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ENDOGENOUS STRATIFICATION IN RANDOMIZED EXPERIMENTS

Alberto Abadie, Matthew M. Chingos, and Martin R. West*

Abstract—Policymakers are often interested in estimating how policy inter-
ventions affect the outcomes of those most in need of help. This concern
has motivated the practice of disaggregating experimental results by groups
constructed on the basis of an index of baseline characteristics that pre-
dicts the values of individual outcomes without the treatment. This paper
shows that substantial biases may arise in practice if the index is esti-
mated by regressing the outcome variable on baseline characteristics for
the full sample of experimental controls. We propose alternative meth-
ods that correct this bias and show that they behave well in realistic
scenarios.

I. Introduction

RECENT years have seen rapid growth in the use of
randomized experiments in the social sciences. This

resulted in part from the “credibility revolution” in empirical
research, which increased scrutiny of the validity of con-
ditions that allow credible estimation of treatment effects
(Angrist & Pischke, 2010; Murnane & Willett, 2011). The
main advantage of a large and well-executed randomized
experiment is that the researcher can confidently rule out
the possibility that unobserved differences between the
treatment and control groups could explain the study’s
results.

In addition to allowing estimation of average treatment
effects, experiments also make it possible to obtain unbiased
estimates of treatment effects for subgroups. Subgroup
treatment effects are of particular interest to policymakers
seeking to target policies on those most likely to benefit.1
As a general rule, subgroups must be created based on char-
acteristics that are either immutable (e.g., race) or observed
before randomization (e.g., on a baseline survey) so that they
could not possibly have been affected by the treatment.
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1 Bitler, Gelbach, and Hoynes (2013), Crump et al. (2008, 2009), and Djeb-
bari and Smith (2008) study estimation and testing of subgroup treatment
effects.

However, many researchers and policymakers are inter-
ested in estimating how treatments affect those most in need
of help, that is, those who would attain unfavorable out-
comes in the absence of the treatment. Treatment parameters
of this nature depend on the joint distribution of potential
outcomes with and without treatment, which is not identi-
fied by randomization (see Heckman, Smith, & Clements,
1997). A practical solution to this problem is to combine
baseline characteristics into a single index that reflects each
participant’s predicted outcome without treatment and con-
duct separate analysis for subgroups of participants defined
in terms of intervals of the predicted outcome without
treatment.

A well-known implementation of this idea is the use of
data on out-of-sample untreated units to estimate a prediction
model for the outcome variable, which can then be applied
to predict outcomes without treatment for the experimental
units. This approach is common in medical research, where
validated risk models are available to stratify experimental
subjects based on their predicted probability of certain health
outcomes (Kent & Hayward, 2007).

However, experimental studies in the social sciences often
lack externally validated models that can be employed to pre-
dict the outcomes that experimental units would attain in the
absence of the treatment. A potential approach to this prob-
lem that is gaining popularity among empirical researchers
is to use in-sample information on the relationship between
the outcome of interest and covariates for the experimental
controls to estimate potential outcomes without treatment
for all experimental units. We call this practice endogenous
stratification because it uses in-sample data on the outcome
variable to stratify the sample.

Endogenous stratification is typically implemented in
practice by first regressing the outcome variable on baseline
characteristics using the full sample of experimental con-
trols, and then using the coefficients from this regression
to generate predicted potential outcomes without treatment
for all sample units. Unfortunately, as we will show, this
procedure generates estimators of treatment effects that are
substantially biased, and the bias follows a predictable pat-
tern: results are biased upward for individuals with low
predicted outcomes and biased downward for individuals
with high predicted outcomes.

This bias pattern matches the results of several recent
experimental studies that use this procedure and estimate
strong positive effects for individuals with low predicted
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outcomes and, in some cases, negative effects for individuals
with high predicted outcomes. For example, a working paper
by Goldrick-Rab et al. (2011) reports that a Wisconsin need-
based financial aid program for postsecondary education had
no overall impacts on college enrollment or college persis-
tence among eligible students as a whole. Looking separately
at subgroups based on predicted persistence, however, the
study finds large positive effects on enrollment after three
years for students in the bottom third of predicted persistence
and almost equally large negative effects for students in
the top third of predicted persistence.2 A working paper by
Dynarski, Hyman, and Schanzenbach (2011) analyzing long-
term impacts of the Project STAR experiment similarly finds
that assignment to a small class in grades K–3 increased col-
lege enrollment rates among the quintile of students with the
lowest ex ante probability to enroll by 11 percentage points
but had no impact on students in the top four quintiles. Pane
et al. (2014) report experimental estimates of the effects of
a technology-based algebra curriculum on the test scores of
middle and high school students disaggregated by quintiles
of predicted test scores. For middle school students exposed
to the program in the first year of its implementation, they
find “potentially moderately large positive treatment effects
in the lowest quintile and small negative effects of treatment
in the highest two quintiles.” Hemelt, Roth, and Eaton (2012)
find no significant average impacts in a experimental evalua-
tion of the effects of two elementary school interventions on
college enrolment or degree receipt. They report, however,
significant positive impacts on two-year college enrollment
for both interventions and on associate’s degree completion
for one of the interventions when they restrict the sample
to students in the bottom quartile of the in-sample predicted
probability of college attendance. Rodriguez-Planas (2012)
reports that a mentoring program for adolescents reduced
risky behavior and improved educational attainment for stu-
dents in the top half of the risk distribution but increased
risky behavior in the bottom half.3

2 Goldrick-Rab et al. (2011) report that for students in the bottom-third
group of predicted persistence, grant receipt was associated with an increase
of 17 percentage points in enrollment three years after they started college.
Conversely, for students in the top-third group of predicted persistence,
grant receipt was associated with a decrease of 15 percentage points in
enrollment three years after the start of college. These findings were char-
acterized by the authors as “exploratory” but received widespread media
coverage, including articles in the Chronicle of Higher Education, Inside
Higher Education, and Education Week. In a related paper on the design of
randomized experiments, Harris and Goldrick-Rab (2012) discuss poten-
tial explanations for the unexpected heterogeneity in their impact estimates
based on full-sample endogenous stratification.

