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Abstract
We show that commuting flows constructed from cell phone transaction data predict

the spatial distribution of wages and income in cities. In a simple workplace choice
model, commuting flows follow a gravity equation whose destination fixed effects correspond
to wages. We use cell phone data from Dhaka and Colombo, covering hundreds of
millions of commuter-day observations, to invert this relationship. Model-predicted
income at the workplace level predicts self-reported survey workplace income, and
model-predicted residential income predicts nighttime lights. In an application, we
estimate that predicted commuter income is 4-5% lower on days with hartals (transportation
strikes) in Dhaka.
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1 Introduction

Measures of urban economic activity at fine temporal and spatial scales are important yet
scarce. Such data is necessary to understand how cities respond to localized shocks such
as changes in transportation infrastructure or floods, and to help governments target scarce
public resources. These issues are especially salient in large cities in developing countries,
which are growing fast yet are least covered by conventional data sources. For example, less
than 10% of the urban population in sub-saharan African countries is covered by a census
of firms with wage data.1 At the same time, comprehensive new data sources on urban
behavior, especially individual mobility, are becoming available across the world.

In this paper, we provide a theory-based method to predict the spatial distribution of
urban economic activity from commuting choices.2 The revealed-preference logic of our
approach is simple. A core function of cities is to connect workers and jobs. While many
factors enter into workplace choice decisions, areas with high wages should disproportionately
attract workers, keeping distance and home locations fixed. We propose inverting this
reasoning to infer the relative average wage at a location based on how “attractive” it is
as a commuting destination. We use tools from urban and trade models to formalize this
intuition. In the model, work location decisions aggregate up to a gravity equation on
commuting flows, and destination fixed effects are proportional to log wages. This property
holds for a general class of urban models developed to evaluate urban policies and transport
infrastructure (e.g., Ahlfeldt et al. 2015; Heblich et al. 2018; Tsivanidis 2018; Severen 2019).

We implement our approach using call detail record (CDR) data from two large metropolises:
Colombo, Sri Lanka and Dhaka, Bangladesh. CDR data is a prototypical example of
“big data” available in developing countries, and it contains phone user location for every
transaction (phone call or text message). We construct individual commuting trips by
observing a user’s location at different times during a single day, which leads to almost
half a billion days with commuting information. We show that commuting flows constructed
this way correlate strongly with commuting flows from a transportation survey from Dhaka,
while additionally offering very fine geographic resolution and daily time variation. We pool
the data over time and estimate the gravity equation implied by the model. We return to
the high-frequency temporal aspect of the data in an application below.

Estimated wages by location are derived solely from observed commuting decisions and
1Authors’ calculation (Appendix A.7). Moreover, government statistics may sometimes be unreliable. For

example, Nigeria and Japan recently made consequential revisions to jobs and output data (Financial Times,
2014; Japan Times, 2019).

2Several papers use big data sources to empirically predict economic indicators (Blumenstock et al. 2015;
Jean et al. 2016; Glaeser et al. 2017). Our approach is to use economic theory to guide how we interpret the
data.

2



data on travel times, without any model training with actual wage data. We next assess
how well this simple measure captures real differences in wages, using two income proxy data
sources. First, we compare average model-predicted workplace income with commuter income
data from a large transportation survey covering 1% of the population of Dhaka. Second,
we compare in each city model-predicted average residential income with high resolution
satellite nighttime lights, an intuitive proxy for residential income.

Model workplace income is significantly positively correlated with survey workplace income,
including after controlling for location employment density and distance to the central business
district (CBD). These results hold robustly when repeating the exercise with residual log
income, after projecting out demographic and occupation covariates from the survey. Hence,
commuting choices encode valuable information on which urban areas are productive.

At the same time, model-predicted income only explains around a quarter of the spatial
variation in survey income. These results are related to a contemporaneous conversation on
the ability of structural urban models to fit urban data. Interestingly, Severen (2019) finds
that model wages estimated using census tract commuting flows barely predict tract-level
wages in Los Angeles; this result may be related to the small size of the spatial unit, as well as
non-wage factors determining commuting choices. Tsivanidis (2018) calibrates and estimates
a general equilibrium model in Bogotá, and finds that model-predicted wages across 19 urban
areas predict survey wages. By comparison, our focus in this paper is using a parsimonious
model together with detailed commuting data to predict relative income.

In the second validation exercise, in both cities, model-predicted residential income is
a robust predictor of satellite nighttime lights. This relationship remains stable within
sub-districts and after controlling for residential density and distance to the CBD. The
explanatory power is significantly higher (R2 over 0.8), in part due to the inclusion of
peri-urban areas in the analysis.

A key advantage of the model is that we can compute how income “moves” around
the city. In both validation exercises, we perform a horse-race between residential- and
workplace-income. While the two measures are highly correlated, we find suggestive evidence
that model workplace income better correlates with workplace survey income data, and model
residential income better correlates with nighttime lights.

The ideal application of our income-prediction method and of the high-frequency commuting
data is to trace out the spatial and temporal impact of urban events and policies. To illustrate
this potential, we estimate the economic cost of hartals, a type of strike intended to disrupt
transportation and economic activity in Bangladesh. The daily commuting data exhibits
visible differences between hartal and workdays, and model-predicted income falls by around
4-5% on hartal days. This effect is driven mostly by the extensive margin (fewer trips), and,
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to a lower extent, by larger effects for high-income commuters. While precisely estimated,
these changes are relatively small; these results are in line with previous studies of hartal.

In the conclusion, we revisit how our project fits into a larger approach of using economic
theory together with the rich choice information made available by “big data.”

2 Cell-Phone Data and Commuting Flows

2.1 Data Sources

Cell phone transaction data. We use call detail record (CDR) data from large operators in
Sri Lanka and Bangladesh to compute detailed commuting matrices. CDR data includes an
observation for each transaction, such as outgoing or incoming voice call and text messages, or
GPRS internet connections. Each observation has a timestamp, the anonymized participant
user identifiers, and their cell tower locations. Towers are unevenly distributed in space; they
are denser in urban and developed areas. We focus on the greater metropolitan areas around
the capital cities of Colombo and Dhaka. The data covers a little over a year in Sri Lanka
and four months in Bangladesh in the early 2010’s.3

We construct commuting trips by observing a phone-user connect to towers at different
times of the day. On a given day, we define a user’s origin as the location of the first
transaction between 5am to 10am, and the user’s destination as the location of the last
transaction between 10am and 3pm.4 By definition, a user has at most one commuting trip
per day. If the origin and destination correspond to the same cell tower, we say that the
user was stationary, otherwise the user made a proper commuting trip. If transaction data is
missing in either time interval, commuting behavior is not observed for that user-day.5 We
then aggregate over users and non-holiday weekdays to obtain an origin-destination (OD)
matrix of commuting flows between every pair of cell towers.

One potential concern is that cell phone data is not representative of urban commuters.
Cell phone ownership is high in both countries, but the ownership may vary systematically by
demographic characteristics. A separate concern is that calling behavior may be correlated
with mobility. To address these issues, in section 2.2 we compare the commuting flows
constructed here with a representative transportation survey.

3In Bangladesh, the data only covers outgoing voice calls. Our sample covers the Western Province in Sri
Lanka, and the Dhaka, Narayanganj, and Gazipur Districts in Bangladesh.

4We focus on the morning commute, as other types of trips (e.g., shopping) are more likely in the evening
(Frank and Murtha, 2010).

5Commuting data (including stationary trips) is available for 16% (in Dhaka) and 29% (in Colombo) of
the theoretical maximum number of user-days, that is, if we observed each user on every day in the sample
(Table C.1).
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For robustness, we also construct commuting flows using individual-level “home” and
“work” locations, defined as the modal locations during weekday nighttime and daytime
periods, respectively, using all data for an individual. The flows using the two methods are
strongly correlated and all our validation results are robust to this choice (Appendix Figure
B.3, panel B).

Google Maps travel time. As a proxy for travel costs, we obtain estimated typical
driving travel times between pairs of cell towers using the Google Maps API. Because of
the large number of bilateral pairs, in each city we obtain Google data for 90,000 randomly
selected pairs of towers, and interpolate to pairs with nearby origin and nearby destination.6

Household transportation survey. We use individual survey data from the 2009
Dhaka Urban Transport Network Development Study or DHUTS (JICA 2010). The survey
covers 16,394 randomly selected households in the Dhaka City Corporation (DCC), Dhaka’s
urban core, as well as a sample of 1,716 households outside the DCC. Home and work locations
are recorded at the level of 108 “survey areas.” Our main analysis sample consists of 12,510
commuters who live and work within the 90 survey areas inside the DCC and who report
positive income from work, excluding students, homemakers, and the unemployed. In the
main analysis, we exclude households outside of DCC, because the 18 corresponding survey
areas are significantly coarser and detailed information on sampling is not available. Our
results are robust to including all commuters who live and work inside the DCC (Appendix
Table C.5).

2.2 Cell Phone Data Captures Aggregate Commuting Behavior
Accurately

In Dhaka, commuting flows derived from cell phone data are strongly related to those from
the DHUTS commuting survey. To show this, we aggregate the cell phone commuting data
up to the level of survey areas. The sample consists of 7,915 pairs of distinct survey areas
with positive cell phone commuting flows, with a total of 12,510 trips in the DHUTS survey
(this includes government workers) and over 18 million trips between 1.5 million tower pairs
in the cell phone data. Commuting flows from the two data sources are strongly related,
including when we control for log travel time, origin and destination survey area fixed
effects (Appendix Table C.2), consistent with previous research validating cell-phone-based
commuting flows (Calabrese et al., 2011; Wang et al., 2012; Iqbal et al., 2014). In addition,
the decay of commuting flows with travel time is virtually identical between the two data

6Appendix A.6 describes the interpolation procedure in detail. We collected data for Sri Lanka in 2016
and for Bangladesh in 2017. We extracted travel time without traffic congestion (Google did not provide
travel time with traffic congestion in Bangladesh in 2017).
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sources (Appendix Figure B.3, Panel A). Commuting flows constructed using “home” and
“work” locations also decay at the same rate with log travel time (Panel B).

