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Abstract

We consider parametric examples of symmetric two-bidder private value auctions in which each
bidder observes her own private valuation as well as noisy signals about her opponent’s private
valuation. We show that, in such environments, the revenue equivalence between the first and second
price auctions (SPAs) breaks down and there is no definite revenue ranking; while the SPA is always
efficient allocatively, the first price auction (FPA) may be inefficient; equilibria may fail to exist for
the FPA. We also show that auction mechanisms provide different incentives for bidders to acquire
costly information about opponents’ valuation.
© 2004 Elsevier Inc. All rights reserved.

JEL classification: C70; D44; D82

Keywords: Multidimensional auctions; Revenue equivalence; Allocative efficiency; Information acquisition

1. Introduction

The paradigm of symmetric independent private value (IPV) auctions assumes that each
bidder’s valuation of an object is independently drawn from an identical distribution [30,35].
Each bidder observes her own valuation, and has no information about her opponent’s
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valuation except for the distribution from which it is drawn. An important implication of
this assumption is that each bidder’s belief about her opponent’s valuation is independent
of her own or her opponents’ valuations, and it is common knowledge.

This does not seem realistic. In actual auctions, bidders may possess or may have incen-
tives to acquire information about their opponents’ valuations. Such information in most
cases is privately observed and noisy. This phenomenon arises in both private and common
value auction environments. For example, in highway construction procurement auctions,
the capacity constraints of the bidders are an important determinant of their costs [18].
While the actual cost of firm i is its private information, other firms may still obtain signals
about firm i′s cost based on their noisy observations of how much firm i is stretched in its
capacity. Another example is timber auctions. Timber firms in the US Forest Service timber
auctions can cruise the tract and form estimates of its characteristics [3]. A firm can obtain
some noisy information about its opponents’ estimates via insider rumors and industrial
espionage. Our model captures two key features of both examples. First, a bidder’s belief
about her opponents’ types is impacted by their actual types. Second, each bidder is aware
that her opponents may have some signals about her type, but does not actually know the
signals observed by her opponents; thus each bidder is uncertain about her opponents’belief
regarding her type.

In this paper, we assume that bidders have noisy information about opponents’valuations
and explore its consequences under the first-price (FPA) and second-price (SPA) auction
mechanisms. Specifically, we consider parametric examples of two-bidder private value
auctions in which each bidder’s private valuation of the object is independently drawn from
an identical distribution, and each bidder observes a noisy signal about her opponent’s
valuation. Thus, each bidder has a two-dimensional type that includes her own valuation
(the valuation type) and the signal about her opponent’s valuation (the information type).
A bidder’s information about her opponents’ valuation is not known by her opponent. In
such multidimensional auction environments, we show the following results. First, revenue
equivalence between the SPA and the FPA in the standard one-dimensional symmetric IPV
environments breaks down. However, our examples demonstrate that there is no general
revenue ranking between the FPA and the SPA. Second, the equilibrium allocation of the
object could be inefficient in the FPA but is always efficient in the SPA. Moreover, the
revenue and allocative efficiency may not coincide: on the one hand, an inefficient FPA may
generate a higher expected revenue for the seller; on the other hand, the seller’s expected
revenue could be higher in the SPA even when the object is efficiently allocated in both
auctions. The inefficiency in the FPA will typically be non-monotonic in the accuracy
of information, since with either complete information or no information, efficiency is
obtained in the FPAs. Third, while the SPA always admits equilibrium in weakly dominant
strategies, the FPA may not have any equilibrium. Finally, we show that different auction
mechanisms provide different incentives for bidders to acquire costly information about
opponents’ private valuations. We illustrate all these results in simple examples that we can
solve explicitly. However, we also argue in each case why the key features of the examples
will occur more generally.

It is important to distinguish our environment from affiliated private value (APV) auctions
[38,28]. In APV model, a bidder’s belief about her opponents’ valuations monotonically
(in a stochastic sense) depends on her own private valuation, but does not depend on her
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opponents’ actual valuation. That is, a bidder’s private valuation at the same time provides
information about opponents’ valuations. Thus in APV, a bidder’s belief about her oppo-
nents’ valuations is no longer common knowledge; but there is still a one-to-one mapping
between a bidder’s belief and her own value. Our model introduces a simple but genuine sep-
aration between a bidder’s private valuation and her signal about opponents’ valuations—a
bidder’s belief is impacted by her opponents’ realized values—thus breaking the one-to-
one mapping between belief and value under the APV. It is in this sense that our model
is “multidimensional.” It is always possible to encode multidimensional types in a single-
dimensional variable, so, as always, the content of the multidimensional signals depends
on additional assumptions made about the signal space. 1

Our examples add to the list of departures from the standard symmetric IPV auction
environments in which the revenue equivalence between the FPA and SPA fails. Wilson [38]
and Milgrom and Weber [28] showed that when bidders’ valuations are symmetric and
affiliated, the seller’s expected revenue is (weakly) higher in the SPA than in the FPA,
even though both auctions are allocatively efficient. 2 Maskin and Riley [23] consider
private value auctions in which bidders are ex ante asymmetric in the sense that different
bidders’ valuations are drawn from different distributions. They show that the revenue
ranking between the first and the SPAs is ambiguous even though the SPA is at least as
efficient as the FPA (see also [1,7]). In their model, bidders’ types are one-dimensional and
the asymmetry among bidders is common knowledge. Holt [14] and Matthews [26] show
that, when bidders are symmetrically risk averse, the seller’s expected revenue in the FPA is
higher than that in the SPA. Che and Gale [8] compare the standard auctions with financially
constrained bidders, and show that the seller’s expected revenue in the FPA is higher than
that in the SPA. The bidders in their paper are privately informed of both their valuation of
the object and their financial capacity, and thus have multidimensional types. However, both
the bidders’ valuation and financial capacity are assumed to be independently drawn from
identical distributions, hence a bidder’s belief about her opponents’ type remains common
knowledge.

A recent paper by Kim and Che [19] considers private value auction environments in
which subgroups of bidders may perfectly observe the valuations of others within the group
but have no information about bidders outside of their own subgroup. They show that the FPA
is allocatively inefficient with positive probability and the seller’s expected revenue is lower
in the FPA than that in the SPA. A very nice feature of their model is that in equilibrium the
competition is effectively among group leaders—bidders who have the highest valuations
in their respectively subgroups—with the additional constraint that each group leader bids
at least the second highest valuation in her subgroup. Their environment generates both ex
ante and ex post asymmetries among group leaders. Ex ante, the leader in a larger group

1 Multidimensional types can always be encoded in a single-dimensional variable using the inverse Peano func-
tion [36, p. 36] and other methods. The difficulty of such a one-dimensional representation of an intrinsically
multidimensional problem, however, is that we could not impose reasonable restrictions on the information struc-
ture, such as types being drawn from a continuous distribution. Similar issues concerning the representation of
multidimensional information with single-dimensional messages have been discussed in the mechanism design
literature (see [29]). We are grateful to the Associate Editor for bringing this issue to our attention.

2 Landsberger et al. [20] showed that in asymmetric APVs auction, the FPA may generated higher expected
revenue than the SPA.
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has stochastically higher valuation than the leader in a smaller group; and ex post, leaders
may face different degrees of within-group competition. The ex post asymmetric within-
group competition in particular underlies the inefficiency of the FPA. The specific forms of
asymmetry in their model lead to their revenue ranking of the SPA over the FPA, rather than
the ambiguous ranking under more general asymmetries as considered in [23]. Our model
differs from Kim and Che [19] mainly in the information structure. In our model, a bidder’s
information regarding her opponents’ valuation is noisy and private; while in theirs, the
information about rivals’ types are perfect and public within a subgroup. As a result, the
reasons underlying the possible allocative inefficiency of the FPA are slightly different. In
their paper, the ex post asymmetry in the within-group competition faced by group leaders
is the key reason: a relatively low-valued group leader facing a close competitor in her
subgroup may be driven to bid more than a relatively high-valued group leader facing a
distant competitor. Because the information within a subgroup is perfect and public in their
model, such within-group asymmetry is publicly known. In our model, the FPA inefficiency
is also related to bidder asymmetry. The contrast is that in our model the asymmetry among
agents are never publicly known and are only probabilistically perceived based on bidders’
noisy signals about their opponents.

We restrict the seller to two possible mechanisms for allocating the object: FPA and SPA.
With more general mechanisms, in our setting, sellers could fully extract the surplus, ex-
ploiting the correlation between bidders’multidimensional types, using the type of argument
employed in [9]. 3 Such mechanisms rely on very strong common knowledge assumptions
among the seller and the bidders and would not work on more realistic type spaces (see
[31,5]). For this reason, we restrict attention to simple mechanisms. Our work is an attempt
to make a first step at relaxing the standard (but unfortunate) assumption in auction theory
of identifying players’ beliefs with their payoff types. 4 An alternative way of allowing
richer beliefs into standard IPV auctions is to introduce strategic uncertainty by relaxing
the solution concept from equilibrium to rationalizability. This avenue has been pursued by
Battigalli and Siniscalchi [4] and Dekel and Wolinsky [10], for first price auctions, while
maintaining the assumption of no private information about others’ values.

The remainder of the paper is structured as follows. Section 2 presents the parametric
environment we examine; Section 3 shows the revenue non-equivalence between the FPA
and SPA in our auction environment; Section 4 shows the possible inefficiency of the FPA;
Section 5 shows that there may exist no equilibrium in the FPA; Section 6 provides examples
that reverse the revenue ranking between the FPA and the SPA and illustrate the incentives
of information acquisition under different auction mechanisms; and Section 7 concludes.

