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Abstract

This Online Appendix has three sections. The first presents details of the choice model estimation

algorithm, as well as additional estimates from our primary specification not included in the main

text. The second describes our model for consumer self-insurance from savings and borrowing in

detail. The third provides additional figures and tables referenced in the main text.
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B Online Appendix: Choice Model Estimation Algorithm De-

tails and Additional Results

This appendix describes the details of the choice model estimation algorithm. The corresponding section

in the text provided a high-level overview of this algorithm and outlined the estimation assumptions

we make regarding choice model fundamentals and their links to observable data. In addition, after

the presentation of the estimation algorithm, we discuss further specification details and results for our

primary choice model.

We estimate the choice model using a random coeffi cients simulated maximum likelihood approach

similar to that summarized in Train (2009). The simulated maximum likelihood estimation approach

has the minimum variance for a consistent and asymptotically normal estimator, while not being too

computationally burdensome in our framework. Since we use panel data, the likelihood function at

the family level is computed for a sequence of choices from t0 to t2, since inertia implies that the

likelihood of a choice made in the current period depends on the choice made in the previous period.

The maximum likelihood estimator selects the parameter values that maximize the similarity between

actual choices and choices simulated with the parameters.

First, the estimator simulates Q draws from the distribution of health expenditures output from

the cost model, Fjkt, for each family, plan, and time period. These draws are used to compute plan

expected utility conditional on all other preference parameters. It then simulates S draws for each

family from the distributions of the random coeffi cients γj and δj , as well as from the distribution of

the preference shocks εk. We define the set of parameters θ as the full set of ex ante model parameters

(before the S draws are taken):

θ ≡ (µ, β, σ2
γ , µδ(Aj), σδ(Aj), α, µεK (Aj), σεK(Aj), η0, η1).

We denote θsj one draw derived from these parameters for each family, including the parameters

constant across draws:

θsj ≡ (γj , δj , α, εKT , η0, η1)

Denote θSj the set of all S simulated draws for family j. For each θsj the estimator then uses all Q

health draws to compute family-plan-time-specific expected utilities Usjkt following the choice model

outlined in Section 3 in the main text. Given these expected utilities for each θsj , we simulate the

probability of choosing plan k in each period using a smoothed accept-reject function with the form:

Prsjt(k = k∗) =

(
1

−Usjk∗t
(·)

ΣK
1

−Usjkt
(·) )τ

Σk(
1

−Us̂kt
(·)

ΣK
1

−Usjkt
(·) )τ
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This smoothed accept-reject methodology follows that outlined in Train (2009) with some slight modi-

fications to account for the expected utility specification. In theory, conditional on θsj , we would want

to pick the k that maximizes Ujkt for each family, and then average over S to get final choice probabil-

ities. However, doing this leads to a likelihood function with flat regions, because for small changes in

the estimated parameters θ, the discrete choice made does not change. The smoothing function above

mimics this process for CARA utility functions: as the smoothing parameter τ becomes large the

smoothed Accept-Reject simulator becomes almost identical to the true Accept-Reject simulator just

described, where the actual utility-maximizing option is chosen with probability one. By choosing τ to

be large, an individual will always choose k∗ when 1
−Ujk∗t >

1
−Ujkt ∀k 6= k∗. The smoothing function

is modified from the logit smoothing function in Train (2009) for two reasons (i) CARA utilities are

negative, so the choice should correspond to the utility with the lowest absolute value and (ii) the logit

form requires exponentiating the expected utility, which in our case is already the sum of exponential

functions (from CARA). This double exponentiating leads to computational issues that our specifica-

tion overcomes, without any true content change since both models approach the true Accept-Reject

function.

