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Abstract

The effect of financial crises on bank branch location choices provides an unex-

plored channel by which crises affect access to credit for many years. We estimate

a dynamic structural model of oligopolistic location choice for Thai banks allowing

for competitive effects between rival banks. We predict the evolution of branch lo-

cations under the counterfactual scenario of no financial crisis in 1997. We find that

there would have been 18.5% more branches and 9.3% more markets with at least one

branch after ten years in the absence of the crisis. Furthermore, access to loans would

have increased by 8.0 percentage points.
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1 Introduction

National financial crises often lead to restricted access to credit for households and firms,

which impacts the real economy. Since Bernanke (1983), economists have recognized the

increased cost of financial intermediation through the disruption of the banking sector as

a major factor in the impact of a crisis. But economists have measured this effect with

aggregate measures of economic activity, such as GDP, GDP growth, and interest rates,

which typically indicate the effects of the crisis ending within a few years. We identify a

new channel by which financial crises impact access to credit that can be much longer-

lived: local access to a physical bank branch. This channel is also particularly important

for developing countries.

There is a wide literature documenting the effect of physical bank branch proximity on

access to banking services, including in present-day developed countries.
1

Two reasons

for this are lower transportation costs and lower information collection costs required to

assess the viability of loans. Developing countries also typically have incomplete branch-

ing networks with significant gaps in coverage, especially in rural areas. Because financial

crises particularly affect the functioning of banks, a financial crisis can cause banks to re-

strict the expansion of their branch networks, or even reduce the size of their networks.

To the extent that banks fail to replace these branches, even after the economy recovers,

the effects of the crises can be long-lived, and can negatively impact local communities

long after aggregate measures of growth suggest the effects of the crisis are over.

We explore this issue in Thailand, which suffered a major financial crisis in 1997. Ag-

gregate measures of economic activity recovered relatively quickly. For instance, GDP

and unemployment returned to pre-crisis levels within two to three years. While GDP

growth never again reached the world-leading levels that Thailand saw before the crisis,

GDP growth still returned to high levels within a few years. However, we show that the

crisis had a long-term impact on the branching behavior of commercial banks in Thailand.

Entry of new branches fell dramatically for several years after the crisis and, for essentially

the first time in Thailand’s history, we observe the closure of bank branches. We argue

that the lack of liquidity during the crisis forced banks to close branches in rural areas that

would have otherwise been profitable in the long run. That is, profits for branches fell ev-

erywhere, which particularly led branches in rural areas over the threshold for closure,

1
See, for example, Herpfer et al. (2023); Nguyen (2019); Agarwal and Hauswald (2010); Ergungor (2010);

Assuncao et al. (2022); Alem and Townsend (2014); Ho and Ishii (2011); Petersen and Rajan (2002); Degryse

and Ongena (2005); Crawford et al. (2018).
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causing long-term impacts in these geographic areas. As we document, even when entry

rates recovered, entry was not always in the places that saw exit. Several communities

that experienced exit still have not seen new entry ten years after the crisis. Because the

areas that experienced long-term closures are rural, they make up a small share of GDP

and their low growth would be difficult to detect with aggregate data, but the impact on

these communities is still a significant loss.

Studying the impact of the crisis on branch locations is challenging because there are

many large banks in Thailand that have many branches throughout the country. These

banks may interact in complex ways that are difficult to describe with simple statistics.

To provide a more concrete measure of the impact of the crisis on branch locations, we

specify a dynamic structural model of the bank branch location problem and estimate the

model using data on branch locations obtained from the Bank of Thailand.

In our model, banks choose whether or not to enter in a large number of heterogeneous

locations around Thailand. Branch profits depend on the number of branches of their

own and rival banks in the same market. We assume that branches beyond a distance

threshold do not affect a branch’s profits, which allows us to cluster branching locations

into separate markets. Banks form expectations about the shocks that rivals will realize in

the future and account for the benefit of preempting rivals in their branching strategies.

Branch profits also depend on local demand, which we measure using the intensity of

nighttime light surrounding branch locations. We intercalibrate the temporal variation in

nighttime light such that our measure of local demand matches changes in real GDP on

aggregate. We also allow for the banks’ branching strategies to impact the growth rate

of local demand, an effect documented by Jayaratne and Strahan (1996), Fulford (2015),

Nguyen (2019) and Young (2021). Banks take into account their own and rivals’ impacts on

local demand in their branching strategies. We assume the financial crisis in 1997 arrives

unexpectedly for the banks and we allow their strategies and expectations to change in

response to the crisis.

As our environment is nonstationary, we assume the model has a finite horizon and

estimate the model using backward induction. We control for persistent market-level

unobserved heterogeneity use a group fixed effects approach. We follow an approach

similar to Collard-Wexler (2013) and Lin (2015) to partition markets into ten groups. In

our framework, the equilibrium choice probabilities are allowed to differ across market

groups and across banks.

In both our reduced-form and structural results, we find that banks prefer to locate
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their branches in areas with higher local demand and away from their own and rival

branches. Although the financial crisis of 1997 lowered our measure of local demand in

most markets, we also include an additional indicator for the crisis in the banks’ profit

functions. This indicator captures the change in profits that is not captured by the ob-

served changes in our measure of local demand, such as how the liquidity crisis affected

the banks’ branching strategies. We estimate a large negative value for this crisis indica-

tor, which makes banks less likely to open new branches and more likely to close existing

branches. We also interact this indicator with our measure of local demand, and find that

the crisis-induced losses are larger in more affluent markets.

Our model provides an explanation for why closed branches were not rebuilt after

the crisis. We find that the cost of entry is a large multiple of a branch’s typical annual

profits. In the high-growth period of the late 1980s and early 1990s, it was optimal for

banks to open branches in many rural areas, despite this large entry cost. However, the

banks’ losses and liquidity issues during the crisis forced them to close branches in many

locations. After the crisis, our model finds that branches in many of these locations would

still have been profitable if that branch had made it through the crisis. However, we

find the lower growth rate after the crisis meant it was no longer worthwhile to pay the

large sunk cost of entry again in those locations. Furthermore, the worsened financial

access in these locations may also have contributed to lower local demand, which would

have made it even less attractive to reopen branches. Therefore, these locations that lost

their branches experienced a long-lasting, scarring effect of the crisis. If the branches

were supported for the duration of the crisis, the bank would have optimally retained the

branches in many of those locations after the economy recovered.

Our structural model is able to closely match the aggregate expansion and contrac-

tion patterns of the branching network observed in our data. We use the estimated struc-

tural model to simulate different counterfactual experiments. First, we simulate the bank

branch locations that would have been chosen if there had never been a crisis in 1997,

quantifying the effect of the crisis on the bank branch network. We do this by setting the

crisis indicator in banks’ profit functions to zero and removing the fall in local demand

during the crisis. We find that the expansion of the branch network would have followed

a path similar to the pre-crisis period and would not have experienced a contraction. Ten

years after the crisis, there would have been 18.5% more branches had the crash not oc-

curred. This is significant, as the number of bank branches and bank competition has been
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linked to improved financial access.
2

We also find that there would have been 9.3% more

markets served by at least one branch, and the average distance to the nearest branch

would have fallen by 31.2% after 10 years had the crisis not occurred.

We use the estimated effect of the distance to the nearest branch on access to commer-

cial loans found by Ji et al. (forthcoming) to evaluate the effect of the crisis on financial

access in our setting. Using their estimate with our change in distance, access to loans

would have increased by 8.0 percentage points in the absence of the crisis. For markets

which saw a long-term reduction in their number of branches, the change in financial

access would have been 14.5 percentage points larger.
3

In a second counterfactual experiment, we consider the effect of a branch support sub-

sidy during the post-crisis period on banks’ branching strategies. The support we consider

is one that subsidizes the crisis-induced losses for branches in vulnerable markets, which

are markets that are at the brink of becoming unbanked. We assume that when there is

only one branch remaining in a market that the branch receives a subsidy covering the

crisis-induced losses from the crisis indicator in the profit function. The subsidy sets the

branch’s profits to the amount they would receive if the crisis indicator in the profit func-

tion were equal to zero. This counterfactual can also be interpreted as easing the liquidity

shortages faced by these branches during the crisis. Ten years after the crisis, this subsidy

increases the total number of branches by only 3.2% relative to the baseline, but increases

the percentage of served markets by 6.6%. Using the change in distance to the nearest

branch together with the effect estimated by Ji et al. (forthcoming), it increases financial

access by 5.0 percentage points, which is only 2 percentage points lower than if the crash

did not occur at all, according to our other counterfactual experiment. This result provides

a rationale for such support subsidies, which were implemented in many countries during

the COVID-19 crisis.

In a third counterfactual experiment, we quantify the impact of volatility in local de-

mand growth on branching strategies, similar to Collard-Wexler (2013). We impose a

constant growth rate set to a level that matches the overall growth rate during our sam-

ple (1992-2009). We then solve for the equilibrium strategies of the banks. Because in this

2
See, for example, Beck et al. (2004); Degryse and Ongena (2005); Love and Martı́nez Perı́a (2015); Marı́n

and Schwabe (2019); Allen et al. (2021).

3
Ji et al. (forthcoming) study Thai branch expansion in the pre-crisis period (1986-1996) and its role in

affecting growth and inequality. Another related paper is Assuncao et al. (2022) who study the location

strategies of the public-sector Bank for Agriculture and Agricultural Cooperatives during the pre-crisis

period (1986-1996). In contrast to these, we study how the 1997 crisis affected the branching strategies of

commercial banks and quantify the effect of the crisis on financial access through the branching channel.
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scenario the average growth rate is lower during 1992-1997, fewer branches enter in this

time period. However, because there is no volatility, the market does not experience a

contraction after 1997. Ten years after the crisis, there are 9.9% more branches, 6.4% more

markets served by a branch, and financial access is 5.2 percentage points higher compared

to the baseline scenario with a crisis.

Related Literature: This paper makes contributions to three strands of literature. First,

we contribute to the large literature studying the effects of financial crises (e.g. Bernanke

(1983)) and competition (Beck et al., 2004; Degryse and Ongena, 2005; Love and Martı́nez Perı́a,

2015; Marı́n and Schwabe, 2019; Allen et al., 2021) on access to credit. Bernanke (1983)

pioneered the literature on the non-monetary effects of financial crises and emphasized

bank closures and bank unwillingness to lend. His paper still uses aggregate measures

of economic activity to characterize these effects and does not mention bank branching.

Our paper highlights bank branching behavior and emphasizes how aggregate economic

activity measures can mask the effect of branching in rural markets. We also contribute

more generally to the literature on the scarring effects of crises (Dell’Ariccia et al., 2008;

Huckfeldt, 2022; Attanasio et al., 2022). We do this by studying the effects of the Thai

financial crisis on financial access through the lens of a dynamic structural model of bank

branch entry and exit.

Second, we contribute to the literature on the estimation of dynamic entry models

(Igami, 2017; Collard-Wexler, 2013; Lin, 2015; Zheng, 2016), but with a drastic change in

environment. In our model, banks are boundedly rational in their expectations of the

future arrival of the crisis. To our knowledge, the only paper modeling a drastic change

such as this in a dynamic oligopoly model is Ryan (2012), who re-estimates his model of

the cement industry under each policy environment.

Third, we also contribute to the growing literature using tools from empirical indus-

trial organization to study issues related to market frictions in developing countries. Ex-

amples of markets in this literature include the Indian electricity market (Ryan, 2021), the

Ghanaian radio broadcasting market (Walsh, 2023), the Columbian internet market (Hi-

dalgo and Sovinsky, 2022) and the Ugandan garment market (Vitali, 2022). We contribute

to this literature by using a dynamic entry model to study the effects of the Thai finan-

cial crisis on the banking industry and its resulting effects on financial access, an issue

long-studied by the development economics literature (Banerjee et al., 2015a,b; Kaboski

and Townsend, 2011).
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Figure 1: Thai macroeconomic indicators.