Residential population density from from cell phone data is also strongly correlated with
population density from the census (Appendix Table C.3). The adjusted R-squared is 0.61 in
Dhaka and 0.49 in Colombo. The slope is 1.16 for both cities, hence cell phone data slightly
over-represents population in denser areas.

3 Model: Commuting Flows, Gravity, and Wages

Is it possible to infer the spatial distribution of wages from commuting flows? The interaction
between wages and commuting costs to determine urban structure is fundamental in classical
urban economics models (Alonso, 1960; Mills, 1967; Muth, 1968). Here, we explore this
insight using a new generation of models inspired from the trade literature, designed to
better match spatially disaggregated urban data (Ahlfeldt et al., 2015).

In the model, commuters decide their work location taking into account wages at different
potential work locations, commuting costs, and destination-specific idiosyncratic utility shock.
Together with a parametric assumption on utility shocks, this implies that log bilateral
commuting flows follow a linear gravity equation, with destination fixed effects capturing
log wages. Furthermore, this relationship holds in equilibrium regardless of how wages are
determined.

3.1 Workplace Choice Model

Space is partitioned into a finite set of locations L, which may serve as both residential
locations and work locations. In our application, these correspond to Voronoi cells around
cell phone towers (depicted in Appendix Figures B.1, B.2 for the two cities).

There is a unit mass of workers, and each worker ω sequentially decides where to live,
and then where to work. We do not impose any restrictions on the home location choice.
(Assuming joint home and work location choice leads to the same gravity equation (Ahlfeldt
et al., 2015).) Given her residential location (or origin) i, the worker chooses her work location
(or destination) j. The utility of worker ω residing in location i if she chooses destination j
is:

Uijω = WjZijω
Dτ
ij

(1)

Wj is the wage per effective unit of labor supply at location j (all firms at location j offer the
same wage), Dij is the travel time between i and j, and Zijω is an idiosyncratic utility shock
that is i.i.d. following the Fréchet distribution, with scale parameter T and shape parameter
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ε. In our baseline model, we assume that each worker supplies one unit of labor, and hence
earns income Wj if she works in location j. In particular, we abstract from heterogeneity
due to skill or other worker attributes.7

Each worker observes the shocks Zijω and chooses the work location j where Uijω is
maximized. The probability that a worker commutes to j conditional on residing in i is given
by πij = (Wj/D

τ
ij)ε/

∑
s(Ws/D

τ
is)ε. Taking logs, and denoting log quantities by lowercase

letters:

log(πij) = εwj − ετdij − log
(∑

s

exp (εws − ετdis)
)

(2)

3.2 Estimating the Gravity Equation

We estimate equation (2) through the following empirical gravity model:

log(πij) = ψj − β log(Dij) + µi + εij (3)

where µi and ψj are origin and destination fixed effects, and εij accounts for measurement
error or other unmodeled factors. Most importantly, ψj is proportional to the (relative)
log wage at j with a factor of ε, the Fréchet dispersion parameter. (As usual in discrete
choice models, we can only identify wages up to scale.) Our main goal is to recover the ψj’s
from observed commuting choices. Note that, for this purpose, it is not necessary to model
explicitly how wages are determined in equilibrium. In other words, this mapping between
commuting choices and wages holds in any general equilibrium model that micro-founds the
gravity equation for commuting flows with a discrete commuting choice model.

We implement two approaches to estimate ψj. First, we simply estimate (3) by OLS.
Second, we estimate the equation imposing the formula for µi given by the structural gravity
equation (2).8 The two approaches yield very similar results (Section 3.4).

Lacking detailed bilateral commuting flow data, some authors estimate log wages with an
exactly identified procedure using residential and employment populations, and calibrated
or separately estimated parameters (Ahlfeldt et al., 2015; Tsivanidis, 2018). Our approach

7We model and investigate empirically two extensions where labor supply varies across individuals. First,
in Appendix A.2, labor supply (and hence income) depends on observable demographics. Second, in Appendix
A.3, Zijω and Dij partly affect labor supply, rather than only affecting utility, as in the main analysis. We
develop a method to estimate how much Zijω and Dij affect income using survey income data. The results
are consistent with Dij being a pure utility shock, and Zijω partly affecting income (Appendix Table C.11).

8Specifically, we estimate (3) following an iterative procedure (Appendix A.1). In each iteration, we
estimate (3) without origin fixed effects, after subtracting the model origin terms from the previous iteration
from the left-hand side. We iterate until the vector of destination fixed effects converges. The procedure
is identical to SILS (structurally iterated least squares) proposed in the trade gravity literature (Head and
Mayer, 2014), except without destination fixed effect constraints. See Fally (2015) for potential bias without
imposing model constraints.
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using commuting flows is more robust against noise in the gravity equation (3), and allows
us to test the stability of our results (Appendix A.4).

3.3 Mapping Model Locations to Geographic Areas

A key advantage of the model is that model locations can be mapped directly to two-dimensional
urban data. However, since in the model productivity shocks are independent across locations,
the choice of location units matters. Empirically, larger Voronoi cells may mechanically yield
larger destination fixed effects.

We show that when the true model has multiple independent shocks at sub-locations
within a given location, commuting flows defined at the larger location level still follow gravity
equation (2) using an “effective” wage at that location. In particular, assume that location j
is divided into Nj smaller areas where workers draw independent shocks, and all areas have
the same “true” wage WR

j . By standard Fréchet properties, the commuting probability to j
is equivalent to a model with a single shock at j and “effective” wage Wj = N

1/ε
j WR

j .9 From
equation (3) we estimate ψj = ε logWj and we recover the true wage as the area-adjusted
destination fixed effect

ψ̂Rj = ψ̂j − log (Nj) . (4)

In robustness exercises, using un-adjusted destination fixed effects does not affect results,
except when including distant peri-urban areas where cell phone towers are very sparse.

3.4 Estimation Results: Gravity and Wages

We estimate gravity equation (3) using cell phone commuting flows and Google Maps travel
times. Our goal is to recover the destination fixed effects, which in the model are proportional
to workplace log wages. The estimation sample is non-holiday weekday commuting trips
between pairs of towers excluding nearby and very distant towers.10

Table 1 reports the results, based on almost 20 million commuting flows between ∼ 1, 900
locations in Dhaka (columns 1-2) and 130 million flows between∼ 1, 200 locations in Colombo
(columns 3-4). The gravity equation is estimated with unconstrained OLS (columns 1 and
3) and by imposing model constraints (columns 2 and 4). See footnote 8 and Appendix A.1

9In Appendix A.5 we prove a more general approximate invariance-to-aggregation result for destination
fixed effects. Redding and Weinstein (2019) prove a related result for gravity models in trade.

10In Dhaka, we further exclude 31 days with transportation strikes (hartals). Tower pairs closer than 3
minutes are excluded as they may capture calls randomly connecting to different towers (“tower-bouncing”)
rather than real commuting. Destination fixed effects estimated including nearby tower pairs are virtually
identical (Appendix Table C.4). Towers over the 99th percentile of the travel time distribution are also
excluded (137 and 96 minutes in Dhaka and Colombo, respectively).
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for estimation details for the latter.
Commuting probability decreases strongly with travel time. Interestingly, although the

average commuting trip is 25% longer on average in Sri Lanka, once we adjust for residential
locations (i.e., gravity equation with origin fixed effects), the coefficients for Dhaka and
Colombo are very similar, -1.65 and -1.76. This is a substantive finding, as the two cities differ
in terms of economic development, population, and urban structure (mono- vs poly-centric).

Figure 1 displays smoothed estimated wages in Dhaka and Colombo using choropleth
maps. Estimated wages are higher near city centers and alongside some (but not all) major
road corridors. Moreover, secondary centers are visible, especially in Dhaka. The next
sections will compare these results with independent income proxies.

Destination fixed effects using different estimation methods are highly correlated, including
when we add 1 to tower pairs with zero commuting flows (57% of all possible tower pairs in
Bangladesh and 15% in Sri Lanka) (Appendix Table C.4).11

For the rest of the paper, we use the destination fixed effects from the first estimation
method of the gravity equation (columns 1 and 3) as model-predicted log wages (before area
adjustment), and we report robustness results in the appendix.

4 Validation using Survey Income and Nighttime Lights

The method above infers wages based on observed commuting choices. Does this approach
predict real-world within-city income patterns? We now cross-validate with two alternate
income data sources: self-reported income from a transportation survey in Dhaka, and
high-resolution satellite nighttime lights data in Dhaka and Colombo.

4.1 Model-Predicted and Survey Workplace Income in Dhaka

Our first validation exercise compares income from the model and survey income from the
DHUTS survey (Section 2.1).We compute average income at the workplace level in each
survey areas in the DCC, the finest geographic location available in the DHUTS survey.

The model-predicted income measure is the area adjusted destination fixed effects ψ̂Rj .
In the model, this equals log labor income divided by ε, the Fréchet shape parameter of
worker’s unobserved preferences. Hence, we expect a regression coefficient of around 1/ε.
Since survey areas are coarser than cell phone towers, we average model income within each
of the 88 survey areas with non-government workers, weighting each tower by its workplace
population from the cell phone data.

11Implementing the Poisson pseudo-maximum-likelihood estimator from Silva and Tenreyro (2006) to deal
with zero flows is difficult due to the large number of locations.
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In our main exercise, we correlate survey income and model-predicted income, at the
workplace survey area location level. This is a transparent way to check how our measure
– which is obtained solely from commuting choices and data on travel times – lines up with
real data.