3 The literature on general mechanisms with multidimensional types focusses on efficiency questions. Jehiel
and Moldovanu [17] show that, generically, there are no efficient auction mechanisms when bidders have inde-
pendent multidimensional signals and interdependent valuations. McLean and Postlewaite [27] study situations in
which bidders’ valuations consist of both common and idiosyncratic components. Bidders privately observe their
idiosyncratic component of the valuation, and some signal regarding the common component. They show that a
modification of the Vickrey auction is efficient under quite general conditions in their settings.

4 See [12] for the same relaxation in the context of models of bargaining under incomplete information.
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2. The model

Two bidders, i = 1, 2, compete for an object. Bidders’valuations of the object are private
and independently drawn from identical distributions. We assume that bidders’ valuation of
the object takes on three possible values {Vl, Vm, Vh} where Vl < Vm < Vh. 5 The ex ante
probability of bidder i′s valuation vi taking on value Vk is denoted by pk ∈ [0, 1) where
k ∈ {l, m, h}. Of course

∑
k∈{l,m,h} pk = 1. To ease exposition, we will refer to bidder 1

as “she” and bidder 2 as “he”, and refer to a generic bidder as “she” when no confusion
shall arise.

As in standard private value auction models, bidder i observes her private valuation
vi ∈ {Vl, Vm, Vh}. The novel feature of this paper is as follows: we assume that each
bidder also observes a noisy signal about her opponent’s valuation. For tractability, we
assume that the noisy signal takes on two possible qualitative categories {L, H }. Bidder i′s
signal si ∈ {L, H } about j ′s valuation vj is generated as follows. For k ∈ {l, m, h}, and
i, j ∈ {1, 2} , i �= j ,

Pr
(
si = L|vj = Vk

) = qk, Pr
(
si = H |vj = Vk

) = 1 − qk, (1)

where qk ∈ [0, 1]. We assume that ql �qm �qh. Note that when ql = qm = qh, the signals
are completely uninformative about the opponent’s valuation. 6 We assume that bidders’
signals s1 and s2 are independent. To summarize, each bidder has a two-dimensional type
(vi, si) ∈ {Vl, Vm, Vh} × {L, H } where vi is called bidder i′s valuation type and si her
information type. The primitives of our model are a tuple of nine parameters as follows:

E =
{

〈Vk, pk, qk〉k∈{l,m,h} : Vl < Vm < Vh, pk ∈ [0, 1] ,

∑
k

pk = 1, qk ∈ [0, 1] , ql �qm �qh

}
.

Any element e ∈ E is called an auction environment.
We first compare the seller’s expected revenue and the allocative efficiency of the stan-

dard auctions. Since we are in a two-person private value environment, Dutch and English
auctions are strategically equivalent to the FPA and the SPA, respectively. Thus we will
only analyze the FPA and the SPA: Bidders simultaneously submit bids; the high bidder
wins the object. In the event of a tie, we assume that the bidder with higher valuation wins
the object if the bidders’ valuations are different; and the tie-breaking can be arbitrary if the
bidders’ valuations are the same. 7

5 Wang [37] and Campbell and Levin [6] studied common value auctions with discrete valuations.
6 Because completely uninformative signals are the same as no signals at all, this special case corresponds to

the standard one-dimensional IPV model.
7 It is now well known that tie-breaking rules are important in guaranteeing equilibrium existence in FPAs. This

tie-breaking rule is endogenous yet incentive compatible in the sense that bidders with tying bids in equilibrium
would truthfully reveal their values if asked. See [16] for more general discussions of endogenous sharing rules.
Kim and Che [19] and Maskin and Riley [24] used a similar assumption.
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As usual, we will analyze the auctions as a Bayesian game of incomplete information
between two bidders in which the type space for each bidder is T ≡ {Vl, Vm, Vh}×{L, H }.
Bidder i′s generic type is ti = (vi, si) ∈ T . Given her information type si , bidder i updates
her belief about j ′s valuation type vj according to Bayes’ rule as follows. For si ∈ {L, H },
and k ∈ {l, m, h},

Pr
(
vj = Vk|si = L

) = pkqk∑
k′∈{l,m,h} pk′qk′

,

Pr
(
vj = Vk|si = H

) = pk (1 − qk)∑
k′∈{l,m,h} pk′ (1 − qk′)

. (2)

Analogously, given her valuation type vi , bidder i updates her belief about j ′s infor-
mation type sj according to the signal technology specified by (1). For any (t1, t2) =
((v1, s1) , (v2, s2)) ∈ T 2, the joint probability mass is

Pr (t1, t2) = Pr (v1) Pr (s1|v2) × Pr (v2) Pr (s2|v1)

and the conditional probability is

Pr
(
ti |tj

) = Pr
(
vi |sj

)
Pr
(
si |vj

)
where i �= j. (3)

3. Seller’s expected revenue

We first show that the celebrated revenue equivalence result for the standard one-dimen-
sional IPV auctions breaks down in our multidimensional setting. To demonstrate this result
in the simplest possible fashion, we consider a special case of the above model:

• pm = 0, pl ∈ (0, 1) , ph ∈ (0, 1). That is, the bidders’valuations are only of two possible
types, {Vl, Vh}.

• ql = 1 − qh = q ∈ [1/2, 1]. That is, signal L is equally indicative of value Vl as signal
H is of value Vh. The parameter q measures the accuracy of the signal: when q = 1/2,
the signals are completely uninformative; and when q = 1, the signals are perfectly
informative.

3.1. Second-price auction

In the SPA, it is routine to show that the unique equilibrium in weakly dominant strategies
in this multidimensional setting is for a bidder of type (vi, si) to bid her private value vi

regardless of her information type. That is, the equilibrium bidding strategy of bidder i in
the SPA, denoted by BSPA

i , is

BSPA
i (vi, si) = vi for all (vi, si) ∈ {Vl, Vh} × {L, H } . (4)

In fact, this equilibrium characterization for the SPA is completely general to any private
value auction environment and does not depend on the number of bidders, discrete valuation
and signal types. We thus conclude that the multidimensional SPA is efficient; and the
seller’s expected revenue is independent of accuracy of the signals, hence equal to that in
the standard environment where bidders only observe their own valuations.
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3.2. First-price auction

The unique equilibrium of the FPA for this special case is characterized as follows:

Proposition 1. If pm = 0, ql = 1 − qh = q ∈ [1/2, 1], then the unique equilibrium of the
FPA is symmetric and is described as follows: for i = 1, 2,

1. BFPA
i (Vl, s) = Vl for s ∈ {L, H }.

2. Type-(Vh, L) bidder i mixes over
[
Vl, b̄(Vh,L)

]
according to CDF G(Vh,L) (·) specified by

G(Vh,L) (b) = plq (b − Vl)

ph (1 − q)2 (Vh − b)
, (5)

where

b̄(Vh,L) = ph (1 − q)2 Vh + plqVl

ph (1 − q)2 + plq
. (6)

3. Type-(Vh, H) bidder i mixes over
[
b̄(Vh,L), b̄(Vh,H)

]
according to CDF G(Vh,H) (·) spec-

ified by

G(Vh,H) (b) = (pl + phq) (1 − q)
(
b − b̄(Vh,L)

)
phq2 (Vh − b)

, (7)

where

b̄(Vh,H) = phq
2Vh + (pl + phq) (1 − q) b̄(Vh,L)

phq2 + (pl + phq) (1 − q)
. (8)

The proof is relegated to the appendix. Fig. 1 illustrates the equilibrium. The reason that
a bidder with valuation Vl will bid Vl regardless of her signal about her opponent’s value is
similar to that in Bertrand competition between two firms with identical costs. Type-(Vh, L)

bidder will play a mixed strategy over a support
[
Vl, b̄(Vh,L)

]
. The CDF G(Vh,L) (·) is chosen

to ensure that each bid in the support generates the same constant expected surplus. Type-
(Vh, H) bidder will mix over a higher support

[
b̄(Vh,L), b̄(Vh,H)

]
because she perceives her

opponent to more likely have valuation Vh, thus bidding more aggressively.

Vl

Support of type-(Vh,L)’s
mixed strategy

Support of type-(Vh,H)’s
mixed strategy

Vhb(Vh,H)
¯b(Vh,L)

¯

Fig. 1. A graphic illustration of the equilibrium of the FPA in Proposition 1.
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3.3. Revenue non-equivalence

Now we compare the seller’s expected revenue from the SPA and the FPA. Because
bidders bid their own private valuations in the SPA, the seller receives Vh if and only if both
bidders have valuation type Vh (an event that occurs with probability p2

h) and the seller
receives Vl otherwise. Hence the seller’s expected revenue from the SPA, denoted by RSPA,
is

RSPA =
(

1 − p2
h

)
Vl + p2

hVh. (9)

Since in the SPA a bidder obtains positive surplus (Vh − Vl) only when her valuation is Vh

and her opponent’s valuation is Vl , an event that occurs with probability phpl , each bidder’s
ex ante expected surplus from the SPA, denoted by MSPA, is

MSPA = phpl (Vh − Vl) .

In the unique equilibrium of the FPA characterized in Proposition 1, the object is always
efficiently allocated. Thus, the expected social welfare is p2

l Vl + (
1 − p2

l

)
Vh. In equi-

librium, bidders with valuation type Vl obtains zero expected surplus; and type-(Vh, L)

and type-(Vh, H) bidders respectively obtain expected surplus K(Vh,L) and K(Vh,H) as de-
scribed by (A.2) and (A.5) in the appendix. The ex ante probabilities that bidder i is of
type (Vh, L) and (Vh, H) are, respectively, Pr [ti = (Vh, L)] = ph [ph (1 − q) + plq] and
Pr [ti = (Vh, H)] = ph [phq + pl (1 − q)]. Thus, the ex ante expected surplus of each
bidder from the FPA, denoted by MFPA, is

MFPA (q) = Pr [ti = (Vh, L)] K(Vh,L) + Pr [ti = (Vh, H)] K(Vh,H)

= phq (1 − q) + plq

ph (1 − q)2 + plq
phpl (Vh − Vl) .