2 Background and Data

2.1 The 1997 Financial Crisis

From 1985-1996, Thailand had the highest rate of economic growth in the world. During

this time, it maintained a low inflation rate, low unemployment and a stable exchange rate.

The exchange rate was tied to a basket of dominant world currencies, with a high weight

on the US dollar. Thailand’s high growth and stability therefore made it very attractive

to foreign investors. However, a number of shocks made it difficult to maintain a fixed

exchange rate. The real estate boom resulted in supply eventually exceeding demand,

causing the number of vacancies to increase and borrowers to default on their loans. The

US also raised interest rates, which diverted investment away from Southeast Asia. The

country then had a current account deficit for several years and the central bank’s foreign

reserves were insufficient to maintain a fixed exchange rate. In May 1997, with an immi-

nent move towards a flexible exchange rate regime, there were speculative attacks from

currency traders. The speculative attacks became a self-fulfilling prophecy when Thailand

eventually let their currency float in July 1997. The Thai Baht immediately experienced

an enormous devaluation and the economy went into crisis.

Soon after, the IMF stepped in to help stabilize the economy. Figure 1 shows GDP per

capita, GDP growth and the unemployment rate during this period. GDP per capita began

to fall in 1997 but returned to its pre-crisis level by 2002. GDP growth was negative for

only two years and then returned to a growth rate of around 5%. Although the growth

rate before the crisis reached levels of 8-12%, a growth rate of 5% is normally regarded as
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quite healthy. Even during the height of the crisis, unemployment reached only 3.5% and

by 2002 it had fallen to 1.5%. Therefore we might conclude that Thailand recovered from

the crisis within a few years. As we will see, however, the slowdown in branch openings

and the closures of existing bank branches continued until 2004, and the effects of the

closures were long-lived in some areas.

2.2 Bank Branch Data

We have information on the bank branches operating in Thailand from 1927-2010 from

the Bank of Thailand. Our data cover all of Thailand except for the Bangkok Metropolitan

and Samut Prakan provinces, which together make up the Greater Bangkok Area. For

each bank branch we observe the open date, close date (if any) and GPS coordinates of

the branch’s location.

There are 18 different commercial banks in our data. The commercial banks combined

had 3,730 bank branches across the country in 2010. In our analysis, we focus on the four

largest commercial banks: Bangkok Bank, Kasikorn Bank, Krung Thai Bank and Siam

Commercial Bank. These four banks constitute over two-thirds of the total number of

commercial branches in our last period of data and each has significantly more branches

than all of the smaller banks. Krung Thai Bank is a state-owned bank, but all four banks

are publicly-traded companies. These four banks operate branches throughout the entire

country. No bank is particularly dominant in any specific region.
4

Government banks also operate in Thailand. There are two main government banks

with a total of 1,928 branches at the end of 2010. These are the Government Savings

Bank (GSB) and the Bank for Agriculture and Agricultural Cooperatives (BAAC), which

in 2010 had 499 branches and 1,429 branches respectively. The BAAC does not tend to

locate their branches in urban areas and their motives are less likely to be profit-oriented

(see Assuncao et al. (2022)). The GSB, on the other hand, does locate its branches in more

urban areas, with the primary aim of mobilizing savings. There is very little presence of

foreign banks outside of the Greater Bangkok Area.

The 1997 financial crisis had a large effect on the commercial banks operating in Thai-

land. Using information from the four largest banks’ annual reports, we show each bank’s

net profits over time in Figure 2.
5

We can see that each of the four largest banks were

4
We show a map of all locations held by each bank in Figure A.1 in the Online Appendix.

5
During this time period, US$1 was on average 36.5 Thai Baht.
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Figure 2: Net profit per bank from the banks’ annual reports (in billions of Thai Baht).

severely affected by the crisis and showed similar patterns. Profits remained negative for

several years before recovering.

In the years following the 1997 crisis, banks slowed the expansion of their branch

networks and, for the first time in our data set (going back to 1927), there were branch

closures. Figure 3 shows the total number of branch openings and closings per year from

1990 by the four largest banks in our sample. The crisis had an immediate effect on the

opening of new branches and the slowdown in openings persisted until 2005. Banks also

began to close branches shortly after the crisis arrived, with the first closures occurring

in 1999 and peaking in 2001. According to the 1996 financial report of Siam Commercial

Bank, they had anticipated opening 30 branches in 1997, but opened only 22 branches. In

1999, they stated they “slowed domestic branch expansion and reassessed the potential of

existing branches.” In their 2001 report they state they had “implemented a rationalization

program” that “resulted in merging and closing down of branches.” Because banks were

losing profits on aggregate and faced liquidity issues, they were also unable to cross-

subsidize loss-making branches with profitable ones.

Although branch openings began to exceed closings by 2003 on aggregate, there were

many areas that saw long-lasting effects of the crisis. In locations where bank branches

closed, it was many years before the bank branches were replaced, if they were replaced

at all. In our data, a bank re-opened a branch in the same local area where it closed one

only 3.8% of the time. Figure 4 shows an example area in northern Thailand that was

badly affected by the crisis. The red points denote the locations of bank branches, the

gray lines show the road network, and the colors in the heatmap show the distance to

the nearest bank branch. Before the arrival of the crisis of 1997, the area in the center of

the map was reasonably well-served by branches with most locations being within 20km
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Figure 3: Number of openings and closings by year for the largest four banks.

of a branch. Following the crisis, one branch closed in 2001 and another closed in 2003.

Even by the end of our sample period in 2010, these locations that saw their branches

close did not see a new one reopen, leaving them very far from the nearest branch. We

argue that because of the positive externalities of bank branches, it was not efficient for

these branches to close. The worsened financial access from losing branches can make it

more difficult for households to save, smooth consumption, or make investments (Alem

and Townsend, 2014). This can slow growth in these locations, making them even less

attractive for banks to locate branches there in the future. Therefore, the financial crisis

can have long-lasting impacts on the development of these locations through the bank

closure channel.

We further argue that the closures and slowdown in openings are not due to the in-

dustry moving towards digital banking. According to World Bank Data, less than 2% of

individuals were using the internet during the crisis period. During the early 2000s where

we see most of branch closures, internet usage remained below 10%.
6

Rural areas, which

are the main focus of our analysis, had even lower internet usage.

2.3 Market Definition

In our model, we assume banks make independent branching decisions market by market.

Banks react to rival banks’ actions within the same market, but do not react to their own or

rivals’ actions in other markets. Our goal, therefore, is to define markets such that banks

in the same market are close competitors and there are little demand spillovers between

6
Source: https://data.worldbank.org/indicator/IT.NET.USER.ZS?&locations=TH.
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Figure 4: Distance to nearest commercial branch in the Phrae changwat following the

financial crisis, 1996, 2001, 2003 and 2010.

markets. Doing so is more straightforward in rural Thailand than in a developed country

because banks are more disperse. Thai administrative boundaries, such as Amphoes or

Tambons, are unsuitable to use as a market definition in our context as they vary greatly

in size. Instead, we cluster bank branch locations based on their geographic proximity. To

do this, we first take the geographic coordinates of all locations that ever had a commercial

bank branch at any point in time in our data. We call these coordinates branch locations.
These locations also include the branches of the smaller banks in our data. We define a

market cluster as a group of branch locations such that every location within the market

cluster is within 10km of at least one other branch location in the same cluster. We use

the great-circle distance metric. For example, if a single branch location is more than

10km from every other branch location in the country, then that location is in a cluster

by itself. If two branch locations are within 10km of each other but neither of the two
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Figure 5: Clustering Locations Example in Southern Thailand

are within 10km of any other location in the country, those two locations form a single

market cluster. If three branch locations were in a straight line, each 9km from each other,

then all three would form a single market cluster, even though the two branches on either

end are 18km away from each other.

To construct the market clusters in practice, we construct an 𝐿 × 𝐿 Boolean matrix

where element (ℓ, ℓ′) equals one if branch locations ℓ and ℓ′ are within 10km of each other

and is zero otherwise. We multiply this Boolean matrix by itself until it stops changing.

The ℓth row of this matrix gives the locations in the same market as location ℓ .

Figure 5 shows an example of our clustering approach in the south of Thailand. Points

within the same diamond that are the same color are grouped into the same market. There

are a large number of markets with only one or two locations, but also some markets with

many locations.

Out of the 4,128 commercial branches that were ever active in our data, this approach

generates 520 markets.
7

In our model, we assume that a bank in a market can open or

7
As our data do not include the Greater Bangkok Area, we omit three markets where there was at
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Figure 6: Centroid of Market Locations used in Estimation.

close at most one branch per year and can have at most three branches at any given time.

We therefore omit 38 markets where one of the four largest banks had more than three

branches at any point in time and two additional markets where one of the banks opened

more than one branch in a single year. We estimate our model with the remaining 477

markets.
8

The locations of all the markets we use in estimation are shown in Figure 6. The

average distance to the nearest other market is 21.4km and 81.8% of markets are more

than 15km away from the nearest other market. We show histograms of the number of

active branches and the number active banks in Figure A.2 in the Online Appendix. The

average number of branches in the market-years we use in estimation is 1.542 and the

maximum number of branches is 10. Of the 477 markets we use in estimation, there are

74 markets where none of the four largest banks ever had a branch in our data.

least one branch locations within 10km of the border of either the Bangkok Metropolitan or Samut Prakan

provinces.

8
The average market share of fringe banks is 0.6% in these markets. The market share of fringe banks is

less than 10% in 97.5% of market-years used in estimation.
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Our main results are not sensitive to our threshold of 10km to construct clusters. We

have repeated our entire estimation procedure and main counterfactual simulations with

a larger radius of 15km radius and find only small differences. These are discussed further

in Section 7.

2.4 Measuring Local DemandwithGDP-IntercalibratedNighttime
Luminosity

In our model, branch profits in a market will depend on the level of local demand in the

market. However, standard proxies for local demand such as population or local GDP are

not readily available at a fine geographic level for Thailand. We instead use nighttime lu-

minosity data from the National Oceanic and Atmosphere Administration to proxy market

attractiveness. These data have been used as proxies for population and income in a large

number of applications (see for example, Henderson et al. (2012) and Michalopoulos and

Papaioannou (2013)). Hu and Yao (2022) also find that nighttime lights can even be more

precise than administrative data in low and middle income countries. These data come

from satellite images captured by the US Air Force at night between 8:30 PM and 10:00

PM local time around the world. These images are then processed and cleaned to represent

the average amount of light emanating from a geographic location during a year. Obser-

vations obstructed by clouds are excluded, as well as observations with light coming from

forest fires, gas flares, sunlight (from the summer months) and moonlight. Values are rep-

resented on a scale that ranges from 0 to 63 that measures the amount of light captured by

the camera’s sensor. This scale is bottom- and top-coded, with very rural locations being

bottom-coded at 0 and dense urban areas being top-coded at 63. Top-coding is not a large

issue in Thailand, with only 0.27% of the country being top-coded in the final year of data.

Furthermore, our analysis focuses on rural areas where there is no top-coding. Data are

available from 1992-2013 and are represented on a grid with a 30 arc-second resolution.

In Thailand, one cell of the nighttime luminosity data is at a resolution of approximately

900m×900m. Because our bank branch dataset ends in 2010, we constrain our sample

period in estimation to 1992-2010, the overlap of the two data sets.