3 We should note that because of recent concerns about the properties of
endogenous stratification estimators raised in part by previous versions of
this paper, endogenous stratification estimates do not appear in the pub-
lished versions of two of the studies described here; see Dynarski, Hyman,
and Schanzenbach (2013) and Hemelt, Roth, and Eaton (2013), or in a
subsequent working paper on the grant program evaluated in Goldrick-
Rab et al. (2011) by the same authors; see Goldrick-Rab et al. (2012).
Rodriguez-Planas (2014) uses the analysis and estimators of this paper to
update Rodriguez-Planas (2012) correcting for endogenous stratification
biases.

Endogenous stratification also plays a supporting role in
Angrist and Lavy’s (2009) experimental evaluation of a cash
incentive program aimed at increasing matriculation certi-
fication rates for Israeli high school students. In order to
test whether the program was most effective for girls on the
certification margin, the researchers first group students by
baseline test scores. They also, however, report results for
students grouped by ex ante certification probability based
on a broader set of background characteristics as “a check
on the notion that high lagged scores identify students who
have a shot at classification” (p. 1396).

The possibility of bias arising from endogenous stratifi-
cation has been previously acknowledged in the evaluation
literature (see, e.g., Peck, 2003), in statistics (Hansen, 2008),
and in economics (Sanbonmatsu et al., 2006, and Giné,
Goldberg, and Yang, 2012), but the size and significance
of the bias in realistic evaluation settings are not well under-
stood.4 A deceivingly comforting property of the bias is that
it vanishes as sample size increases, under weak regular-
ity conditions. However, as we demonstrate in this paper
using data from the National JTPA Study and the Project
STAR experiment, biases resulting from endogenous strati-
fication can completely alter the quantitative and qualitative
conclusions of empirical studies.

In the remainder of this paper, we first describe in more
detail the increasingly popular practice of stratifying exper-
imental data by groups constructed on the basis of the
predicted values from a regression of the outcome on base-
line covariates for the full sample of experimental controls.
We next explain why this method generates biases and
describe the direction of those biases. We then describe
leave-one-out and repeated split sample procedures that gen-
erate consistent estimators and show that the biases of these
estimators are substantially lower than the bias of the full
sample estimator in two realistic scenarios. We use data from
the National JTPA Study and the Project STAR experiment
to demonstrate the performance of endogenous stratification
estimators and the magnitude of their biases. We restrict
our attention to randomized experiments because this is the
setting where endogenous stratification is typically used.
However, similarly large biases may arise from endogenous
stratification in observational studies.

II. Using Control Group Data to Create
Predicted Outcomes

We begin by describing in detail the endogenous stratifi-
cation method already outlined, which aims to classify study
participants into groups based on their predicted value of the
outcome variable in the absence of the treatment. Suppose

4 Hausman and Wise (1977) and Hausman and Wise (1981), from which
we borrow the term endogenous stratification, study the related problem
of biased sampling in randomized experiments. Altonji and Segal (1996)
study biases that arise in the context of efficient generalized methods of
moments estimation for reasons that are related to those that explain the
bias of the full sample endogenous stratification estimator.
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that the sample consists of N observations of the triple
(y, w, x), where y is an outcome variable, w is the treatment,
and x is a vector of baseline characteristics. When the object
of interest is the average treatment effect, which in a random-
ized experiment is equal to τ = E[y|w = 1] − E[y|w = 0],
researchers typically compare sample average outcomes for
the treated and the control groups:

τ̂ =
∑N

i=1 yiwi∑N
i=1 wi

−
∑N

i=1 yi(1 − wi)∑N
i=1(1 − wi)

.

As discussed, researchers sometimes aim to compare treated
and nontreated after stratifying on a predictor of the outcome
in the absence of the treatment. To our knowledge, most stud-
ies that use endogenous stratification implement it roughly
as follows:

1. Regress the outcome variable on a set of baseline char-
acteristics using the control group only. The regression
coefficients are

β̂ =
(

N∑
i=1

xi(1 − wi)x′
i

)−1 N∑
i=1

xi(1 − wi)yi.

2. Use the estimated coefficients to generate predicted
outcome values for all participants (both treatment and
control groups), x′

îβ.
3. Divide participants into groups based on their pre-

dicted outcomes. Typically unit i is assigned to group
k if x′

îβ falls in some interval delimited by ck−1 and ck .
The interval limits may be fixed or could be quantiles
of the empirical distribution of x′

îβ. Many authors use
a three-bin classification scheme of low, medium, and
high predicted outcomes.

4. Estimate treatment effects for each of the subgroups,

τ̂k =
∑N

i=1 yiI[wi=1,ck−1<x′
i β̂≤ck ]∑N

i=1 I[wi=1,ck−1<x′
i β̂≤ck ]

−
∑N

i=1 yiI[wi=0,ck−1<x′
i β̂≤ck ]∑N

i=1 I[wi=0,ck−1<x′
i β̂≤ck ]

,

where IA is the indicator function that takes values 1 if
event A is realized and value 0 otherwise. Alternatively,
treatment effect estimates could be computed after
controlling for a set of covariates using regression.

For example, in their study of the impact of a need-based
grant, Goldrick-Rab et al. (2011) regress college persistence
on baseline characteristics using only observations from the
control group, generate predicted probabilities of college
persistence for all students, classify students into three equal-
sized groups based on their ex ante predicted probability, and
then estimate treatment effects for each of the three groups.

This is a simple and direct approach to stratification, which
has great intuitive appeal. Moreover, it is easy to show that
under usual regularity conditions, τ̂k converges to

τk = E[y|w = 1, ck−1 < x′β ≤ ck]
− E[y|w = 0, ck−1 < x′β ≤ ck].

As we demonstrate in this paper, however, τ̂k is biased in
finite samples, and the bias follows a predictable pattern.

