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Convergence of Matched Sums

In this section, we derive general convergence results for sums within the matched sample

S∗ that we will later use to establish consistency and asymptotic normality of the various

estimators in this article. The main tool behind these lemmas is a martingale representation

similar to Abadie and Imbens (2012).

Let F (Y,W, S) be a (s× t)-matrix of real-valued measurable functions,

Φ1(x) = E[F (Y,W, S)|W = 1, X = x], Φ0(x) = E[F (Y,W, S)|W = 0, X = x],

Φ̂ =
1

n

n∑
i=1

F (Yni,Wni, Sni),

and

Φ = E∗[F (Y, T, S)] = E

[
1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]
.

Lemma A.1. Under Assumptions 1 to 3, and if

(a.1) Φ0(·) is (component-wise) Lipschitz on X0,

(a.2) E[‖F (Y,W, S)‖2|W = w,X = x] is uniformly bounded on Xw, for w ∈ {0, 1},

then Φ̂
p−→ Φ.

Proof: Because Φ̂ converges in probability if and only if each of its components converges,

we assume without loss of generality that s = t = 1. We decompose

Φ̂ =
1

n

N∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)

)
+

1

n

n∑
i=1

(
F (Yni,Wni, Sni)− ΦWni

(Xni)
)

+
1

n

N∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)
.
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The first term on the right-hand side of the last equation is a sum of i.i.d. random variables.

Hence, by the weak law of large numbers, we have that

1

n

n∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)

)
p−→ E

[
1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]
= Φ.

For the second sum, notice that,

var

(
1

n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi

(Xi)
)∣∣∣∣∣ X1, . . . , XN ,

W1, . . . ,WN

)

=
1

n2

n∑
i=1

var(F (Y,W, S)|W = Wi, X = Xi)

which (by Assumption (a.2) in the lemma) is bounded by a sequence that converges to

zero. By the law of total variance, we obtain

var

(
1

n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi

(Xi)
))
−→ 0.

For the third sum, Assumption (a.1) in the lemma implies∣∣∣∣∣∣ 1n
n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)∣∣∣∣∣∣ ≤ 1

n

n∑
i=1

Wi

∑
j∈J (i)

∣∣∣Φ0(Xj)− Φ0(Xi)
∣∣∣

≤ L√
n

 1√
n

n∑
i=1

Wi

∑
j∈J (i)

d(Xj, Xi)

 p−→ 0,

for some Lipschitz constant L.

Lemma A.2. In the setup of Lemma A.1, let t = 1, and define

Ψ1(x) = var(F (Y,W, S)|W = 1, X = x), Ψ0(x) = var(F (Y,W, S)|W = 0, X = x),

which are (s × s)-matrices. Suppose that, in addition to the assumptions of Lemma A.1,

we have

(a.3) Ψ0(·) is (component-wise) Lipschitz on X0,

(a.4) E[‖F (Y,W, S)‖2+δ|W = w,X = x] is uniformly bounded on Xw for all w ∈ {0, 1}

and some δ > 0.
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Then,

√
n(Φ̂− Φ)

d−→ N (0, V ∗)

where

V ∗ =
var
(

Φ1(X) +MΦ0(X)
∣∣W = 1

)
M + 1

+
E
[
Ψ1(X) +MΨ0(X)

∣∣W = 1
]

M + 1
.

Proof: Fix λ ∈ Rs. We decompose

√
n(Φ̂− Φ)′λ

=
1√
n

n∑
i=1

Wi

(
Φ1(Xi) +MΦ0(Xi)− Φ(Xi)

)′
λ+

1√
n

n∑
i=1

(
F (Yi,Wi, Si)− ΦWi

(Xi)
)′
λ

+
1√
n

n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)′
λ.

The last term on the right-hand side of last equation vanishes in probability:∣∣∣∣∣∣ 1√
n

n∑
i=1

Wi

∑
j∈J (i)

(
Φ0(Xj)− Φ0(Xi)

)′
λ

∣∣∣∣∣∣ ≤ 1√
n

n∑
i=1

Wi

∑
j∈J (i)

∥∥Φ0(Xj)− Φ0(Xi))
∥∥‖λ‖

≤ ‖λ‖L√
n

n∑
i=1

Wi

∑
j∈J (i)

d(Xj, Xi)
p−→ 0

for an appropriate Lipschitz constant L.