We have the following observations. First, MFPA depends on q and MSPA is independent
of q. The intuition is simply that bidders strategically use their information about oppo-
nent’s valuation only in the FPA. Second, MFPA (q) > MSPA for all q ∈ (1/2, 1) and
MFPA (1/2) = MFPA (1) = MSPA. That is, a bidder’s expected surplus is strictly higher
in the FPA than that in the SPA except for the completely uninformative and completely
informative signal cases. When q = 1/2, the signals are completely uninformative, and
bidders would simply disregard their information type. We can see from Lemma A.1 that
the probability densities of G(Vh,L) and G(Vh,H) can be smoothly pasted at b̄(Vh,L) when
q = 1/2, which implies that effectively, when q = 1/2, bidders of valuation type Vh

are simply playing a mixed strategy on the whole support of
[
Vl, b̄(Vh,H)

]
. When q = 1,

the FPA becomes a complete information auction, and it is well known that it is revenue
equivalent to the SPA.

The seller’s expected revenue in the FPA, denoted by RFPA, is simply the difference
between the expected social welfare and the sum of the bidders’ expected surplus. That is,

RFPA (q) =
[
p2

l Vl +
(

1 − p2
l

)
Vh

]
− 2MFPA (q)
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=
(

1 − p2
h

)
Vl + p2

hVh − 2p2
hpl (2q − 1) (1 − q)

ph (1 − q)2 + plq
(Vh − Vl)

= RSPA − 2p2
hpl (2q − 1) (1 − q)

ph (1 − q)2 + plq
(Vh − Vl) . (10)

The following proposition summarizes the comparison between RFPA (q) and RSPA:

Proposition 2 (Revenue non-equivalence). Let pm = 0 and ql = 1 − qh = q. For any q ∈
(1/2, 1) , RFPA (q) < RSPA; and RFPA (1/2) = RFPA (1) = RSPA; moreover, RFPA (q)

has a unique minimizer.

That RFPA (q) has a unique minimizer in q follows from simple algebra. Fig. 2 depicts the
seller’s expected revenues as a function of q ∈ [1/2, 1] from the two auction mechanisms
for an example where ph = 0.75, Vl = 0, Vh = 1.

The standard revenue equivalence theorem [35,30] crucially relies on the bidders’ types
being single-dimensional and on the valuations being drawn from continuous distributions.
Both are important in the argument that bidders’expected payoffs are completely determined
from the winning probabilities. One can show, however, that the revenue equivalence be-
tween the FPA and SPA still holds in a single dimensional private value auction environment
with finite number of valuation types (see Appendix B for a proof). Therefore, the revenue
non-equivalence we show in Proposition 2 is not due to the discreteness of the valuation
space, rather it is due to the unique information structure.

We also note that in this two-valuation example (since pm = 0), the SPA generates
a higher expected revenue for the seller than the FPA despite the fact that both auction
mechanisms are allocatively efficient. This is similar to the one-dimensional APV auctions:
the objects are allocated efficiently in both the first and second-price APV auctions, but the
SPA generates weakly higher expected revenue for the seller [28]. However, in a simple one-
dimensional correlated-value analog of our discrete-value example, the FPA and the SPA
are actually revenue equivalent. To see this, suppose that bidders’ valuations are correlated
as follows: Pr

(
vi = Vl |vj = Vl

) = Pr
(
vi = Vh|vj = Vh

) = � ∈ [1/2, 1]. Such symmetric
correlation requires that, ex ante, vi takes on values Vl and Vh with probability 1/2, i.e.,
�l = �h = 1/2. Each bidder privately observes her valuation, and no additional information

0.6 0.7 0.8 0.9 1

0.4

0.45

0.55

q

SPA

FPA

Fig. 2. Seller’s expected revenues in the SPA and FPA: ph = 0.75, Vh = 1, Vl = 0.
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about her opponent’s value. The seller’s expected revenue under the SPA is

�Vh

2
+
(

1 − �

2

)
Vl,

since with probability �/2 both bidders receive Vh and hence bid Vh; and with complemen-
tary probability at least one bidder receives Vl and the resulting second highest bid is Vl .
It can be shown, analogous to the proof of Proposition 1 in the appendix, that the unique
symmetric equilibrium of the FPA is as follows: type-Vl bidder bids her valuation Vl, while
a type-Vh bidder bids according to a mixed strategy on the support

[
Vl, �Vh + (1 − �) Vl

]
with CDF GCV (·) given by

GCV (b) = (1 − �) (b − Vl)

� (Vh − b)
if b ∈ [Vl, �Vh + (1 − �) Vl

]
.

Type-Vh bidder’s expected surplus under the mixed strategy is simply (1 − �) (Vh − Vl).
The seller’s expected revenue under the FPA can be calculated as follows. The expected
social surplus under the FPA is

�

2
Vl +

(
1 − �

2

)
Vh

since the object is always efficiently allocated. The bidders’expected surplus is 0 for type-Vl

bidder; and (1 − �) (Vh − Vl) for type-Vh bidder. Since ex ante, bidders are of type Vl and
Vh with equal probability, the seller’s expected revenue under the FPA is

�

2
Vl +

(
1 − �

2

)
Vh − (1 − �) (Vh − Vl) =

(
1 − �

2

)
Vl + �

2
Vh.

Thus a one-dimensional correlated-value analog of our two-value example would yield rev-
enue equivalence between the FPA and the SPA regardless of the degree of correlation. Note
that this result is not robust, as [28] showed that in continuous affiliated value environments,
the expected revenue from the SPA is in general at least weakly higher than that from the
FPA.

4. Efficiency

While the SPA is always allocatively efficient in equilibrium, we argue in this section
that the allocative efficiency of the FPA in Section 3 is an artifact of the two-valuation
example. When we make all three valuations occur with positive probability, i.e., pk >

0 for k ∈ {l, m, h} , the unique symmetric equilibrium of the FPA may be allocatively
inefficient. Allocative inefficiency may arise in the FPA if a type-(Vm, H) bidder infers that
her opponent is mostly likely of valuation type Vh and hence bid more aggressively than a
type-(Vh, L) bidder, who perceives her opponent to be weak and is willing to sacrifice the
probability of winning in exchange for a bigger surplus when winning against an opponent
with valuation Vl . The subtle point is that this intuition works only if the following conditions
are met: (1) Type-(Vm, H) bidder’s posterior belief about her opponent puts a small weight
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on (Vh, L) , and big weight on (Vh, H). This requires that qm be sufficiently small and
Pr
(
vj = Vh|si = H

)
be sufficiently large; (2). Type-(Vh, L) bidder’s posterior belief about

her opponent puts a big weight on Vl . This requires that ql be sufficiently large; (3). Vh

cannot be too large relative to Vm since otherwise, type-(Vh, L) bidder is not willing to
lower her probability of winning by bidding conservatively.

Arguments similar to those in Section 3 can be used to establish that, first, in any symmetric
equilibrium of the FPA, bidders with valuation Vl must bid Vl in pure strategy regardless
of their information type; second, other types of bidders must bid in mixed strategies with
contiguous and non-overlapping supports; third, the support of type-(Vm, L) bidder’s mixed
strategy must be lower than that of type-(Vm, H); the support of type-(Vh, L) bidder’s
mixed strategy must be lower than that of type-(Vh, H) ; the support of type-(Vm, H)

bidder’s mixed strategy must be lower than that of type-(Vh, H), and the support of type-
(Vm, L) bidder’s mixed strategy must be lower than that of type-(Vh, L). Thus the symmetric
equilibrium of the FPA in this section takes only two possible forms depending on the order
of the mixed strategy supports of type-(Vm, H) and type-(Vh, L) bidders. A symmetric
equilibrium is efficient if the equilibrium mixed strategy support of type-(Vm, H) bidder is
lower than that of type-(Vh, L) bidder; and it is inefficient if the equilibrium mixed strategy
support of type-(Vh, L) bidder is lower than that of type-(Vm, H) bidder. Our first interesting
result is.

Proposition 3 (Efficient and inefficient equilibria cannot coexist in the FPA). Any auction
environment e ∈ E cannot simultaneously have both an efficient and an inefficient symmetric
equilibrium in the FPA.

We now show that, in contrast to the SPA, the FPA may be allocatively inefficient. The
following result is proved by constructing an explicit auction environment with inefficient
equilibrium. Proposition 3 then guarantees that it does not admit any efficient symmet-
ric equilibrium. That there is an open set of auction environments in E with inefficient
equilibrium in the FPA follows from continuity.

Proposition 4 (Inefficiency of FPA). There exists an open set of auction environments in E
in which the unique symmetric equilibrium of the FPA is inefficient.

Our model has an interesting implication regarding the impact of more information on
efficiency. The probability of the object being inefficiently allocated in an inefficient equi-
librium is the probability that the two bidders’ types are (Vm, H) and (Vh, L) respectively,
which is given by

2 Pr
{
ti = (Vm, H) , tj = (Vh, L) , i �= j

}
= 2pmph (1 − qh) qm.

Recall that 1 − qh is the probability of bidder i obtaining si = H when her opponent’s
valuation vj = Vh. Thus the higher 1 − qh is, the more informative the signal H is about
Vh, and also of course, the more informative the signal L is about Vl . Thus, the probability
of inefficient allocation in the FPA may be increasing in 1 − qh locally in the set of auction
environments with inefficient equilibrium. We want to emphasize, however, that this is only
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a local result: as signal becomes more informative, the inefficient equilibrium may cease to
exist, and efficiency may be restored.