We benchmark results in two ways. First, we consider two alternative variables to
check that our results are not driven by simpler measures: employment density (computed
from cell phone data), an established empirical predictor of income, and distance to the
Central Business District (CBD), the main dimension of variation in monocentric urban
models. Second, we repeat the entire exercise replacing log income with the residual after
partialing out demographic and job variables from the survey (age, gender, years of education,
occupation and job sector). We are interested whether predicted income from the model with
ex-ante homogenous workers is confounded by observable worker characteristics.12

Table 2 presents the main results. Given that government jobs are typically paid less and
are centrally located yet not market allocated, our estimation sample excludes government
workers. Including them significantly weakens the correlation between model and survey
income, unless we include occupation dummies. Model-predicted income explains 26 percent
of the variation in average income at the survey area level, and the coefficient implies a
Fréchet shape parameter of ε̂ = 7.1, similar to estimates in the urban economics literature
(6.83 in Ahlfeldt et al., 2015). In columns 2-3, employment density and distance have slightly
lower and slightly higher predictive power, respectively.13 The coefficient on model-predicted
income is almost unchanged when controlling for these variables (column 4), showing that the
model contains information not available in these other measures. In column 5, we include
model-predicted residential income. While the two model measures are highly correlated, the
positive correlation with survey workplace income is loaded onto model workplace income.
The coefficient on residential income is negative and significant, yet less precisely estimated.

Results are broadly similar with residual income as the dependent variable (panel B).
All coefficients are roughly half the size of those in Panel A, which suggests that part of the
variation in average income captured by any of the three measures is due to sorting. However,
model workplace income remains significant in all specifications, and the explanatory power
is similar to Panel A. Hence, our revealed-preference approach has similar predictive power
after controlling for workplace sorting along observable worker characteristics.

Results are robust to several alternate specifications of the gravity equation estimation
12This specification is exact in a model where income heterogeneity due to demographic factors enters

multiplicatively in equation (1) (Appendix A.2).
13Note that averaging within relatively coarse geographic areas favors the distance to CBDmeasure. Indeed,

when averaging, while the range of distance to CBD remains roughly unchanged, the variance of average
model-predicted income goes down, which tends to decrease R2.
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(Appendix Table C.5). Appendix Table C.6 uses individual survey data and shows that our
main result is robust to controlling for origin survey area fixed effects, geographic area of
destination location, and travel time.

In terms of predictive power, our measures capture about one-quarter of the spatial
variation of surveyed income. This suggests that factors outside the model are also important.
In particular, distance to CBD has a significant, negative coefficient even after controlling
for model income (Table 2, column 4). This may happen if we underestimate travel costs
towards the CBD in our gravity equation, for example if traffic jams are valued beyond the
time lost, or if locations near the CBD exhibit workplace disamenities, so that higher wages
are required to compensate.

By comparison, Tsivanidis (2018) uses a similar model estimated with population counts
and finds R2 ≈ 0.3 between model-predicted wages and independent survey wage data in
19 urban zones in Bogotá, Colombia. Severen (2019) performs a similar exercise in Los
Angeles on a model estimated with commuting flows at the census tract level and finds no
correlation with real wage data, citing unobserved location-pair-specific factors as a potential
explanation.

4.2 Model-Predicted Residential Income and Nighttime Lights

In our second validation, we use high-resolution nighttime light satellite data (Visible Infrared
Imaging Radiometer Suite; VIIRS) to assess the model’s performance in Dhaka and Colombo.14

Nighttime lights are an established income proxy in data-scarce environments (Henderson
et al., 2010; Chen and Nordhaus, 2011), and the high resolution of VIIRS data (approximately
500 meters) makes it ideal for studying urban areas.

We use the model to predict residential (take-home) income at the cell tower level. We
test the assumption that nightlights measure residential income by also including model
workplace income in our regressions. We also include two alternate variables: residential
population density, and distance to the CBD.

Model residential income is strongly related to nightlights at the cell tower level (Table
3). The R2 is high at 0.71 and 0.86 in Dhaka and Colombo. Residential density and distance
to CBD are also highly correlated with nightlights, and they explain smaller shares of the
variance.

The model performs well at fine spatial resolution. The coefficient on model-predicted
income remains large when including sub-district fixed effects (55 units in Dhaka and 42
units in Colombo), and when controlling for residential density, distance to CBD, and

14We use a monthly cloud-free composite (January 2014) based on nights with zero moonlight and areas
without clouds, curated by the Earth Observation Group (EOG).
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model-predicted workplace income (column 4 in Table 3). In particular, the model-predicted
residential income is robustly correlated, while workplace income is not statistically significant.
Together with results in Table 2, this suggests that the model picks up real patterns of how
income “moves” around the city.

Our results are robust to using the gravity equation estimated with model origin terms,
using home-work commuting flows, constructing residential income excluding nearby destination
towers, and using log mean residential income (instead of mean log income) (Appendix Table
C.7). In Dhaka not area-adjusting destination fixed effects reverses the sign of the correlation
with nightlights, because of very large cells far away from the city center. Our results are
broadly robust to only using data from the urban core of Dhaka (the area covered by the
transport survey used in Section 4.1), except that the slope is shallower (Appendix Table
C.8).

We also repeat the residential income validation exercise using survey income. We do not
find any correlation between model income and survey income (Appendix Table C.9, Panel
A). This may be due to lower underlying differences in average income at the residential level
(compared to the workplace level), and hence a more noisy measure when using survey data.
Consistent with this idea, density and distance to CBD also explain very little variation in
average residential survey income.

5 Application: The Economic Costs of Hartal
We now illustrate how high-frequency commuting data and our detailed model-predicted
income measure can be used in an application.

Hartals are a form of political strike that involves a partial shutdown of urban transportation
and businesses. They are common in South Asia, and especially in Bangladesh (UNDP 2005).
On hartal days, typically announced a few days in advance, groups of people (some paid)
enforce the transportation shutdown, especially on major roads and in certain locations.

We use our data and model estimates to quantify the short-term impact of hartal on
forgone income. We analyze how predicted income and travel patterns differ on hartal days
compared to other days. We focus on the overall effect of hartals on commuting behavior,
inclusive of potential changes in traffic congestion and commuting routes. Note, our empirical
strategy cannot quantify direct impacts of hartals on worker productivity, nor long-term
adaptation costs.

We use daily individual commuting data from cell phone records. The sample covers
commuters with distinct long-term home and work locations (towers) identified with the
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procedure in Section 2.1, accounting for 27% of all users in the data.15 We only observe
travel behavior if a user makes calls on a given day, and call behavior itself may differ on
hartal days. We include commuter fixed effects to ensure that our results are not driven by
selection across different types of commuters. Moreover, restricting to frequent callers yields
very similar results (Appendix Table C.10).

Given that users may travel to different destinations on different days, we use two
definitions of predicted income. First, we assign the (model-predicted) wage of the worker’s
destination j on that particular day, as long as she makes a proper trip (a trip with distinct
origin and destination). We assign zero income to stationary (non-proper) trips. This is a
way to capture that workers may earn income from different destinations on different days.
Second, we use the wage from her long-term destination if the worker makes a proper trip to
that location. We assign zero income to stationary trips and trips to any other destination.
In both cases, predicted income is exp

(
ψ̂Rj /ε

)
where log wages ψ̂Rj are estimated using only

non-hartal weekdays, and ε = 6.4.16 Since we are interested in changes in income during
hartal days, the scale of ψ̂Rj , which is not identified, does not matter for this exercise.

Our main specification is:

yct = βHHartalt + βFFridayt + βSSaturdayt + βHoHolidayt + µc + γMonth(t) + εct

where c denotes a commuter, t denotes a calendar date, and the outcome yct is predicted
income or a dummy for making a proper trip. The unit of observation is a commuter times
calendar date, for dates when we observe a trip (either proper and stationary). The main
coefficient of interest is βH , which measures the difference in outcome on hartal days relative
to workdays (non-holiday weekdays). We use βF , the effect on Fridays, the main free day in
Bangladesh, as a benchmark.

We use the data set of hartal dates in Dhaka from Ahsan and Iqbal (2015). They identify
33 hartal days over the 4 months in our sample. The study period preceded parliamentary
elections and was marked by general instability, and hence hartals were more frequent than
in previous years. Hence, our results may not directly generalize to periods with lower hartal
intensity.

Cell phone data picks up stark differences in behavior on hartal, weekends and holidays.
Appendix Figure B.6 plots the change in predicted income relative to workdays, by calendar
date. Predicted income is systematically lower during hartals compared to weekdays, yet

15We are interested in canceled trips due to hartals, which are difficult to observe for users with identical
home and work towers. Results with all users are qualitatively similar and smaller in magnitude.

16This is our point estimate of the Fréchet parameter using a structural estimation method (Appendix
A.3). The regression coefficient from Table 2 of log survey income (measuring ωj) on the destination fixed
effect (εωj) implies a very similar number (ε̂ = 7.1 = 0.14−1).
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not as much as on Fridays and on some important holidays, such as the end of Ramadan.
Predicted income is higher than usual on the two Fridays that immediately follow long hartal
spells (December 6th and 20th), consistent with temporal substitution. The results are also
consistent with longer hartals having lower impacts.

Table 4 shows the main results. To facilitate interpretation, all coefficients indicate
proportional changes relative to the outcome mean on workdays. Odd columns assign
predicted income to any proper trip, while in even columns outcomes are non-zero only
when the commuter travels to her long-term workplace.

There are four key insights. First, commuters in Dhaka earn on average 4.4 to 4.8% less
on hartal days compared to workdays. These effects are significantly smaller compared to
Fridays, when predicted income is 20 to 45% lower on average (panel A). Second, hartal
days affect “all trips” and “work trips” roughly equally, while on Fridays, work trips are
disproportionately affected. This suggests a limited “destination selection” effect of hartals;
on average, commuters do not switch to lower-income destinations. Third, the reduction
in predicted income is driven primarily by the extensive margin, namely fewer trips (panel
B). Fourth, commuters working in high-income destinations reduce trips relatively more. In
columns 3-4, we fully interact the model with an indicator for commuters whose long-term
workplace location is below median in the predicted wage distribution. The interaction results
show that the proportional reduction in trips is concentrated among high-income commuters,
both on hartal and Fridays. Columns 5-6 document that this heterogeneity is not due to
commute distance (as long-distance commuters are also more affected).

These results show that commuters broadly succeed to maintain their workday travel
routines on hartal days, which limits the short-term impact of hartal on economic activity.
These results are consistent with previous studies on hartals in more specific settings (Ashraf
et al., 2015; Ahsan and Iqbal, 2015).