Here we provide an intuitive explanation of the bias. To
simplify the exposition, suppose that predicted outcomes are
divided into three groups (low, medium, high). Let β =
(E[xx′|w = 0])−1E[xy|w = 0] be the population counterpart
of β̂, and let ei = yi − x′

iβ be the regression error. In a finite
sample, untreated observations with large negative values
for ei tend to be overfitted, so we expect x′

îβ < x′
iβ, which

pushes these observations toward the lower interval of pre-
dicted outcomes.5 This creates a negative bias in the average
outcome among control observations that fall into the lower
interval for x′

îβ and, therefore, a positive bias in the average
treatment effect estimated for that group. Analogously, aver-
age treatment effect estimators for the upper intervals of
predicted outcomes are biased downward. Endogenous strat-
ification results in a predictable pattern: average treatment
effect estimators are biased upward for individuals with
low predicted outcomes and biased downward for individu-
als with high predicted outcomes. As we will demonstrate,
because the finite sample bias of the endogenous stratifica-
tion estimator is created by overfitting, this bias tends to be
more pronounced when the number of observations is small
and the dimensionality of xi is large.

A natural solution to the overfitting issue is provided by
leave-one-out estimators. This is the approach followed in
Sanbonmatsu et al. (2006). Harvill, Peck, and Bell (2013)
propose a variant of this approach based on 10-fold cross-
validation. Let

β̂(−i) =
⎛⎝∑

j �=i

xj(1 − wj)x′
j

⎞⎠−1 ∑
j �=i

xj(1 − wj)yj,

be the regression coefficients estimators that discard observa-
tion i. Overfitting is precluded by not allowing the outcome,
yi, of each observation to contribute to the estimation of its
own predicted value, x′

îβ(−i). Because only untreated obser-
vations are employed in the estimation of β̂(−i) and β̂, if i
is a treated observation, then β̂(−i) = β̂. We consider the
following leave-one-out estimator of τk:

τ̂LOO
k =

∑N
i=1 yiI[wi=1,ck−1<x′

i β̂≤ck ]∑N
i=1 I[wi=1,ck−1<x′

i β̂≤ck ]

−
∑N

i=1 yiI[wi=0,ck−1<x′
i β̂(−i)≤ck ]∑N

i=1 I[wi=0,ck−1<x′
i β̂(−i)≤ck ]

.

5 Overfitting arises when the sample regression values, x′
i β̂, are closer

to the outcome values, yi, than the population regression values, x′
iβ. The

appendix provides a formal explanation of overfitting in a regression model.
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Under weak assumptions, it can be seen that both τ̂k and
τ̂LOO

k are consistent estimators of τk . Moreover, τ̂k and τ̂LOO
k

have the same large sample distribution.6 However, we show
in section IV that τ̂k is substantially biased in two realistic
scenarios, while τ̂LOO

k is not. A separate issue in the esti-
mation of τk is that first-step estimation of β affects the
large-sample distribution of the estimator (see the online
appendix for a derivation of the large-sample distribution
of τ̂k and τ̂LOO

k ). The contribution of the estimation of β to
the variance of τ̂k has been ignored in empirical practice.

Another way to avoid overfitting is sample splitting. We
consider a repeated split sample estimator. In each repeti-
tion, m, the untreated sample is randomly divided into two
groups, which we will call the prediction and the estimation
groups. Let vim = 0 if untreated observation i is assigned the
prediction group in repetition m and vim = 1 if it is assigned
to the estimation group. In each repetition, m, we estimate β

using only the observations in the prediction group:

β̂m =
(

N∑
i=1

xi(1 − wi)(1 − vim)x′
i

)−1

×
N∑

i=1

xi(1 − wi)(1 − vim)yi.

For each repetition, m, the split sample estimator of τk is

τ̂SS
km =

∑N
i=1 yiI[wi=1,ck−1<x′

i β̂m≤ck ]∑N
i=1 I[wi=1,ck−1<x′

i β̂m≤ck ]

−
∑N

i=1 yiI[wi=0,vim=1,ck−1<x′
i β̂m≤ck ]∑N

i=1 I[wi=0,vim=1,ck−1<x′
i β̂m≤ck ]

.

We then average τ̂SS
km over M repetitions to obtain the repeated

split sample estimator:

τ̂RSS
k = 1

M

M∑
m=1

τ̂SS
km.

The repeated split sample estimator is asymptotically
unbiased and Normal but, unlike the leave-one-out estimator,
its large sample distribution does not coincide with the large
sample distribution of the full-sample endogenous stratifica-
tion estimator. For large M, however, the difference between
the large-sample distribution of the repeated split sample
estimator and the large-sample distribution of the full-sample
and leave-one-out estimators is small.7

Given that τ̂LOO
k and τ̂RSS

k require higher computational
effort than τ̂k , computational aspects of the estimation
deserve some comment. First, we note that leave-one-out

6 Proofs of these and other formal statements made in this paper are
provided in the online appendix.

7 See the online appendix for a proof.

versions of x′
îβ can be efficiently computed through the

well-known formula

x′
îβ(−i) = x′

îβ − hNi

1 − hNi
(yi − x′

îβ),

where hNi is the leverage of observation i.8 This implies that
all values of x′

îβ(−i) for the experimental controls can be
computed with a single regression of the outcome on the
covariates for the entire sample of experimental controls.
While the repeated split sample estimator, τ̂RSS

k , is more com-
putationally demanding than τ̂k or τ̂LOO

k (especially for large
values of M), the calculations of the components, τ̂SS

km, are
independent tasks that can easily be divided in batches and
parallelized.

In the next section, we apply the estimators we have
described to the analysis of data from two well-known exper-
imental studies: the National JTPA Study and the Tennessee
Project STAR experiment.

III. Evidence of Large Biases in Two Actual Applications

To demonstrate the performance of the estimators
described in the previous section and the magnitude of their
biases in realistic scenarios, we use data from two random-
ized evaluations: the National JTPA Study, an evaluation of
an employment and training program in the United States,
and the kindergarten cohort of the Tennessee Project STAR
class-size experiment.