Finally, it can also be verified that the seller’s expected revenue in the inefficient equi-
librium in the FPA is again smaller than that in the SPA except for some knife-edge cases
with measure zero.

The key observations of this section would clearly continue to hold in more general
settings. For example, suppose that bidders’ private values were independently drawn from
a continuous distribution and each bidder observed a continuous signal, correlated with the
value of the other bidder. In a continuous setting, efficiency would require that each bidder’s
strategy depend only on his valuation and not his signal. This would be impossible if the
signal was informative. To the extent that equilibrium exists in the FPA in such environments,
the probability of inefficiency would therefore always be non-monotonic, since we have
inefficiency with intermediate informativeness of signals, but we have efficiency with either
no information about others’ values (efficiency is a well known property of the FPA with
symmetric distributions and IPVs) or full information about others’values (there is efficiency
in the FPA with complete information).

5. Equilibrium existence

Up to now, we have assumed that bidders’ information about the opponent’s private
valuation is of the same accuracy. In this section, we show that the existence of equilibrium
in the FPA is contingent on this assumption in our model. For this purpose, we consider
again the example we used in Section 3, with the exception that the accuracy of bidder
i′s signal regarding bidder j ′s valuation is qi ∈ [1/2, 1) and we let q1 > q2. Recall that
qi = Pr

(
si = L|vj = Vl

) = Pr
(
si = H |vj = Vh

)
. Our main result in this section can be

stated as follows.

Proposition 5. If pm = 0 and 1�q1 > q2 �1/2, then the FPA does not admit any equi-
librium for generic values of 〈Vl, Vh, pl, q1, q2〉.

Examples of non-existence of equilibrium with multidimensional types are also presented
in [15] in the context of auctions with both private and common value components, and the
example of this section has a similar flavor.

The non-existence problem is surely not an artifact of the discrete type assumption.
Consider again the case where bidders’ private values were independently drawn from a
continuous distribution and each bidder observed a continuous signal, correlated with the
value of the other bidder. Even with strong assumptions of the signals (e.g., the monotone
likelihood ratio property), if bidder 1 knows that bidder 2 is following a strategy that is
monotonic in his valuation and his signal of bidder 1’s valuation, bidder 1 will, in some
cases, not have a best response that is monotonic (in the same sense). To see why, suppose
that bidder 1 has a bimodal distribution on bidder 2’s valuation, and thus on bidder 2’s bid.
Suppose that improvements in bidder 1’s signal translate up her beliefs about bidder 2’s
bids. For low values of the signal, it will be optimal for bidder 1 to bid such that she wins
against both modal bids. However, as her signal improves, there will be a point where she
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will give up on winning against 2’s high modal bid and her bid will jump down to just
above the 2’s low modal bid. Thus her bid will jump downwards as her signal improves. It
is hard to think of a primitive assumption on the signal structure that will prevent this type
of non-monotonicity. This lack of monotonicity implies that the existence arguments such
as those of [2,34] will not help in this problem. 8

6. Discussion: revenue and information acquisition

In this section, we first present two examples of multidimensional private value auctions
in which the revenue ranking of the FPA and the SPA are reversed; and then discuss the
incentives of information acquisition.

6.1. Revenue

We have observed that the SPA is efficient and the FPA is not in general. This may suggest
the possibility that the SPA will generate more revenue (as suggested by the three valuation
example of Section 4). We have also seen an example where the seller’s revenue in the SPA
is higher than in the FPA, even though the there is efficient allocation of the object under
both auctions (the two valuation example in Section 3). What can be said in general about
the revenue ranking?

There is an easy way to see that a general revenue ranking is not possible. For some
special information structures, each bidder will know what private signal the other bidder
has observed. This will be true if each bidder observes a partition of the other bidder’s
valuations. Now even though we start with a model that is completely symmetric across
bidders, conditional on the observed signals, bidders are playing in an IPVs environment
with asymmetric distributions. But from the work of Maskin and Riley [23], we already
know that revenue ranking may go either way. We can use this insight to construct the
following example where revenue in the FPA is higher than that in the SPA. Presumably,
this revenue ranking would continue to hold in nearby models where private signals were
not common knowledge among the players.

Example 1. Consider a private value auction with two bidders, i = 1, 2. Suppose that v1
and v2 are independent and both drawn from Uniform [0, 1]. Bidders also observe a noisy
signal about their opponent’s valuation. Suppose that the signal is generated as follows: for
i �= j ,

si =
{

L if vj ∈ [0, 1
2

]
,

H if vj ∈ ( 1
2 , 1

]
.

That is, a bidder observes a signal that tells her if her opponent’s value is higher or lower
than 1/2; and this information structure is common knowledge.

8 It is possible that equilibrium existence may be restored by introducing communication and more complicated
endogenous tie-breaking rules a la Jackson et al. [16]. However, it is not at all clear what would be the endogenous
tie-breaking rule that would be compatible with equilibrium in this asymmetric environment.
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In the equilibrium of the SPA for the auction environment described in Example 1, each
bidder will bid their own private valuation. In the FPA, however, we have to consider three
cases: (i) vi ∈ [0, 1/2] for i = 1, 2; (ii) vi ∈ (1/2, 1] for i = 1, 2; and (iii) vi ∈ [0, 1/2]
and vj ∈ (1/2, 1] where i �= j . In case (i), both bidders effectively compete in an auction
environment in which it is common knowledge that the valuations are both drawn from
Uniform [0, 1/2] distributions. In case (ii), both bidders effectively compete in an auction
environment in which it is common knowledge that the valuations are both drawn from
Uniform [1/2, 1] distributions. In case (iii), however, the bidders are asymmetric in their
valuation distributions and it is common knowledge. Clearly the FPA and the SPA are
revenue equivalent in case (i) and (ii) events. In case (iii) events, however, the bidder
asymmetry breaks the revenue equivalence. It can be easily verified that case (iii) events
satisfy the conditions for a theorem of Maskin and Riley [23, Proposition 4.3] which shows
that the FPA would generate a higher expected revenue for the seller than the SPA under this
type of asymmetry. Thus, we reach the conclusion that overall in this example, the seller’s
expected revenue is higher in the FPA than that in the SPA. It can also be numerically
verified that in case (iii) events, the FPA may be allocatively inefficient. Thus we have an
example that the FPA generates higher expected revenue for the seller than the SPA despite
its possible allocative inefficiency relative to the SPA.

6.2. Information acquisition

So far we have assumed that bidder’s information about her opponent’s valuation or
valuation distribution is provided by nature without incurring any cost. In reality, of course,
such information is be costly to acquire. 9 Now we argue that if bidders have to costly acquire
such information, then different auction mechanisms provide vastly different incentives for
such information acquisition. This, together with the difference in revenue and allocative
efficiency between the FPA and the SPA we documented earlier, provides yet another reason
for the auction designer to prefer one auction mechanism over another even in private value
auction environments.

In the SPA, bidders do not strategically use information about their opponents’ valuation,
thus there is no incentives at all to acquire such information if it is costly. This observation
is completely general for any private value auction environments. The lack of incentives
to acquire information about one’s opponents in the SPA is related to the fact that bidding
one’s private valuation is an ex post equilibrium in the SPA.

In the FPA, however, information about the opponent’s valuation does have strategic
consequences in the bidding, thus bidders do have incentives to acquire such information
if the cost is sufficiently small. We illustrate such incentives using an extension of Example
1 above. Suppose that bidder i can, at a cost ci > 0, purchase a signal about her opponent’s
valuation that reveals whether her opponent’s valuation is below or above 1/2. Assume that
a bidder’s signal purchase decision is observable to her opponent. Suppose that the timing
of the game is as follows: first, bidders decide whether to purchase such a signal technology
at cost ci; second, nature draws private valuations from Uniform [0, 1] for each bidder;

9 Most of the existing literature in information acquisition in auctions are concerned with common value auctions
(for example [25,32]).
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third, a bidder observes whether her opponent’s private valuation is below or above 1/2 if
and only if she purchased the signal technology; and finally, bidders compete for the object
in the FPA.

The equilibrium bidding strategies in the FPA depend on the signal purchase decisions:

• If neither bidder purchased the signal technology in stage 1, then both bidders will play
the symmetric FPA in which the opponent’s valuation is drawn from Uniform [0, 1]
distribution. Thus bidders bid v/2 and the expected surplus for each bidder is given by(∫ 1

0 v2 dv
)

/2 = 1/6 ≈ 0.16667.

• If both bidders purchase the signal technology, then bidder i′s ex ante expected surplus
from the subsequent FPA is calculated as follows. (1) With probability 1/4, both bidder
valuations will be below 1/2. In this case, bidders will bid v/2 in equilibrium and the

expected surplus for each bidder is
(∫ 1/2

0 v2 dv
)

/2 = 1/48. (2) With probability 1/4,

both valuations will be above 1/2. In this case, bidders will bid v/2 again in equilibrium

and the expected surplus for each bidder is
(∫ 1

1/2 v2 dv
)

/2 = 7/48. (3) With probability

1/4, bidder i′s valuation is below 1/2 and bidder j ′s valuation is above 1/2, where j �= i.
(4) With probability 1/4, bidder i′s valuation is above 1/2 and bidder j ′s valuation is
below 1/2. The equilibria of the FPA in the events of case (3) and (4) cannot be analytically
solved, but numerical calculation shows that bidder i′s expected surplus in case (3) and
(4) are 0.01848 and 0.34808 respectively. 10 Thus bidder i′s ex ante expected surplus if
both bidders purchased the signal technology is

1/48 + 7/48 + 0.01848 + 0.34808

4
≈ 0.13331.