6 Conclusion

This paper provides a theory-based toolkit for using cell phone data to understand the spatial
distribution of economic activity in cities. This framework is especially suited to measuring
and interpreting the short-term impact of urban shocks such as floods, or of transportation
incidents or improvements, on commuting and economic activity. Together with officials
statistics, they can be used to investigate spatial discrepancies between formal and informal
economic activity.

Big data, such as cell phone or smartphone mobility records, credit card transactions, or
user-generated reviews, are rapidly gaining popularity due to their ability to predict behavior,
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individual characteristics and economic conditions (Blumenstock et al., 2015; Jean et al.,
2016; Glaeser et al., 2017; Björkegren and Grissen, 2018).

However, big data also contain a wealth of information regarding individual choices.
This allows economists to apply revealed preference techniques to infer attributes of choice
options, such as workplace wages in our paper or spatial aspects of consumption behavior
(Athey et al., 2018; Davis et al., 2018; Agarwal et al., 2018). We believe that this type of
applications is a promising path for using “big data” in economics.
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7 Figures and Tables

Table 1: Gravity Equation and Destination Fixed Effects

log Commuting Flow
(1) (2) (3) (4)

log Travel Time −1.65∗∗∗ −1.93∗∗∗ −1.76∗∗∗ −2.30∗∗∗
(0.01) (0.01) (0.03) (0.02)

City Dhaka Dhaka Colombo Colombo
Model Constraints No Yes No Yes
Number of Destination FE 1.9 · 103 1.9 · 103 1.2 · 103 1.2 · 103

Number of Trips 19.3 · 106 19.3 · 106 129 · 106 129 · 106

Observations 1.5 · 106 1.5 · 106 1.1 · 106 1.1 · 106

Adjusted R2 0.61 0.65 0.75 0.69

Notes. This table reports estimates of the gravity equation (3). The outcome variable is log
total commuting flows log (Vij) between a pair of cell phone towers, computed from cell phone
data and aggregated over weekdays. (This is equivalent to using log commuting probabilities
log (πij) = log (Vij/

∑
s Vis) as in equation (3), as the origin fixed effects capture the denominator.)

In Bangladesh, we exclude hartal days. For each trip, the origin is the first location (tower)
between 5 am and 10 am, and the destination is the last location between 10 am and 3 pm.
Travel time between towers from the Google Maps API. The sample is all tower pairs with travel
time between 180 seconds and the 99th percentile. Columns (1) and (3) report the coefficient
−β̂ from an OLS regression with origin and destination fixed effects. Columns (2) and (4) report
the estimates from an iterative procedure, where at step k + 1 the model-predicted origin term
µki = log

(∑
s exp

(
ψ̂ks − β̂kdis

))
+ log (

∑
s Vis) is subtracted from log flow before running an OLS

regression without origin fixed effects (Appendix A.1). Two-way clustered standard errors at the
origin and destination level are reported in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Figure 1: Estimated log Wages in Dhaka and Colombo
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Notes. These figures plot area-adjusted destination fixed effects (the model measure proportional to log wages) at the level of cell phone
tower Voronoi cells in Dhaka and Colombo. Log wages are kernel smoothed with an adaptive kernel bandwidth (proportional to the
radius of the equivalent-area circle of the Voronoi cell, see Appendix A.6).
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Table 2: Average Workplace Income: Model Predictions and Survey Data in Dhaka

(1) (2) (3) (4) (5)

Panel A. Outcome: log Survey Income (workplace)

log Model Income (workplace) 0.14∗∗∗ 0.12∗∗ 0.27∗∗∗

(0.03) (0.05) (0.06)

log Employment Density 0.15∗∗∗ −0.05 −0.01
(0.04) (0.07) (0.07)

log Dist. to CBD −0.18∗∗∗ −0.14∗∗∗ −0.18∗∗∗

(0.03) (0.03) (0.03)

log Model Income (residential) −0.32∗∗

(0.13)

Observations 88 88 88 88 88
Adjusted R2 0.26 0.16 0.33 0.42 0.46

Panel B. Outcome: Residual log Survey Income (workplace)

log Model Income (workplace) 0.07∗∗∗ 0.08∗∗ 0.15∗∗∗

(0.02) (0.03) (0.03)

log Employment Density 0.08∗∗∗ −0.03 −0.01
(0.02) (0.03) (0.04)

log Dist. to CBD −0.08∗∗∗ −0.05∗∗∗ −0.07∗∗∗

(0.02) (0.02) (0.02)

log Model Income (residential) −0.16∗

(0.09)

Observations 88 88 88 88 88
Adjusted R2 0.23 0.13 0.17 0.28 0.3

Notes. This table compares survey and model predictions of average workplace income. The unit
of analysis is a survey area from the DHUTS survey. The survey sample is 11,006 commuters
who live and work inside the Dhaka City Corporation, who report positive income, excluding
students, homemakers, the unemployed, and government workers. The outcome in panel A is
the average income of survey respondents who work in a survey area, using log income truncated
at the 99th percentile. In panel (B), it is the residual of log income on gender, age, years of
education, occupation and job sector dummies. Model-predicted workplace income in survey area
b is

∑
j∈b yjV

W
j /V W

b where j is a cell phone tower, yj = ψ̂Rj is the area adjusted destination
fixed effect at j, V W

j =
∑
i Vij and V W

b =
∑
j∈b V

W
j denote workplace population in tower j and

survey area b, respectively. Regressions are weighted by survey area employment population. The
Central Business District (CBD) is Shapla Chatter in Motijheel. Appendix Figure B.4 shows the
corresponding scatter plots. Robustness in Appendix Tables C.5 and C.6. The analogous exercise
at the residential level in Appendix Table C.9. Conley standard errors with 5 km distance cutoff
shown in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01.
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Table 3: Average Residential Income: Model Prediction and Nighttime Lights

log VIIRS Nighttime Lights
(1) (2) (3) (4)

Panel A. Dhaka, Bangladesh

log Model Income (residential) 0.57∗∗∗ 0.53∗∗∗

(0.04) (0.07)

log Residential Density 0.26∗∗∗ 0.01
(0.06) (0.02)

log Dist. to CBD −0.52∗∗∗ −0.11
(0.10) (0.09)

log Model Income (workplace) −0.04
(0.05)

Sub-district FE (count) X (55)

Observations 1,868 1,868 1,868 1,868
Adjusted R2 0.71 0.31 0.34 0.84

Panel B. Colombo, Sri Lanka

log Model Income (residential) 0.79∗∗∗ 0.49∗∗∗

(0.02) (0.05)

log Residential Density 0.63∗∗∗ −0.07∗

(0.03) (0.03)

log Dist. to CBD −1.08∗∗∗ −0.30∗∗∗

(0.12) (0.10)

log Model Income (workplace) 0.01
(0.04)

Sub-district FE (count) X (42)

Observations 1,199 1,199 1,199 1,197
Adjusted R2 0.87 0.66 0.76 0.93

Notes. This table compares high resolution nighttime lights with model predicted average residential
income. The unit of analysis is a cell phone tower in the greater metropolitan area of each city. The
outcome variable is log mean light intensity in the VIIRS nighttime light data inside each Voronoi
cell (weighting each VIIRS cell by its overlap with the Voronoi cell). Average model residential
(take-home) income at tower i is

∑
j yjVij/V

H
i where j indexes workplace towers, yj = ψ̂Rj is the

area adjusted destination fixed effect at j, and V H
i is total residential population at i. Regressions

are weighted by tower residential population. Column 4 controls for 55 sub-district (thana) fixed
effects for Dhaka (panel A), and 42 sub-districts (Divisional Secretariat) fixed effects for Colombo
(panel B). Appendix Figure B.5 shows corresponding scatter plots. Robustness to definitions of
model income in Appendix Table C.7. Conley standard errors with 5 km distance cutoff shown in
parentheses.∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 4: Impact of Hartal on Predicted Income, Travel Behavior, and Workplace Attendance

(1) (2) (3) (4) (5) (6)

All Coefficients: % Change From Workday Mean

All Trips Work Trips All Trips Work Trips All Trips Work Trips

Panel A. Predicted Income
Hartal −0.048∗∗∗ −0.044∗∗∗

(0.009) (0.015)
Friday (free day) −0.208∗∗∗ −0.452∗∗∗

(0.007) (0.014)
Observations 22.5 · 106 22.5 · 106

Panel B. Make a Trip
Hartal −0.038∗∗∗ −0.037∗∗∗ −0.045∗∗∗ −0.068∗∗∗ −0.050∗∗∗ −0.079∗∗∗

(0.007) (0.014) (0.008) (0.017) (0.008) (0.018)
Friday (free day) −0.159∗∗∗ −0.430∗∗∗ −0.190∗∗∗ −0.543∗∗∗ −0.209∗∗∗ −0.602∗∗∗

(0.006) (0.013) (0.007) (0.018) (0.008) (0.019)
Hartal x Low Income 0.015∗∗∗ 0.067∗∗∗ 0.013∗∗∗ 0.063∗∗∗

(0.003) (0.010) (0.003) (0.010)
Friday x Low Income 0.066∗∗∗ 0.239∗∗∗ 0.058∗∗∗ 0.215∗∗∗

(0.004) (0.013) (0.004) (0.012)
Hartal x Short Commute 0.014∗∗∗ 0.031∗∗∗

(0.002) (0.004)
Friday x Short Commute 0.053∗∗∗ 0.165∗∗∗

(0.003) (0.005)
Observations 22.5 · 106 22.5 · 106 22.5 · 106 22.5 · 106 22.5 · 106 22.5 · 106

Workday Mean 0.79 0.37 0.79 0.37 0.79 0.37

Notes. This table shows differences in predicted income and travel probability on hartal days and Fridays
relative to workdays. All coefficients show proportional changes relative to workdays. The sample is all
days with commuting data (including stationary trips) for commuters with distinct long term home and
workplace towers (27% of all users). For commuter c on calendar date t, denote their trip origin by ict,
destination by jct, and c’s long-term workplace by jWc . In panel A, the outcome is predicted income. In
column (1), commuters earn the destination wage exp

(
ψ̂Rjct

/ε
)
for any proper trip and zero otherwise. In

column (2), commuters earn positive income only when ict 6= jct = jWc . In both cases, the gravity equation is
estimated on non-hartal weekdays, and we use ε = 6.4. In panel B, the outcome is a dummy for proper trip
(jct 6= ict) in odd columns, and a dummy for proper workplace trip (jct = jWc 6= ict) in even columns. All
regressions include commuter and month fixed effects, and dummies for Saturday and holidays. In columns
(3)-(6), we fully interact the model with dummies for low-wage commuters (c’s long-term workplace wage
ψ̂RjW

c
is below-median) and short-commute commuters (c’s travel time between long-term home and work is

below-median). Reported coefficients are proportional changes relative to non-hartal, non-holiday weekday
mean. Standard errors clustered at the calendar date level in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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A Appendix

A.1 Estimation of Constrained Gravity Equation

The structural gravity equation (2) implies a constraint between the destination fixed effects
ψj, origin fixed effects µi, and the distance coefficient β in the empirical gravity equation (3).
In our main specification, we do not impose these constraints, but we show that this does
not affect the estimation results. Here, we describe the constrained estimation procedure in
more detail.