Figures 7a to 7c show the nighttime luminosity in Thailand in the first, middle and last

year of our sample period. The brightest area in the center is Bangkok.
9

9
The bright lights south of Bangkok in the Gulf of Thailand are not measurement error; rather they are

from squid fishing boats that shine bright green LED lights to attract plankton to the surface. As these

observations are in the sea, they are not counted in our measurement of demand.
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(a) 1992 (b) 2001 (c) 2010

Figure 7: Raw nighttime luminosity data over time.

Because our structural model uses temporal variation in nighttime luminosity within

markets, it is necessary to first intercalibrate the digital number values across years (Wu

et al., 2013). The nighttime luminosity values in different years can come from satellites

with different settings and the values may change over time in a location even if there

is no change in luminosity. We intercalibrate the nighttime luminosity values as follows.

Let𝑌𝑡 be Thailand’s aggregate real GDP in year 𝑡 and let 𝑁𝐿𝑡 be the total sum of nighttime

luminosity values within the country’s borders in year 𝑡 . When two satellite readings cov-

ering the same year are available, 𝑁𝐿𝑡 is the average of the two satellites. The multiplier

for year 𝑡 is then calculated as:

𝜅𝑡 =
𝑌𝑡

𝑁𝐿𝑡

(∑
2013

𝑠=1992
𝑁𝐿𝑠∑

2013

𝑠=1992
𝑌𝑠

)
(1)

The multiplier ensures that aggregate nighttime luminosity follows the same trend as

aggregate GDP and is scaled such that the sum of the intercalibrated nighttime luminosity

values matches the sum of the raw values. Figure A.3 in the Online Appendix shows maps

of the intercalibrated nighttime luminosity values over time.

We calculate our measure of local demand, 𝑧𝑚𝑡 , in market 𝑚 at time 𝑡 by drawing a
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circle with a radius of 20km around the centroid of branch locations within a market and

summing the values of the nighttime luminosity digital numbers within that circle.
10

More

specifically, let (𝑥𝑚, 𝑦𝑚) be the longitude and latitude of the centroid of branch locations

in market𝑚 and let 𝑑 ((𝑥,𝑦) , (𝑥𝑚, 𝑦𝑚)) be the great-circle distance in kilometers between

the pairs of coordinates (𝑥,𝑦) and (𝑥𝑚, 𝑦𝑚). Local demand for a particular market 𝑚 at

time 𝑡 is then:

𝑧𝑚𝑡 = 𝜅𝑡

∫
90

−90

∫
180

−180

1 {𝑑 ((𝑥,𝑦) , (𝑥𝑚, 𝑦𝑚)) ≤ 20}𝑛𝑙𝑡 (𝑥,𝑦) 𝑑𝑥𝑑𝑦 (2)

where 𝑛𝑙𝑡 (𝑥,𝑦) is the nighttime luminosity digital number at point (𝑥,𝑦) at time 𝑡 .11

This calculation is illustrated in Figure 8. The market shown has four branch locations

illustrated with four red circles. Three of the branches are located close together, whereas

one of the branches is located approximately 4km away to the south-west. All branches

are located in an area with positive values for local demand, but are surrounded by a large

area where local demand is zero. The green circle has a radius 20km around the centroid

of the market. Our measure of local demand is the sum of the nighttime luminosity digital

numbers in the entire circle. For the markets we use in estimation, each branch location is

at most 11.8km from the market centroid, and therefore this 20km radius always includes

all branch locations within the market.

To evaluate how well our local demand measure approximates local GDP, we obtain

the provincial GDP data from Thailand’s Office of the National Economic and Social De-

velopment Council. The province (changwat) is the smallest geographic unit where local

GDP values are available. We compare provincial GDP values from 1995-2013 with the

corresponding sum of intercalibrated nighttime luminosity values within a province. The

two variables are have a strong correlation of 0.78. A scatter plot of the two variables is

shown in Figure A.4 in the Online Appendix.

In our model, all branches entering in a market experience the same value of local

demand. In our modeling, we have experimented with allowing banks to open branches in

specific locations within the market cluster and allowed the value of local demand to differ

by location within a market. We did this by summing the values of nighttime luminosity

10
In our robustness check with a larger 15km clustering distance threshold, we increase the nighttime

luminosity radius by the same proportion. That is, we use a 30km radius for calculating nighttime luminos-

ity.

11
We set nighttime luminosity values outside of Thailand’s borders to zero before performing these cal-

culations to avoid including the large values from the squid-fishing boats.
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Figure 8: Night lights within a 20km radius of market centroid.

in a radius around each branch location rather than around the market centroid. We

found that the values of local demand were very highly correlated across locations within

market clusters in a year. The assumption that all branches in the same market experience

the same value of the local demand therefore greatly reduces the size of the state space

and as a result the computational complexity of the model, without sacrificing substantial

within-market variation in demand.

3 Model

3.1 Overview

We now describe our model for how banks make their branch-network expansion deci-

sions. In our model, banks make independent branching decision market by market. A

bank’s profits from deposits and loans in a market depends on local demand, the number

of branches from their own bank, and the number of branches from rival banks. The fi-

nancial crisis arrives unexpectedly and has a negative effect on branch profits. Banks are

forward-looking and strategic in their their branching decisions. They take into account

the responses of rivals to their actions, and the effect of both their own and rivals’ actions
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on the growth rate of local demand.

3.2 Model Setup

Banks earn profits over an infinite horizon but there is a period𝑇 after which the market

state is fixed and no longer changes. Therefore, the per-period profits of active branches

remain the same forever starting from period 𝑇 . Time is discrete.

There are 𝐹 commercial banks who can simultaneously choose to open and close

branches in 𝑀 different markets in each period 𝑡 . Bank 𝑓 has 𝑛 𝑓𝑚𝑡 active branches in

market𝑚 at time 𝑡 . The profit of the bank in that market is equal to:

𝜋𝑓 (𝒔𝑚𝑡 , 𝜽 ) = 𝑛 𝑓𝑚𝑡

(
𝜃𝑘 (𝑚) + 𝜃𝑏𝑓 + 𝜃

𝑜𝑤𝑛
(
𝑛 𝑓𝑚𝑡 − 1

)
+ 𝜃𝑐𝑜𝑚𝑝

∑︁
𝑔≠𝑓

𝑛𝑔𝑚𝑡+

𝜃𝑧𝑧𝑚𝑡 + 𝜃𝑐𝑟𝑖𝑠𝑖𝑠𝜁𝑡 + 𝜃𝑐𝑟𝑖𝑠𝑖𝑠,𝑧𝜁𝑡 × 𝑧𝑚𝑡

) (3)

Each market 𝑚 belongs to one of 𝐾 groups, and we use group fixed effects 𝜃𝑘 (𝑚) in

the profit function to capture persistent unobserved heterogeneity across market groups,

𝑘 = 1, . . . , 𝐾 . The per-branch profit also differs by bank and this is captured by 𝜃𝑏
𝑓
, for

𝑓 = 2, . . . , 𝐹 , where we make the normalization𝜃𝑏
1
= 0 for bank 1. The parameter𝜃𝑜𝑤𝑛 mea-

sures the agglomeration or cannibalization effect of the bank’s own branches. If 𝜃𝑜𝑤𝑛 > 0,

then a branch benefits from having another branch of the same bank in the same market.

If 𝜃𝑜𝑤𝑛 < 0, new branches cannibalize profits from its existing branches. The parame-

ter 𝜃𝑐𝑜𝑚𝑝 measures the competitive effect of branches of rival banks in the same market.

The variable 𝑧𝑚𝑡 is a measure of local demand that affects branch profits. The variable

𝜁𝑡 ∈ {0, 1} is an indicator for the financial crisis and the parameter 𝜃𝑐𝑟𝑖𝑠𝑖𝑠 measures the

effect of the financial crisis on profits that is not captured by changes in local demand 𝑧𝑚𝑡 .

For instance, during a financial crisis, banks may stop making loans to each other, and

thus banks cannot make loans or investments that may be profitable in the long-run, in-

cluding in keeping open branches. This parameter captures the effect of the banks’ lower

liquidity on their payoffs. We also interact 𝑧𝑚𝑡 with 𝜁𝑡 to allow markets of different sizes

to be affected differently by the crisis. The market state, 𝒔𝑚𝑡 =
({
𝑛 𝑓𝑚𝑡

}𝐹
𝑓 =1

, 𝑧𝑚𝑡 ,𝑚, 𝑡

)
∈ S,

is the combination of each bank’s number of branches,

{
𝑛 𝑓𝑚𝑡

}𝐹
𝑓 =1

, local demand, 𝑧𝑚𝑡 , and

the market and time period.
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We assume a bank’s profits within a market depend only on local demand and the pres-

ence of own and rival branches. Therefore, branch profits are independent of any of the

banks’ actions in other markets. Banks are also assumed to be risk neutral and have no ge-

ographic diversification motives. Supporting this assumption, Aguirregabiria et al. (2016)

found that after the Riegle-Neal Act removed restrictions on branch-network expansion

in the US, most banks did not take advantage of the new possibilities for geographic di-

versification. These assumptions allow for the bank’s national branching problem to be

solved with independent branch network decisions in each market.

Now we turn to bank’s beliefs about the transition process for state variables. We

assume that the crisis indicator 𝜁𝑡 is an exogenous deterministic function of 𝑡 We assume

𝜁𝑡 = 0 for the periods leading up to the crisis (i.e. 𝑡 ≤ 1997), and then transitions to 𝜁𝑡 = 1

in the year of the crisis.
12

It stays at 𝜁𝑡 = 1 for seven periods, and then returns to 𝜁𝑡 = 0

ever after. However, before the crisis, banks do not anticipate the transition in 𝜁𝑡 . We

assume that in the years before the crisis, banks expect 𝜁𝑡 = 0 in all future time periods.

Once the crisis arrives, banks have correct beliefs about 𝜁𝑡 . That is, they believe 𝜁𝑡 = 1

until 2004. After the crisis, banks do not expect there will be another large crisis and thus

believe 𝜁𝑡 = 0 in all future time periods (i.e. 𝑡 > 2004).

Formally, let banks in period 𝑡 believe that in period 𝜏 > 𝑡 , 𝜁𝜏 = 𝑓𝑡 (𝜏), where 𝑓𝑡 (𝜏) = 0

for 𝑡 ≤ 1997 for all 𝜏 , 𝑓𝑡 (𝜏) = 1 for 𝑡 > 1997 and 𝜏 ≥ 𝑡 and 𝜏 ≤ 2004 and 𝑓𝑡 (𝜏) = 0 for

𝑡 > 1997 and 𝜏 > 2004. We believe this specification of beliefs is realistic and we have

found this choice produces aggregate branching patterns that best match the patterns in

the data. We also test the robustness of this assumption by estimating the model assuming

banks believe the crisis will last forever during the crisis years. This is discussed further

in Section 7.

We also must specify bank’s beliefs over the process for 𝑧𝑚𝑡 . Banks in period 𝑡 believe

𝑧𝑚𝜏 follows the Markov process 𝑧𝑚𝜏+1 ∼ 𝑔𝑡 (𝒔𝑚𝜏 ) for 𝜏 = 𝑡, . . . ,𝑇 − 1. This specification

allows beliefs to change over time in ways that banks do not anticipate. In our implemen-

tation, further discussed in Section 4.2, we assume banks believe the pre-crisis growth

rates will continue forever but banks change their beliefs after the crisis takes place. Thus,

we allow for 𝑔𝑡 (·) to differ for 𝑡 ≤ 1997 and 𝑡 > 1997. In this sense, our paper resembles

Jeon (2022), who models firms forming beliefs about the evolution of demand based on

12
We assume banks make their simultaneous branching decisions at the beginning of the year (i.e. on

January 1st of each year). Because the crisis began after January 1997, it did not affect the banks’ branching

decisions until 1998.
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current demand realizations. Also, by conditioning the Markov process on 𝒔𝑚𝑡 , we allow

the distribution of 𝑧𝑚𝑡+1 to depend on 𝑧𝑚𝑡 , market group 𝑘 (𝑚), and the number of bank

branches in the market. This last dependency allows the presence of banks to affect local

demand growth. Finally, recall that banks in all periods 𝑡 believe that 𝑧𝑚𝜏+1 = 𝑧𝑚𝜏 for all

𝜏 ≥ 𝑇 .