A. The National JTPA Study

We first examine data from the National JTPA Study, a
large experimental evaluation of an employment and train-
ing program commissioned by the U.S. Department of Labor
in the late 1980s. The study data have been extensively ana-
lyzed by Orr et al. (1996), Bloom et al. (1997), and many
others.9 The study randomized access to JTPA services to
applicants in sixteen service delivery areas (SDAs), across
the United States. Randomized assignment was done after
applicants were deemed eligible for the program and rec-
ommended to one of three possible JTPA service strategies:
on-the-job training/job search assistance, classroom training,
and other services. Individuals in the treatment group were
provided with access to JTPA services, and individuals in
the control group were excluded from JTPA services for an
eighteen-month period after randomization. We use data for
the sample of adult males recommended to the on-the-job
training/job search assistance service strategy and discard
three SDAs with few observations. Our sample consists of
1,681 treated observations and 849 untreated observations,
for a total of 2,530 observations in thirteen SDAs.10 In this

8 See the online appendix for a precise definition of hNi.
9 Moreover, the historical recounting in Peck (2013) suggests that the

practice of endogenous stratification may have originated within the JTPA
evaluation.

10 See the online appendix for detailed information on sample selection
and estimation methods.
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Table 1.—JTPA Estimation Results

A. Average Treatment Effect
Unadjusted Adjusted

τ̂ 1,516.49∗ 1,207.22
(807.27) (763.54)

B. Average Treatment Effect by Predicted Outcome Group
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 2,379.65∗∗ −719.38 2,397.26 2,011.70∗ −554.65 1,769.03
(1,151.07) (1,474.81) (1,672.62) (1,150.68) (1,482.32) (1,639.06)

τ̂LOO
k 573.74 35.31 3,646.53∗∗ 173.45 172.28 3,118.17∗

(1,201.33) (1,509.30) (1,727.08) (1,213.25) (1,513.70) (1,679.62)
τ̂RSS

k 788.75 254.25 3,569.41∗∗ 412.01 181.81 2,942.69∗∗
(1,027.47) (1,092.85) (1,496.73) (1,042.17) (1,087.51) (1,454.16)

τ̂PREV
k 1,278.88 −67.95 3,972.21∗∗ 822.05 −150.89 3,146.85∗∗

(1,221.96) (1,284.77) (1,497.47) (1,235.13) (1,274.45) (1,430.37)

Bootstrap standard errors, based on 1,000 bootstrap repetitions, are reported in parentheses. τ̂RSS
k uses 100 repetitions, with 425 untreated observations in the prediction group and 424 in the estimation group. The

“unadjusted” estimates are differences in mean outcomes between treated and nontreated. The “adjusted” estimates are regression coefficients on the treatment variable in a linear regression that includes the list of
covariates detailed in section III. Statistically significant at *0.10 and **0.05.

example, wi is an indicator of a randomized offer of JTPA
services, yi is nominal thirty-month earnings in U.S. dollars
after randomization, and xi includes age, age squared, mar-
ital status, previous earnings, indicators for having worked
fewer than thirteen weeks during the year previous to ran-
domization, having a high school diploma, being African
American, and being Hispanic, as well as SDA indicators.

Table 1 reports estimates for the JTPA sample. The first
row reports two treatment effect estimates. The “unadjusted”
estimate is the difference in outcome means between treated
and controls; the “adjusted” estimate is the coefficient on
the treatment indicator in a linear regression of the outcome
variable, yi, on the treatment indicator, wi, and the covariates,
xi, listed above. The unadjusted estimate suggests a $1,516
effect on thirty-month earnings. This estimate is significant
at the 10% level. Regression adjustment reduces the point
estimate to $1,207, which becomes marginally nonsignifi-
cant at the 10% level. The rest of table 1 reports average
treatment effects by predicted-outcome group. The first set
of estimates corresponds to τ̂k , the full-sample endogenous
stratification estimator. This estimator produces a large and
significant effect for the low predicted-outcome group. The
unadjusted estimate is $2,380 and significant at the 5%
level. This represents a 12.6% effect on thirty-month earn-
ings once we divide it by the average value of thirty-month
earnings among the experimental controls. It also repre-
sents an effect that is 57% higher than the corresponding
unadjusted estimate for the average treatment effect in the
first row of the table. The adjusted estimate is $2,012, sim-
ilarly large, and significant at the 10% level. For the high
predicted-outcome group, the estimates are also large but
not statistically significant at conventional test levels. For the
middle predicted-outcome group, the estimates are negative
but of moderate magnitude and not statistically significant.
All in all, the full-sample endogenous stratification estimates
provide a much more favorable picture of JTPA effectiveness
relative to the average treatment effects reported on the first
row. The bulk of the effect seems to be concentrated on the

low predicted-outcome group, precisely the one in most need
of help, with more diffuse effects estimated for the middle
and high predicted-outcome groups.

The next two sets of estimates reported in table 1 corre-
spond to the leave-one-out estimator, τ̂LOO

k , and the repeated
split sample estimator τ̂RSS

k , with number of repetitions, M,
equal to 100. These two estimators, which avoid overfit-
ting bias arising from the estimation of β, produce results
that are substantially different from those obtained with the
full-sample endogenous stratification estimator, τ̂k . Relative
to the τ̂k estimates, the τ̂LOO

k and τ̂RSS
k estimates are sub-

stantially smaller for the low predicted-outcome group and
substantially larger for the high predicted-outcome group.
For the high predicted-outcome group, we obtain unad-
justed estimates of $3,647 (leave-one-out) and $3,569 (split
sample), both significant at the 5% level, and adjusted esti-
mates of $3,118 (leave-one-out) and $2,943 (split sample)
significant at the 10% and 5% levels, respectively. The esti-
mates for the low and middle predicted-outcome groups are
small in magnitude and not statistically significant. These
results place the bulk of the treatment effect on the high
predicted-outcome group and do not provide substantial sta-
tistical evidence of beneficial effects for the low and middle
predicted-outcome groups.11 The comparison of estimates
produced with the full sample endogenous stratification esti-
mator and the leave-one-out and split sample estimators
suggest that the overfitting bias of the full sample endoge-
nous stratification estimator is of substantial magnitude
and dramatically changes the qualitative and quantitative
interpretations of the results.