First, we estimate a version of gravity equation (3) without origin fixed effects by OLS:

log(πij) = ψj − β log(Dij) + εij, (5)

Next, using the estimated destination fixed effects ψ̂1
s and the distance coefficient β̂1 from

the OLS regression, we compute the model-predicted origin terms µ̃2
i = log

(∑
s exp

(
ψ̂1
s − β̂1dis

))
.

Next, we estimate (5) using log (πij) − µ̃2
i as outcome variable. This leads to the step 2

estimates ψ̂2
s and β̂2.

In general, after step k, we construct model terms µ̃k+1
i = log

(∑
s exp

(
ψ̂ks − β̂kdis

))
and

run (5) using log (πij)− µ̃k+1
i as outcome variable. We iterate this procedure until the vectors(

ψ̂ks
)
s
and

(
ψ̂k+1
s

)
s
converge in L2 norm, with a tolerance of 10−6.

The procedure is identical to SILS (structurally iterated least squares) proposed in trade
gravity literature (Head and Mayer, 2014), except that our model constraints are only on
the origin fixed effects, but not on the destination fixed effects. Fally (2015) discusses the
potential bias of the estimated gravity fixed effects without imposing these model constraints.

A.2 Model Extension: Worker Heterogeneity in Effective Labor
Supply

In Section 3, we assumed that workers are ex-ante identical. However, in panel B in
Table 2, we measure the model’s predictive power after netting out individual demographic
characteristics from survey income. Here, we show how this validation regression arises
directly in a specific model with worker heterogeneity.

Assume that worker ω supplies ξω effective units of labor. ω′s income from working in
j is ξωWj instead of simply Wj. Otherwise, workers have the same disutility of commuting,
and face the same profile of wages. This implies that workers living at the same location i
face the same workplace location choice, regardless of ξω. Hence, in aggregate, the gravity
equation (2) continues to hold unchanged.
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However, the average ξω of commuters working in j affects average income at that location.
Hence, the correct validation regression should control for average ξω at location j from
individual income. To the extent that ξω depends on observable characteristics (gender, age,
education level, occupation, job sector), this is exactly what the specification in panel B,
Table 2 achieves.

A.3 Structural Estimation: How Much do Individual Shocks and
Travel Time Affect Income

In the main analysis, we assume that an agent earns income directly proportional to her
wage. Formally, the Fréchet shocks Zijω and travel time Dij affect utility but not income.
Here, we relax this assumption and allow Zijω and Dij to partly affect income; for example,
they may affect productivity or labor supply. We derive a transparent method that allows
survey income data to speak as to the role of shocks and travel time for income.

Model. Assume that income is given by Y αz ,αd
ijω = WjZ

αz
ijωD

−ταd
ij , where αz, αd ∈ [0, 1]

respectively control the extent to which the shocks Zijω and travel timeDij affect income. For
example, when αz = 1 and αd = 0, shocks affect utility and income equally, while travel time
only affects utility. We derive formulas for expected income in the following four extreme
extreme cases:

Ey0,0
ijω = wj (6)

Ey0,1
ijω = wj − τdij

Ey1,1
ijω = 1

ε
log

(∑
s

exp (εwj − ετdij)
)
− K

ε
for some absolute constant K

Ey1,0
ijω = Ey1,1

ijω + τdij

When neither shocks nor travel time affect income, income is simply the destination
wage. In the second case, travel time fully affects labor earnings. When the shocks Zijω
affect income, as in the third and fourth cases, log income for a worker commuting between
i and j depends on the distribution of the shock conditional on destination j being chosen.
By virtue of the Fréchet distribution, the conditional distribution yijω|j ∈ arg maxs Uisω is
also Fréchet with the same shape parameter ε and scale Ti = ∑

s Tis = ∑
s

(
WsD

−τ
is

)ε
. In

particular, this distribution only depends on the origin i and thus expected log income is the
same for all destinations j.

In the general case, log income is a convex combination of the following four extreme
cases:

yαz ,αd
ijω = αzαd · y1,1

ijω + αz (1− αd) y1,0
ijω + (1− αz)αd · y0,1

ijω + (1− αz) (1− αd) y0,0
ijω. (7)
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Using (6) and dropping the constant K, this simplifies to

Eyαz ,αd
ijω = αz

ε

[
log

(∑
s

exp (εwj − ετdij)
)

+ ετdij

]
+ 1− αz

ε
[εwj] + αd

ε
[−ετdij] (8)

The intuition of this expression is as follows. For the third term, if travel time affects
income, we expect that people who commute further away have lower income. The difference
between the first two terms is more subtle. If Fréchet shocks affect income, then the first
term is the best explanatory variable for income.17 If shocks do not affect income, the wage
at the destination should be the best predictor of income.

Estimating Parameters αz, αd, ε. We are now in a position to estimate the parameters
αz, αd and ε. Specifically, we estimate by OLS the equation:

ySijω = ρ1X̂
1
ij + ρ2X̂

2
j + ρ3X̂

3
ij + εSijω, (9)

where ySijω is survey-based income of commuter ω who lives at i and works at j, and X̂1
ij =

log
(∑

s exp
(
ψ̂s − β̂dij

))
+ β̂dij, X̂2

j = ψ̂j and X̂3
ij = −β̂dij are estimators of the three terms

in square brackets in (8), computed using the gravity equation estimates. (Recall that ψ̂j is
a consistent estimator for εwj, and β̂ is a consistent estimator for ετ .) Asymptotically, we
have

α̂z = ρ̂1

ρ̂1 + ρ̂2
, α̂d = ρ̂3

ρ̂1 + ρ̂2
, and ε̂ = 1

ρ̂1 + ρ̂2
. (10)

Table C.11 reports the estimates of αz, αd, and ε based on estimating equation (9) with
OLS, and using transformation (10). We report two types of standard errors: based on the
Delta method (in round parentheses) and based on bootstrapping at the origin survey area
level (in square parentheses).18 In columns 1-2, we estimate the full equation (9), and we
find that α̂d is close to zero with a small and insignificant negative value, and the other

17The first term is analogous to the market access term in gravity trade literature, except that it includes
the compensation income from commuting cost in utility.

18For the Delta method, following the equations in (10), define (ε, αz, αd) = h (ρ1, ρ2, ρ3) =(
1

ρ1+ρ2
, ρ1
ρ1+ρ2

, ρ3
ρ1+ρ2

)
. The Delta method states that the asymptotic covariance matrix of (ε̂, α̂z, α̂d) is given

by J (h)T ΣJ (h) where J (h) is the Jacobian of h and Σ is the asymptotic covariance matrix of (ρ̂1, ρ̂2, ρ̂3).
The Jacobian is obtained by differentiating h with respect to the ρ’s:

J (h) = (ρ1 + ρ2)−2

 −1 −1 0
ρ2 −ρ1 0
−ρ3 −ρ3 ρ1 + ρ2


When the distance coefficient αd is constrained to zero ρ3 is also zero, we have (ε, αz) = h (ρ1, ρ2) =(

1
ρ1+ρ2

, ρ1
ρ1+ρ2

)
and the Jacobian is

J (h) = (ρ1 + ρ2)−2
[
−1 −1
ρ2 −ρ1

]
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parameters are imprecisely estimated when using bootstrapped standard errors. Given that
the model restricts ρ3 ≥ 0 (from αd ∈ [0, 1]), in columns 3-4 we restrict the coefficient on
travel time to be equal to zero (ρ3 = 0) and estimate the other two parameters. This does
not affect the point estimates for α̂z and ε̂ while improving precision.

These results show that idiosyncratic shocks partly affect income, while travel time is most
consistent with a pure utility cost. Robustness exercises using “home” and “work” commuting
flows and iterated gravity equation give qualitatively similar results (not reported).

A.4 Discussion: Estimating Wages without Commuting Flows

In the absence of detailed commuting flows data, Ahlfeldt et al. (2015) use an exactly
identified procedure to infer wages from total residential and total workplace population
counts at each location, as well as knowledge of the distance coefficient β (which in turn is
estimated from a gravity equation at a coarse level). While the two procedures are equivalent
if equation (3) does not have noise, estimating wages using bilateral commuting flows is
more robust against measurement error and idiosyncratic departures from the model.19 If
random shocks affect bilateral commuting flows proportionally, as in equation (3), then in the
procedure using total counts, commuting pairs with high commuting flow (e.g. nearby pairs)
have a large, noisy influence on estimated wages. Indeed, we find that the gravity equation
explains only between 0.6 and 0.75 of the variation in bilateral log commuting flows. Severen
(2019) documents that time-invariant link-specific effects explain a large share of the variance
in commuting flows in Los Angeles. Related, bilateral commuting data allows us to test the
stability of our results, i.e., the estimated wages should be similar when using a sub-sample
of location pairs for estimation. Indeed, we show that results are similar when estimating
(3) with or without nearby pairs of towers (for which commuting flows are more likely to
be mismeasured). Finally, with the gravity equation we can in principle estimate the effect
of distance non-parametrically and simultaneously with destination fixed effects. Appendix
Figure B.3 shows that a linear fit as a function of log travel time is, in fact, appropriate.

