 − 8/n)kq̄n → e−8kq̄,

as n → ∞. Therefore,

E[YT (n)] =
∑

c∈V ∗

4 (n)

Pr(Ec) ≥
n

2
(1 − 8/n)kq̄n → ∞,

as n → ∞ (with the order O(n)), completing the proof.
Part (2): Example 7. As discussed in Example 7, for any colleges c and c′ and region r,

we have that
pn

c (r)/pn
c′(r) = p̃r(c)(r)/p̃r(c′)(r) > 0.

Since there are only finite regions, V ∗
T (n) = Cn for any sufficiently large T . Fix such T .
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As in the proof of Part (1), for any c and s we have

Pr(Fc,s) ≥
[

1 − pn
c (r(s))

1 − Qn(r(s))

]k

.

Since we have that pn
c (r)/p

n
c′(r) < T for any c, c′ ∈ Cn,

pn
c (r)

1 − Qn(r)
≤ pn

c (r)

(n − k)pn
c (r)/T

≤ 2T

n
,

for any sufficiently large n. So we have

Pr(Ec) =
∏

s∈Sn

Pr(Fc,s) ≥
∏

s∈Sn

(

1 − 2T

n

)k

≥ (1 − 2T/n)kq̄n → e−2kq̄T ,

as n → ∞. Therefore

E[YT (n)] =
∑

c∈Cn

Pr(Ec)

approaches infinity with the order O(n), completing the proof.

Remark 1. In Examples 4, 6 and 7, the order of convergence of E[YT (n)] is O(n). This implies
that, by Lemma 10, the order of convergence of the probability of profitable manipulation is
O(1/n). This is the same order as in the uniform distribution case, analyzed by Roth and
Peranson (1999) and Immorlica and Mahdian (2005).

B.5 Proof of Theorem 7: Coalitional manipulation

The proof is based on a series of arguments similar to those for Theorem 1. First, dropping
strategies are exhaustive for manipulations involving a coalition of agents.

Lemma 11 (Dropping strategies are exhaustive for coalitional manipulations). Consider an ar-
bitrary stable mechanism ϕ. Fix preference profile (P, q) and let C̄ ⊆ C be a coalition of colleges.
For some arbitrary report (P̃C̄ , q̃C̄) by this coalition, suppose that ϕ((P̃C̄ , P−C̄), (q̃C̄ , q−C̄)) = µ.
Then there exists a dropping strategy (P ′

C̄
, qC̄) = (P ′

c, qc)c∈C̄ such that ϕ((P ′
C̄
, P−C̄), q) �c µ for

each c ∈ C̄.

Proof. For each c ∈ C̄, construct dropping strategy (P ′
c, qc) such that P ′

c lists all the students
it is matched to under µ who are acceptable ({s ∈ µ(c)|sPc∅}) in the same relative order as in
Pc, and reports every other student as unacceptable. Let (P ′, q) = (P ′

C̄
, P−C̄ , q).
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We will show ϕ(P ′, q)(c) is equal to {s ∈ µ(c)|sPc∅} for each c ∈ C̄. This equality implies
that ϕ(P ′, q) �c µ for each c ∈ C̄, since ϕ(P ′, q)(c) can only differ from µ(c) in having no
unacceptable students under the true preference list Pc. The proof proceeds in two steps.

First, consider the matching µ′ obtained from µ by having each c ∈ C̄ keep only the students
in µ(c) that are acceptable under Pc. That is,

µ′(c) =

{

{s ∈ µ(c)|sPc∅} c ∈ C̄,

µ(c) c 6∈ C̄.

Consider the properties of µ′ under (P ′, q). First, µ′ is individually rational under (P ′, q).
Second, there is no blocking pair involving any c ∈ C̄, since µ′(c) is exactly the set of students
acceptable under P ′

c. However, there may be a blocking pair involving another college and
students who are unmatched. In this case, we can define a procedure which ultimately yields a
matching that is stable under (P ′, q):

Starting from µ′
0 ≡ µ′, let S0 be the set of students that can be part of a blocking pair in µ′

0.
Pick some s ∈ S0. Let college c′ be the college that the student s prefers the most within the
set of colleges involved in blocking pairs with s. Construct µ′

1 by assigning student s to c′ and
if |µ′

0(c
′)| = qc′, then let c′ reject its least preferred student. By construction, µ′