Denote any sequence of three choices made as k3 and the set of such sequences as K3. In the limit as

τ grows large the probability of a given k3 will either approach 1 or 0 for a given simulated draw s and

family j. This is because for a given draw the sequence (k1, k2, k3) will either be the sequential utility

maximizing sequence or not. This implicitly includes the appropriate level of inertia by conditioning

on previous choices within the sequential utility calculation. For example, under θsj a choice in period

two will be made by a family j only if it is optimal conditional on θsj , other preference factors, and the

inertia implied by the period one choice. For all S simulation draws we compute the optimal sequence

of choices for k with the smoothed Accept-Reject simulator, denoted k3
sj . For any set of parameter

values θSj the probability that the model predicts k3 will be chosen by j is:

ˆP k
3

j (θ, Fjkt,Z
A
j ,Z

B
j , Hj , Aj) = Σs∈S1[k3 = k3

sj ]

Let ˆP k
3

j (θ) be shorthand notation for ˆP k
3

j (θ, Fjkt, Z
A
j , Z

B
j , Hk, Aj). Conditional on these probabil-

ities for each j, the simulated log-likelihood value for parameters θ is:

SLL(θ) = Σj∈JΣk3∈K3djk3 ln
ˆP k
3

j

Here djk3 is an indicator function equal to one if the actual sequence of decisions made by family j

was k3. Then the maximum simulated likelihood estimator (MSLE) is the value of θ in the parameter

space Θ that maximizes SLL(θ). In the results presented in the text, we choose Q = 100, S = 50, and

τ = 6, all values large enough such that the estimated parameters vary little in response to changes.
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B.1 Specification for Inertia

In the main text we did not describe the details for our specification for consumer inertia. The model

for inertia, which is similar to that in Handel (2013), specifics an inertial cost η(ZBj ) that is linearly

related to consumer characteristics and linked choices, ZBj :

η(ZBj ) = η0 + η1Z
B
jt

The characteristics in ZBj include family status (e.g., single or covering dependents), income, several

job status measures, linked choice of Flexible Spending Account (FSA), and whether the family has

any members with chronic medical conditions (and, if so, how many chronic conditions total in the

family).

B.2 Additional Results

In the interest of space, the text only presented the risk preference parameter estimates from our primary

specification, since this was the key object of interest recovered there for our equilibrium analysis of

insurance exchange pricing regulations. Here, for completeness, in Tables B1 and B2 we include the

full set of estimates in the primary model for reference, including inertia parameters, PPO1200 random

coeffi cients, and ε standard deviations. Overall, the parameters not discussed in the text have similar

estimates to those in Handel (2013), though the risk preference estimates differ here because they are

linked explicitly to health risk to estimate correlations between those two micro-foundations.
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Empircal Model Results

(1) Paramater

Parameter / Model Primary Model Standard Error

Risk Preference Estimates

µγ - Intercept, β0 1.21 ∗ 10−3 5.0 ∗ 10−5

µγ - log(Σiεjλi), β1 −1.14 ∗ 10−4 9.8 ∗ 10−6

µγ - age, β2 −5.21 ∗ 10−6 1.0 ∗ 10−7

µγ - log(Σiεjλi)∗age, β3 1.10 ∗ 10−6 1.3 ∗ 10−7

µγ - Manager, β4 4.3 ∗ 10−5 5.2 ∗ 10−5

µγ - Manager ability, β5 1.4 ∗ 10−5 1.2 ∗ 10−5

µγ - Non-manager ability , β6 7.5 ∗ 10−6 2.4 ∗ 10−6

µγ - Population Mean 4.39 ∗ 10−4 -

µγ - Population σ 6.63 ∗ 10−5 -

σγ - γ standard deviation 1.24 ∗ 10−4 3.5 ∗ 10−5

Inertia Estimates

η0, Intercept 1,336 76

η1, Family 2,101 52

η1, FSA Enroll -472 44

η1, Income 96 15

η1, Quantitative 6 27

η1, Manager 162 34

η1, Chronic Condition 108 24

Table B1: This table presents the first half of the full set of primary choice model estimates: the set of estimates

relevant for our analysis of exchange pricing regulation is presented and interpreted in much more detail in the

main text. Standard errors are presented in column 2.
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Empircal Model Results