Aguirregabiria and Jeon (2020) survey the literature on modeling the beliefs of firms

in dynamic oligopolies, covering both bounded and full rationality. Our model assumes

that banks are boundedly rational in the sense that the banks’ beliefs change in ways

that the banks do not anticipate. Although it seems clear that the financial crisis was a

surprise to Thai banks, we do not view our assumption of bounded rationality as critical to

our paper. An alternative would be to allow fully rational firms to assign some relatively

small probability to the arrival of a crisis and the resulting permanent change in growth

rates. In this framework, the arrival of the crisis was a bad draw from this probability

distribution. In our view, the data cannot distinguish between these cases and we choose

the bounded rationality model only because it is easier to work with.

We now turn to the process for the number of firms in a market. We assume the set of

available actions for firm 𝑓 in market𝑚 at time 𝑡 is to open one branch, close one branch

or maintain the same number of branches. A single bank cannot open or close more than

one branch in the same market in the same time period. A bank can also have at most

𝑁 = 3 branches in a market. Denote the firm’s action by 𝑎 𝑓𝑚𝑡 ∈ {−1, 0, 1}, where −1

denotes closing a branch, 0 denotes maintaining the same number of branches and +1

denotes opening a branch. The set of available actions for firm 𝑓 in market 𝑚 at time 𝑡 ,

A
(
𝑛 𝑓𝑚𝑡

)
, therefore depends on their existing number of branches:

A
(
𝑛 𝑓𝑚𝑡

)
=


{0, 1} if 𝑛 𝑓𝑚𝑡 = 0

{−1, 0, 1} if 𝑛 𝑓𝑚𝑡 ∈ {1, . . . , 𝑁 − 1}

{−1, 0} if 𝑛 𝑓𝑚𝑡 = 𝑁

(4)

Each bank chooses to open or close branches simultaneously within a time period. Choos-

ing to open or close a branch takes effect with a one-period lag. We can therefore write

the process for a bank’s number of branches in a market as 𝑛 𝑓𝑚𝑡+1 = 𝑛 𝑓𝑚𝑡 + 𝑎 𝑓𝑚𝑡 . If a

bank chooses to open a branch, the bank incurs the entry cost 𝜃𝑒𝑐 . The scrap value from

closing a branch is normalized to zero because it would not be separately identified from

the entry cost, 𝜃𝑒𝑐 , and the group fixed effects, 𝜃𝑘 (𝑚). We recognize that such a normal-
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ization is not innocuous for our counterfactual simulations (Aguirregabiria and Suzuki,

2014; Kalouptsidi et al., 2021a,b). We show that our main results are robust to this nor-

malization in Section 7. Banks also receive action-specific private information shocks

𝜺 𝑓𝑚𝑡 =

(
𝜀−1

𝑓𝑚𝑡
, 𝜀0

𝑓𝑚𝑡
, 𝜀1

𝑓𝑚𝑡

)
that affect their payoffs. We assume these private-information

shocks are drawn independently from a Type I extreme value distribution.

3.3 Equilibrium

Banks are forward-looking and discount future profits with a discount factor 𝛽 ∈ (0, 1).
The value function for bank 𝑓 in market𝑚 in period 𝑇 is then:

𝑉𝑓 (𝒔𝑚𝑇 , 𝜽 ) =
𝜋𝑓 (𝒔𝑚𝑇 , 𝜽 )

1 − 𝛽 (5)

The Bellman equation for bank 𝑓 in market𝑚 for time periods 𝑡 < 𝑇 is:

𝑉𝑓
(
𝒔𝑚𝑡 , 𝜽 , 𝜺 𝑓𝑚𝑡

)
= 𝜋𝑓 (𝒔𝑚𝑡 , 𝜽 ) + max

𝑎∈A(𝑛𝑓𝑚𝑡)

{
𝜀𝑎
𝑓𝑚𝑡

− 𝜃𝑒𝑐1 {𝑎 = 1}

+𝛽E
[
𝑉𝑓

(
𝒔𝑚𝑡+1, 𝜽 , 𝜺 𝑓𝑚𝑡+1

) ��� 𝒔𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎] } (6)

The bank earns its flow profits in period 𝑡 and, based on the realization of the private

information shock 𝜺 𝑓𝑚𝑡 , chooses the action that maximizes its expected present discounted

value of payoffs. The expectation over the value function integrates over bank’s beliefs

about rivals choices, beliefs about the presence of the crisis 𝜁𝑡 (governed by 𝑓𝑡 (·)) and the

beliefs about local demand (governed by 𝑔𝑡 (·)). The future transition probabilities of 𝑧𝑚𝑡

also depend on the banks’ strategies, as the number of branches can impact local demand.

As the private information shocks are iid, we can integrate them out to construct

a value function before the shocks are realized that does not depend on shocks. That

is, 𝑉𝑓 (𝒔𝑚𝑡 , 𝜽 ) =
∫
𝜺
𝑉𝑓

(
𝒔𝑚𝑡 , 𝜽 , 𝜺 𝑓𝑚𝑡

)
𝑓𝜀 (𝜺) 𝑑𝜺, where 𝑓𝜀 is the joint density of the shocks.

Because 𝜀𝑎
𝑓𝑚𝑡

is distributed Type I extreme value, the expected value function before the
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realization of the private information shock is given by:

𝑉𝑓 (𝒔𝑚𝑡 , 𝜽 ) = 𝜋𝑓 (𝒔𝑚𝑡 , 𝜽 ) + 𝛾 + log

( ∑︁
𝑎∈A(𝑛𝑓𝑚𝑡)

exp

{
− 𝜃𝑒𝑐1 {𝑎 = 1} +

𝛽E
[
𝑉𝑓 (𝒔𝑚𝑡+1, 𝜽 )

�� 𝒔𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎] })
(7)

where 𝛾 is the Euler-Mascheroni constant. Similarly, before the realization of the private

information shock, the probability that bank 𝑓 chooses action 𝑎 ∈ A
(
𝑛 𝑓𝑚𝑡

)
in market𝑚

at time 𝑡 is given by:

𝑝 𝑓
(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
=

exp

{
−𝜃𝑒𝑐1 {𝑎 = 1} + 𝛽E

[
𝑉𝑓 (𝒔𝑚𝑡+1, 𝜽 )

�� 𝒔𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎]}∑
𝑎′∈A(𝑛𝑓𝑚𝑡) exp

{
−𝜃𝑒𝑐1 {𝑎′ = 1} + 𝛽E

[
𝑉𝑓 (𝒔𝑚𝑡+1, 𝜽 )

�� 𝒔𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎′]} (8)

Our solution concept is Bayesian Markov Perfect Equilibrium as in Zheng (2016). We

define the strategy function of bank 𝑓 in market𝑚 in group 𝑘 at time 𝑡 as:

𝜎𝑓
(
𝒔𝑚𝑡 , 𝜽 , 𝜺 𝑓𝑚𝑡 ,𝝈−𝑓𝑚𝑡

)
= arg max

𝑎∈A(𝑛𝑓𝑚𝑡)

{
𝜋𝑓 (𝒔𝑚𝑡 , 𝜽 ) + 𝜀𝑎𝑓𝑚𝑡 − 𝜃

𝑒𝑐
1 {𝑎 = 1}

+ 𝛽E
[
𝑉𝑓

(
𝒔𝑚𝑡+1, 𝜽 ,𝝈−𝑓𝑚𝑡+1

) �� 𝒔𝑚𝑡 ,𝝈−𝑓𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎
] } (9)

The strategy function maps the current market state, 𝒔𝑚𝑡 , and private information shock,

𝜺 𝑓𝑚𝑡 , into an action, 𝑎 ∈ A
(
𝑛 𝑓𝑚𝑡

)
, based on the bank’s beliefs about its rivals’ strategies,

𝝈−𝑓𝑚𝑡 =
{
𝜎 𝑗𝑚𝑡

}
𝑗≠𝑓

in the current and future time periods 𝑡, 𝑡 +1, . . . ,𝑇 −1. In equilibrium,

each bank plays according to their strategy function given their beliefs of their rivals’

strategies, and each bank’s beliefs are consistent with their rivals’ strategies.

As we use a full-solution approach to estimation, we require that this model generates

a unique equilibrium. We cannot formally guarantee uniqueness in this model. However,

extensive numerical exploration of the model has not turned up any issues with conver-

gence to multiple solutions. This is typical in full-solution models of asymmetric informa-

tion, as in Seim (2006) and Augereau et al. (2006). Multiple equilibria in these models are

particularly unlikely if firms have ex-ante heterogeneity within a period-market, which

in our case is provided by the bank fixed effects, market group fixed effects, and banks’
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differing histories in entry.
13

4 Estimation

4.1 Market Group Fixed Effects

Controlling for persistent unobserved market heterogeneity is important for obtaining

useful estimates from an entry model. In addition to controlling for local demand, we

further allow markets to have heterogeneous market groups that make them more or less

attractive for opening bank branches. We classify each market into one of ten groups

following an approach similar to Collard-Wexler (2013) and Lin (2015). We do this by

using the estimated market fixed effects from an ordered probit regression at the bank-

market-year level. We specify the ordered probit model in a similar way to the descriptive

regressions in Igami and Yang (2016). The dependent variable is the bank’s action 𝑎 𝑓𝑚𝑡 ,

which takes on the values −1, 0 or +1 depending on if bank 𝑓 closed, did nothing or

opened a branch in market𝑚 in year 𝑡 . For explanatory variables we include our measure

of local demand, the number of the bank’s own branches, the number rival branches, and

a market fixed effect.

Table 1 shows the coefficient estimates from this regression. The regression shows that

banks are more likely to open branches when local demand is greater. They are less likely

to enter in the presence of their own branches and branches of rival banks. Figure 9 shows

a histogram of the estimated market fixed effects from this regression. We divide markets

into ten equally-sized categories based on the value of the estimated market fixed effects,

with market group 1 having the smallest values. Each market type is estimated with 72

observations (4 banks and 18 time periods). Therefore we argue that these effects are

estimated precisely enough to be able to classify markets into 10 groups. Higher market

groups have more branches on average, but they do not differ on average in their level of

local demand. We use the market groups to capture persistent unobserved heterogeneity

between markets that is not captured by our measure of local demand.

In the bank’s profit function, we assume the presence of branches of the two large

government banks (the BAAC and GSB) do not affect the commercial banks’ profits. This

is because these banks mainly serve different sectors of the market. Assuncao et al. (2022)

13
We also checked if the resulting value functions at the estimated parameters were decreasing in the

number of rival branches. This was the case for 99.62% of market states across market groups.
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Dependent variable: Enter (1)

Nothing (0)

Exit (−1)

Own branches −1.112

(0.063)
Rival branches −0.337

(0.038)
Local demand 0.076

(0.013)
Observations 34344

Market fixed effects Yes

Standard errors in parentheses. Lo-

cal demand is measured using GDP-

intercalibrated nighttime luminosity

in a 20km radius around the market

centroid.