• If bidder i does not purchases the signal technology but bidder j does, then bidder i and j ′s
ex ante expected surplus from the subsequent FPA can be calculated as follows. (1) With
probability 1/2, bidder i′s valuation is below 1/2. In this case, bidder i′s belief about j ′s
valuation is Uniform [0, 1] while bidder j ′s belief about i′s valuation is Uniform [0, 1/2]
and this is common knowledge. Hence, bidder i′s expected surplus is that of a “weak”
bidder (in the terminology of Maskin and Riley [23]) with Uniform [0, 1/2] valuation
distribution against a “strong” bidder with Uniform [0, 1] distribution in the FPA, which
can be analytically calculated to be approximately 0.0242334. 11 Likewise, bidder j (the
“strong” bidder in this case)’s ex ante expected payoff is approximately 0.253449. (2)
With probability 1/2, bidder i′s valuation is above 1/2. In this case, bidder i′s belief

10 John Riley and Estelle Cantillon graciously provided various versions of BIDCOMP2 fortran codes that are
used in calculating the bidders’ ex ante expected payoffs in the asymmetric auctions.

11 The unique equilibrium of a two-bidder asymmetric FPA with valuation distributions Uniform [0, h1] and
Uniform [0, h2] respectively where h1 > 0, h2 > 0 and h1 �= h2 are given by

b1 (v) =
√

1 + mv2 − 1

mv
, b2 (v) = 1 −

√
1 − mv2

mv
,

where m =
(
h2

1 − h2
2

)
/ (h1h2)2 is a constant. Appendix B in [11] provides an elementary derivation of the above

equilibrium. See also [13,33].
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Table 1
The expected payoff matrix

Bidder i\Bidder j No purchase Purchase

No Purchase 0.16667, 0.16667 0.12135, 0.17878 − cj

Purchase 0.17878 − ci , 0.12135 0.13331 − ci , 0.13331 − cj

about bidder j ′s valuation is Uniform [0, 1] while bidder j ′s belief about i′s valuation is
Uniform [1/2, 1] and this is common knowledge. Hence, bidder i′s expected surplus is
that of a “strong” bidder with Uniform [1/2, 1] valuation distribution against a “weak”
bidder with Uniform [0, 1] distribution in the FPA, which can be numerically calculated
to be 0.218465. Likewise, bidder j (the “weak” bidder in this case)’s expected surplus is
approximately 0.104104. Thus bidder i (the non-purchaser)’s ex ante expected payoff is
approximately

0.0242334 + 0.218465

2
= 0.12135

and bidder j (the purchaser)’s ex ante expected payoff is approximately

0.253449 + 0.104104

2
= 0.17878.

Table 1 lists the ex ante expected payoff matrix for the two bidders taking into account
the information acquisition cost ci and cj . When ci and cj are sufficiently small, the unique
equilibrium in the information acquisition stage is that both bidders purchase the signals.
Both bidders are made worse off through two channels. First, they incur the information
acquisition cost; second, in the subsequent FPA, they will be engaged in more fierce com-
petition and the seller will be able to extract a higher revenue. The social welfare is also
decreased for two reasons. First, the information acquisition cost is dissipative; second, the
object will be allocated inefficiently with positive probability.

This example also illustrates the possibility that a decrease in the cost of information
acquisition may increase allocative inefficiency in the FPAs. Imagine that initially the infor-
mation acquisition cost ci are sufficiently high that in equilibrium neither bidder purchases
the signal technology. Thus we know that the subsequent FPA is allocatively efficient. How-
ever, as ci is sufficiently low, both bidders will purchase information in equilibrium and the
subsequent FPA is allocatively inefficient with positive probability.

7. Conclusion

This paper presents examples of two-bidder private value auctions in which each bidder
observes her own private valuation as well as noisy signals about her opponent’s private
valuation. This departs from the one-dimensional symmetric IPV paradigm and provides
a simple but genuine separation between a bidder’s private valuation and her signal about
opponents’ valuations, unlike the one-dimensional APV model. We partially characterize
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the equilibrium of the FPA when each bidder’s signal about her opponent’s valuation is
drawn from the same distribution, and show that the revenue-equivalence between standard
auctions fails. Our examples demonstrate that, first, the revenue ranking between the FPA
and the SPA is ambiguous; second, the equilibrium allocation of the object could be ineffi-
cient in the FPA but is always efficient in the SPA, but the revenue and allocative efficiency
may not coincide: an inefficient FPA may generate a higher expected revenue for the seller;
but it is also possible that the seller’s expected revenue is higher in the SPA even when
the object is efficiently allocated in both auctions. We also show that the equilibrium exis-
tence of the FPA may be problematic in multidimensional type environments. Finally, we
show that different auction mechanisms provide different incentives for bidders to acquire
cost information about opponents’ private valuations. We also provide examples that the
allocative inefficiency in the FPA may increase as the signal becomes more informative;
and the allocative inefficiency may increase in the FPA as the information acquisition costs
are decreased. While the results in our paper are derived in examples, we have explained
how the underlying intuitions are general.

Appendix A.. Proofs

Proof of Proposition 1. Proposition 1 follows from the following intermediate lemmas:

Lemma A.1. In any equilibrium of the FPA, type-(Vl, s) bidders bid Vl in pure strategies
for s ∈ {L, H }. That is, for i = 1, 2,

BFPA
i (Vl, s) = Vl for s ∈ {L, H } .

Proof. We first argue that bidders with valuation Vl must bid in pure strategies in equi-
librium. Suppose that type-(Vl, H) bidders plays a mixed strategy equilibrium on support[
b, b̄

]
with b < b̄. (The lower limit of the interval may be open, but this is not important for

the argument.) Clearly b̄�Vl . Since the bid
(
b + b̄

)
/2 wins positive probability, it yields a

positive surplus for type-(Vl, H) bidder. However, bids close to b will win with probability
almost zero, hence the expected surplus will approach zero. A contradiction for the indif-
ference condition required for the mixed strategy. Hence type-(Vl, H) bidders must bid in
pure strategies. Identical arguments show that type-(Vl, L) bidders must also bid in pure
strategy. Now we argue that, if type-(Vl, L) and (Vl, H) bidders must bid their valuation Vl

in pure strategy. To see this, suppose that type-(Vl, L) and (Vl, H) bidder 2 bids less than
Vl. Then bidder 1 of these types can deviate by bidding ε more than bidder 2, which will
be a profitable deviation if ε is made arbitrarily close to zero. A contradiction. �

Lemma A.2. Together with the strategies specified in LemmaA.1 for bidders with valuation
Vl , the following constitute a symmetric equilibrium:

1. Type-(Vh, L) bidders play a mixed strategy on
[
Vl, b̄(Vh,L)

]
according to CDF G(Vh,L) (·)

given by (5) where b̄(Vh,L) is given by (6).
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2. Type-(Vh, H) bidders play a mixed strategy on
[
b̄(Vh,L), b̄(Vh,H)

]
according to CDF

G(Vh,H) (·) given by (7) where b̄(Vh,H) is given by (8).

Proof. Suppose that bidder 2 bids according to the postulated strategies.
First, consider type-(Vh, L) bidder 1. Her expected payoff from submitting a bid b ∈[

Vl, b̄(Vh,L)

]
is

(Vh − b)

{
plq

plq + ph (1 − q)
+ ph (1 − q)2

plq + ph (1 − q)
G(Vh,L) (b)

}
, (A.1)

where

• The term plq/ [plq + ph (1 − q)] is the probability that bidder 2 has a valuation type Vl

conditional on bidder 1’s own information type L [recall formula (2)]. By Lemma A.1,
bidder 2 with valuation type Vl bids Vl with probability one. Thus bidder 1 wins with
probability 1 against such an opponent with any bid in the interval

[
Vl, b̄(Vh,L)

]
(note that

the tie-breaking rule is applied at the bid Vl).
• The term ph (1 − q)2 / [plq + ph (1 − q)] is the probability that bidder 2 is of type

(Vh, L) conditional on bidder 1’s own type (Vh, L) [recall formula (3)]. Since type-
(Vh, L) bidder 2 is postulated to bid in mixed strategies according to G(Vh,L) (·),
bidder 1’s bid of b wins against such an opponent with probability G(Vh,L) (b).

Plugging G(Vh,L) (·) as described by (5) into (A.1) yields a positive constant, denoted by
K(Vh,L), given by

K(Vh,L) = plq

ph (1 − q) + plq
(Vh − Vl) , (A.2)

which is type-(Vh, L) bidder’s expected surplus. Therefore type-(Vh, L) bidder 1 indeed is
indifferent between any bids in the interval

[
Vl, b̄(Vh,L)

]
provided that bidder 2 follows the

postulated strategy.
Now we check that type-(Vh, L) bidder 1 does not have incentive to deviate to other bids.

First, she clearly does not have incentive to deviate to bids lower than or equal to Vl , since
it would have yielded her a zero surplus instead of a positive K(Vh,L). Now suppose that she
deviates to b̄(Vh,L) < b� b̄(Vh,H), her expected payoff would be

(Vh−b)

{
plq

plq+ph(1−q)
+ ph(1−q)2

plq+ph(1−q)
+ ph(1−q)q

plq+ph(1−q)
G(Vh,H)(b)

}
, (A.3)

where the term ph (1 − q) q/ [ph (1 − q) + plq] the probability that bidder 2 is of type
(Vh, H) conditional on bidder 1’s own type (Vh, L); and G(Vh,H) (b) is the probability
that a bid b ∈ (

b̄(Vh,L), b̄(Vh,H)

]
wins against such an opponent. Plugging G(Vh,H) (·)
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as described by (7) into (A.3), we obtain

plq+ph (1−q)2

plq+ph (1−q)
(Vh−b) + ph (1−q) q

plq+ph (1−q)

(pl+phq) (1−q)
(
b−b̄(Vh,L)

)
phq2

=
{[

plq+ph (1−q)2]Vh− (pl+phq) (1−q)2 b̄(Vh,L)

}+pl

[
(1−q)2 −q2

]
b/q

plq+ph (1−q)
,

which is non-increasing in b since q �1/2. Hence type-(Vh, L) bidder 1 does not have
incentive to deviate to bids in the interval

(
b̄(Vh,L), b̄(Vh,H)

] ; which also implies that her
expected payoff would be even smaller if she bids more than b̄(Vh,H).