As a further check on the magnitude of endogenous strat-
ification biases in the analysis of the National JTPA Study
data, table 1 reports a last set of treatment effects estimates,

11 This is loosely consistent with the findings in Abadie, Angrist, and
Imbens (2002), who report large JTPA effects at the upper tail of the distri-
bution of earnings for male trainees and no discernible effects at the middle
or lower parts of the distribution.
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Table 2.—STAR Estimation Results

A: Average Treatment Effect
Unadjusted Adjusted

τ̂ 0.1659∗∗ 0.1892∗∗
(0.0329) (0.0294)

B: Average Treatment Effect by Predicted Outcome Group
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 0.3705∗∗ 0.2688∗∗ −0.1330∗∗ 0.3908∗∗ 0.3023∗∗ −0.1242∗∗
(0.0521) (0.0655) (0.0636) (0.0509) (0.0678) (0.0614)

τ̂LOO
k 0.3277∗∗ 0.2499∗∗ −0.0486 0.3440∗∗ 0.2730∗∗ −0.0660

(0.0547) (0.0670) (0.0654) (0.0519) (0.0696) (0.0634)

τ̂RSS
k 0.3152∗∗ 0.2617∗∗ −0.0520 0.3130∗∗ 0.3005∗∗ −0.0374

(0.0467) (0.0505) (0.0567) (0.0459) (0.0526) (0.0552)

Bootstrap standard errors, based on 1,000 bootstrap repetitions, are reported in parentheses. τ̂RSS
k uses 100 repetitions, with 1,009 untreated observations in the prediction group and 1,008 in the estimation group.

The “unadjusted” estimates are differences in mean outcomes between treated and nontreated. The “adjusted” estimates are regression coefficients on the treatment variable in a linear regression that includes the list
of covariates detailed in section III. Statistically significant at *0.10 and **0.05.

which are stratified using data on earnings before random-
ization. The National JTPA Study data include individual
earnings during the twelve months before randomization.
We use the sorting of the experimental subjects in terms of
prerandomization earnings to approximate how the experi-
mental subjects would have been sorted in terms of earnings
in the absence of the treatment. We construct the esti-
mator τ̂PREV

k in the same way as τ̂k but using previous
earnings, instead of predicted earnings, to divide the individ-
uals into three groups of approximately equal size. Notice
that because previous earnings is a baseline characteristic,
τ̂PREV

k is not affected by overfitting bias. As shown on the
bottom of table 1, stratification on previous earning produces
results similar to those obtained with τ̂LOO

k and τ̂RSS
k : large

and significant effects for the high predicted-outcome group
and smaller and nonsignificant effects for the middle and
low predicted-outcome groups.

B. The Project STAR Experiment

Our second example uses data from the Project STAR
class-size study. In Project STAR, students in 79 Tennessee
schools were randomly assigned to small, regular-size, and
regular-size classes with a teacher’s aide. Krueger (1999)
analyzes the STAR data set and provides detailed expla-
nations of the STAR experiment. For our analysis, we use
the 3,764 students who entered the study in kindergarten
and were assigned to small classes or to regular-size classes
(without a teacher’s aide). Our outcome variable is standard-
ized end-of-the-year kindergarten math test scores.12 The
covariates are indicators for African-American, female, eli-
gibility for the free lunch program, and school attended. We
discard observations with missing values in any of these
variables.

Results for the STAR experiment data are reported in
table 2. The adjusted and unadjusted estimators of the

12 Standardized test scores are computed dividing raw test scores by the
standard deviation of the distribution of the scores in regular-size classes.

average treatment effect on the first row of table 2 show
positive and significant effects. Using a simple differ-
ence in means, the effect of small classes is estimated as
0.1659 of the regular class standard deviation in math test
scores and 0.1892 of the same standard deviation when
we use a regression-adjusted estimator.13 In both cases, the
estimates are significant at the 5% level. For the low and
middle predicted-outcomes groups, the full-sample endoge-
nous stratification estimator, τ̂k , produces estimates that are
positive and roughly double the average treatment effects
estimates on the first row of the table. Counterintuitively,
however, the full sample endogenous stratification estimates
for the high predicted-outcome group are negative and sig-
nificant. They seem to suggest that being assigned to small
classes was detrimental for students predicted to obtain
high math scores if all students had remained in regular-
size classes. We deem this result counterintuitive because
it implies that reductions in the student/teacher ratio have
detrimental effects on average for a large group of stu-
dents. Notice that the magnitudes of the negative effects
estimated for the high predicted-outcome group are substan-
tial: smaller, but not far from the positive average treatment
effects reported in the first row of the table. We will see
that the large and significant negative effect for the high
predicted-outcome group disappears when the leave-one-out
or the repeated split sample procedures are used for esti-
mation. Indeed, the leave-one-out and repeated split sample
estimates on the two bottom rows of table 2 suggest pos-
itive, significant, and large effects on the low and middle
predicted-outcome groups and effects of small magnitude
and not reaching statistical significance at conventional
test levels for the high predicted-outcome group. As for
the JTPA, the qualitative and quantitative interpretations of

13 To be consistent with much of the previous literature on the STAR
experiment, we report both regression-adjusted and unadjusted estimates.
Because the probability of assignment to a small class varied by school in
the STAR experiment, the regression-adjusted estimator is most relevant in
this setting. As in Krueger (1999), however, covariate regression adjustment
does not substantially change our estimates.
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the STAR experiment results change dramatically when the
leave-one-out or the repeated split sample estimators are
used instead of the full-sample endogenous stratification
estimator.

In this section, we have used data from two well-known
and influential experimental studies to investigate the mag-
nitude of the distortion that overfitting may induce on
endogenous stratification estimators. In the next section,
we use Monte Carlo simulations to assess the magnitude of
the biases of the different estimators considered in section
II. To keep the exercise as realistic as possible, in two of our
simulations we choose data-generating processes that mimic
the features of the JTPA and STAR data sets.

IV. Simulation Evidence on the Behavior of
Endogenous Stratification Estimators

This section reports simulation evidence on the finite sam-
ple behavior of endogenous stratification estimators. We run
Monte Carlo simulations in three settings. In the first two
Monte Carlo simulations, we make use of the JTPA and
STAR data sets to assess the magnitudes of biases and other
distortions to inference in realistic scenarios. The third and
fourth Monte Carlo simulations use computer-generated data
to investigate how the bias of endogenous stratification esti-
mators changes when the sample size or the number of
covariates changes.