The first two parts of the sum form a martingale. Consider the filtration

Fi =

{
σ(W1, . . . ,WN , X1, . . . , Xi), i ≤ N1,

σ(W1, . . . ,WN , X1, . . . , XN , (Y1, S1), . . . , (Yi−N , Si−N)), N1+1 ≤ i ≤ N1+n.

Then,

ξi =


1√
n
Wi

(
Φ1(Xi) +MΦ0(Xi)− Φ

)′
λ, i ≤ N1,

1√
n

(
F (Yi−N ,Wi−N , Si−N)− ΦWi−N (Xi−N)

)′
λ, N1 + 1 ≤ i ≤ N1 + n
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is a martingale difference array with respect to the filtration F . Also, notice that

N1+n∑
i=1

E[ξ2
i |Fi−1] =

1

n

N1∑
i=1

var
(

(Φ1(X) +MΦ0(X))′λ
∣∣W = 1

)
+

1

n

n∑
i=1

var
(
F (Y,W, S)′λ

∣∣W = Wi, X = Xi

)
=
λ′var(Φ1(X) +MΦ0(X)|W = 1)λ

1 +M
+

1

n

n∑
i=1

λ′ΨWi
(Xi)λ,

where the last term converges in probability to

λ′E

[
1

M + 1
Ψ1(X) +

M

M + 1
Ψ0(X)

∣∣∣W = 1

]
λ,

by Lemma A.1. Hence,

N1+n∑
i=1

E[ξ2
i |Fi−1]

p−→ λ′V ∗λ.

Next, note that

|ξi| ≤

{
1√
n
‖Φ1(Xi) +MΦ0(Xi)− Φ‖2‖λ‖2, i ≤ N1,

1√
n
‖F (Yi−N ,Wi−N , Si−N)− ΦWi−N (Xi−N)‖2‖λ‖2, N1 + 1 ≤ i ≤ N1 + n

≤

{
1√
n
(‖Φ1(Xi)‖2 +M‖Φ0(Xi)‖2 + ‖Φ‖2)‖λ‖2, i ≤ N1,

1√
n
(‖F (Yi−N ,Wi−N , Si−N)‖2 + ‖ΦWi−N (Xi−N)‖2)‖λ‖2, N1 + 1 ≤ i ≤ N1 + n

by the Cauchy-Schwarz and triangle inequalities. It follows that

E[|ξi|2+δ] ≤

{
‖λ‖2+δ2

n1+δ/2E
[
(‖Φ1(Xi)‖2 +M‖Φ0(Xi)‖2 + ‖Φ‖2)2+δ

]
, i ≤ N1,

‖λ‖2+δ2

n1+δ/2E
[
(‖F (Yi−N ,Wi−N , Si−N)‖2 + ‖ΦWi−N (Xi−N)‖2)2+δ

]
, i > N1

≤

{
‖λ‖2+δ2

n1+δ/2

(
(E[‖Φ1(Xi)‖2+δ

2 ])1/(2+δ) +M(E[‖Φ0(Xi)‖2+δ
2 ])1/(2+δ) + (‖Φ‖2+δ

2 )1/(2+δ)
)2+δ

‖λ‖2+δ2

n1+δ/2

(
(E[‖F (Yi−N ,Wi−N , Si−N)‖2+δ

2 ])1/(2+δ) + (E[‖ΦWi−N (Xi−N)‖2+δ
2 ])1/(2+δ)

)2+δ

where the latter inequality is implied by Minkowski’s inequality. By assumption (a.3), note

that for both w ∈ {0, 1} and x ∈ Xw, by Jensen’s inequality we have

‖Φw(x)‖2+δ
2 = ‖E[F (Y,W, S)|W = w,X = x]‖2+δ

2 )

≤ E[‖F (Y,W, S)‖2+δ
2 |W = w,X = x] ≤ C
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and hence E[‖Φw(X)‖2+δ
2 ] ≤ C, while also