1 is individually
rational, college c is matched to the same set of students, college c′ strictly prefers µ′

1(c
′) over

µ′
0(c

′) and the assignments of all other colleges are unchanged. As with µ′
0, the only blocking

pair of µ′
1 involves unmatched students. If there are blocking pairs of µ′

1, then we repeat the
same procedure to construct µ′

2, and so on.
At each repetition, the new matching is individually rational, each college c ∈ C̄ is matched

to the same set of students, one other college strictly improves and the remaining colleges are
not worse off since each blocking pair involves an unassigned student. Since colleges can strictly
improve only a finite number of times, this procedure terminates in finite time. The ultimate
matching µ′′ is stable in (P ′, q) because it is individually rational and there are no blocking
pairs. Moreover, since each college c ∈ C̄ obtains the same matching in each repetition,

µ′′(c) = µ′(c), for each c ∈ C̄. (17)

The second step of the proof utilizes the fact that for any college, the same number of
students are matched to it across different stable matchings. Since µ′′ is stable in (P ′, q) and
ϕ(P ′, q) is stable in (P ′, q) by definition, |µ′′(c)| = |ϕ(P ′, q)(c)|, for each c ∈ C̄. Since for each
c ∈ C̄, there are just |µ′′(c)| acceptable students under P ′

c, this implies that

µ′′(c) = ϕ(P ′, q)(c), for each c ∈ C̄. (18)

Equations (17) and (18) together imply that for each c ∈ C̄,

ϕ(P ′, q)(c) = µ′(c) = {s ∈ µ(c)|sPc∅}.
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As a result, for each c ∈ C̄
ϕ(P ′, q)(c) �c µ(c),

since ϕ(P ′, q)(c) can only differ from µ(c) in having no unacceptable students under the true
preference list Pc.

B.5.1 Lemma 13: Rejection chains with coalitions

For preference profile (P, q), let µ be the student-optimal stable matching. Let B1
c be an

arbitrary subset of µ(c). The rejection chains algorithm with input (B1
c )c∈C̄ is defined as

follows.

Algorithm 4. Rejection Chains with Coalitions

(1) Initialization: µ is the student-optimal stable matching µ, input (B1
c )c∈C̄ , C̄1 = C̄, and

let j = 0.

(2) Algorithm:

(a) Increment j by one (iterate through colleges).

i. If C̄j = ∅, then terminate the algorithm.

ii. If not, pick some c ∈ C̄j, and let C̄j+1 = C̄j \ c and let i = 0.

(b) Increment i by one (iterate through students)

i. If Bi
c = ∅, then go to beginning of Step 2a.

ii. If not, let s be the least preferred student by c among Bi
c, and let Bi+1

c = Bi
c \ s.

iii. Iterate the following steps (call this iteration “Round i”).

Choosing the applied:

A. If s has already applied to every acceptable college, then finish the iteration
and go back to the beginning of Step 2b.

B. If not, let c′ be the most preferred college of s among those which s has not
yet applied while running the SOSM or previously within this algorithm. If
c′ ∈ C̄, terminate the algorithm.

Acceptance and/or rejection:

A. If c′ prefers each of its current mates to s and there is no vacant position,
then c′ rejects s; go back to the beginning of Step 2(b)iii.
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B. If c′ has a vacant position or it prefers s to one of its current mates, then
c′ accepts s. Now if c′ had no vacant position before accepting s, then c′

rejects the least preferred student among those who were matched to c′. Let
this rejected student be s and go back to the beginning of Step 2(b)iii. If c′

had a vacant position, then finish the iteration and go back to the beginning
of Step 2b.

Algorithm 4 terminates either at Step 2(a)i or at Step 2(b)iiiB. We say that Algorithm 4
does not return to C̄ if it terminates at Step 2(a)i and it returns to C̄ if it terminates at
Step 2(b)iiiB.