In the JTPA-based simulation, we first use the JTPA con-
trol units to estimate a two-part model for the distribution of
earnings conditional on the covariates of the adjusted esti-
mates in table 1. The two-part model consists of a logit
specification for the probability of 0 earnings and a Box-Cox
model for positive earnings.14 In each Monte Carlo iteration,
we draw 2,530 observations—the same number of observa-
tions as in the JTPA sample—from the empirical distribution
of the covariates in the JTPA sample. Next, we use the esti-
mated two-part model to generate earnings data for each
observation in the Monte Carlo sample. Then we randomly
assign 1,681 observations to the treatment group and 849
observations to the control group, to match the numbers of
treated and control units in the original JTPA sample. Finally,
in each Monte Carlo iteration, we compute the full-sample,
leave-one-out, and repeated split sample endogenous stratifi-
cation estimates. For the repeated split sample estimator, we
use 100 repetitions (M = 100), which provide a reasonable
balance between precision of the estimators and computa-
tional time. We also compute the value of the unfeasible
estimator, τ̂UNF

k , obtained by stratification on the popula-
tion regression function (which can be calculated from the
estimated parameters of the two-part model by simulation).
We conduct 10,000 Monte Carlo iterations.

Figure 1 reports the Monte Carlo distributions of
the endogenous stratification estimators that divide the

14 Additional details about the simulation models can be found in the
online appendix.

experimental sample into three categories of predicted earn-
ings of roughly equal size (bottom third, middle third, and
top third). To economize space, this figure shows only the
distribution of the unadjusted estimators.15 Because assign-
ment to the treatment and control groups is randomized in
our simulation and because the process that generates earn-
ings data is the same for treated and controls, it follows that
the average effect of the treatment in the simulations is equal
to 0 unconditionally as well as conditional on the covariates.
As a result, unbiased estimators should generate Monte Carlo
distributions centered at 0. The first plot of figure 1 shows
the Monte Carlo distribution of the full-sample endogenous
stratification estimator of average treatment effects con-
ditional on predicted earnings group. The pattern of the
distribution of the average treatment effect estimator for
the bottom, middle, and top third predicted earnings groups
matches the directions of the biases discussed in section II.
That is, τ̂k is biased upward for the low predicted-earnings
group and downward for the high predicted-earnings group.
The remaining three plots of figure 1 do not provide evi-
dence of substantial biases for the leave-one-out, repeated
split sample, or unfeasible estimators. These three estima-
tors produce Monte Carlo distributions that are centered at
0 for each predicted-earnings category.

Table 3 reports biases, 1 minus the coverage rates of
nominal 0.95 confidence intervals based on the Normal
approximation, and root mean square error (root-MSE)
values for endogenous stratification estimators in the JTPA-
based Monte Carlo simulation. In addition to the estimators
considered in figure 1, we compute a single split sample esti-
mator, τ̂SSS

k , which is defined like the repeated split sample
estimator but with M = 1 (see Peck, 2003). The full-sample
endogenous stratification estimator is subject to substantial
distortions for the low and high predicted-earnings group.
The magnitude of the bias in each these two groups is more
than $1,000, which is substantial compared to the $1,516
and $1,207 unadjusted and adjusted average effect estimates
in the JTPA data. As reflected in figure 1, the bias is positive
for the low predicted-earnings group and negative for the
high predicted-earnings group. Biases are uniformly small
for the leave-one-out, repeated split sample, and unfeasi-
ble estimators, but the leave-one-out estimator has higher
biases than the repeated split sample and the unfeasible
estimator. Similar results emerge for coverage rates and
mean square errors. The full-sample endogenous stratifica-
tion estimator produces substantially higher than nominal
coverage rates and substantially higher root-MSE than the
leave-one-out and repeated split sample estimators for the
low and high predicted-income categories. The repeated
split sample estimator dominates in terms of root-MSE.
The single split sample estimators produce small biases and
close to nominal coverage rates, but they have root-MSE
values consistently higher than the full-sample endogenous
stratification estimator.

15 Simulation results for unadjusted and adjusted estimators are very
similar, as reflected in tables 3 to 6.
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Figure 1.—Distributions of the Estimators in the JTPA Simulation

Table 3.—JTPA Simulation Results

A. Bias
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 1,017.51 −4.81 −1,082.42 1,017.60 −0.98 −1,062.39
τ̂LOO

k −88.23 −23.28 96.57 −59.08 −54.01 42.86
τ̂RSS

k −2.74 −2.34 −20.75 −3.30 −5.96 −17.56
τ̂SSS

k 5.62 −9.88 6.62 1.34 −11.24 1.39
τ̂UNF

k −1.50 −8.56 −16.85 −2.50 −9.04 −11.67

B. One Minus Coverage Rates for Nominal 0.95 CI
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 0.152 0.049 0.089 0.154 0.050 0.089
τ̂LOO

k 0.051 0.048 0.050 0.051 0.049 0.051
τ̂RSS

k 0.051 0.048 0.049 0.052 0.048 0.050
τ̂SSS

k 0.050 0.048 0.051 0.052 0.049 0.050
τ̂UNF

k 0.053 0.050 0.050 0.053 0.051 0.051

C. Root-MSE
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 1,492.26 1,364.27 2,145.78 1,489.89 1,375.04 2,065.87
τ̂LOO

k 1,192.35 1,399.74 1,895.93 1,180.13 1,398.76 1,800.86
τ̂RSS

k 1,031.61 1,101.14 1,751.43 1,022.53 1,103.53 1,660.50
τ̂SSS

k 1,500.97 1,797.74 2,383.17 1,493.40 1,792.14 2,271.90
τ̂UNF

k 1,119.34 1,372.67 1,867.51 1,118.52 1,383.76 1,792.25

Averages over 10,000 simulations. See section IV and the online appendix for details.
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Figure 2.—Distributions of the Estimators in the STAR Simulation

Figure 2 and table 4 report simulation results for the
STAR-based Monte Carlo simulation. For this simulation,
the data-generating process is based on a linear model with
Normal errors. The model is estimated using data for STAR
students in regular size classes. The results are qualitatively
identical to those obtained in the JTPA-based simulation.
The biases of τ̂k are around 0.05 and −0.05 for the low and
medium predicted test score groups, respectively. These are
sizable magnitudes compared to the STAR effect estimates
in table 2. Also, as in the JTPA-based simulation, for the
low and high predicted-outcome groups, coverage rates of
the full sample endogenous stratification estimator are heav-
ily distorted, and root-MSE values are larger than for the
leave-one-out and the repeated split sample estimators. The
repeated split sample estimator has the lowest root-MSE, and
single sample splits produce root-MSE values larger than
any other estimator with the exception of the full-sample
endogenous stratification estimator.