‖Φ‖2+δ
2 =

∥∥∥∥E [ 1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∣∣∣W = 1

]∥∥∥∥2+δ

2

≤ E

[∥∥∥∥ 1

M + 1
Φ1(X) +

M

M + 1
Φ0(X)

∥∥∥∥2+δ

2

∣∣∣W = 1

]

≤ E

[(
1

M + 1
C1/(2+δ) +

M

M + 1
C1/(2+δ)

)2+δ ∣∣∣W = 1

]
≤ C

and

E[‖F (Yi−N ,Wi−N , Si−N)‖2+δ
2 ] = E[E[| F (Yi−N ,Wi−N , Si−N)‖2+δ

2 |Wi−N , Xi−N ]] ≤ C

for some uniform constant C. Hence,

E[|ξi|2+δ] ≤

{
‖λ‖2+δ2

n1+δ/2 (M + 2)2+δC, i ≤ N1,

22+δC, N1 + 1 ≤ i ≤ N1 + n

≤ ‖λ‖
2+δ
2

n1+δ/2
(M + 2)2+δC,

from which we obtain Lyapounov’s condition, namely that

N1+n∑
i=1

E[|ξi|2+δ] ≤ N1 + n

n

‖λ‖2+δ
2 (M + 2)2+δC

nδ/2
→ 0.

Hence, by the Lindeberg–Feller Martingale Central Limit Theorem,

√
n(Φ̂− Φ)′λ =

N1+n∑
i=1

ξi + oP (1)
d−→ N (0, λ′V ∗λ).

The assertion of the lemma follows now from the Cramér-Wold device.

The Matched Bootstrap

In this section, we develop a general result for the coupled resampling of martingale incre-

ments that we then apply to the matched bootstrap.

Proposition A.1. Let λ ≥ 1 be fixed. Assume we have a collated martingale difference

array

{ζ(1)
n1 , . . . , ζ

(1)
nn , ζ

(2)
n1 , . . . , ζ

(2)
nn , . . . , ζ

(λ)
n1 , . . . , ζ

(λ)
nn }, n ≥ 1,
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with respect to the filtration array

{F (1)
n1 , . . . ,F (1)

nn ,F
(2)
n1 , . . . ,F (2)

nn , . . . ,F
(λ)
n1 , . . . ,F (λ)

nn }, n ≥ 1,

and the following properties:

1. For all ` ∈ {1, . . . , λ},
n∑
i=1

E[(ζ
(`)
ni )2|F (`)

n(i−1)]
p−→ σ2

` , (S.1)

where F (`+1)
n,0 = F (`)

nn for all ` ∈ {1, . . . , λ− 1}.

2. There exist some C > 0 and δ > 0 such that for all ni`,

E[(ζ
(`)
ni )4] ≤ C

n1+δ
. (S.2)

Consider the sum of increments

Sn =
λ∑
`=1

n∑
i=1

ζ
(`)
ni

and the bootstrapped sum of coupled increments

Tn =
λ∑
`=1

n∑
i=1

(V
(`)
ni − 1)ζ

(`)
ni ,

where (V
(λ)
n1 , . . . , V

(λ)
nn ) is multinomially distributed with parameters (n;n−1, . . . , n−1) inde-

pendent of the data, and

V
(`)

nι
(`)
n (i)

= V
(λ)
ni

for all i ∈ {1, . . . , n}, ` ∈ {1, . . . , λ − 1} and F (1)
nn -measurable bijections ι

(`)
n : {1, . . . , n} →

{1, . . . , n}.

Then, we have convergence of the sum,

Sn
d−→ N (0, σ2), (S.3)
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where σ2 =
∑λ

`=1 σ
2
` , and conditional convergence of the bootstrapped sum,

sup
x∈R

∣∣P (Tn ≤ x
∣∣F (λ)

nn

)
− Φ(x/σ)

∣∣ p−→ 0, (S.4)

as n→∞.

Note that from convergence of the bootstrapped sum conditional on the data (that is, (S.4))

follows unconditional convergence Tn
d−→ N (0, σ2).