(1) Parameter

Parameter / Model Primary Model Standard Error

PPO1200 Preferences

µδ : Single -2,504 138

σδ : Single 806 47

µδ : Family -2,821 424

σδ : Family 872 48

Other

α, High-Cost, PPO250 -805 79

ε500 , σε, Single 50 340

ε1200 , σε, Single 525 180

ε500 , σε, Family 141 56

ε1200 , σε, Family 615 216

Table B2: This table presents the second half of the full set of primary choice model estimates: the set of

estimates relevant for our analysis of exchange pricing regulation is presented and interpreted in much more

detail in the main text. Standard errors are presented in column 2.
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C Online Appendix: Self-Insurance Model

Section 6.3 describes our extension that allows for consumers to save and borrow to self-insure against

health shocks. That section in the main text describes the key features of our model of saving and

borrowing as well as the results from that model. In this section we provide some additional details on

this model and present a more formal treatment of it.

We allow for borrowing and saving by solving a finite horizon dynamic problem. To clarify notation

and timing, we define the following terms:

• Wt ≡ income in period t

• pit ≡ price of policy i in period t

• mt ≡medical expenses in period t

• λt ≡ ACG health status realization for period t (realized in period t− 1)

• Oi(m) ≡ out of pocket expense for policy i with medical expenses outcome m

• St ≡ savings chosen in period t

• W t ≡Wt + (1 + r)St−1 are funds available in period t

• c(m|it) = pit +Oit(m) is the consumer’s total medical expenses under policy it given m

Timing:

In each period t, the consumer chooses an insurance policy, (λt+1,mt) is realized, and then a

savings decision, St, is made. Given λt+1, mt+1 is then drawn in period t + 1 from a distribution

Ft+1(mt+1|λt+1). Thus, period t savings are decided after observing health expenses for period t and

period t + 1’s health status. This assumption reflects a fluid financial market where individuals can

take a last minute loan if they were unlucky or deposit extra cash if they were healthier than expected.

Solving the model:

We start in period T and solve for optimal savings backward. In period T given realization λT and

starting savings plus income WT consumer expected utility is:

−E[e−γ[WT−c(mT |iT )]|λT ] = −E[e−γ[WT−c(mT |iT )]|λT ]e−γ(1+r)ST−1

Given that i∗T (λT ) is the consumer’s policy choice at T when he has health status λT , expected period

T utility is:

−E[e−γ[WT−c(mT |i∗T (λT ))]|λT ]e−γ(1+r)ST−1
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which is a function of λT and ST−1. We can thus denote the value function in period T as a function

of the state, VT (λT , ST−1). Optimal period T − 1 saving ST−1 (saving for period T ) solves:

max
ST−1,iT−1

−E[e−γ[WT−1−c(mT−1|iT−1)]|λT−1]eγST−1 + δVT (λT , ST−1)

which in turn delivers VT−1(λT−1, ST−2).

In this manner, we recursively solve the optimal savings level all the way backwards to period 1 for

every possible history. Once we have V1(λ1, 0) we compute the ex-ante welfare of an unborn individual

who does not yet know her future λ1 as:

W0(W ) = Eλ1(V1(λ1, 0)).

The ex-ante welfare depends on the income profile W = [W1,W2, ..,WT ], on the initial distribution

of types, and on the regulatory pricing regimes we want to evaluate. A pricing regime affects expected

welfare through both the out of pocket expenses Oi(mt) as well as the premium paid, pi(λt). We

translate the ex ante welfare difference between pricing regimes into yearly certainty equivalent values

as in Section 5 in the main text.

C.1 Computation

To implement the dynamic problem we need assumptions about the evolution of the state variable.

Unlike the primary welfare analysis in the paper (which assumed a steady state population) the com-

putation here requires transitions across health states (predictive ACG index) over time. Namely, at

any point in time, we need to compute the expected evolution of the future uncertainty, to figure out

optimal savings.