Table 1: Ordered Probit results.
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Figure 9: Market fixed effects

also show that the BAAC’s branching decisions are not consistent with profit maximiza-

tion. We argue that our market group effects capture the presence of these branches and

their inclusion in the banks’ profit functions would not affect our main results. To test for

this, we estimate an ordered probit model version of the bank’s profit function using our

market group effects together with BAAC and GSB presence. The results are shown in

Table 2. When we add the presence of BAAC or GSB branches to the baseline specifica-

tion in column (1), the coefficients of the other parameters remain virtually identical and

the coefficients on BAAC and GSB presence are not statistically significant. Therefore we

omit the BAAC and GSB branches from our structural model, which greatly reduces the

size of our state space.

4.2 Transition Process and Beliefs for Local Demand

We now discuss our empirical specification for the transition process of local demand, 𝑧𝑚𝑡 ,

and the banks’ beliefs about its future transitions, 𝑔𝑡 (·), at each point in time. We model
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Dependent variable: Enter/Nothing/Exit

Own branches −0.963 −0.961 −0.962 −0.960

(0.055) (0.055) (0.055) (0.055)
Rival branches −0.165 −0.162 −0.164 −0.162

(0.027) (0.027) (0.027) (0.027)
Local demand 0.056 0.056 0.056 0.056

(0.006) (0.006) (0.006) (0.006)
BAAC presence −0.100 −0.094

(0.089) (0.093)
GSB presence −0.032 −0.014

(0.061) (0.063)
Crisis and Crisis × Local demand Yes Yes Yes Yes

Market group fixed effects Yes Yes Yes Yes

Bank fixed effects Yes Yes Yes Yes

Number of observations 34344 34344 34344 34344

Standard errors in parentheses. Local demand is measured using GDP-intercalibrated nighttime

luminosity in a 20km radius around the market centroid. BAAC and GSB presence is measured

within a 20km radius around the market centroid.

Table 2: Ordered Probit regression results with market groups.

local demand evolving according to:

𝑧𝑚𝑡+1 − 𝑧𝑚𝑡 =𝜂𝑘 (𝑚) + 𝜂𝑝𝑜𝑠𝑡𝑘 (𝑚)1 {𝑡 > 1997} + 𝛼
𝐹∑︁
𝑓 =1

𝑛 𝑓𝑚𝑡+

𝛿961 {𝑡 = 1996} + 𝛿971 {𝑡 = 1997} + 𝜈𝑚𝑡+1

(10)

where 𝜈𝑚𝑡+1 ∼ N
(
0, 𝜎2

𝜈

)
. Local demand changes are allowed to vary by market group,

𝑘 , and the number of active bank branches

∑𝐹
𝑓 =1

𝑛 𝑓𝑚𝑡 . Under this specification, newly

entering branches do not affect local demand immediately, but only with a one-year lag.

We observe a downward shift in local demand in all markets during 1997 and 1998 which

we capture with the 𝛿96 and 𝛿97 terms. We also allow the market group effects, 𝜂𝑘 (𝑚) , to

change after the crisis by 𝜂
𝑝𝑜𝑠𝑡

𝑘 (𝑚) , as we observe slower growth rates in the years after the

crisis. Rural-to-urban migration is reflected in 𝑧𝑚𝑡 and so 𝜂𝑘 (𝑚) can capture any differen-

tial patterns in rural-to-urban migration across market groups, and the 𝜂
𝑝𝑜𝑠𝑡

𝑘 (𝑚) terms can

capture how these change differentially after the crisis.

The regression estimates of this equation are shown in Table A.1 in the Online Ap-

pendix. The regression shows that the 𝜂𝑘 (𝑚) terms for all market group fell after the crisis.
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We also estimate negative coefficients on the crash years, which captures the level drop

in GDP that we observe in Figure 1. The total number of active branches in a market also

has a positive and significant effect on the level of local demand in the following period.

We recognize the potential endogeneity issues that may arise by including the number of

active branches in this regression. We take up this issue in our robustness discussion in

Section 7.

We now specify the banks’ beliefs, 𝑔𝑡 (𝒔𝑚𝜏 ), about the process for local demand in each

period. Banks do not anticipate the crash to occur, nor do they anticipate the change in

the transition process following the crash. That is, for 𝑡 ≤ 1997, 𝑔𝑡 (𝒔𝑚𝜏 ) is given by:

𝑧𝑚𝜏+1 ∼ N ©«𝑧𝑚𝜏 + 𝜂𝑘 (𝑚) + 𝛼
𝐹∑︁
𝑓 =1

𝑛 𝑓𝑚𝜏 , 𝜎
2

𝜈

ª®¬ (11)

for all 𝜏 , where hats denote our estimates of the parameters in the local demand transition

equation. This allows the transition process to change in an unanticipated way at the time

of the crisis. After the crisis arrives, banks learn the true process of local demand and

believe it evolves according to the true process. That is, 𝑔𝑡 (𝒔𝑚𝜏 ) is given by our estimates

of equation (10) for all 𝑡 > 1997.
14

For these estimates, we assume that there are no future growth patterns that banks

know that econometricians do not driving the banks’ branching decisions, or else the

number of branches could be endogenous to future growth. Our market-group effects are

meant to address this but we take up this issue further in our robustness discussion in

Section 7.

4.3 Structural Parameter Estimation

We now discuss how we estimate our vector of structural parameters:

𝜽 =

(
{𝜃𝑘}𝑘=10

𝑘=1
,

{
𝜃𝑏
𝑓

} 𝑓 =4

𝑓 =2

, 𝜃𝑜𝑤𝑛, 𝜃𝑐𝑜𝑚𝑝, 𝜃𝑧, 𝜃𝑐𝑟𝑖𝑠𝑖𝑠, 𝜃𝑐𝑟𝑖𝑠𝑖𝑠,𝑧, 𝜃𝑒𝑐
)

(12)

We do not estimate the annual discount factor but set it to 𝛽 = 0.95. This discount factor

is commonly used in the literature for annual data (for example, Holmes (2011), Dunne

14
Although we assume that the crisis indicator 𝜁𝑡 returns to zero after the crisis, local demand growth is

permanently affected. We make this modeling choice to reflect that GDP growth never returned to pre-crisis

rates.
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et al. (2013), Collard-Wexler (2013) and Zheng (2016)).

Given a particular trial value of the structural parameters, we solve the model by back-

ward induction. We assume the period𝑇 at which states stop changing is 25 periods in the

future. Starting with period𝑇 and working backwards, we solve for the value function and

equilibrium choice probabilities within each time period for each market group. Because

local demand is continuous, we solve for the equilibrium choice probabilities at a fixed

number of points using ten different values of local demand. We provide further details

on this procedure in Online Appendix A.2. To obtain the equilibrium choice probabilities

at the actual levels of local demand, we use linear interpolation.

We use maximum likelihood to estimate the structural parameters. Let𝑎 𝑓𝑚𝑡 ∈ {−1, 0, 1}
be the action chosen by firm 𝑓 in market 𝑚 of group 𝑘 at time 𝑡 in the data, where the

sample period is 1992 to 2009. The maximum likelihood estimator of 𝜽 is then:

�̂� = arg max

𝜽

2009∑︁
𝑡=1992

𝑀∑︁
𝑚=1

𝐹∑︁
𝑓 =1

log

(
𝑝 𝑓

(
𝑎 𝑓𝑚𝑡 |𝒔𝑚𝑡 , 𝜽

) )
(13)

where 𝑝 𝑓
(
𝑎 𝑓𝑚𝑡 |𝒔𝑚𝑡 , 𝜽

)
is the equilibrium conditional choice probability for bank 𝑓 in mar-

ket𝑚 at time 𝑡 in state 𝒔𝑚𝑡 given parameters 𝜽 . Our model does not require simulation.

5 Model Estimates

Table 3 shows the structural parameter estimates. The estimates show a similar pattern

to the reduced-form ordered probit regression in Table 2. Branch profits are increasing in

local demand and are decreasing in the presence of own and rival branches.
15

The esti-

mated effect of the crisis shows a large decrease in profits, much greater than the presence

of rival branches. Although not statistically significant, the interaction term of the crisis

with local demand shows that firms in larger, richer markets experienced a greater drop in

profits. The estimated group fixed effects are monotonically increasing in the group index,

in line with the values from the ordered probit market fixed effects. The estimates of the

bank-specific profit shifters 𝜃 𝑓 are close to zero except for Siam Commercial Bank. This

estimate is negative relative to the base bank of Krung Thai because this is the smallest of

the four largest banks.

15
Like Igami and Yang (2016), we also find that the cannibalization effect is stronger than competition

from rival branches (𝜃𝑜𝑤𝑛 < 𝜃𝑟𝑖𝑣𝑎𝑙 ).
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Estimate Standard Error

Entry cost 11.712 (0.292)

Market group 1 0.095 (0.033)

Market group 2 0.136 (0.036)

Market group 3 0.208 (0.029)

Market group 4 0.254 (0.027)

Market group 5 0.269 (0.027)

Market group 6 0.328 (0.026)

Market group 7 0.395 (0.024)

Market group 8 0.451 (0.026)

Market group 9 0.574 (0.029)

Market group 10 0.769 (0.039)

Bank 2 −0.000 (0.010)

Bank 3 0.000 (0.010)

Bank 4 −0.071 (0.011)

Local demand 0.026 (0.003)

Own branches −0.094 (0.008)

Rival branches −0.055 (0.008)

Crisis −0.529 (0.090)

Crisis × Local demand −0.026 (0.018)

Local demand is measured using GDP-intercalibrated night-

time luminosity in a 20km radius around the market cen-

troid.

Table 3: Structural Parameter Estimates.

We can use the banks’ annual reports to interpret the magnitudes of the estimated

parameters. The average profits per branch from our four banks in 2006 was US$548,983.

Using the average profits of active branches in 2006 according to our model, one unit in

the parameter estimates is approximately US$1.187m. Based on this value, the presence

of one more rival branch on average lowers profits by US$65,522 per year.

To show how our model fits with the data, we solve for the equilibrium strategies at

the estimated structural parameters and simulate branch network expansion paths based

on these strategies. Figure A.5 in the Online Appendix shows the average total number

of active branches from 1,000 of such simulations. The error bars represent the 0.025 and

0.975 quantiles of the simulated network expansion paths. We can see that the predicted

total number of branches matches the aggregate temporal patterns in the data relatively

well, but overpredicts the number of branches in certain years. Figure A.6 in the Online

Appendix shows the same but split by market group. The model matches the total number
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of branches by market group reasonably well. Only in market group 10 do the predicted

entry paths slightly overpredict the number of branches in certain years. In Figure A.7 in

the Online Appendix, we also show how the total number of branch openings and closings

per year predicted by the model compare with the data. In general, the model captures

total branch openings and closings well. However, the model predicts the peak of branch

closings to occur in 1998, whereas in the data the peak occurs in 2001.

6 Understanding Branching During the Crisis

We now use our model to understand how the financial crisis of 1997 affected the banks’

branching strategies. We first use the model to understand how the lower growth rates af-

ter the crisis slowed the expansion of the branch network. We then simulate the branching

decisions that would have occurred in the absence of the crisis to measure the impact of

the crisis on financial access. We then simulate the effect of bank branch supports during

crisis on improving financial access both during and after the crisis. Finally, we explore

the impact of reduced local demand volatility on branching behavior.

6.1 Lower Growth Rates and Branching Strategies

Although GDP returned to its pre-crisis level by 2002, the aggregate number of branches

returned to its pre-crisis level only by 2006. Furthermore, there were a number of markets

that were served before the crisis but had fewer or no branches even until the end of our

sample period.