Now consider type-(Vh, H) bidder 1. Given that bidder 2 plays according to the postulated
strategies, her expected payoff from bidding b ∈ [b̄(Vh,L), b̄(Vh,H)

]
is given by

(VH −b)

{
pl(1−q)

phq+pl(1−q)
+ phq(1−q)

phq+pl(1−q)
+ phq

2

phq+pl(1−q)
G(Vh,H)(b)

}
, (A.4)

where

• The term pl (1 − q) / [phq + pl (1 − q)] is the probability that bidder 2 has valuation Vl

conditional on bidder 1’s signal H ; and the term [phq (1 − q)] / [phq + pl (1 − q)] is the
probability that bidder 2 is of type (Vh, L). In both events, a bid b ∈ [b̄(Vh,L), b̄(Vh,H)

]
wins against such opponents with probability one under the postulated strategies by
bidder 2.

• The term phq
2/ [phq + pl (1 − q)] is probability that bidder 2 is of type (Vh, H) con-

ditional on bidder 1’s own type (Vh, H). In this case, a bid b ∈ [b̄(Vh,L), b̄(Vh,H)

]
wins

with probability G(Vh,H) (b).

Plugging G(Vh,H) (·) as described by (7) into (A.4), we obtain a positive constant, denoted
by K(Vh,H), given by

K(Vh,H) = (pl + phq) (1 − q)

phq + pl (1 − q)

(
Vh − b̄(Vh,L)

)
. (A.5)

Hence type-(Vh, H) bidder 1 is indeed indifferent between any bids in the interval[
b̄(Vh,L), b̄(Vh,H)

]
.

Now we check that type-(Vh, H) bidder 1 does not have incentive to deviate to other bids.
First, she does not have incentive to bid more than b̄(Vh,H), since bidding b̄(Vh,H) strictly
dominates any higher bid given bidder 2′s strategies; second, she does not have incentive
to bid less than or equal to Vl since such bids will yield a zero surplus. Now we show that
she does not have incentive to bid in the interval

(
Vl, b̄(Vh,L)

)
. Her expected payoff from a

bid b ∈ (Vl, b̄(Vh,L)

)
is given by

(Vh − b)

{
pl (1 − q)

phq + pl (1 − q)
+ phq (1 − q)

phq + pl (1 − q)
G(Vh,L) (b)

}
(A.6)

since such a bid loses to type-(Vh, H) opponent with probability one and win against a
type-(Vh, L) opponent with probability G(Vh,L) (b). Plugging G(Vh,L) (·) as described by



20 H. Fang, S. Morris / Journal of Economic Theory 126 (2006) 1–30

(5) into (A.6), we get
pl (1 − q)

phq + pl (1 − q)
(Vh − b) + phq (1 − q)

phq + pl (1 − q)

plq (b − Vl)

ph (1 − q)2

=
[
pl (1 − q)2 Vh − plq

2Vl

]+ pl

[
q2 − (1 − q)2] b

[phq + pl (1 − q)] (1 − q)
,

which is non-decreasing in b since q �1/2. Hence type-(Vh, H) bidder 1 does not have
incentive to deviate to bids in the interval

(
Vl, b̄(Vh,L)

)
.

Finally, note that the expressions for b̄(Vh,L) and b̄(Vh,H) respectively satisfy G(Vh,L)(
b̄(Vh,L)

) = 1 and G(Vh,H)

(
b̄(Vh,H)

) = 1. This concludes the proof that the postulated
bidding strategies constitute a symmetric equilibrium. �

Lemma A.3. The symmetric equilibrium described in Lemma A.2 is the unique symmetric
equilibrium of the FPA.

Proof. The argument proceeds in three steps.
Step 1:We show that in any symmetric equilibrium type-(Vh, L) and type-(Vh, H) bidders

must bid in mixed strategies. For example, suppose to the contrary that, say, a type-(Vh, L)

bidder 2 bids in pure strategy an amount b̃ < Vh, then type-(Vh, L) bidder 1 can profitably
deviate by bidding b̃+ε where ε > 0 is arbitrarily small. Such a deviation will provide a dis-
crete positive jump in type-(Vh, L) bidder 1’s probability of winning, hence it is profitable.
The argument for type-(Vh, H) bidders is analogous.

Step 2: We show that in any symmetric mixed strategy equilibrium, the supports of
G(Vh,L) (·) and G(Vh,H) (·) are contiguous and non-overlapping. That the supports should be
contiguous follows from the same ε-deviation argument as the one to rule out pure strategies.
Now suppose that the supports of G(Vh,L) (·) and G(Vh,H) (·) overlap in an interval [b1, b2]
with b2 > b1. To be consistent with mixed strategies, it must be the case that, the expected
surplus for both types from any bid b ∈ [b1, b2] is constant. That is, for some constants
K̃(Vh,L) and K̃(Vh,H),

(Vh − b)

{
pl (1 − q)

phq + pl (1 − q)
+ phq

2G(Vh,H) (b)

phq + pl (1 − q)

+phq (1 − q) G(Vh,L) (b)

phq + pl (1 − q)

}
=K̃(Vh,H), (A.7)

(Vh − b)

{
plq

ph (1 − q) + plq
+ ph (1 − q) qG(Vh,H) (b)

ph (1 − q) + plq

+ph (1 − q)2 G(Vh,L) (b)

ph (1 − q) + plq

}
=K̃(Vh,L). (A.8)

Multiplying Eq. (A.7) by (1 − q) [phq + pl (1 − q)], and Eq. (A.8) by q [ph (1 − q)

+plq], and summing up, we obtain

K̃(Vh,H) (1 − q) [phq + pl (1 − q)] − K̃(Vh,L)q [ph (1 − q) + plq]

= (Vh − b) pl

[
(1 − q)2 − q2

]
. (A.9)
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Because the left-hand side of Eq. (A.9) is a constant, this equation holds only for a single
value of b unless q = 1/2. Therefore, the supports of the symmetric equilibrium mixed
strategies of type-(Vh, L) and (Vh, H) bidders must be non-overlapping. The same argument
also shows that the supports of the symmetric equilibrium mixed strategies of type-(Vh, L)

and type-(Vh, H) bidders cannot overlap at more than one point.
Step 3: We show that the support of type-(Vh, L) bidders’ mixed strategy must be lower

than that of type-(Vh, H) bidders. Suppose to the contrary. Let
[
Vl, b̃

]
be the support of

type-(Vh, H) bidder and
[
b̃, b̂

]
be the support of type-(Vh, L) bidder, for some b̂ > b̃. For

type-(Vh, L) bidders to randomize on
[
b̃, b̂

]
, it must be the case that

(Vh−b)

{
plq

ph (1−q) +plq
+ ph (1−q) q

ph (1−q) +plq
+ ph (1−q)2

ph (1−q) +plq
G̃(Vh,L) (b)

}

=
(
Vh − b̃

) plq + phq (1 − q)

ph (1 − q) + plq
,

from which, after solving for G̃(Vh,L) (b), we obtain

G̃(Vh,L) (b) =
q (1 − phq)

(
b − b̃

)
ph (1 − q)2 (Vh − b)

. (A.10)

Suppose that type-(Vh, H) bidder 2 mixes over
[
Vl, b̃

]
, and type-(Vh, L) bidder 2 mixes

over
[
b̃, b̂

]
according to G̃(Vh,L) (·) as described by (A.10). Then the expected surplus for

type-(Vh, H) bidder 1 from bidding b ∈
(
b̃, b̂

)
is given by

(Vh−b)

{
pl (1−q)

phq+pl (1−q)
+ phq

2

phq+pl (1−q)
+ phq (1−q)

phq+pl (1−q)
G̃(Vh,L) (b)

}

= (1 − q)
[
pl (1 − q) + phq

2
]
Vh − q2 (1 − phq) b̃ + pl

[
q2 − (1 − q)2] b

(1 − q) [phq + pl (1 − q)]
,

which is non-decreasing in b. Therefore, type-(Vh, H) bidder will have an incentive to bid
higher than b̃ if her opponent follows the prescribed strategies, a contradiction.

Combining Steps 1–3 and Lemma A.1, we know that the equilibrium described in
Lemma A.2 is the only symmetric equilibrium. �

Lemma A.4. There is no asymmetric equilibrium.

Proof. First, arguments similar to step 3 in the proof of Lemma A.3 can be used to show
that in an asymmetric equilibrium, the support of type-(Vh, L) bidders must be lower than
that of type-(Vh, H) bidders.

Now suppose that type-(Vh, L) bidder 1 and bidder 2 respectively play a mixed strategy

on the support
[
Vl, b̃1

]
and

[
Vl, b̃2

]
, and without loss of generality, suppose that b̃1 > b̃2.

Since type-(Vh, L) bidder 1 must be indifferent between any bids in (Vl, b̃2], type-(Vh, L)
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bidder 2’s mixed strategy, denoted by G̃2(Vh,L), must satisfy

(Vh − b)

{
plq

plq + ph (1 − q)
+ ph (1 − q)

plq + ph (1 − q)
G̃2(Vh,L) (b)

}

= (Vh − Vl)
plq

plq + ph (1 − q)

from which we obtain that b̃2 = b̄(Vh,L) where b̄(Vh,L) is specified by formula (6). Now

since type-(Vh, L) bidder 2 is indifferent between any bids in
[
Vl, b̃2

]
, type-(Vh, L) bidder

1’s mixed strategy CDF, denoted by G̃1(Vh,L), in the interval
[
Vl, b̃2

]
must satisfy

(Vh − b)

{
plq

plq + ph (1 − q)
+ ph (1 − q)

plq + ph (1 − q)
G̃1(Vh,L) (b)

}

= (Vh − Vl)
plq

plq + ph (1 − q)

from which we obtain that

G̃1(Vh,L) (b) = plq (b − Vl)

ph (1 − q)2 (Vh − b)
.