Proof: Notice that

λ∑
`=1

n∑
i=1

E[(ζ
(`)
ni )2|F (`)

n(i−1)]
p−→
∑
`

σ2
`

as n → ∞ by (S.1). Lyapounov’s condition follows directly from (S.2.). Hence, (S.3)

follows via the Martingale Central Limit Theorem.

For (S.4), our goal is to modify the proof of Theorem 2.1 in Pauly (2011) for the case of

coupled resampling. We do so by considering the coupled increments

Zni =
λ∑
`=1

ζ
(`)

nι
(`)
n (i)

,

where ι
(λ)
n is the identity. For these increments,

Sn =
n∑
i=1

Zni

and

Tn =
n∑
i=1

(Vni − 1)Zni =
n∑
i=1

Vni(Zni − Zn),

corresponding to weights Wni = Vni/
√
n that fulfill equations (2.3), (2.4) and (2.5) in Pauly

(2011). Note, however, that (Zni)i is not a martingale difference array any more; hence,

we cannot apply Theorem 2.1 directly, but instead invoke Theorem 4.1 in the appendix of

Pauly (2011), which holds for more general triangular arrays of random variables.
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Equation (4.1) in Theorem 4.1 of Pauly (2011) follows from the boundedness condition

(S.2) by noting that

max
i≤n,`≤λ

|ζ(`)
ni | ≤

∑
`≤λ

max
i≤n
|ζ(`)
ni |

and that

max
i≤n
|ζ(`)
ni |

p−→ 0

is equivalent to the weak Lindeberg condition

n∑
i=1

(ζ
(`)
ni )2I|ζ(`)ni |>ε

p−→ 0 ∀ε > 0,

which is implied by (S.2) via Lyapounov’s condition.

For (4.2), note that

n∑
i=1

(Zni − Zn)2 =
n∑
i=1

Z2
ni − Zn

n∑
i=1

Zni =
n∑
i=1

(
λ∑
`=1

ζ
(`)

nι
(`)
n (i)

)2

−

(
n∑
i=1

Zni

)2

/n

=
λ∑
`=1

n∑
i=1

(
ζ

(`)
ni

)2

+ 2
λ∑
`=2

`−1∑
`=1

n∑
i=1

ζ
(`)

nι
`
n(i)
ζ

(`)

nι`n(i)
−
(
Sn√
n

)2

.

Now,

A
(`)
ni = (ζ

(`)
ni )2 − E[(ζ

(`)
ni )2|F (`)

n(i−1)]

defines a martingale difference array with respect to the filtration array F (`)
ni for all 1 ≤ ` ≤

λ, and

B`,`
ni = ζ

(`)

nι
`
n(i)
ζ

(`)

nι`n(i)
,

defines a martingale difference array with respect to the filtration array F (`)
ni (where we

have used F (1)
nn -measurability of all ι`n) for all 1 ≤ ` < ` ≤ λ, In both cases, the increments

have second moments bounded by C
n1+δ by (S.2). Indeed,

E[(A
(`)
ni )

2] = E[(ζ
(`)
ni )4]− E[E[(ζ

(`)
ni )2|F (`)

n(i−1)]
2] ≤ E[(ζ

(`)
ni )4] ≤ C

n1+δ
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and

E[(B`,`
ni )

2] = E[(ζ
(`)

nι
`
n(i)

]2(ζ
(`)

nι`n(i)
)2) ≤

√
E[(ζ

(`)

nι
`
n(i)

]4)

√
E[(ζ

(`)

nι`n(i)
)4] ≤ C

n1+δ

by the Cauchy-Schwarz inequality. Now, for any martingale difference array (Cni)
n
i=1 with

EC2
ni ≤ C

n1+δ ,

E

(
n∑
i=1

Cni

)2

=
n∑
i=1

EC2
ni ≤

C

nδ
→ 0

and hence

n∑
i=1

Cni
p−→ 0

as n→∞. It follows that

n∑
i=1

(Zni − Zn)2 =
λ∑
`=1

n∑
i=1

E[(ζ
(`)
ni )2|F (`)

n(i−1)]︸ ︷︷ ︸
p−→σ2

`

+
λ∑
`=1

n∑
i=1

A
(`)
ni︸ ︷︷ ︸

p−→0

+2
λ∑
`=2

`−1∑
`=1

n∑
i=1

B`,`
ni︸ ︷︷ ︸

p−→0

−
(
Sn√
n

)2

︸ ︷︷ ︸
p−→0

p−→
λ∑
`=1

σ2
` = σ2,

where we have used (S.1) and the unconditional convergence result (S.3).