The analysis of how average treatment effects covary with
predicted outcomes without the treatment can also be based
on a regression equation with interaction terms, such as

yi = α0 + (x′
iβ)α1 + wiα2 + wi(x′

iβ)α3 + ui,

where ui is a regression error orthogonal to the included
regressors. A negative sign of α3 would indicate average

treatment effects inversely related to x′β. Under the data-
generating processes employed in our simulations, α3 is
equal to 0. Figure 3 reports Monte Carlo distributions of
estimators of α3 for the JTPA-based and STAR-based simula-
tions. The full sample and leave-one-out estimators use β̂ and
β̂(−i), respectively, instead of β, and estimate the regression
equation by ordinary least squares. The unfeasible estimator
uses the true value, β. For m = 1, . . . , M, the repeated split
sample estimator uses β̂m and averages the resulting esti-
mates of α3 over the M repetitions. Finally, we also report the
distribution of the estimator of α3 given by one-step nonlin-
ear least squares estimation of the regression equation above.
The one-step nature of the nonlinear least squares estimator
implies that predicted outcomes are fitted to all experimental
units, and not only to the units in the control group.16 The
results in figure 3 are consistent with our previous evidence
on the performance of estimators that stratify on subgroups
of predicted values. The Monte Carlo distributions of the
leave-one-out, repeated split sample, nonlinear least squares,
and unfeasible estimators are all centered at 0. In contrast,
the full-sample endogenous stratification estimator of α3 is
negatively biased.

16 We thank Gary Chamberlain for suggesting this estimator. Nonlinear
least squares estimation of the regression equation above uses the normal-
ization α0 = 0 and α1 = 1 to ensure that the regression parameters are
properly defined.
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Table 4.—STAR Simulation Results

A. Bias
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 0.0483 0.0006 −0.0511 0.0487 0.0010 −0.0506
τ̂LOO

k −0.0025 0.0005 0.0046 0.0028 −0.0025 −0.0075
τ̂RSS

k 0.0001 −0.0000 −0.0012 0.0002 0.0001 −0.0010
τ̂SSS

k −0.0005 0.0004 −0.0017 −0.0002 0.0003 −0.0015
τ̂UNF

k 0.0004 −0.0003 −0.0009 0.0002 −0.0002 −0.0006

B. One Minus Coverage Rates for Nominal 0.95 CI
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 0.161 0.051 0.178 0.178 0.049 0.191
τ̂LOO

k 0.048 0.050 0.051 0.050 0.049 0.056
τ̂RSS

k 0.053 0.051 0.048 0.052 0.051 0.049
τ̂SSS

k 0.051 0.050 0.052 0.052 0.052 0.050
τ̂UNF

k 0.051 0.052 0.049 0.051 0.050 0.050

C: Root-MSE
Unadjusted Adjusted

Low Medium High Low Medium High

τ̂k 0.0695 0.0472 0.0716 0.0677 0.0471 0.0691
τ̂LOO

k 0.0526 0.0509 0.0530 0.0492 0.0507 0.0494
τ̂RSS

k 0.0473 0.0402 0.0470 0.0444 0.0399 0.0439
τ̂SSS

k 0.0617 0.0589 0.0615 0.0577 0.0583 0.0571
τ̂UNF

k 0.0501 0.0469 0.0503 0.0480 0.0475 0.0476

Averages over 10,000 simulations. See section IV and the online appendix for details.

Figure 3.—Distribution of the Regression Interaction Estimator

The third and fourth Monte Carlo simulations use
computer-generated data only. The purpose of these sim-
ulations is to demonstrate how the bias of endogenous
stratification estimators changes with changes in the sam-
ple size and the number of covariates. The data-generating
model for the third simulation is

yi = 1 +
40∑

l=1

zli + vi

for i = 1, . . . , N , where the variables zli have independent
Standard Normal distributions, and the variable vi has an
independent Normal distribution with variance equal to 60.
As a result, the unconditional variance of yi is equal to 100.
In each Monte Carlo simulation, the sample is divided at
random into two equally sized treated and control groups.
Predicted outcomes are computed using data for the control
group to estimate
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yi = α + x′
KiβK + uKi

by least squares, where xKi is the (K × 1)-vector
(z1i, . . . , zKi)

′, for K ≤ 40. That is, xKi contains the values
of the first K regressors in z1i, . . . , z40i. The data-generating
process implies that α is equal to 1, βK is a (K ×1)-vector of
1s, uKi = zK+1i +· · ·+ z40i + vi if K < 40, and u40i = vi. We
run Monte Carlo simulations for sample sizes N = 200,
N = 1,000, and N = 5,000, and numbers of included
regressors K = 10, K = 20, and K = 40.

The results are reported in table 5. To economize space, we
omit results on the single split sample estimator and report
bias results only. Coverage rate and root-MSE results are
available on request. The magnitudes of the biases in table 5
are easily understood when compared to the standard devi-
ation of the outcome, which is equal to 10. As expected,
the bias of the full-sample endogenous stratification estima-
tor is particularly severe when the sample size is small or
the number of included regressors is large, because in both
cases, significant overfitting may occur. The increase in bias
resulting from increasing the number of regressors is partic-
ularly severe when the sample size is small, N = 200. The
biases of the leave-one-out, repeated split sample, and unfea-
sible estimators are negligible in most cases and consistently
smaller than the bias of the full-sample endogenous stratifi-
cation estimators, although the leave-one-out estimator tends
to produce larger biases than the repeated split sample and
unfeasible estimators.