We estimate health state transitions using the observed transitions in our sample. So that we have

enough sample size to non-parametrically estimate this transition matrix, we divide the population into

7 groups based on health status and compute a 7-by-7 transition matrix for each of 8 five year age bins

(25-30, 30-35,..). We assume that the estimated transition matrix for each five year age bin reflects the

transition probabilities for consumers in that five year age bin transitioning to a given health status

level for the next five year age bin. Within each period, consumers experience five years of identical

health claims in the insurance contract they chose for that period, appropriately discounted. For each

age bin, health type, and regulatory pricing regime, we use the static market equilibrium outcomes

from our primary analysis i∗(λ) and determine the actual choice each individual makes in each period,

yielding her premia and out of pocket expenses.1 We assume consumers have flat income profiles over
1Market outcomes are assumed to be the same as those in our primary equilibrium analysis. They thus do not

account for a potential effect that borrowing and saving would have on consumer insurance choices. Accounting for these

dynamic effects would likely push consumers more towards lower insurance, and thus likely not have a large impact on

equilibrium outcomes. This reflects the goal of this section, which is to quantify the impact of savings on the welfare

numbers, keeping other things (including static market equilibrium outcomes) equal. In that spirit we keep the equilibrium

prediction unchanged, as described in the paper for each pricing regime, and see how a representative individual’s welfare

would change if she is allowed to borrow or save.
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time (Wt = W ) (as in the first column of Table 6) in order to neutralize the other channels through

which savings could impact welfare.

Given this setup, we solve the 8-period dynamic problem as described above. Once we recover the

value function for an unborn individual (prior to age 25) for each possible realization of the initial

health state, we compute the certainty equivalent of each regime x as:

−
T=8∑
t

βte−γCEx = −
7∑
j

pje
−γV1(λj ,0).

The results from this model are presented and discussed in Section 6.3.
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Figure D1: This figure presents the distribution of λ predicted for t1, for all individuals in the data

(including dependents) present during both t0 and t1. Predicted expected expenses are normalized

by the average in this sample of $4,878 (thus equal to 1 in this chart). The distribution presented is

truncated at 5 times for this chart, but not in estimation / analysis.

D Online Appendix: Additional Analysis

This appendix contains several additional figures and tables discussed in the text. Figure D1 presents

the distribution of λ predicted for t1, for all individuals in the data (including dependents) present

during both t0 and t1. Predicted expected expenses are normalized by the average in this sample

of $4,878 (thus equal to 1 in this chart). The distribution presented is truncated at 5 times for this

chart, but not in estimation / analysis. See Handel (2013) for additional detailed analysis of expected

expenditures for employees at dependents at the firm we study.

Table D1 presents descriptive statistics for the pseudo-sample of individuals used in our insurance

exchange simulations. The sample has a risk preference mean and standard deviation similar to those

of the choice model estimation sample. Moreover, the distribution of income and health status are

similar to those in the estimation sample and in the general population. The table just below in the

text here illustrates that the simulation sample (as in our data overall) has a fairly uniform distribution

of age between 25 and 65, consistent with our assumption of a steady state population in the welfare

analysis. See Section 3.6 for further details on the sample used in our counterfactual analyses.

Quantile 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Age 26 28 33 37 41 45 49 52 56 60 62

Table D2 shows average costs as a function of age 25 risk preferences, to illustrate the relationship

between risk preferences and age that exists in our welfare framework. Following the choice model
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estimates, costs are negatively related to risk aversion conditional on age. See Section 5 in the main

text for more details.

Table D3 supports the analysis in our age-based pricing extension in Section 6.2 in the main text.

The table shows the compensation required to make an individual indifferent between a regime with

health status quartile pricing for each age group, and another in which all individuals in each age

band receive the 60 policy at its average cost for their age band (the result of pure age-based pricing).