Finally, note that the Zni are a sufficient statistic of F (λ)
nn for calculating Tn, incorporating

sufficient information about both the ζ
(`)
ni and ι`n. Hence, (S.4) follows from Theorem 4.1

in the appendix of Pauly (2011).

We now apply this result to our matching setting:

Proposition A.2. Under the setup and assumptions of Lemma A.2, and also

(a.5) E[F 4
k (Y,W, S)|W = w,X = x] uniformly bounded on X for all k, w ∈ {0, 1},

consider the bootstrapped sum

Φ̂∗ =
1

n

∑
Wi=1

Vi

F (Yi,Wi, Si) +
∑
j∈J (i)

F (Yj,Wj, Sj)

 ,
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where V is multinomial with parameters (N1;N−1
1 , . . . , N−1

1 ) independent of the data. Then,

sup
r∈Rs

∣∣∣Pw

(√
n(Φ̂∗ − Φ̂) ≤ r

∣∣∣S)− P (N (0, V ∗) ≤ r)
∣∣∣ p−→ 0.

Proof: Fix λ ∈ Rs. Similar to the proof of Lemma A.2, we decompose

√
n(Φ̂∗ − Φ̂)′λ =

√
n((Φ̂∗ − Φ)− (Φ̂− Φ))′λ

=
1√
n

( ∑
Wi=1

(Vi − 1)(Φ1(Xi) +MΦ0(Xi)− Φ)′λ

+
∑
i∈S∗

(Vi − 1)(F (Y,W, S)− ΦWi
(Xi))

′λ
)

+
1√
n

∑
Wi=1

(Vi − 1)
∑
j∈J (i)

(Φ0(Xj)− Φ0(Xi))
′λ.

The last part of the sum still vanishes in probability, as

E

∣∣∣∣∣∣ 1√
n

∑
Wi=1

(Vi − 1)
∑
j∈J (i)

(Φ0(Xj)− Φ0(Xi))
′λ

∣∣∣∣∣∣
∣∣∣∣∣∣S


≤ 1√
n

∑
Wi=1

∑
j∈J (i)

E(|Vi − 1|)︸ ︷︷ ︸
≤2

|(Φ0(Xj)− Φ0(Xi))
′λ|

≤ 2√
n

∑
Wi=1

∑
j∈J (i)

|(Φ0(Xj)− Φ0(Xi))
′λ|

≤ 2L√
n

∑
Wi=1

∑
j∈J (i)

d(Xj, Xi)
p−→ 0

for an appropriate Lipschitz constant L = L(λ), where we have used that

E(|Vi − 1|) ≤ E(Vi + 1) = 2.

We can decompose the other parts into martingale increments as in the proof of Lemma A.2:

√
n(Φ̂∗ − Φ̂)′λ =

N1∑
i=1

(Vi − 1)ξi +

(M+2)N1∑
i=N1+1

(Vi−N1 − 1)ξi + oP (1)

The result follows from Proposition A.1, which establishes a general result for the coupled

resampling of martingale difference arrays.
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Proposition A.3. Let X1, X2, . . . be a sequence of real-valued, non-negative, integrable

random variables, and F1,F2, . . . a sequence of conformable σ-algebras. If Xn converges in

distribution to some real-valued, integrable random variable X conditional on Fn, i.e.

sup
x∈R
|P (Xn ≤ x|Fn)− P (X ≤ x)| p→ 0, (S.5)

then, for all ε > 0, P (E[Xn|Fn] ≥ E[X]− ε)→ 1.