Lemma 12. Consider coalition C̄ and suppose that under (P, q), Algorithm 4 with each possible
collection of sets consisting of subsets of µ(c) for each c ∈ C̄ as an input fails to return to C̄.
For any dropping strategy (P ′

C̄
, qC̄), let B1

c = {s ∈ µ(c)|∅P ′
cs} for each c ∈ C̄ such B1

c 6= ∅ for
at least one c ∈ C̄, and let µ′ be a matching obtained at the end of Algorithm 4 with input
(B1

c )c∈C̄. Then, under (P ′
C̄
, P−C̄ , q),

(1) µ′ is individually rational,

(2) no c 6∈ C̄ is a part of a blocking pair of µ′, and

(3) for c ∈ C̄, if (s, c) blocks µ′, then [arg minPc
µ(c)]Pcs, and

(4) for c ∈ C̄, if (s, c) blocks µ′ and µ′(c) is non-empty, then [arg minP ′

c
µ′(c)]P ′

cs.

Proof. Part (1): For c 6∈ C̄, c only accepts students who are acceptable in each step of the
SOSM and Algorithm 4. Each c ∈ C̄ rejects every student who is unacceptable under P ′

C̄
at

the outset of Algorithm 4, and accepts no other student by the assumption that Algorithm 4
does not return to c ∈ C̄ for any sequence of sets consisting of subsets of µ(c) for each c ∈ C̄
as input. Therefore µ′ is individually rational.

Part (2): Suppose that for some s ∈ S and c ∈ C \ C̄, cPsµ
′(s). Then, by the definition of

the SOSM and Algorithm 4, s is rejected by c either during the SOSM or in Algorithm 4. This
implies that |µ′(c)| = qc and [arg minPc

µ′(c)]Pcs, implying that s and c do not block µ′.
Part (3): Suppose cPsµ

′(s) for some s ∈ S and c ∈ C̄. As in Part (2), this implies that s is
rejected by c either during the SOSM or in Algorithm 4. Since Algorithm 4 does not return to
c by assumption, s is rejected either during the SOSM or at the beginning of Algorithm 4. In
the former case, if s is rejected during the SOSM, then [arg minPc

µ(c)]Pcs. In the latter case,
(s, c) is not a blocking pair because s is declared unacceptable under P ′

c.
Part (4): From Part (3), for each c ∈ C̄, we have that

[arg min
Pc

µ(c)]Pcs. (19)
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By definition, µ′(c) ⊆ µ(c) and expression (19) imply

[arg min
Pc

µ′(c)]Pcs, (20)

when µ′(c) is non-empty.
When µ′(c) is non-empty, µ′(c) is constructed by including only acceptable students in µ(c)

according to P ′
c, so

[arg min
P ′

c

µ′(c)]P ′
c∅. (21)

Expressions (20) and (21) and the definition of a dropping strategy yield

[arg min
P ′

c

µ′(c)]P ′
cs.

Lemma 13 (Rejection chains with coalitions). For any market and any C̄ ⊆ C, if Algorithm 4
does not return to C̄ with each possible collection of sets (B1

c )c∈C̄, where B1
c is a subset of µ(c)

for each c ∈ C̄, as input (with at least one B1
c non-empty), then C̄ cannot profitably manipulate

by a dropping strategy.

Proof. Consider an arbitrary dropping strategy (P ′
C̄
, qC̄) and let B1

c = {s ∈ µ(c)|∅P ′
cs} for each

c ∈ C̄. When Algorithm 4 does not return to C̄, we show that µ = φ(P, q) is weakly preferred
by each college c ∈ C̄ to φ(P ′

C̄
, P−C̄ , q). Let (P ′, q) = (P ′

C̄
, P−C̄ , q).

Let µ′ be the matching resulting from Algorithm 4 with input (B1
c )c∈C̄ . The first step of

the proof constructs a new matching µ′′ by satisfying the blocking pairs in µ′ such that µ′′ is
stable in (P ′, q)).

We construct µ′′ from µ′ as follows. Parts (1) and (2) of Lemma 12 imply that µ′ is
individually rational and no c 6∈ C̄ is part of a blocking pair of µ′. Parts (3) and (4) of Lemma
12 states that if there is a blocking pair involving some c ∈ C̄, then the student involved in the
blocking pair is less preferred than any student in µ(c) under Pc and less preferred than any
student in µ′(c) under P ′

c.
Let µ′′

0 = µ′. Begin by selecting some college c ∈ C̄ involved in a blocking pair of µ′′
0.