Part of this slow recovery is the large cost of opening a branch relative to the per-

period profits of a branch. According to the estimated model in 2005, the average branch

earned profits of 0.503. Thus the estimated entry cost is 23.3 times this.
16

Even though

a rural branch that closed during the crisis may have been profitable after the crisis was

over, the profits may not have been large enough to justify paying the large cost of entry

16
We do not view this number as unrealistically large. If flow profits are held fixed and the annual discount

rate is 𝛽 = 0.95, the present discounted value of the stream of flow profits is 𝛽/(1 − 𝛽) = 19 times the flow

profits. With fixed cost at 23.3 times the flow profit, firms are unlikely to enter in average markets. But even

then, at the average branch profits of 0.503, a bank would open a branch if 19 × 0.503 − 𝜃𝑒𝑐 + 𝜀1

𝑓𝑚𝑡
> 𝜀0

𝑓𝑚𝑡
,

which occurs with probability 0.1 under our distributional assumptions, so entry still takes place with some

frequency. Furthermore, the entry cost is only 16.4 times the annual flow profits for branches in the 10th

percentile of flow profits, making entry much more likely in high-demand markets. In addition, firms expect

local demand to grow, not stay fixed, which makes the value of entering larger than 19 times the current

flow profits, particularly before the crisis.
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The blue bars show the normalized average entry probabilities in 1995 and 2005 in markets of group

1-3 with no active branches at the average level of local demand in those markets in those years. Prob-

abilities are normalized relative to 1995. The red bar shows the average entry probabilities in 2005 at

the level of local demand in 1995. The green bar shows the average entry probabilities in 2005 in the

counterfactual scenario where the transition process of local demand continued according to the pre-

crisis process.

Figure 10: Changes in the average entry probabilities before and after the crisis.

again. But if it was optimal to pay this large entry cost before the crisis, why did banks

not reopen them after the crisis was over and GDP had recovered to its pre-crisis level?

Many of the branches in the hard-hit locations were opened in the late 1980s and early

1990s when the average annual growth rate in GDP was approximately 9%. Following the

crisis, the average growth rate was only 4-5%. Because the banks are forward-looking,

the lower growth rate in the post-crisis period made it less attractive to open branches in

many locations. Thus, our dynamic model provides an explanation for this lower rate of

entry after the crisis.

According to our estimated model, the average probability of opening a branch was

24.6% smaller in 2005 compared to 1995. Part of this change is driven by the change in

the transition process of local demand, but it is also affected by differences in the level of

local demand and the number of active branches through cannibalization and competi-

tion. When branches closed in many markets during the crisis, the reduction in financial

access in these locations also lowered the growth rate of local demand, making it even

less attractive for banks to open branches in these locations in the future.
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In order to isolate the effects of cannibalization, competition and the effect of branches

on growth, we focus on markets without any active branches. We also focus on the

markets more vulnerable to becoming unbanked and focus on market groups 1-3.
17

In

Figure 10 we show the average entry probabilities of banks in markets without active

branches in 1995 and 2005 at the average level of local demand in those markets in those

years. We normalize probabilities relative to 1995. Our model shows a decrease in the

average entry probability of 18.7% between 2005 and 1995 in these markets, despite the

fact that local demand in 2005 was on average 14.9% higher. This is shown by the blue bars

in Figure 10. If local demand was at its 1995 level in 2005, the average entry probability

would have been 27.4% lower. This is shown by the red bar in Figure 10. To understand

the effect of the change in the local demand transition process on branching decisions, we

run a counterfactual experiment where the transition process for local demand continues

according to the pre-crisis process into the post-crisis period. We then solve for the equi-

librium strategies of the banks. In this case, the entry probability would have been 11.6%

larger in 2005 compared to 1995. This is shown by the green bar in Figure 10. This increase

relative to 1995 is driven by the larger level of local demand in later years. Therefore the

change in the growth rate of local demand after the crisis made it less attractive for banks

to open branches, even though the level of local demand had recovered to its pre-crisis

level.
18

6.2 The Effect of the Financial Crisis

We now use the model to estimate the effect of the crisis on financial access. We run a

counterfactual experiment where we simulate the expansion of the bank branch network

under the scenario where the financial crisis of 1997 does not occur. We set the crash indi-

cator 𝜁𝑡 equal to zero and use the pre-crisis process of local demand for all time periods. In

this counterfactual, the crash does not occur and firms do not place a positive probability

of it occurring in the future. We then solve for the equilibrium strategies of the banks.

Figure 11 shows the results from 1,000 simulations according to these equilibrium

strategies. Figure 11a shows the average number of branches on aggregate from our sim-

ulations, together with error bands that contain 95% of the simulations. The baseline

17
The results that follow also hold when we look at other groupings of market group, such as 1-2, or 1-4.

When looking at all market group together the qualitative results are the same but with smaller changes.

18
An alternative explanation for the change in entry rates could be a change in the reserve requirement

ratio. However, the reserve requirement ratio fell from 7% to 6% in 1997 and remained there until 2016.

Therefore we do not believe these requirements caused the entry patterns to change.
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Figure 11: Branch network expansion under no crash versus baseline.

model predictions are also shown for comparison purposes. We can see that the number

of active branches continued according to the pre-crash trend in the absence of the crisis.

By 2007, ten years after the crisis, there were 18.5% more branches. In Figure A.8 in the

Online Appendix we also plot the difference in these outcomes over time with error bars

for the differences.

We are interested not only in the total number of branches, but also the proportion

of markets served by at least one branch, as markets without any branches have poorer

access to credit. For each of our simulated network expansion paths, we also calculate the

proportion of markets that had at least one branch from the banks in our model. We do

this under the no-crash counterfactual and under the estimated model parameters. This

is shown in Figure 11b, together with error bars that contain 95% of our simulations. We

can see that in the years following a crash, the number of markets served fell and did not

recover until the end of our sample period. However, under the no-crash counterfactual,

the proportion of served markets continued according to the pre-crash trend, with 9.3%

more markets served by 2007 compared to the baseline scenario.

Markets which saw their branches close may still have access to branches in nearby

markets. We calculate the distance to the nearest branch in the baseline case and this

counterfactual.
19

Figure 12 shows the change in distance to the nearest branch on average

from our simulations. Many locations saw an increase in distance with some locations

seeing an increase of up to 20km.

19
Although we exclude a subset of markets in estimation, we use the full set of 520 markets to perform

this calculation.
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Figure 12: Effect of the crisis on distance to nearest branch.

Ji et al. (forthcoming) estimate a regression model using Thai data explaining the ac-

cess to loans by the distance to the nearest branch. Using their estimated effect with our

predicted change in distance of 31.2%, village access to commercial loans would have been

8.0 percentage points higher in the absence of the crisis, over a baseline percentage with

access of 43.6% in 1996.
20

If we focus on the markets that were more severely affected

(those which saw a long-term reduction in the number of branches), the average distance

would have fallen by 51.6% and financial access would have been 14.5 percentage points

higher.

20
Access to commercial loans in Ji et al. (forthcoming) is a dummy variable which equals one if the village

head stated that households in the village had obtained loans from a commercial bank.
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We also decompose the effects of the crisis indicator, the fall in local demand, the

slowdown of local demand on branching in Online Appendix A.3. We find that the crisis

indicator explains 75.7% of the drop in branches.

6.3 Targeted Branch Supports

We now consider the effect of bank branch supports on maintaining the branch network

during the crisis. During the crisis, banks faced liquidity issues and closed branches in

many locations. After the crisis was over, banks often never reopened the closed branches,

even though those branches may have had positive profits after the crisis was over. This is

because of the large entry cost of opening a branch, and because the growth rate of local

demand fell in the post-crisis period. If branches in vulnerable markets were supported

with subsidies for the duration of the crisis period, markets that saw all their branches

close may instead continue to retain those branches throughout and after the crisis period.

This improved financial access can increase local growth through further investment, and

can also have other positive externalities such as enabling consumption smoothing.

For this counterfactual, we consider a targeted branch support subsidy for vulnerable

markets. For the purpose of this counterfactual, we define a vulnerable market as a mar-

ket with only one branch. For branches in these markets we consider a subsidy equal to

−
(
𝜃𝑐𝑟𝑖𝑠𝑖𝑠 + 𝜃𝑐𝑟𝑖𝑠𝑖𝑠,𝑧𝑧𝑚𝑡

)
for the years where the crisis indicator, 𝜁𝑡 , equals one.

21
Although

this subsidy does not compensate branches entirely for the decrease in local demand and

subsequent slowdown in growth, it covers the majority of losses induced by the crisis.
22

We assume the same process for local demand as in the baseline case for this counterfac-

tual. Because the crisis indicator also captures the effect of lower liquidity on the banks’

branching strategies, this counterfactual can also be interpreted as easing the liquidity

issues faced by the banks.

The results are shown in Figure 13, presented in the same format as Figure 11 for

ease of comparison. Figure 13a shows that although the total number of branches did not

continue according to its pre-crash trend, the total size of the branch network did not

decrease following the crisis. Ten years following the crisis, the total number of branches

is approximately 3.2% higher compared to the baseline scenario. Similarly, Figure 13b

21
Because only the last remaining branch in a market receives the subsidy, this subsidy can create a war

of attrition between the remaining branches in a market.

22
Based on the decomposition of the crisis shown in Online Appendix A.3 in the Online Appendix, the

crisis indicator alone accounts for 75.7% of the decrease in branches from the crisis.
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Figure 13: Branch network expansion under bank branch support subsidy versus base-

line.

shows that the subsidy prevented the proportion of served markets from decreasing, but

with fewer markets served compared to the no-crash scenario. By 2007, the proportion

of served markets was 6.6% higher compared to the baseline. This is large relative to the

9.3% increase in the percentage of served markets that would have occurred if the crash did

not occur at all. In Figure A.9 in the Online Appendix we also plot the difference in these

outcomes over time with error bars for the differences, where we observe a significant

increase in the number of branches and proportion of served markets under the targeted

subsidy.

Based on our simulations, between 179 and 196 branches receive the subsidy each

year. Using the estimated dollar value of the parameter estimates, the cost of providing

these subsidies is between US$128-148m per year on aggregate. This is approximately

US$738,000 per subsidy-receiving branch, which is 34% higher than the annual profits of

the average branch just before the crisis (US$548,983).

6.4 The Impact of Volatility in Growth Rates

The policies leading to high growth before the crisis arguably increased the intensity of

the crisis itself. In this counterfactual, we consider the impact of a less volatile growth

policy on branching strategies. We consider the impact of a stable growth rate throughout

the entire sample period that results in the same aggregate level of GDP in 2009 as in

our baseline case but without a crisis. We then estimate the impact of such a policy on
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Figure 14: Constant local demand growth versus baseline.

branching strategies.

We implement this counterfactual as follows. We use the following local demand tran-

sition function for the entire sample period:

𝑧𝑚𝑡+1 − 𝑧𝑚𝑡 = 𝜂★𝑘 (𝑚) + 𝛼
𝐹∑︁
𝑓 =1

𝑛 𝑓𝑚𝑡 + 𝜈𝑚𝑡+1 (14)

where we solve for the 𝜂★
𝑘 (𝑚) for each market group, 𝑘 , that produces an average market-

group-level local demand in 2009 across simulations that matches the baseline case. We

use the bisection method to solve for each of the 𝜂★
𝑘 (𝑚) . Because the transitions of local

demand depend on the banks’ branching strategies, we also solve for the equilibrium

strategies for each trial value of 𝜂★
𝑘 (𝑚) . We also set the crisis indicator, 𝜁𝑡 , to zero. The

mean 𝜂★
𝑘 (𝑚) from this procedure is 0.11, which is in between the pre-crisis mean of 0.241

and the post-crisis mean of 0.013 in the baseline case.