But then G̃1(Vh,L)

(
b̃2

)
= G̃1(Vh,L)

(
b̄(Vh,L)

) = 1. Hence b̃1 = b̃2, a contradiction. �

Proof of Proposition 3. Suppose to the contrary that there is an auction environment that
admits both types of symmetric equilibrium in the FPA. First, since the support of type-
(Vm, L) bidders must be lower than those of type-(Vm, H) , (Vh, L), and (Vh, H) bidders in
both equilibria, the upper limit of type-(Vm, L) bidders’ mixed strategies in both equilibria
must be the same, which we denote by b̄(Vm,L).

Let b̄eff
(Vh,L) be the upper limit of the mixed strategy support of type-(Vh, L) bidder in

the efficient equilibrium and let b̄ineff
(Vm,H) be the upper limit of the mixed strategy support of

type-(Vm, H) bidder in the inefficient equilibrium. We then consider two possible cases:
Case 1: b̄eff

(Vh,L) � b̄ineff
(Vm,H). This case is illustrated in Fig. 3. Since in the inefficient equilib-

rium type-(Vh, L) bidder is indifferent between any bids in
[
b̄(Vm,L), b̄

ineff
(Vh,L)

]
, her expected

Vl

Vl

b(Vm,L) b(Vh,L)

ineff
b(Vm,H)

ineff
b(Vh,H)

ineff

b(Vm,L) b(Vh,L)

eff
b(Vm,H)

eff
b(Vh,H)

eff

 
Inefficient Equilibrium

Efficient Equilibriumr

Fig. 3. Case 1 in the Proof of Proposition 3.
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surplus in the inefficient equilibrium is the same as that when she bids b̄(Vm,L) (recall our
tie-breaking rule), which is simply

Z1=
(
Vh−b̄(Vm,L)

){ plql∑
k∈{l,m,h} pkqk

+ pmqm (1−qh)∑
k∈{l,m,h} pkqk

}
, (A.11)

where the term in the bracket is the expected probability of winning against bidders with Vl

valuation and type-(Vm, L) bidders. Given that her opponent follows the prescribed strategy
in the inefficient equilibrium, her expected payoff from deviating to a bid of b̄ineff

(Vm,H) is

Z2=
(
Vh−b̄ineff

(Vm,H)

){ plql∑
k∈{l,m,h} pkqk

+ pmqm∑
k∈{l,m,h} pkqk

+ phqh (1−qh)∑
k∈{l,m,h} pkqk

}
,

(A.12)

where the term in the bracket is the expected probability of winning against bidders with
Vl and Vm valuations and type-(Vh, L) bidders. By the requirement of the inefficient equi-
librium, we have Z1 > Z2. 12 Moreover, since in this case Vh > b̄eff

(Vh,L) � b̄ineff
(Vm,H) by

assumption, we immediately have

Z2 �
(
Vh − b̄eff

(Vh,L)

){ plql∑
k∈{l,m,h} pkqk

+ pmqm∑
k∈{l,m,h} pkqk

+ phqh (1 − qh)∑
k∈{l,m,h} pkqk

}
.

(A.13)

But the right-hand side of inequality (A.13) is exactly type-(Vh, L) bidder’s expected surplus
in the efficient equilibrium, which by the definition of the efficient equilibrium is required to
be larger than Z1 [as given by expression (A.11)]. This is so because Z1 is also type-(Vh, L)

bidder’s expected surplus from deviating to a bid of b̄(Vm,L) in the efficient equilibrium.
Thus we have Z2 �Z1, which is a contradiction to our earlier conclusion that Z1 > Z2.

Case 2: b̄eff
(Vh,L) < b̄ineff

(Vm,H). A contradiction can be derived for type-(Vm, H) bidder using
arguments analogous to Case 1. �

Proof of Proposition 4. Consider an example of the model presented in Section 2 as fol-
lows:

• Vl = 0, Vm = 1 and Vh = 2. We can set Vl = 0 and Vm = 1 by normalization and scaling
with no loss of generality. For the inefficient equilibrium described below to exist, Vh

cannot be too high relative to Vm.
• pl = pm = ph = 1/3. That is, ex ante bidders’ valuations of the object take on the

three values with equal probability. This assumption is purely for computational ease in
Bayesian updating;

12 The strict, rather than the usual weak, inequality, is valid because, tedious algebra shows that the deviation

surplus function is strictly decreasing in the whole interval
[
b̄ineff
(Vh,L)

, b̄ineff
(Vm,H)

]
in order to be consistent with the

inefficient equilibrium.
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• ql = 0.9, qm = 0.1, qh = 0.05. As we described in the beginning of this section, the
intuition for inefficient equilibrium requires that ql be big, qm to be small, and qh even
smaller.

As in the example in Section 3, we know that bidders with valuation type Vl will bid Vl

regardless of their information types. Now we show that the following mixed strategies for
the other types of bidders constitute the unique symmetric equilibrium:

• Type-(Vm, L) bidders bid according to a mixed strategy on the support
[
Vl, b̄(Vm,L)

]
with

CDF G(Vm,L) (·) where

b̄(Vm,L) = q2
mVm + qlVl

ql + q2
m

,

G(Vm,L) (b) = ql

q2
m

(
b − Vl

Vm − b

)
.

• Type-(Vh, L) bidders bid according to a mixed strategy on the support
[
b̄(Vm,L), b̄(Vh,L)

]
with CDF G(Vh,L) (·) where

b̄(Vh,L) = [ql + qmqh] b̄(Vm,L) + q2
hVh

ql + qmqh + q2
h

,

G(Vh,L) (b) = ql + qmqh

q2
h

b − b̄(Vm,L)

Vh − b
.

• Type-(Vm, H) bidders bid according to a mixed strategy on the support
[
b̄(Vh,L), b̄(Vm,H)

]
with CDF G(Vm,H) (·) where

b̄(Vm,H) = [1 − ql + (1 − qm) qm + (1 − qh) qm] b̄(Vh,L) + (1 − qm)2 Vm

1 − ql + (1 − qm) qm + (1 − qh) qm + (1 − qm)2 ,

G(Vm,H) (b) = 1 − ql + (1 − qm) qm + (1 − qh) qm

(1 − qm)2

b − b̄(Vh,L)

Vm − b
.

• Type-(Vh, H) bidders bid according to a mixed strategy on the support
[
b̄(Vm,H), b̄(Vh,H)

]
with CDF G(Vh,H) (·) where

b̄(Vh,H) = (1 − qh)
2 Vh + [

3 − ql − qm − qh − (1 − qh)
2] b̄(Vm,H)

3 − ql − qm − qh

,

G(Vh,H) (b) =
[

3 − ql − qm − qh − (1 − qh)
2

(1 − qh)
2

]
b − b̄(Vm,H)

Vh − b
.

Under the above parameterization,

b̄(Vh,H) ≈ 1.32531 > b̄(Vm,H) ≈ 0.744012

> b̄(Vh,L) ≈ 0.0164684 > b̄(Vm,L) ≈ 0.010989 > Vl = 0.

To show that the above strategy profile constitutes an equilibrium, we need to demonstrate
that, given that the opponent follows the postulated strategies, each type-(v, s) bidder, where
v ∈ {Vm, Vh} and s ∈ {L, H }, obtains a constant expected surplus from any bids in the
support of the CDF G(v,s) (·), which is in turn higher than the expected surplus from any
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other deviation bids. The details of the verifications are straightforward but arithmetically
tedious, and can be found at Appendix A of Fang and Morris [11]. �

Proof of Proposition 5. Using standard ε-deviation arguments, we can show that (1) bid-
ders with valuation Vl must bid Vl in pure strategy in any equilibrium; (2) each bidder of
type-(Vh, L) and type-(Vh, H) must bid in mixed strategies with bids higher than Vl ; (3)
the highest bid that may be submitted by each bidder must be the same; (4) there is no gap
in the bids submitted in equilibrium. We denote the mixed strategy CDF of type-(Vh, L)

and type-(Vh, H) bidder i by Gi(Vh,L) and Gi(Vh,H) respectively, where i = 1, 2.
Next, we show that for each bidder i, the supports of Gi(Vh,L) and Gi(Vh,H) cannot overlap

at more than one point. Without loss of generality, consider bidder 1. Let B1 be the set of
points in which the supports of Gi(Vh,L) and Gi(Vh,H) overlap. For any overlap bid b ∈ B1,
the following must be true:

(Vh − b)

[
plq1

plq1 + ph (1 − q1)
+ ph (1 − q1) (1 − q2) G2(Vh,L) (b)

plq1 + ph (1 − q1)

+ph (1 − q1) q2G2(Vh,H) (b)

plq1 + ph (1 − q1)

]
= K̃1(Vh,L),

(Vh − b)

[
pl (1 − q1)

pl (1 − q1) + phq1
+ phq1 (1 − q2) G2(Vh,L) (b)

pl (1 − q1) + phq1

+phq1q2G2(Vh,H) (b)

pl (1 − q1) + phq1

]
= K̃1(Vh,H).

Similar to the arguments in step 2 of the proof of Lemma A.3, the above system equations
can hold for at most one value of b.

Therefore, we are left with four possible cases to consider depending on the order of the
supports of type-(Vh, L) and (Vh, H) mixed strategies for each bidder. We will derive a
contradiction for one of the cases, and the other cases can be dealt with analogously.