Proof. Let ε > 0. By dominated convergence, E[X1X≤M ]→ E[X] as M →∞. Fix M > 0

such that E[X1X≤M ] ≥ E[X]− ε/2. Let δ > 0. By (S.5) there exists N such that

P

(
sup
r∈R
|P (Xn ≤ r|Fn)− P (X ≤ r)| ≤ ε/(2M)

)
≥ 1− δ

for all n ≥ N . Hence, with probability at least 1− δ and for all n ≥ N ,

E[Xn|Fn] =

∫
x≥0

(1− P (Xn ≤ x|Fn))dx ≥
∫ M

x=0

(1− P (Xn ≤ x|Fn))dx

≥
∫ M

x=0

(1− P (X ≤ x))dx−
∫ M

x=0

|P (Xn ≤ r|Fn)− P (X ≤ r)|dx

≥ E[X1X≤M ]−Mε/(2M) ≥ E[X]− ε/2− ε/2 = E[X]− ε.

Conditional Inference

In this article, we have analyzed the unconditional distribution of post-matching estimators.

However, inference conditional on the sample values of the regressors may be appropriate in

some applications; for example, when the sample is the entire population. In this section,

we discuss validity of standard errors conditional on the values of the covariates, X, and

treatment, W (and, as an implication, conditional on the matches).

Abadie et al. (2014) have shown that OLS (EHW) standard errors, which are robust to

misspecification as measures of unconditional variation, are not generally valid as mea-

sures of variation conditional on the values of the regressors when the regression model

is misspecified. They propose an estimator of the conditional variance that is robust to

misspecification.
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Conditional on the values of the covariates, X, and the treatment, W , the untreated units

used as matches for each treated unit are given, and the analysis of Abadie et al. (2014)

goes through. In particular, if the regression model is correctly specified, OLS standard

error estimates are valid measures of conditional variation. If the regression model is not

correctly specified, OLS standard errors are not valid measures of conditional variation,

but the conditional standard errors in Abadie et al. (2014) are.

Table 4: Simulation results from one million Monte Carlo iterations (1000 draws of regres-
sors and 1000 draws of outcomes per draw of regressors)

(a) Target parameter: Coefficient τ0 on W

averages over
regressor draws average standard errors

conditional conditional
spec mean of τ̂0 std. of τ̂0 OLS cluster cond.

(1) (2) (3) (4) (5)

DGP1 1 0.00 0.202 0.359 0.197 0.203
2 0.00 0.202 0.196 0.197 0.201

DGP2 1 6.60 0.202 0.631 0.870 0.209
2 6.60 0.202 0.631 0.870 0.209

(b) Target parameter: Coefficient τ1 on WX

averages over
regressor draws average standard errors

conditional conditional
spec mean of τ̂1 std. of τ̂1 OLS cluster cond.

(1) (2) (3) (4) (5)

DGP1 1 0.99 0.352 0.728 0.341 0.360
2 1.00 0.352 0.338 0.339 0.349

DGP2 1 1.02 0.351 1.324 1.840 0.384
2 1.02 0.351 1.324 1.840 0.384

Table 4 reports simulation results for the same DGPs, specifications and sample sizes em-

ployed in Section 4. The simulation is based on 1000 regressor (X and W ) draws, with 1000

outcome (Y ) draws for each draw of the regressors. Columns (1) and (2) report means and
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standard deviations of regression coefficients conditional on the regressors, averaged over

the 1000 regressor draws. Columns (3), (4) and (5) report OLS standard errors, clustered

standard errors and the conditional standard errors of Abadie et al. (2014), respectively,

averaged over regressor draws. Consistent with the results in Abadie et al. (2014), under

correct specification (DGP1, specification 2), OLS standard errors are valid measures of

the conditional standard deviation of τ̂0 and τ̂1. This is not the case, however, when the

regression function is misspecified (specification 1 for DGP1, and DGP2). Moreover, as

demonstrated in DGP2, clustered standard errors, which are valid for the unconditional

variation, are not generally valid as measures of conditional variation. In DGP1, however,

clustered standard errors provide an appropriate measure of conditional variation because

the conditional means of τ̂0 and τ̂1 are approximately constant across regressor draws (up

to an asymptotically negligible bias term caused by imperfect matches), so the variation in

covariates does not contribute to the total variation of the estimates. By the law of total

variance, the conditional and unconditional variances are thus approximately the same in

this specific case. The conditional standard error estimates from Abadie et al. (2014) are

close to the average standard deviation of τ̂0 and τ̂1.