The results from simulating branching strategies using the local demand transition

function in equation (14) are shown in Figure 14. Because of the lower growth rate in local

demand, fewer stations enter pre-crisis compared to the baseline case and correspondingly

fewer markets are served by a bank. However, the trend of entry continues throughout

the entire sample period instead of falling during the crisis period. Ultimately there are

9.9% more branches and 6.4% more markets served ten years after the crisis. The average

distance to the nearest branch decreases by 21.4%, which translates into a 5.2 percentage

point increase in financial access.
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7 Robustness

In this section we show that the results from our main counterfactual simulations are not

sensitive to our modeling assumptions.

We first reestimate our model using a 15km radius to construct market clusters, instead

of our baseline threshold of 10km. Figure A.10 in the Online Appendix shows the differ-

ences between the clustering approaches for the branch locations in Southern Thailand.

We also proportionally adjust the radius that we use to calculate local demand. In Ta-

ble A.2, we show the structural estimates under each approach. In Figure A.11 we show

the results from the no financial crisis counterfactual simulation with these estimates.

Both the structural parameter estimates and estimated effects of the financial crisis are

very similar under each radius.

We also compare our model’s predictions under an alternative assumption of the

banks’ beliefs regarding the evolution of the crisis indicator, 𝜁𝑡 . In our baseline model,

banks learn the true process of 𝜁𝑡 once the crisis arrives. In this robustness check, instead

of assuming that banks learn the true process of 𝜁𝑡 when the crisis arrives, we assume that

banks learn the true process only after the crisis is over. During the crisis (between 1998

and 2004), banks believe that 𝜁𝑡 = 1 in all future time periods. Once the crisis is over, banks

learn the true process of 𝜁𝑡 and believe 𝜁𝑡 = 0 in all future time periods. We estimate the

parameters of the model according to this assumption and re-run the no crisis counterfac-

tual. The structural estimates are shown in Table A.3 and the counterfactual simulation is

shown in Figure A.12. Our estimate of 𝜃𝑐𝑟𝑖𝑠𝑖𝑠 is close to zero in this specification, and the

interaction of the crisis with local demand is smaller. However, the estimated effect of the

crisis on financial access is very similar to our baseline specification.

In our baseline model specification, we allow banks to internalize the effect of their

entry decisions on the transition process of local demand, as we find the number of active

branches has a positive impact on local growth. We perform a robustness check where

we instead assume that banks take the growth rate of local demand as given and do not

internalize the effect of their actions on growth. We do this by reestimating the regression

model in equation (10) that generates the transition process but omitting the number of

active branches as a regressor. The structural estimates using this transition process are

shown in Table A.4. Although not statistically different, the coefficients on own and rival

branches are slightly smaller in magnitude in this specification. In our baseline specifi-

cation, markets with more branches grow faster, which partially offsets the competitive
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effect of branches. Because this effect is not taken into account when banks do not in-

ternalize the effect of branching on growth, these coefficients become slightly smaller in

magnitude. We also repeat the no-crash counterfactual using this method. This is shown

in Figure A.13. We again find that the effect of the crisis in the counterfactual simulation

to be very similar to our baseline specification.

Although the effect of local branches on local GDP growth has been previously doc-

umented (Fulford, 2015; Nguyen, 2019; Young, 2021), our estimated effect of branches on

our local demand transitions may be upward biased if there are unobservables that affect

growth that are positively correlated with the number of branches beyond the market

group fixed effects (𝜃𝑘 (𝑚)) that we include. We test the sensitivity of our results to possi-

ble upward bias in the estimated coefficient on the total number of branches in Table A.1

by setting the coefficient to half its size and reestimating our structural parameters. The

estimates are shown in Table A.5. The parameter estimates and results from the no-crisis

counterfactual are again very similar to our baseline results.

Some market observers believe these banks coordinate their actions in certain ways

(Lauridsen, 1998). We also check if our results are robust to the possibility that the banks

coordinate their branching decisions. We do this by comparing our model’s predictions

under the alternative assumption that the four banks behave as a cartel. In this specifi-

cation, we assume a single bank makes all branching decisions to maximize the sum of

all banks’ payoffs. Instead of having two separate competition parameters for own and

rival branches, we estimate a single parameter. The set of strategies remains the same, but

the monopolist bank can have up to 12 branches per market instead of 3. The estimates

are shown in Table A.6 together with our baseline estimates. The estimated entry cost is

smaller compared to the baseline specification, and the competitive effect of the cartel’s

own branches is in between the effect of own and rival branches in the baseline specifica-

tion. The effects of the crisis under this modeling assumption are shown in Figure A.15.

We obtain similar results for the percentage of served markets and financial access, but

due to the lack of competition, slightly fewer branches open in the absence of the crisis.

We normalize the scrap value of exiting to zero as it is not separately identified from

the cost of entry, 𝜃𝑒𝑐 , and the market group effects, 𝜃𝑘 (𝑚) . However, it is possible that the

value of the normalization can have an impact on the counterfactual simulations (Aguir-

regabiria and Suzuki, 2014; Kalouptsidi et al., 2021a,b). Similar to the approach taken by

Igami and Yang (2016), we show that our main results are robust to this normalization by

simulating branching according to the baseline model and no-crisis counterfactual under
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alternative scrap value normalizations. We do this for all integer-valued scrap values be-

tween −5 and +5. For each scrap value, 𝜃𝑠𝑣 , we adjust the entry cost according to 𝜃𝑒𝑐 +𝜃𝑠𝑣

and the market group effects according to 𝜃𝑘 (𝑚) + (1 − 𝛽) 𝜃𝑠𝑣 . We show the results in Fig-

ure A.16 in the Online Appendix. The results are very similar under every normalization.

Finally, we also tested for multiple equilibria in our baseline model by solving the

model at different initial guesses of the banks’ strategies. In each case, the converged

strategies were numerically identical.

8 Conclusion

In this paper, we argue that the effect of financial crises on bank branch location choices

provides an unexplored channel by which crises affect access to credit. Because opening

new branches entails a large up-front investment, markets that see branches close during

the crisis may go unbanked for many years after the overall economy recovers. We study

this issue in the context of the 1997 Thai financial crisis by estimating a dynamic structural

model of banks’ branching strategies. In the model, we allow for complementarity in

payoffs for branches in the same market, as well as competitive effects between rival

banks. Our dynamic model is able to match aggregate moments in our data, and is able

to rationalize why banks failed to reopen closed branches after the economy recovered

through the lower growth rates of GDP after the crisis.

Using this model, we predict the evolution of bank branch locations under the coun-

terfactual scenarios of no financial crisis in 1997, with bank branch support subsidies, and

reduced volatility in growth. We find that the financial crisis had large impacts on the

total number of branches and the proportion of markets served by at least one branch.

We find that there would have been 18.5% more branches and 9.3% more markets with at

least one branch after ten years had the crisis not occurred. We calculate that access to

loans tens years later would have increased by 8.0 percentage points in the absence of the

crisis. Subsidies for branches in markets that are at risk of becoming unbanked or reduced

growth volatility could also have prevented the proportion of markets served by a branch

from falling below pre-crisis levels.
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Online Appendix to:
Bank Branching Strategies in the 1997 Thai Financial

Crisis and Local Access to Credit
by Marc Rysman, Robert M. Townsend, and Christoph Walsh

A.1 Additional Figures and Tables

Bangkok Bank Kasikornbank Krung ai Bank Siam Commercial Bank

Figure A.1: Locations of all branches ever held by each of the four largest banks.

44



0

1000

2000

3000

4000

0.0 2.5 5.0 7.5 10.0

Number of active branches

N
um

be
r 

of
 m

ar
ke

t-
ye

ar
s

0

1000

2000

3000

4000

0 1 2 3 4

Number of active banks
N

um
be

r 
of

 m
ar

ke
t-

ye
ar

s

Figure A.2: Number of active branches and active banks in market-years used in estima-

tion.

(a) 1992 (b) 2001 (c) 2010

Figure A.3: GDP-intercalibrated nighttime luminosity data over time.
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Figure A.4: Log provincial GDP versus log provincial nighttime luminosity.
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Figure A.5: Number of branches by year predicted by model versus data
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Dependent variable: Change in local demand

Market group 1 (𝜂1) 0.321 (0.057)
Market group 2 (𝜂2) 0.219 (0.057)
Market group 3 (𝜂3) 0.267 (0.058)
Market group 4 (𝜂4) 0.223 (0.058)
Market group 5 (𝜂5) 0.245 (0.058)
Market group 6 (𝜂6) 0.261 (0.059)
Market group 7 (𝜂7) 0.214 (0.057)
Market group 8 (𝜂8) 0.278 (0.061)
Market group 9 (𝜂9) 0.205 (0.068)
Market group 10 (𝜂10) 0.176 (0.079)
Market group 1 ×𝑃𝑜𝑠𝑡𝑡 (𝜂

𝑝𝑜𝑠𝑡

1
) −0.113 (0.070)

Market group 2 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

2
) −0.224 (0.070)

Market group 3 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

3
) −0.170 (0.070)

Market group 4 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

4
) −0.199 (0.070)

Market group 5 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

5
) −0.318 (0.070)

Market group 6 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

6
) −0.235 (0.071)

Market group 7 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

7
) −0.229 (0.070)

Market group 8 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

8
) −0.339 (0.071)

Market group 9 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

9
) −0.152 (0.070)

Market group 10 ×𝑃𝑜𝑠𝑡𝑡 (𝜂
𝑝𝑜𝑠𝑡

10
) −0.299 (0.071)

Total number of branches (𝛼) 0.044 (0.014)
1997 dummy (𝛿96) −0.412 (0.048)
1998 dummy (𝛿97) −0.464 (0.048)

Estimates from a linear regression. Standard errors in paren-

theses. Local demand is measured using GDP-intercalibrated

nighttime luminosity in a 20km radius around the market cen-

troid.

Table A.1: Regression model generating local demand transitions.
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Figure A.6: Predicted number of active branches versus data by market group.
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Figure A.7: Number of openings and closings predicted by model versus data
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Figure A.8: Difference in branch network expansion outcomes: no crash versus baseline.
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Figure A.9: Difference in branch network expansion outcomes: targeted subsidy versus

baseline.
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Figure A.10: Clustering locations under a 10km and 15km radius in Southern Thailand.
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Distance Threshold
10km 15km

Entry cost 11.712 11.773

(0.292) (0.336)

Local demand 0.026 0.016

(0.003) (0.003)

Own branches −0.094 −0.088

(0.008) (0.008)

Rival branches −0.055 −0.056

(0.008) (0.008)

Crisis −0.529 −0.501

(0.090) (0.103)

Crisis × Local demand −0.026 −0.021

(0.018) (0.014)

Market group fixed effects Yes Yes

Bank fixed effects Yes Yes

No crash counterfactual: 10 years after crisis compared to baseline

Percentage change in number of branches 18.45 16.79

Percentage change in markets served 9.29 8.70

Percentage change in average distance to nearest branch −31.16 −30.09

Percentage point change in financial access 8.03 7.70

Standard errors in parentheses.