We consider the following case: The support of Gi(Vh,L) is
[
Vl, b̄i(Vh,L)

]
and the support

of Gi(Vh,H) is [b̄i(Vh,L), b̄i(Vh,H)]. From discussions above, b̄1(Vh,H) = b̄2(Vh,H) = b̄(Vh,H).
Step 1: Simple calculation shows that it must be the case that b̄1(Vh,L) > b̄2(Vh,L).
Step 2: From the necessary indifference condition of type-(Vh, L) bidder 1 in the interval[

Vl, b̄2(Vh,L)

]
, we can obtain G2(Vh,L):

(Vh − b)

[
plq1

plq1 + ph (1 − q1)
+ ph (1 − q1) (1 − q2) G2(Vh,L) (b)

plq1 + ph (1 − q1)

]

= (Vh − Vl)
plq1

plq1 + ph (1 − q1)

⇒ G2(Vh,L) (b) = plq1

ph (1 − q1) (1 − q2)

b − Vl

Vh − b
,

b̄2(Vh,L) = ph (1 − q1) (1 − q2) Vh + plq1Vl

ph (1 − q1) (1 − q2) + plq1
.
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Step 3: The indifference condition for type-(Vh, L) bidder 2 requires that G1(Vh,L) (b)

must satisfy, for b ∈ [Vl, b̄2(Vh,L)

]
,

(Vh − b)

[
plq2

plq2 + ph (1 − q2)
+ ph (1 − q2) (1 − q1) G1(Vh,L) (b)

plq1 + ph (1 − q2)

]

= (Vh − Vl)
plq2

plq2 + ph (1 − q2)

from which we can obtain G1(Vh,L) (b) for b ∈ (Vl, b̄2(Vh,L)] as

G1(Vh,L) (b) = plq2

ph (1 − q1) (1 − q2)

b − Vl

Vh − b
.

Step 4: To obtain the G1(Vh,L) (b) for b ∈ [b̄2(Vh,L), b̄1(Vh,L)

]
, we make use of the indif-

ference condition of type-(Vh, H) bidder 2, which is given by

(Vh − b)

[
pl (1 − q2)

pl (1 − q2) + phq2
+ phq2 (1 − q1)

pl (1 − q2) + phq2
G1(Vh,L) (b)

]

= (
Vh − b̄2(Vh,L)

) [ pl (1 − q2)

pl (1 − q2) + phq2
+ phq2 (1 − q1)

pl (1 − q2) + phq2

×G1(Vh,L)

(
b̄2(Vh,L)

) ]

hence, for b ∈ [b̄2(Vh,L), b̄1(Vh,L)

]
G1(Vh,L) (b)

=pl(1−q2)
[
b−b̄2(Vh,L)

]+phq2(1−q1)G1(Vh,L)

(
b̄2(Vh,L)

) [
Vh−b̄2(Vh,L)

]
phq2 (1 − q1) (Vh − b)

.

Setting G1(Vh,L) (b) = 1, we obtain

b̄1(Vh,L) =
phq2(1−q1)

{[
1−G1(Vh,L)(b̄2(Vh,L))

]
Vh+G1(Vh,L)(b̄2(Vh,L))b̄2(Vh,L)

}+pl(1−q2)b̄2(Vh,L)

phq2(1−q1)+pl(1−q2)
.

Step 5: The indifference condition of type-(Vh, L) bidder 1 for the bids in the interval[
b̄2(Vh,L), b̄1(Vh,L)

]
requires that G2(Vh,H) (b) for b ∈ [b̄2(Vh,L), b̄1(Vh,L)

]
must satisfy

(Vh − b)

[
plq1

plq1 + ph (1 − q1)
+ ph (1 − q1) (1 − q2)

plq1 + ph (1 − q1)

+ ph (1 − q1) q2

plq1 + ph (1 − q1)
G2(Vh,H) (b)

]
= (Vh − Vl)

plq1

plq1 + ph (1 − q1)

thus,

G2(Vh,H) (b) = b − Vl

Vh − b

plq1

ph (1 − q1) q2
− ph (1 − q1) (1 − q2)

ph (1 − q1) q2

from which can obtain G2(Vh,H)

(
b̄1(Vh,L)

)
.
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Vl

Vl b1(Vh,L)

b2(Vh,L)

b1(Vh,H)

b2(Vh,H)

Bidder 1

Bidder 2

Fig. 4. A graphic illustration of the Proof of Proposition 5.

Step 6: The indifference condition of type-(Vh, H) bidder 2 requires that G1(Vh,H) (b)

satisfy

(Vh−b)

[
pl(1−q2)

pl(1−q2)+phq2
+ phq2(1−q1)

pl(1−q2)+phq2
+ phq2q1

pl(1−q2)+phq2
G1(Vh,H)(b)

]

= (Vh−b̄2(Vh,L)

) [ pl (1−q2)

pl (1−q2) +phq2
+ phq2 (1−q1)

pl (1−q2) +phq2
G1(Vh,L)

(
b̄2(Vh,L)

)]
,

which implies a value for b̄1(Vh,H).
Step 7: Likewise, the indifference condition of type-(Vh, H) bidder 1 requires that

G2(Vh,H) (b) satisfy, for b ∈ [b̄1(Vh,L), b̄2(Vh,H)

]
,

(Vh−b)

[
pl (1−q1)

pl (1−q1) +phq1
+ phq1

pl (1−q1) +phq1
G2(Vh,H) (b)

]

=(Vh−b̄1(Vh,L))

[
pl(1−q1)

pl(1−q1)+phq1
+ phq1

pl(1−q1)+phq1
G2(Vh,H)(b̄1(Vh,L))

]
,

which implies a value for b̄2(Vh,H).
Step 8: For generic values of 〈Vl, Vh, pl, q1, q2〉, b̄1(Vh,H) and b̄2(Vh,H) are not equal,

which contradicts the equilibrium requirement by the standard ε-deviation argument. (see
Fig. 4 for a graphic illustration of the above steps). �

Appendix B.

In this appendix, we provide a proof that the seller receives the same expected revenue
from the FPA and the SPA in an IPV environment where the valuations are drawn from a dis-
crete distribution. This extends Maskin and Riley [21] who showed the revenue equivalence
for an environment with two bidders and two valuations. There are n agents bidding for a
single object. The bidders’ valuations are independent drawn from a discrete distribution
with values 0 < V1 < V2 < · · · < Vm, and the probability of Vj is written as pj ∈ (0, 1).
Assume that ties are broken as in Section 2.

Proposition B.1. The seller’s expected revenue is the same under the SPA and the FPA in
the above environment.
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Proof. The weakly dominant strategy equilibrium in the SPA is for each bidders to bid her
own valuation. Maskin and Riley [22] showed that the FPA will admit a unique symmetric
equilibrium. In this equilibrium, type-V1 bids V1 with probability 1; type-V2 bids in a mixed
strategy on

[
V1, b̄2

]
; and in general type-Vk bids in a mixed strategy on

[
b̄k−1, b̄k

]
where

b̄k > b̄k−1.
Due to the monotonicity of the equilibrium bidding strategy, the expected probabilities of

winning for a type-Vk bidder under both FPA and SPA are the same and they are
∑k−1

j=1 pj +
pk/n. Since a type-Vk bidder’s expected payoff is given by her expected probability of
winning × Vk minus her expected payment, her expected payment must be the same under
the FPA and the SPA if her expected payoffs are the same, which we show below. Clearly,
the expected payoffs for type-V1 bidders are 0 under both the SPA and the FPA.

For k = 2, . . . , m, a type-Vk bidder’s equilibrium expected payoff in the SPA is given
by

(p1)
n−1 (Vk − V1) +

[
(p1 + p2)

n−1 − pn−1
1

]
(Vk − V2)

+ · · · +
⎡
⎢⎣
⎛
⎝k−1∑

j=1

pj

⎞
⎠

n−1

−
⎛
⎝k−2∑

j=1

pj

⎞
⎠

n−1
⎤
⎥⎦ (Vk − Vk−1) ,

(B.1)

where (p1)
n−1 and

(∑k−1
j=1 pj

)n−1 −
(∑k−2

j=1 pj

)n−1
are respectively the probability that

the highest value among the n − 1 opponents is V1 and Vk .
In the unique symmetric equilibrium of the FPA, for k�2, a type-Vk bidder will bid in

a mixed strategy on a support
[
b̄k−1, b̄k

]
; thus her expected payoff is equal to that from

bidding b̄k−1. Given the tie-breaking rule, a bid of b̄k−1 by a type-Vk bidder will win
when all her n − 1 opponents have valuation lower than Vk , which occurs with probability(∑k−1

j=1 pj

)n−1
. Thus her expected payoff from bidding b̄k−1 is

⎛
⎝k−1∑

j=1

pj

⎞
⎠

n−1 (
Vk − b̄k−1

)
. (B.2)

It can be verified, by induction, that b̄k−1, for k�2, must satisfy⎛
⎝k−1∑

j=1

pj

⎞
⎠

n−1

b̄k−1 = (p1)
n−1 V1 +

[
(p1 + p2)

n−1 − (p1)
n−1
]
V2

+ · · · +
⎡
⎢⎣
⎛
⎝k−1∑

j=1

pj

⎞
⎠

n−1

−
⎛
⎝k−2∑

j=1

pj

⎞
⎠

n−1
⎤
⎥⎦Vk. (B.3)

Plugging (B.3) into (B.2), we immediately show that type-Vk bidder’s expected payoff in
the FPA is identical to that in the SPA given by expression (B.1). Thus all types of bidders’
expected payment must be the same under the FPA and the SPA. Hence the seller’s expected
revenue must be the same. �
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