Generalization to M-Estimators

In this section we generalize the results of the article to M-estimators. Consider

θ̂ = argmin
θ∈Θ

1

n

∑
i∈S∗

m(Ui, θ)︸ ︷︷ ︸
= 1
n

∑n
i=1m(Uni,θ)

, (S.6)

where Ui = (Yi, Zi). Notice that OLS is a special case of (S.6) with

m(Ui, θ) = (Yi − Z ′iθ)2.

The estimand θ0 estimated by θ̂ defined in (S.6) is given by its appropriate population

analogue

θ0 = argmin
θ∈Rk

(1 +M)−1E [m(U, θ) +ME[m(U, θ)|W = 0, X]|W = 1]︸ ︷︷ ︸
=E∗m(U,θ)

. (S.7)
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The following result provides assumptions under which θ̂ is consistent for θ0 and asymp-

totically normal, where we write

s(u, θ) =
∂m(u, θ)

∂θ
, h(u, θ) =

∂2m(u, θ)

∂θ∂θ′
.

Proposition A.4 (Asymptotic distribution of the post-matching M-estimator). Suppose

that Assumptions 1, 2, 3 hold and that

1. θ0 is in the interior of Θ ⊆ Rk, which is compact;

2. If θ 6= θ0 then E∗m(U, θ) 6= E∗m(U, θ0);

3. m(u, θ) is twice continuously differentiable in θ;

4. E∗[|m(U, θ0)|], E∗[‖s(U, θ0)‖] and E∗[‖h(U, θ0)‖] are all finite;

5. h(u, θ) is Lipschitz in θ, uniformly in z;

6. H = E∗[h(U, θ0)] is invertible;

7. E[‖m(U, θ)‖2|W = w,X = x], E[‖s(U, θ)‖2+δ|W = w,X = x], E[‖h(U, θ)‖2|W =

w,X = x] are bounded on Xw for w = 0, 1 and some δ > 0, for all θ ∈ Θ;

8. E[m(U, θ)|W = 0, X = x], E[s(U, θ)|W = 0, X = x], E[h(U, θ)|W = 0, X = x],

var(s(U, θ)|W = 0, X = x) are componentwise Lipschitz in x with respect to d(·, ·),

for all θ ∈ Θ.

Then, θ̂ is
√
n-consistent for θ0 and asymptotically normal,

√
n(θ̂ − θ0)

d−→ N (0, H−1JH−1),

where

J =
var
(
E[s(U, θ0)|X,W = 1] +ME[s(U, θ0)|X,W = 0]

∣∣W = 1
)

1 +M

+
E
[
var(s(U, θ0)|X,W = 1] +Mvar(s(U, θ0)|X,W = 0)

∣∣W = 1
]

1 +M
.
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Sketch of the proof: First, we show that θ̂
p−→ θ0. Towards this end, write

Q̂(θ) =
1

n

n∑
i=1

m(Uni, θ),

Q(θ) = E∗[m(U, θ)] =
E[m(U, θ)|W = 1] +ME[E[m(U, θ)|X,W = 0]|W = 1]

M + 1
.

We derive consistency from arguing that

sup
θ∈Θ

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ p−→ 0 (S.8)

with Q(θ) continuous. Indeed, note that by 3, 4, 5 m(u, θ) is Lipschitz in θ and there exists

M(u) with E∗M(U) <∞ and |m(u, θ)| ≤ M(u). Further, |Q̂(θ)−Q(θ)| p−→ 0 as n→∞

for all θ ∈ Θ by Lemma A.1.

We follow the main steps in the proof of Lemma 1 in Tauchen (1985) to establish (S.8).

Fix ε > 0. Note that for fixed θ ∈ Θ

r(u, θ, d) = sup
‖γ−θ‖≤d

|m(u, θ)−m(u, γ)| −→ 0

as d −→ 0. Hence, by dominated convergence E∗r(U, θ, d) ≤ ε whenever d ≤ d̄(θ)(> 0).