Once age is priced, health-based pricing, which appealed to individuals with steeply increasing income,

is no longer preferred by those consumers. The benefit of health-based pricing is the reduction in

adverse selection, and the postponement of premiums until later in life. With age-based pricing, the

latter benefit is eliminated. The cost associated with reclassification risk then dominates the benefits

of reducing adverse selection across the range of risk aversion types and for the different income path

models studied.

Table D4 presents the long-run welfare implications of allowing for insurer risk-adjustment transfars,

as specified in the HHS risk adjustment formula, described in Section 6.4 in the main text. Risk

adjustment transfers partially reduce the extent of adverse selection under pure community rating,

improving consumer welfare.

Figure D2 presents an additional calibration of the framework developed in Section 2 that highlights

the tradeoff between adverse selection and reclassification risk, as a function of the fraction of health

risk information known by consumers at the time of contracting. This is similar to a figure in that

section, but calibrated so that consumers face more health risk. (R = 30, 000). Unraveling occurs

at higher φ when R is greater (larger variance of medical expenditures), reflecting the fact that with

greater variance consumers are more reluctant to choose a low coverage plan. As a result, in the figure

in the appendix there is a smaller range of φ over which health-based pricing is better than community

rating.
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Simulation Sample

Simulation Sample

N - Families -

N - Individuals 25-65 10,372

Mean Age 44.5

Median Age 45

Gender (Male %) 45

Income

Tier 1 ( < $41K) 20%

Tier 2 ($41K-$72K) 40%

Tier 3 ($72K-$124K) 24%

Tier 4 ($124K-$176K) 8%

Tier 5 ( > $176K) 8%

Predicted Mean Total Expenditures

Mean $6,099

25th quantile $1,668

Median $3,654

75th quantile $8,299

90th quantile $13,911

95th quantile $18,630

99th quantile $34,008

Risk Preferences

Mean µγ 4.28 ∗ 10−4

Standard Deviation µγ 7.50 ∗ 10−5

Table D1: This table presents descriptive statistics for the pseudo-sample of individuals used in our insurance

exchange simulations. The sample has risk preference means and standard deviations that are similar to those

of the choice model estimation sample. Moreover, the distributions of income and health status are similar to

those in the estimation sample and general population.
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Average Costs at Various Ages

Conditional on Age 25 Risk Aversion

γ 30-35 45-50 55-60

0.0002 5,586 7,196 10,857

0.0003 4,212 6,390 10,319

0.0004 3,100 5,687 9,767

0.0005 2,328 4,911 9,271

0.0006 1,775 4,373 8,813

Table D2: Average costs as a function of age 25 risk preferences. Following the choice model estimates,

costs are negatively related to risk aversion conditional on age.

Welfare Loss from Health Status-quartile Age-based pricing ($/year)

yHB4+age,age(γ) yHB4+age,age(γ) yHB4+age,age(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0002 2,111 2,129 1,100

0.0003 2,911 2,028 920

0.0004 3,707 1,842 778

0.0005 4,510 1,646 1,353

0.0006 5,137 1,612 1,876

Table D3: Long-run welfare comparison between the two pricing regulations of (i) pricing based on health

status quartiles by age (x = “HB4 + age”) and (ii) pricing based on just age (x′ = “age”). The results

presented are based on the RE outcomes for each of the two pricing regulations. As before, the assumed

discount rate is δ = 0.975.

Welfare Benefit of Risk-Adjustment Transfers: RE ($/year)

yPCR,risk−adj(γ) yPCR,risk−adj(γ) yPCR,risk−adj(γ)

γ Fixed Income Non-Manager Income path Manager Income Path

0.0001 316 261 106

0.0002 327 202 27

0.0003 336 139 18

0.0004 349 84 0

0.0005 368 36 38

0.0006 386 23 72

Table D4: Long-run welfare implications of insurer risk adjustment regulation (transfers based on the HHS

risk adjustment formula).
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Figure D2: Adverse selection vs. reclassification risk, R = 30,000. X curve: market share of low

coverage plan; dashed curve: certainty equivalent with pure community rating; solid curve: certainty

equivalent with perfect health-based pricing.
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