A.5 Model: Approximate Invariance to Aggregation Level

The model has a general (approximate) invariance property with respect to the level of
geographic aggregation, both at the origin and at the destination level.

19The constrained gravity equation (2) yields asymptotically identical results as the procedure in Ahlfeldt
et al. (2015) given the knowledge of β = ετ if we estimate the model using the employment distribution as
moments (

∑
iHiπij), where Hi is the number of residents in location i, instead of the bilateral commuting

probability log(πij) as moments, as in our procedure.
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At the origin level, the model is approximately invariant with respect to the origin
aggregation level, because the basic discrete choice problem is individual specific.

At the destination level, the aggregation level affects the interpretation of wages Wj in
a straight-forward way. Assume that location j is in fact composed of several sub-locations
k1, k2, ..., kNj

, and we estimate the model at the higher level (j) and ignore the sub-locations.
The wage we obtain,Wj =

(∑Nj

`=1W
ε
k`

)1/ε
, represents a C.E.S. aggregate with elasticity of the

true underlying wages at all sub-locations within j. (This is easy to prove using the standard
properties of the Fréchet distribution.) In particular, this implies a simple adjustment for
the destination fixed effect ψj = εwj estimated using the gravity model. Assume that the
“real” underlying wage is constant and denoted by WR

j within each location j, then the
C.E.S. relationship becomes Wj = N

1/ε
j WR

j , or in logs the underlying wage is given by
wRj = w

1/ε
j − log(Nj). In terms of estimated quantities, this becomes ψ̂Rj = ψ̂j− log (Nj). The

underlying destination fixed effect ψ̂Rj is obtained from the fixed effect ψ̂j, estimated ignoring
sub-locations, minus an adjustment factor equal to the log of the number of true underlying
locations where shocks are realized, Nj. This relationship is exact if the distances between
each sub-location in location j and all other locations do not depend on the sub-location.
Redding and Weinstein (2019) derive an exact relationship by using all the distance profiles
in the context of gravity equations of trade models.

A.6 Data: Smoothing procedure for Google Map Travel Time

Due to the large number of bilateral tower pairs (on the order of ∼ 106), we obtain travel
time estimates from the Google Maps API for 90,000 randomly selected pairs in each country,
and interpolate the travel time for remaining tower pairs. The data was collected in June
2016 for Colombo and in July 2017 for Dhaka. Specifically, for each pair we query the Google
Maps Distance Matrix API for the typical driving time on a weekday with departure time at
8 am.20

To interpolate the travel time for tower pairs without actual data, we use the following
procedure. For any such tower pair i, j, we compute the kernel smoothed speed (travel time
divided by straight line distance) of trips starting at origins a near i and ending at destinations
b near j, for pairs a, b for which we have Google Maps data. Formally, the smoothed speed
ŝij between i and j is given by

ŝij =
∑
a6=i,b 6=j

1
hahb

K
(
di,a

ha

)
K
(
dj,b

hb

)
sa,bGMa,b∑

a6=i,b 6=j
1

hahb
K
(
di,a

ha

)
K
(
dj,b

hb

)
GMa,b

,

20Specifically, we queried Google Maps for travel times on Friday, August 26, 2016, in Colombo, and
Wednesday, September 13, 2017, in Dhaka. The queries were sent about one month before these dates.
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where GMa,b is a dummy indicator for having Google Maps data between a and b, and dx,y
is the distance in decimal degrees between towers x and y. We use the two-dimensional
Epanechnikov kernel K (d) = 3

π
|1− d2|+, together with an “adaptive” kernel bandwidth

hx ≡ h
√
Ax

Ā
where Ax is the area (in square kilometers) of Voronoi cell of cell phone tower x, Ā

is the average of
√
Ax over all towers x, and h = 0.03 and h = 0.1 are the (manually-chosen)

bandwidth for average-radius towers in Dhaka and Colombo, respectively. A tower with
average square root area will have a bandwidth of about 3.5 kilometers in Dhaka, and 11
kilometers in Colombo.

We evaluate the predictive power of this procedure using a leave-one-out test using only
the tower pairs with actual Google Maps data. The R2 of ŝa,b, on sa,b is 0.98 and 0.96 and
Colombo and Dhaka, respectively. Note, the prediction ŝa,b is computed without using sa,b.

A.7 Availability of Conventional Data Sources

Fine-grained spatially disaggregated data on wages at the firm location is rare and difficult
to access in developing countries. For example, the Bangladesh economic census does not
include labor costs data, and we were not able to acces Sri Lanka economic census microdata.

As a case study, here we document the availability of firm census data in Sub-Saharan
Africa, a region undergoing rapid urban growth and urban transformation. We collected
data on the 27 largest countries that account for over 95% of the population in the region.
Of these, 16 ever had an economic census, 11 covered informal firms. However, at most 4
included wage data, which accounts for between 5.6 and 8.6% of the urban population of all
countries in the sample. (The 2014 Ghana and 2015 Zimbabwe censuses included wage data,
while for the ongoing censuses in Mali and Togo we do not know if wage data was collected.)
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Table A.1: Sub-Saharan African Countries with Economic Cenuses

Country Urban
Population

Year of
Last Census

Covers
Informal

Wage
Data

Nigeria 98,525,244 -
South Africa 38,112,552 -
D.R.C. 37,382,220 -
Ethiopia 22,367,255 2004 Yes No
Angola 20,157,104 2002 No
Tanzania 19,972,890 2014 Yes No
Ghana 16,529,104 2014 Yes Yes
Cameroon 13,918,524 2016 No
Kenya 13,756,737 2017 No
Ivory Coast 12,652,168 -
Uganda 10,536,394 2010 Yes No
Mozambique 10,990,322 2014 Yes No
Madagascar 9,769,765 -
Mali 8,101,667 2019 ? ?
Senegal 7,690,895 2016 Yes No
Zambia 7,659,992 2011 ? No
Burkina Faso 5,806,985 2009 Yes No
Zimbabwe 5,446,070 2015 Yes Yes
Benin 5,432,724 2008 Yes
Guinea 4,711,991 -
Niger 3,659,066 -
Chad 3,546,586 -
Togo 3,332,216 2018 ? ?
Malawi 3,238,839 -
South Sudan 2,532,134 -
Rwanda 2,150,199 2017 Yes No
Burundi 1,458,139 -

Notes: For each country, we checked the national statistics agency website as well as the Google
Search results for the terms “economic census,” “firm census,” “establishment census,” “enterprise
census,” and “business registry,” in English, French or Portuguese. We could not find official census
reports for Ethiopia and Zambia, while the Mali and Togo censuses are still ongoing. Detailed
results available upon request. Data on urban population from
https://en.wikipedia.org/wiki/Urbanization_by_country and
https://en.wikipedia.org/wiki/List_of_sovereign_states_and_dependent_territories_
in_Africa.
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B Additional Figures

Figure B.1: Administrative Units and Cell Phone Voroni Cells in Dhaka

Notes. This figure shows the map of cell phone tower Voronoi cells in Dhaka, Bangladesh. The
yellow shaded area is the Dhaka City Corporation (DCC), the urban core of Dhaka, the main sample
in the DHUTS transportation survey. The overall study area covers three districts in Bangladesh:
Dhaka, Gazipur, and Narayanganj. The Voronoi cell of a tower is the locus of all points closer to
that tower than to any other tower.
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Figure B.2: Administrative Units and Cell Phone Voroni Cells in Colombo

Notes. This figure shows the map of cell phone tower Voronoi cells in Colombo, Sri Lanka. The
study area covers the entire Western Province in Sri Lanka. The Voronoi cell of a tower is the locus
of all points closer to that tower than to any other tower.
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Figure B.3: Commuting Flows from Survey Data and Cell Phone Data

Panel (A) Survey vs Cell Phone Data
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Notes. This figure compares the decay of commuting flows with travel time in survey and cell phone data.
The unit of analysis is 7,836 survey area pairs in Panel A, and 1.6 ·106 and 1.4 ·106 tower pairs in Dhaka and
Colombo in Panel B, respectively. Panel A compares commuting flows from the DHUTS survey (red, dash)
and from cell phone data (blue, solid) in Dhaka. Panel B compares daily commuting trips (blue, solid) and
home-work commuting trips (black, dash). See Section 2.1 for the definition of home-work commuting trips.
In each graph, commuting flows are first averaged within each of 100 equal bins of log travel time below the
99th percentile, and the plot shows the local linear regression of log mean commuting flow on log travel time.
This procedure avoids the bias due to zero commuting flows, which is important for survey and home-work
commuting data. The DHUTS sample (described in Table C.2) has 12,510 commuters. The cell phone data
sample has 18 · 106 trips in Panel A, and 38 · 106 daily trip and 5.2 · 106 for home-work trips in Dhaka, and
237 ·106 daily trips and 2.6 ·106 home-work trips in Colombo, in Panel B. In Panel A, pointwise bootstrapped
95% confidence intervals clustered at the origin survey area shown in gray.
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Figure B.4: Average Workplace Income: Model Predictions and Survey Data

(A) Model and Survey Workplace Income
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(B) Employment Density and Survey Workplace Income
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(C) Distance to City Center and Survey Workplace Income
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Notes. The scatter plots in the three columns correspond to columns 1, 2, and 3 in Table 2. The
left-side graphs correspond to panel A (log survey income), and the right-side graphs to panel B (the
residual of log survey income after regressing on demographics). Each circle represents a workplace
survey area, with radius proportional to employment population obtained from the cell phone data.
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Figure B.5: Average Residential Income: Model Prediction and Nighttime Lights