Write L for the Lipschitz constant in m(u, θ) (so that |m(u, θ)−m(u, γ)| ≤ L‖θ− γ‖), and

assume wlog that 0 < d̄(θ) < ε/L. By compactness, we can cover Θ by a finite set of open

balls Bk of radius d̄(θk) around θk such that

|Q(θ)−Q(θk)| ≤ ε ∀θ ∈ Bk.

Now, for θ ∈ Bk,∣∣∣Q̂(θ)−Q(θ)
∣∣∣ ≤ 1

n

n∑
i=1

|m(Uni, θ)−m(Uni, θk)|︸ ︷︷ ︸
≤L‖θ−θk‖≤ε

+

∣∣∣∣∣ 1n
n∑
i=1

m(Uni, θk)−Q(θk)

∣∣∣∣∣+ |Q(θk)−Q(θ)|

≤
∣∣∣Q̂(θk)−Q(θk)

∣∣∣︸ ︷︷ ︸
p−→0

+2ε

Hence, supθ∈Bk

∣∣∣Q̂(θ)−Q(θ)
∣∣∣ p−→ 0 for all k, and thus (S.8) with Q continuous; by 1, 2 we

have θ̂
p−→ θ0.
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Second, given consistency, we show asymptotic normality. The FOC for the minimization

in (S.6) is

n∑
i=1

s(Uni, θ̂) = 0.

By the mean-value theorem, there exist θ̄ni with

n∑
i=1

s(Uni, θ0) +
n∑
i=1

h(Uni, θ̄ni)(θ̂ − θ0) = 0,

where ‖θ̄ni − θ0‖ ≤ ‖θ̂ − θ0‖ for all i. Hence,

√
n(θ̂ − θ0) = −

(
1

n

n∑
i=1

h(Uni, θ̄ni)

)−1
1√
n

n∑
i=1

s(Uni, θ0).

By Lipschitz continuity of h (in θ), consistency, and Lemma A.1, 1
n

∑n
i=1 h(Uni, θ̄ni)

p−→ H.

By Lemma A.2, 1√
n

∑n
i=1 s(Uni, θ0)

d−→ N (0, J) (where we use that E∗s(U, θ0) = 0).

Proposition A.4 established
√
n-consistency and asymptotic normality of the post-matching

M-estimator θ̂, analogously to Proposition 2 for post-matching OLS. For inference, we can

estimate the sandwich variance H−1JH−1 from estimates of H and J given by

Ĥ =
1

n

n∑
i=1

h(Ui, θ̂), Ĵ =
1

n

n∑
i=1

Wi

s(Ui, θ̂) +
∑
j∈J (i)

s(Uj, θ̂)

×
s(Ui, θ̂) +

∑
j∈J (i)

s(Uj, θ̂)

′ ,
where Ĥ is the sample analogue of H = E∗[h(U, θ0)] and Ĵ a clustered variance estimate

of s(U, θ0), with clusters given by matched units.

Similar to Proposition 5 for post-matching OLS, the following result establishes conditions

under which these estimates yield consistent standard errors.

Proposition A.5 (Inference for the post-matching M-estimator). Assume the conditions

for Proposition A.4, and also

1. E[‖s(U, θ0)‖4|W = w,X = x] is bounded on Xw for w = 0, 1;

2. E[s(U, θ0)× s(U, θ0)′|W = 0, X = x] is componentwise Lipschitz in x with respect to

d(·, ·).
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Then,

Ĥ
p−→ H, Ĵ

p−→ J.

In particular, standard error estimates are consistent in the sense that

Ĥ−1ĴĤ−1 − nvar(θ̂)
p−→ 0.

Sketch of the proof: By Lipschitz continuity of h (in θ), consistency, and Lemma A.1,

Ĥ
p−→ H. For Ĵ , note first that

Ĵ =
1

n

n∑
i=1

Wi

s(Ui, θ0) +
∑
j∈J (i)

s(Uj, θ0)

×
s(Ui, θ0) +

∑
j∈J (i)

s(Uj, θ0)

′ + oP (1)

by Lipschitz continuity of s (in θ) and consistency. The result follows as in the proof of

Proposition 5.
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