The bias of the full-sample endogenous stratification esti-
mator increases with K in spite of the fact that as K increases,
each additional included regressor has the same explanatory
power as each of the regressors included in simulations with
smaller K . Our final simulation studies a setting where each
additional included regressor has lower explanatory power
than the previously included ones. Consider

yi = 1 +
40∑

l=1

ρl−1zli + ṽi,

where the variables zli have independent Standard Normal
distributions as before, and the variable ṽi has an independent
Normal distribution with a variance such that the variance of
yi is equal to 100. Table 6 reports the biases of the endoge-
nous stratification estimators across Monte Carlo simulations
under the new data-generating process (with ρ = 0.80). The
biases of the full sample endogenous stratification estimator
are larger than in the previous simulation. Their magnitudes
increase faster than in the previous simulation when the
number of included covariates increases and decrease more
slowly than in the previous simulation when the number of
observations increases. Relative to the full sample estima-
tor, the biases of the leave-one-out, repeated split sample,
and unfeasible estimators are smaller and less sensitive to
changes in the number of included covariates and sample
size.
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Overall, among the estimators that address the overfit-
ting problem of full sample endogenous stratification, the
repeated split sample estimator outperforms leave-one-out
in the simulations. Moreover, in additional simulations (not
reported for brevity), we found that the leave-one-out esti-
mator can behave erratically in settings where the regressors
take on only a few values and the variance of the regression
error, ei = yi − x′

îβ is large. This is the case, for exam-
ple, in the STAR-based simulation if school indicators are
excluded from the vector xi. In that case, xi includes only
three indicator variables, for race, gender, and eligibility for
a free lunch program. As a result, x′

îβ takes on only eight
different values. In this setting, we found that overfitting is
not an issue and that the full sample and repeated split sam-
ple estimators produce small biases in simulations. However,
the leave-one-out estimator generates extremely large biases,
in fact, larger than the biases of the full-sample endogenous
stratification estimator. The reason is that, in this setting,
choosing c1 and c2 to be the quantiles to be one-third and
two-thirds of the distribution of the predicted outcomes result
in a large number of observations being located exactly at
the boundaries of the values of x′

îβ that define the predicted
outcome groups. To be concrete, consider the untreated
observations with x′

îβ = c1. These observations are clas-
sified by the full-sample endogenous stratification estimator
as members of the low predicted-outcome group. However,
it is easy to see that if x′

îβ = c1, then x′
îβ(−i) > c1 if yi < c1

and x′
îβ(−i) ≤ c1 if yi ≥ c1, which induces biases in the

leave-one-out estimator because observations are reclassified
into brackets of predicted outcomes without treatment on the
basis of the value of their outcome variable. The reclassifica-
tion pattern induced by the leave-one-out estimator creates a
bias that is of the opposite sign to the bias of the full sample
endogenous stratification estimator.17 The single split sample
estimator has low bias and produces close-to-nominal cover-
age rates, but also large dispersion induced by the reduction
in sample size. The increased variance of the single split sam-
ple estimator can make root-MSE of this estimator larger
than the root-MSE of the full-sample endogenous stratifi-
cation estimator (see table 3). All in all, the repeated split
sample estimator displays the best performance in our sim-
ulations. It has low bias and accurate coverage rates, and it
outperforms alternative estimators in terms of root-MSE.

V. Conclusion

In this paper, we have argued that the increasingly pop-
ular practice of stratifying experimental units on the basis
of a prediction of the outcome without treatment estimated
using full sample data from the control group leads to sub-
stantially biased estimates of treatment effects. We illustrate
the magnitude of this bias using data from two well-known

17 A “faint signal” of this bias is discernible in tables 3 to 6, in settings
where the high dimensionality of the regressors makes the magnitude of
this bias small.
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social experiments: the National JTPA Study and the Project
STAR class-size experiment. The full sample endogenous
stratification approach is most problematic in studies with
small sample sizes and many regressors, where the predictor
of the outcome without treatment may be severely overfit-
ted in the control sample. We demonstrate that in realistic
scenarios, alternative endogenous stratification estimators
based on leave-one-out and, especially, repeated split sam-
ple techniques display substantially improved small-sample
behavior relative to the full-sample endogenous stratification
estimator. In high-dimensional settings, the repeated split
sample estimator dominates the leave-one-out estimator.
Moreover, the repeated split sample estimator displays robust
behavior in low-dimensional settings where overfitting is not
a problem but the behavior of the leave-one-out estimator
may be catastrophically bad.

Some questions remain open to future research. First, the
methods described in this paper do not exhaust the pos-
sible approaches to the bias of the fullsample endogenous
stratification estimator. Bootstrap/jackknife bias corrections
on τ̂k and shrinkage estimation of β are potentially fruitful
approaches that we are starting to explore. Another question
of interest is whether the good small sample behavior of the
repeated split sample estimator generalizes to other settings,
like the two-step generalized method of moments setting
analyzed by Altonji and Segal (1996). Finally, it would be
useful to study the inferential properties of endogenous strat-
ification estimators in settings where the first-step prediction
problem is carried out using nonparametric/machine learning
techniques.
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APPENDIX

Over-Fitting in a Regression Model

Consider the classical regression model,

yi = x′
iβ + ui,

for i = 1, . . . , N , where {x1, . . . , xN } are fixed regressors such that

N∑
j=1

xix′
i

is nonsingular and {u1, . . . , uN } are mutually independent mean-zero error
terms independent of {x1, . . . , xN }. In particular, for i, j = 1, . . . , N and
i �= j, we have E[uj|ui] = E[uj] = 0. Notice that

x′
i (̂β − β) = x′

i

⎛⎝ N∑
j=1

xix′
i

⎞⎠−1
N∑

j=1

xjuj

= hiiui +
N∑

j �=i

hijuj ,

where

hij = x′
i

⎛⎝ N∑
j=1

xix′
i

⎞⎠−1

xj .

Therefore, we obtain

E[x′
i (̂β − β)|ui = u] = hiiu.

Notice that hii > 0 as long as ‖xi‖ > 0. So E[x′
i (̂β−β)|ui = u] is equal to a

positive constant times u. That is, conditional on ui < 0, the expectation of
x′

îβ−x′
iβ is negative, and conditional on ui > 0, the expectation of x′

îβ−x′
iβ

is positive.
To simplify notation, in this appendix, we did not distinguish between

treated and control units. Notice, however, that in the context of the
endogenous stratification estimators studied in this paper, the regression
of the outcome, yi, on the covariates, xi, is estimated using the sample of
experimental controls only.