(A) Dhaka
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Notes. The two scatter plots correspond to the first column, panels A and B, in Table 3. Each circle
represents residential cell phone tower, with radius proportional to residential population obtained
from the cell phone data.
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Figure B.6: Model-Predicted Income by Calendar Date (Hartals, Holidays and Weekends)
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Notes. This figure shows average predicted income by calendar date. The Y axis plots the
proportional change relative to the mean on workdays. The sample and outcome are as in
Panel A, Column 1 in Table 4. The figure plots calendar date fixed effects from a regression of
normalized trip predicted income (equal to zero when the person does not travel) on commuter and
calendar date fixed effects. Hartal dates are from Ahsan and Iqbal (2015) and public holidays
from https://www.timeanddate.com/holidays/bangladesh/. Friday is the main free day in
Bangladesh, and Saturday is the other weekend day. August 2 is Jumatul Bidah, August 6 is
Shab-e-qadr, August 9-12 is the Eid ul-Fitr (end of Ramadan), August 15 is the National Mourning
Day, August 28 is Janmashtami, November 14 is Ashura, December 16 is Victory Day, and December
25th is Christmas Day. The last week in December preceded the General Election of January 5,
2014.
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C Additional Tables

Table C.1: Cell Phone Data Coverage at User-Day Level

Dhaka,
Bangladesh

Colombo,
Sri Lanka

(1) Users in sample 5.3 · 106 3.0 · 106

(2) Days in sample 122 395
(3) All user-days possible = (1)×(2) 6.5 · 108 1.2 · 109

(4) User-days with data 2.9 · 108

(5) User-days with data (5-10am) 1.5 · 108

(6) User-days with data (10am-3pm) 2.4 · 108

(7) User-days with data (5-10am and 10am-3pm) 1.0 · 108 3.4 · 108

(8) Coverage rate =(7)/(3) 16.1% 28.8%

Notes: This table describes data coverage in the two countries. The first row indicates the number of
unique users (who appear at least once in the data set). The second row shows the total number of
calendar dates with data. The third row is the product of the previous two, which is the theoretical
upper bound of user-day combinations that could appear in the data. (Note that in practice some
users only start using a cell phone partway through the period, so this is an overestimate.) Rows
4-6 describe the actual number of user-days in the Bangladesh data under different restrictions.
The seventh row shows the number of user-days for which we have at least one location between 5
am and 10 am, and at least one location between 10 am and 3 pm – this corresponds to the data
necessary to define commuting behavior for that user and that day.
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Table C.2: Comparison of Commuting Flows from Survey Data and Cell Phone Data

Flow survey data (DHUTS)
(1) (2) (3) (4)

Log flow cell phone data 0.69∗∗∗ 0.80∗∗∗ 0.32∗∗∗ 0.75∗∗∗
(0.024) (0.028) (0.068) (0.059)

Log duration -1.13∗∗∗ -0.14
(0.18) (0.14)

Origin and destination
fixed effects Yes Yes

Observations 7915 7915 7915 7915

Notes: This table shows the relationship between commuting flows from two different data sets
in Dhaka: the DHUTS transportation survey (outcome) and from cell phone data (explanatory
variable). An observation is a pair of survey areas from the DHUTS survey. The coefficients
show the estimates from the Poisson pseudo-maximum-likelihood (PPML) estimation of DHUTS
commuting flow on log flows from cell phone. We use PPML to deal with the presence of zeros
in DHUTS commuting flows (Silva and Tenreyro, 2006). If cell phone commuting flow data is a
perfect measure of commuting flows, one would expect coefficients equal to one; the results indicate
that cell phone commuting flows contain some measurement error. Standard errors are clustered at
the origin survey area level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01.
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Table C.3: Comparison of Residential Population from Cell Phone Data and Population
Census

log Residential Density (cell phone) log Residential Population (cell phone)
(1) (2) (3) (4)

log Residential Density (census) 1.16∗∗∗ 1.16∗∗∗
(0.03) (0.14)

log Residential Population (census) 0.57∗∗∗ 0.40∗∗∗
(0.07) (0.04)

City Dhaka Colombo Dhaka Colombo
Observations 1,866 1,201 1,866 1,201
Adjusted R2 0.61 0.49 0.25 0.24

Notes: This table shows the relationship between residential population and population density
from cell phone data and from the population census. The unit of analysis is a Voronoi cell
around each cell phone tower in the greater metropolitan area of each city (Dhaka, Gazipur, and
Narayanganj districts in Bangladesh, and Western Province in Sri Lanka). In cell phone data,
residential population is defined as out-commuting flow, namely the total number of commuting
trips from a given origin excluding stationary trips (including them yields virtually identical results).
Census residential population in a Voronoi cell is computed as the average census population in
census geographic units (Mauza for Bangladesh, Grama Niladhari for Sri Lanka), weighted by their
overlap with the Voronoi cell. The high adjusted R-squared in columns (1) and (2) indicates a
strong association between the geographic density from the two data sources. The slope above one
indicates that the cell phone data slightly over-represents residential population in denser areas.
The comparatively lower adjusted R-squared in columns (3) and (4) is likely because cell phone
operators tend to assign cell phone towers to equalize the subscriber coverage per tower. Conley
standard errors with 5 km distance cutoff shown in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01.
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Table C.4: Gravity Equation Robustness: Destination Fixed Effects

Destination Fixed Effects (Benchmark)
(1) (2) (3) (4) (5) (6) (7) (8)

Dest FE (Gravity w/ Model Origin FE) 0.94∗∗∗ 0.97∗∗∗
(0.002) (0.004)

Dest FE (Home-Work Flows) 1.92∗∗∗ 2.48∗∗∗
(0.02) (0.04)

Dest FE (Volume + 1) 1.41∗∗∗ 1.08∗∗∗
(0.01) (0.002)

Dest FE (Full Sample) 0.98∗∗∗ 1.00∗∗∗
(0.001) (0.0004)

City Dhaka Dhaka Dhaka Dhaka Colombo Colombo Colombo Colombo
Observations 1,868 1,860 1,868 1,868 1,201 1,201 1,201 1,201
Adjusted R2 0.99 0.81 0.94 1.00 0.98 0.75 1.00 1.00

Notes. This table compares destination fixed effects computed under different assumptions. The
outcome in the first (last) four columns is the destination fixed effects from the first (third) column
in Table 1. The first row uses fixed effects (FE) from the gravity equation estimated using the
iterative procedure (columns 2 and 4 in Table 1). The second row uses FE from the gravity
equation estimated using home-work flows instead of daily commuting trips (see Section 2.1 for the
definition). The third row uses FE from the gravity equation estimated using log (Vij + 1) instead
of log (Vij) as outcome variable. The last row uses FE from the gravity equation estimated on all
tower pairs below the 99th percentile of the travel time, with travel time censored from below at
180 seconds. Most coefficients are close to 1 and the R2 is above 0.9, except for home-work flows.
This is due to slightly lower coverage for home-work flows with positive values. Some commuting
pairs have zero home-work flows, and are hence omitted from the gravity equation. This sample
selection tends to overestimate destination fixed effects for locations with low wages. This leads to
a flatter profile of destination fixed effects. Standard errors in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01.
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Table C.5: Robustness: Average Workplace Income and Survey Income Comparison
(A) Log Survey Income

log Survey Income (workplace)
(1) Gravity w/

Model Origin FE
(2) Home-Work

Flows
(3) Excluding

Neighboring Towers
(4) Without

Area Adjustment
(5) Include
All Origins

log Model Income (workplace) 0.14∗∗∗ 0.26∗∗∗ 0.15∗∗∗ 0.44∗∗∗ 0.14∗∗∗ 0.27∗∗∗ 0.31∗∗∗ 0.21∗∗∗ 0.13∗∗∗ 0.25∗∗∗

(0.03) (0.06) (0.04) (0.11) (0.03) (0.06) (0.05) (0.05) (0.03) (0.06)

Geographic Controls X X X X X
Adjusted R2 0.26 0.46 0.19 0.44 0.26 0.46 0.3 0.45 0.23 0.49
Observations 88 88 88 88 88 88 88 88 89 89

(B) Log Survey Income Residual on Demographics

log Survey Income (workplace, residual)
(1) Gravity w/

Model Origin FE
(2) Home-Work

Flows
(3) Excluding

Neighboring Towers
(4) Without

Area Adjustment
(5) Include
All Origins

log Model Income (workplace) 0.07∗∗∗ 0.15∗∗∗ 0.08∗∗∗ 0.25∗∗∗ 0.07∗∗∗ 0.15∗∗∗ 0.16∗∗∗ 0.12∗∗∗ 0.07∗∗∗ 0.13∗∗∗

(0.02) (0.03) (0.02) (0.07) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03)

Geographic Controls X X X X X
Adjusted R2 0.23 0.3 0.17 0.28 0.23 0.3 0.25 0.29 0.22 0.31
Observations 88 88 88 88 88 88 88 88 89 89

Notes. Robustness for columns 1 and 5 from Table 2 comparing model predicted workplace income and survey income. Odd and even
columns correspond to the specifications in columns 1 and 5 in Table 2. The first two columns use destination fixed effects from the
gravity estimated using the iterative procedure (column 2 in Table 1). The next two columns use home-work commuting flows instead
of daily commuting flows (see Section 2.1 for the definition). The next two columns define workplace income at the survey-area level
excluding commuters whose origin towers are within 180 seconds of the destination cell tower, when we aggregate up from cell tower
level. The next two columns use destination fixed effects not adjusted for Voronoi cell tower. The last two columns include commuters
from DHUTS survey whose origin locations are outside the DCC area (see Section 2.1).
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Table C.6: Individual Income: Model Predictions and Survey Data

log Survey Income
(1) (2) (3)

Model log Income (workplace) 0.14∗∗∗ 0.05∗∗∗ 0.04∗∗∗
(0.02) (0.02) (0.01)

log Travel Time 0.12∗∗∗ 0.09∗∗∗
(0.02) (0.01)

log Dest. Dist. to CBD −0.09∗∗∗ −0.03
(0.02) (0.02)

log Dest. Commuting Zone Area −0.07∗∗ −0.02
(0.03) (0.02)

Male 0.48∗∗∗
(0.03)

Age 0.02∗∗∗
(0.001)

Level of education 0.21∗∗∗
(0.01)

Origin FE X X
Occupation and Sector FE X
Observations 11,006 11,006 11,006
Adjusted R2 0.02 0.09 0.50