Construct matching µ′′
1 by assigning college c its most preferred students in blocking pairs

up to capacity. The resulting matching is individually rational, at least one student strictly
improves over µ′′

0, no other student is made worse off, and every blocking pair of µ′′
1 involves a

college with a vacant seat. Finally, since students are made weakly better off in µ′′
1 than in µ′′

0,
it must be the case that if (s, c) blocks µ′′

1, then arg minPc
µ(c)Pcs and arg minP ′

c
µ′(c)P ′

cs.
Next, we construct µ′′

2 by selecting college c who is involved in a blocking pair of µ′′
1. Note

that this can either be a college in C̄ or not, but the college that is selected must have a vacant
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seat. As before, we assign c the most preferred students it forms a blocking pair with up to
capacity. As before, the resulting matching is individually rational, at least one student strictly
improves over µ′′

1, no other student is made worse off, and every blocking pair of µ′′
2 involves a

college with a vacant seat. Finally, since students are made weakly better in µ′′
2 than in µ′′

1, it
must be the case that if (s, c) blocks µ′′

2, then arg minPc
µ(c)Pcs and arg minP ′

c
µ′(c)Pcs.

We repeat this process to construct µ′′
3, and so on.

In each step of this construction, no additional students are rejected when we satisfy a
blocking pair, and in each step, at least one student strictly improves and the remaining students
are not made worse off. Since students may improve their assignment only a finite number of
times, the procedure ends in finite time.

The ultimate matching µ′′ is stable in (P ′, q) because it is individually rational and there
are no blocking pairs. Moreover, for college c, each new student matched to college c is weakly
less preferred under P ′

c than any student in the initial matching µ′′
0(c) as students obtain a

weakly more preferred college in each step. Hence, µ′(c) is weakly less preferred to µ′′(c) under
P ′

c. Also, for college c, each new student matched to college c is weakly less preferred under Pc

than any student in the matching µ(c) because students obtain a weakly more preferred college
in each step. Thus, µ′′(c) is weakly less preferred to µ(c) under Pc.

Since the matching produced by SOSM is the least preferred stable matching of every college,
φ(P ′, q)(c) is weakly less preferred to the stable matching µ′′ by each college c ∈ C̄ in (P ′, q).
This will imply that φ(P ′, q)(c) is weakly less preferred to µ′′(c) under P ′

c for each c ∈ C̄, and
since P ′

c is a dropping strategy of Pc,

µ′′(c) �c φ(P ′, q)(c), for each c ∈ C̄.

B.5.2 Lemma 14: Uniform vanishing market power for coalitions

For the coalitions, we define

πc = Pr[Algorithm 4 returns to C̄ for some (B1
c )c∈C̄ ⊆ ∪c∈C̄µ(c)].

Lemma 14. Suppose that (Γ̃1, Γ̃2, . . . ) is regular and sufficiently thick. For any sufficiently
large n and coalition C̄ ⊆ C, we have

πC̄ ≤ 4
[

T q̄ · |C̄| · (2q̄·|C̄| − 1) + 1
]

E[YT (n)]
.

Proof. The proof follows exactly the steps leading to Lemma 10 with two modifications. The
first modification replaces the first instance of q̄ in the expression in Lemma 10 with q̄ · |C̄|
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because in the proof that corresponds to Lemma 9 we must allow for the possibility of q̄ rounds
for each of the |C̄| colleges. The second modification replaces 2q̄ in the expression in Lemma
10 with 2q̄·|C̄| because in the proof that corresponds to Lemma 7, there are at most 2q̄·|C̄| − 1
non-empty subsets of ∪c∈C̄µ(c).

Finally, the proof of Theorem 7 follows because in sufficiently thick markets E[YT (n)] → ∞
as n → ∞ and |C̄| ≤ m, so πC̄ → 0.
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1976.
, Rajeev Motwani, and Boris Pittel, “Stable Husbands,” Random Structures and

Algorithms, 1990, 1, 1–14.
Kojima, Fuhito, “Mixed Strategies in Games of Capacity Manipulation in Hospital-Intern

Markets,” Social Choice and Welfare, 2006, 27, 25–28.
, “Finding All Stable Matchings with Couples,” 2007a. mimeo.
, “When can Manipulations be Avoided in Two-Sided Matching Markets? Maximal

Domain Results,” Contributions to Theoretical Economics, 2007b, 7, Article 32.
and Mihai Manea, “Strategy-Proofness of the Probabilistic Serial Mechanism in Large

Random Assignment Problems,” 2006. Unpublished mimeo, Harvard University.
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