Table A.2: Structural parameter estimates under a 15km distance thresholds to construct

markets clusters versus 10km.
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Figure A.11: Branch network expansion under no crash versus baseline using a 15km

distance threshold to construct markets.
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Banks

Baseline believe crash

specification lasts forever

Entry cost 11.712 10.889

(0.292) (0.222)

Local demand 0.026 0.015

(0.003) (0.002)

Own branches −0.094 −0.015

(0.008) (0.004)

Rival branches −0.055 −0.000

(0.008) (0.000)

Crisis −0.529 −0.001

(0.090) (0.029)

Crisis × Local demand −0.026 −0.017

(0.018) (0.005)

Market group fixed effects Yes Yes

Bank fixed effects Yes Yes

No crash counterfactual: 10 years after crisis compared to baseline

Percentage change in number of branches 18.45 21.36

Percentage change in markets served 9.29 7.77

Percentage change in average distance −31.16 −27.86

Percentage point change in financial access 8.03 7.02

Table A.3: Structural estimates assuming banks believe the crisis will last forever.
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Figure A.12: Branch network expansion under no crash versus baseline under the as-

sumption that banks believe the crisis will last forever.
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Banks Banks

do do not

internalize internalize

effect on effect on

growth growth

Entry cost 11.712 11.710

(0.292) (0.291)

Local demand 0.026 0.026

(0.003) (0.003)

Own branches −0.094 −0.091

(0.008) (0.007)

Rival branches −0.055 −0.052

(0.008) (0.008)

Crisis −0.529 −0.517

(0.090) (0.088)

Crisis × Local demand −0.026 −0.029

(0.018) (0.017)

Market group fixed effects Yes Yes

Bank fixed effects Yes Yes

No crash counterfactual: 10 years after crisis compared to baseline

Percentage change in number of branches 18.45 18.91

Percentage change in markets served 9.29 9.33

Percentage change in average distance −31.16 −31.51

Percentage point change in financial access 8.03 8.14

Table A.4: Structural estimates when branches do and do not internalize their effect on

growth.
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Figure A.13: Branch network expansion under no crash versus baseline under the as-

sumption that banks cannot affect the growth rate of local demand in their branching

decisions.
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Scaled down

Baseline branch effect

specification on growth

Entry cost 11.712 11.648

(0.292) (0.286)

Local demand 0.026 0.027

(0.003) (0.003)

Own branches −0.094 −0.093

(0.008) (0.007)

Rival branches −0.055 −0.054

(0.008) (0.008)

Crisis −0.529 −0.518

(0.090) (0.087)

Crisis × Local demand −0.026 −0.026

(0.018) (0.017)

Market group fixed effects Yes Yes

Bank fixed effects Yes Yes

No crash counterfactual: 10 years after crisis compared to baseline

Percentage change in number of branches 18.45 18.82

Percentage change in markets served 9.29 9.44

Percentage change in average distance −31.16 −31.42

Percentage point change in financial access 8.03 8.11

Table A.5: Structural estimates when scaling down 𝛼 in equation (10) to half its estimated

size.
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Figure A.14: Branch network expansion under no crash versus baseline when scaling

down 𝛼 in equation (10) to half its estimated size.
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Banks Banks

compete coordinate

Entry cost 11.712 9.798

(0.292) (0.294)

Local demand 0.026 0.034

(0.003) (0.004)

Own branches −0.094 −0.065

(0.008) (0.006)

Rival branches −0.055

(0.008)

Crisis −0.529 −0.504

(0.090) (0.092)

Crisis × Local demand −0.026 −0.022

(0.018) (0.018)

Market group fixed effects Yes Yes

Bank fixed effects Yes No

No crash counterfactual: 10 years after crisis compared to baseline

Percentage change in number of branches 18.45 16.09

Percentage change in markets served 9.29 8.97

Percentage change in average distance −31.16 −31.01

Percentage point change in financial access 8.03 7.98

Table A.6: Structural estimates when assuming that the banks behave as a cartel.
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Figure A.15: Branch network expansion under no crash versus baseline under the as-

sumption that banks behave as a cartel.
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Figure A.16: No-crisis counterfactual results under alternative scrap value normaliza-

tions.
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A.2 Additional Details on Equilibrium Computation

A.2.1 Local Demand Discretization

To solve for the equilibrium choice probabilities, we solve for the value function at a finite

number of points. We use 10 different values for local demand with each combination of

the number of possible branches for each of the 4 banks (0, 1, 2 or 3). We therefore solve

the value function at 2,560 points for each time period and each market group. We denote

this discretized state space by S̃. To choose these 10 values of local demand, we divide

the observed values of local demand into 8 equally-sized bins and take the median value

within each bin. In addition, we use 0 (the smallest possible value) and the maximum

value observed in the data plus 1. We denote these 10 values by �̃�1 < �̃�2 < · · · < �̃�10.

Let �̂�𝑘 (𝑚),𝜏+1

(
𝑧𝑚𝜏 ,

∑𝐹
𝑓 =1

𝑛 𝑓𝑚𝜏

)
denote the predicted value from the estimated transition

process for local demand in time period 𝜏 + 1, market group 𝑘 , with a current value of

local demand 𝑧𝑚𝜏 and

∑𝐹
𝑓 =1

𝑛 𝑓𝑚𝜏 active branches. Furthermore, let 𝜎𝜈 be the standard

deviation of residuals from the regression model estimating the local demand transitions.

The probability of transitioning from local demand �̃�𝑖 to �̃� 𝑗 in market group 𝑘 at time 𝜏

given

∑𝐹
𝑓 =1

𝑛 𝑓𝑚𝜏 branches is then given by:

Pr
©«�̃� 𝑗

������̃𝑧𝑖, 𝐹∑︁
𝑓 =1

𝑛 𝑓𝑚𝜏 , 𝑘 (𝑚) , 𝜏 ª®¬ =



Φ

(
−�̂�𝑘 (𝑚),𝜏+1

(
�̃�𝑖 ,

∑𝐹
𝑓 =1

𝑛𝑓𝑚𝜏

)
𝜎𝜈

)
if 𝑗 = 1

1 − Φ

(
�̃�10−�̂�𝑘 (𝑚),𝜏+1

(
�̃�𝑖 ,

∑𝐹
𝑓 =1

𝑛𝑓𝑚𝜏

)
𝜎𝜈

)
if 𝑗 = 10

Φ

(
𝑧
𝑗
−�̂�𝑘 (𝑚),𝜏+1

(
�̃�𝑖 ,

∑𝐹
𝑓 =1

𝑛𝑓𝑚𝜏

)
𝜎𝜈

)
− Φ

(
𝑧
𝑗−1

−�̂�𝑘 (𝑚),𝜏+1

(
�̃�𝑖 ,

∑𝐹
𝑓 =1

𝑛𝑓𝑚𝜏

)
𝜎𝜈

)
otherwise

(15)

where the 𝑧
𝑗
for 𝑗 = 1, . . . , 8 are the left cutoff points for each of the 8 bins used to construct

the �̃� 𝑗 and 𝑧
9
= �̃�10.

A.2.2 Updating the Equilibrium Strategy Function

Based on a trial value of the parameter vector 𝜽 , we first compute the terminal period

value function in each market state (equation (5)). For this we use the discretization of

local demand described above and evaluate it at 2,560 points for each time period and
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market group. To solve for the equilibrium strategy function in period 𝑡 = 𝑇 −1, we begin

with a guess of the action probability of firm 𝑓 in market𝑚 at time 𝑡 , 𝑝0

𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
for all 𝑎 ∈ A

(
𝑛 𝑓𝑚𝑡

)
and each state. For this we use 𝑝0

𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
= 1 for 𝑎 = 1

and zero otherwise. That is, the first guess assumes all banks do not open or close any

branches in all states.
23

We compute the state transition probabilities Pr (𝒔𝑚𝑡+1 |𝒔𝑚𝑡 , 𝑎 )
for any action of the bank 𝑎 ∈ A

(
𝑛 𝑓𝑚𝑡

)
using the guess 𝑝0

𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
for the rival

banks and the local demand transitions Pr

(
�̃� 𝑗

���̃𝑧𝑖,∑𝐹
𝑓 =1

𝑛 𝑓𝑚𝜏 , 𝑘 (𝑚) , 𝜏
)

in equation (15).

Based on this iteration of the state transition probabilities, we compute the expected

value function in the following period E
[
𝑉𝑓 (𝒔𝑚𝑡+1, 𝜽 ) |𝒔𝑚𝑡 , 𝑎 𝑓𝑚𝑡 = 𝑎

]
for bank 𝑓 for all

possible actions 𝑎 ∈ A
(
𝑛 𝑓𝑚𝑡

)
from all states 𝒔𝑡 ∈ S̃. Using this, we update bank 𝑓 ’s

action probabilities in each state using equation (8). We update the probabilities for bank

𝑓 = 1, . . . , 𝐹 sequentially.
24

We continue updating these probabilities this way until the

maximum absolute change in action probabilities across states from one step to the next

is smaller than a pre-specified tolerance level:

max

𝑓 ∈{1,...,𝐹 },
𝒔𝑚𝑡∈S̃,

𝑎∈A(𝑛𝑓𝑚𝑡)

���𝑝 𝑗
𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
− 𝑝 𝑗−1

𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

) ��� < 1 × 10
−9

(16)

Once we have solved for the equilibrium strategies in period𝑇 −1, we compute the ex-ante

value function for each firm in each market and each state according to equation (7). We

then proceed to compute the equilibrium strategies in periods 𝑡 = 𝑇 − 2, . . . , 1. This pro-

ceeds almost identically to𝑇−1 except that we use the following period’s strategy function

as the initial guess of the strategies, i.e. 𝑝0

𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡 , 𝜽

)
= 𝑝 𝑓

(
𝑎 𝑓𝑚𝑡 = 𝑎 |𝒔𝑚𝑡+1, 𝜽

)
for all

𝑎. Because the equilibrium strategies will be the same for all markets of the same market

group, we can solve for the equilibrium once for each group instead of each market, which

allows for computation in parallel over all 10 market groups.

23
We also tested our procedure by starting with the guess that all banks open a branch in every state and

found our algorithm to converge to the same action probabilities.

24
We assume that banks update their strategies based on the total number of branches they have in the

data with the largest banks updating first. We also tested our procedure by reversing the order in which we

update banks’ strategies and found that it converges to the same entry probabilities.
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A.3 Decomposition of Crisis Effects

There are three components of our model that change during the crisis that can slow

down branch openings and lead to closures. First, the crisis indicator, 𝜁𝑡 , is activated

which lowers profits. Second, there is a fall in local demand brought about by the 𝛿96 and

𝛿97 terms in equation (10). Third, there is a slowdown in the growth rate of local demand

brought about by the 𝜂
𝑝𝑜𝑠𝑡

𝑘 (𝑚) terms in equation (10). We decompose the effect of each of

these terms by running separate counterfactual experiments where we add each of these

effects one by one. The results of these experiments are down in Figure A.17. Because we

overlay several experiments, we omit error bands to maintain legibility. The red solid lines

labelled “No crash” are identical to the no crash counterfactual in Section 6.2. We show

both the total number of branches and the proportion of served markets as in Figure 11.

The green dashed line labelled “Crash indicator” shows the evolution of the number of

branches and proportion of served markets when only the crisis indicator is activated and

there is no fall or slowdown in local demand. The blue dotted line labelled “Crash indicator

and fall in local demand” shows the results when both the crisis indicator is activated and

we allow local demand to fall in 1997 and 1998, but maintain the pre-crisis growth rate

after the crisis. Finally, the purple dot-dashed line labelled “Crash indicator, fall in local

demand, and growth slowdown” shows the baseline case where the crash occurs.
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Figure A.17: Decomposition of the Crisis
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By 2007, the crisis is estimated to lead to a drop in the number of branches of 15.6%.

The crisis indicator alone causes a drop of 11.8%, so the crisis indicator can explain 75.7%

of this drop. When local demand also falls in 1997-1998, the fall in the number of branches

is 13.1%. When we also add the slowdown in the growth rate of local demand, we obtain

the total fall of 15.6%. Therefore the slowdown in the growth rate of local demand after the

crisis explains relatively more of the drop than the fall in local demand during 1997-1998.

The decomposition for the proportion of served markets shows a similar pattern, with the

crisis indicator explaining 69.7% of the drop.
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