Notes: This table regresses log income from the DHUTS survey on model-predicted income and
controls. The unit of observation is a survey respondent in the sample described in Table 2.
Model-predicted income for a pair of origin and destination survey areas is the weighted average
of tower-pair model income, with weights given by tower-to-tower commuting flows. Formally, for
survey areas a and b, yab ≡

∑
i∈a,j∈b Vij/Vab · yj , where i ∈ a and j ∈ b index towers, yj = ψ̂Rj is

the area-adjusted destination fixed effect at j, and Vab ≡
∑
i∈a,j∈b Vij is the total flow between a

and b. We assign to each survey respondent the predicted income between his or her home and
work survey areas. Columns 2 and 3 include origin survey area fixed effects, and column 3 includes
occupation and job sector fixed effects. Two-way clustered standard errors clustered by origin and
destination survey area reported in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table C.7: Robustness: Average Residential Income and Nightlights Comparison

(A) Dhaka

log VIIRS Nighttime Lights
(1) Gravity w/

Model Origin FE
(2) Home-Work

Flows
(3) Excluding

Neighboring Towers
(4) log of Mean Income

ε = 6.84
(5) Without

Area Adjustment

log Model Income (residential) 0.59∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.31∗∗∗ 0.65∗∗∗ 0.30∗∗∗ 3.99∗∗∗ 3.17∗∗∗ −1.03∗∗∗ −0.32∗∗∗

(0.04) (0.07) (0.04) (0.08) (0.04) (0.04) (0.31) (0.53) (0.11) (0.09)

Geographic Controls X X X X X
Sub-district FE X X X X X
Observations 1,868 1,868 1,854 1,854 1,867 1,867 1,868 1,868 1,868 1,868
Adjusted R2 0.70 0.84 0.71 0.84 0.65 0.83 0.70 0.83 0.19 0.82

(B) Colombo

log VIIRS Nighttime Lights
(1) Gravity w/

Model Origin FE
(2) Home-Work

Flows
(3) Excluding

Neighboring Towers
(4) log of Mean Income

ε = 6.84
(5) Without

Area Adjustment

log Model Income (residential) 0.83∗∗∗ 0.50∗∗∗ 0.88∗∗∗ 0.31∗∗∗ 0.90∗∗∗ 0.39∗∗∗ 5.50∗∗∗ 2.93∗∗∗ 0.60 −0.32∗∗∗

(0.03) (0.05) (0.03) (0.07) (0.06) (0.04) (0.17) (0.29) (0.41) (0.04)

Geographic Controls X X X X X
Sub-district FE X X X X X
Observations 1,199 1,197 1,195 1,193 1,199 1,197 1,199 1,197 1,199 1,197
Adjusted R2 0.85 0.93 0.86 0.93 0.82 0.94 0.86 0.93 0.03 0.93

Notes. Robustness for columns 1 and 4 in Table 3 comparing model predicted residential income and nighttime lights. Odd and even
columns correspond to the specifications in columns 1 and 4 in Table 3. The first two columns use destination fixed effects from the
gravity estimated using the iterative procedure (column 2 in Table 1). The next two columns use home-work commuting flows instead of
daily commuting flows. The next two columns define workplace income at the survey-area level excluding commuters whose origin towers
are within 180 seconds of the destination cell tower. The next two columns compute model-predicted log average income (rather than
average log-income), namely log

(
1
N

∑
j exp

(
ψ̂Rj /ε

))
, using ε = 6.84 from Ahlfeldt et al. (2015) (results are not sensitive to ε). The next

two columns use destination fixed effects not adjusted for Voronoi cell tower.
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Table C.8: Robustness: Average Residential Income and Nightlights (central Dhaka only)

log VIIRS Nighttime Lights
(1) (2) (3) (4) (5) (6)

log Model Income (residential) 0.24∗∗∗ 0.15∗∗ 0.12∗∗∗ 0.09
(0.03) (0.07) (0.04) (0.06)

log Residential Density −0.02∗ −0.06∗∗∗ −0.02∗∗∗ −0.02∗∗
(0.01) (0.02) (0.004) (0.01)

log Dist. to CBD −0.16∗∗∗ −0.08∗∗ −0.16∗∗∗ −0.16∗∗∗
(0.04) (0.04) (0.04) (0.04)

log Model Income (workplace) 0.05 0.03
(0.05) (0.03)

Sub-district FE (count) X (39) X (39)
Observations 1,202 1,202 1,202 1,202 1,202 1,202
Adjusted R2 0.23 0.01 0.15 0.29 0.66 0.66

Notes. Version of Table 3 restricting to cell phone towers within the Dhaka City Corporation (DCC)
area, which is the area covered by survey data in Table 2. (For the spatial extent of DCC, see panel
B in Appendix Figure B.1). The lower slope is consistent with the curvature visible in Appendix
Figure B.5, panel A. We lose significance in the last column, which includes sub-district fixed effects,
geographic controls, and the model workplace income measure.
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Table C.9: Average Residential Income and Survey Income
(A) log Survey Income

log Survey Income (residential)
(1) (2) (3) (4) (5)

log Model Income (residential) 0.06 −0.10 −0.12
(0.06) (0.09) (0.25)

log Residential Density 0.11∗ 0.14∗∗ 0.14∗∗
(0.06) (0.06) (0.07)

log Dist. to CBD −0.09∗ −0.10∗ −0.10
(0.05) (0.05) (0.06)

log Model Income (workplace) 0.01
(0.14)

Adjusted R2 0 0.02 0.05 0.06 0.04
Observations 73 73 73 73 73

(B) Nighttime Lights at Survey Area Level (central Dhaka only)

log VIIRS Nighttime Lights
(1) (2) (3) (4) (5)

log Model Income (residential) 0.25∗∗∗ 0.22 0.03
(0.09) (0.14) (0.24)

log Residential Density 0.15∗ −0.09 −0.10
(0.08) (0.10) (0.09)

log Dist. to CBD −0.18∗∗∗ −0.13∗∗ −0.15∗∗
(0.03) (0.06) (0.06)

log Model Income (workplace) 0.12
(0.09)

Adjusted R2 0.2 0.06 0.24 0.29 0.3
Observations 73 73 73 73 73

Notes. Versions of Table 3 at the level of the 73 survey areas with at least one observation with
reported income and residence in that survey area in the DCC. Panel A uses average residential
income from survey data, panel B uses nighttime lights. The low explanatory power in all columns
in panel A is consistent with low signal-to-noise ratio for average residential income measured
using survey income (i.e., in Dhaka, at this level of aggregation, residential income is more equally
distributed compared to workplace income). The fact that results in Panel B are more statistically
significant suggests that nighttime lights may be a more precise measure of average residential
income. Weaker results in panel B relative to Table 3 indicate that our model weakly performs
better at finer spatial units. (This is not because of the exclusion of samples outside urban core of
Dhaka; see Appendix Table C.8.) 45



Table C.10: Impact of Hartal: Robustness with Very Frequent Callers

(1) (2) (3) (4) (5) (6)

All Coefficients: % Change From Workday Mean

All Trips Work Trips All Trips Work Trips All Trips Work Trips

Panel A. Predicted Income
Hartal −0.048∗∗∗ −0.048∗∗∗

(0.010) (0.016)
Friday (free day) −0.236∗∗∗ −0.486∗∗∗

(0.008) (0.015)
Observations 7.3 · 106 7.3 · 106

Panel B. Make a Trip
Hartal −0.038∗∗∗ −0.042∗∗∗ −0.043∗∗∗ −0.070∗∗∗ −0.046∗∗∗ −0.077∗∗∗

(0.008) (0.015) (0.008) (0.019) (0.009) (0.020)
Friday (free day) −0.176∗∗∗ −0.462∗∗∗ −0.207∗∗∗ −0.576∗∗∗ −0.226∗∗∗ −0.632∗∗∗

(0.007) (0.014) (0.008) (0.018) (0.009) (0.019)
Hartal x Low Income 0.012∗∗∗ 0.069∗∗∗ 0.010∗∗∗ 0.066∗∗∗

(0.003) (0.012) (0.003) (0.011)
Friday x Low Income 0.074∗∗∗ 0.269∗∗∗ 0.068∗∗∗ 0.251∗∗∗

(0.004) (0.012) (0.004) (0.012)
Hartal x Short Commute 0.012∗∗∗ 0.025∗∗∗

(0.002) (0.006)
Friday x Short Commute 0.061∗∗∗ 0.188∗∗∗

(0.003) (0.005)
Observations 7.3 · 106 7.3 · 106 7.3 · 106 7.3 · 106 7.3 · 106 7.3 · 106

Workday Mean 0.82 0.40 0.82 0.40 0.82 0.40

Notes. Version of Table 4 restricted to the sample of commuters with commuting data on at least
75% of all days (90 out of 122 days), who are 9% of all commuters.
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Table C.11: How Preference Shocks and Travel Time Affect Income: Estimated Structural
Parameters

(1) (2) (3) (4)

Full model Constrained model
(αd = 0)

Shock productive αz 0.47 0.32 0.57 0.57
(0.06) [3.37] (0.07) [0.09]

Shock distance αd -0.19 -0.47 0
(0.51) [5.99]

Shape parameter ε 7.33 9.27 6.32 6.40
(4.22) [38.07] (0.78) [0.73]

Observations 11,006 11,006 11,006 11,006
SE Method Delta Bootstrap Delta Bootstrap
Bootstrap clusters 70 70

Notes. This table reports estimates of the structural parameters that control the degree to which
idiosyncratic shocks affect income (αz), travel time affects income (αd), and the Fréchet shape
parameter ε, using the procedure described in Appendix A.3. We estimated equation (9) by
regressing individual log survey income from the DHUTS survey on the three model-predicted
terms. In columns 3 and 4, we restrict the third coefficient that corresponds to travel time to be
zero (ρ3 = 0). The estimates for αz, αd and ε in this table are transformations of the estimated
OLS coefficients as detailed in equation (10). Columns 1 and 3 report standard errors computed
using the Delta method. Columns 2 and 4 report results from 100 bootstrap runs where we cluster
at the origin survey area level (70 survey areas with at least one out-commuter in DHUTS survey):
the median estimate in the first row and standard errors in square parentheses.
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