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Abstract

We analyze the subgame-perfect equilibria of a game where two agents
bargain in order to share the risk in their assets that will pay dividends
once at some fixed date. The uncertainty about the size of the dividends
is resolved gradually by the payment date and each agent has his own
view about how the uncertainty will be resolved. As agents become less
uncertain about the dividends, some contracts become unacceptable to
some party to such an extent that at the payment date no trade is possi-
ble. The set of contracts is assumed to be rich enough to generate all the
Pareto-optimal allocations. We show that there exists a unique equilib-
rium allocation, and it is Pareto-optimal. Immediate agreement is always
an equilibrium outcome; under certain conditions, we further show that
in equilibrium there cannot be a delay. In this model, the equilibrium
shares depend on how the uncertainty is resolved, and an agent can lose
when his opponent becomes more risk-averse. Finally, we characterize
the conditions under which every Pareto-optimal and individually ratio-
nal allocation is obtainable via some bargaining procedure as the unique
equilibrium outcome.

1 Introduction

Consider two risk-averse agents who want to share the risk in their assets. Assets
will pay dividends only once, at some fixed date t̄. As in Wilson (1968), each
agent has his own beliefs about the dividends, but no agent has any private
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information.1 Which contract will these agents agree on, and when will they
reach an agreement? What are the determinants of “bargaining power”? These
are the questions we ask in this paper. One might find it obvious that, given a
sufficiently rich set of contracts, the agents will immediately agree on a Pareto
optimal contract. We will show that this is true – but there are some interesting
details to it.

In this environment, any allocation feasible at the beginning remains feasi-
ble until the end, and the agents are indifferent about which date they agree
on any given allocation. Thus, the set of payoffs does not shrink as time passes
and there is no discounting to create impatience for agreement. Instead, as
time passes, some uncertainty about the dividends is resolved, making some of
the contracts individually irrational for some agent, given the agent’s expec-
tations about how events will proceed. This reduces the scope for insurance.
(Eventually at date t̄ agents lose all insurance opportunities; autarky is the only
individually rational contract left.) This loss of contracting opportunities leads
agents to agree early on.

One can imagine many bargaining problems where such lost contracting op-
portunities are the major costs of delay – not discounting by the agents or some
material losses. For example, many wage contracts are negotiated before the
current contract expires. Thus, until the current contract expires, a major part
of the cost of delay is the lost insurance opportunities between the workers and
the firm against fluctuations in the labor market.2 Sometimes, agents may also
hold incompatible beliefs about the size of the gains from trade and each agent’s
outside options. Our analysis here may be helpful in analyzing such problems.

The formulation closest to the one adopted here is that of Merlo and Wilson
(1995). The relation to the latter is discussed further in a Remark following the
presentation of our model in Section 2.

Our efficiency and immediate-agreement results are as follows. Assuming
that all Pareto-optimal allocations can be generated by contracts throughout
the bargaining process, under any sequential bargaining procedure with im-
mediately expiring offers, the following are true: There exists an equilibrium
where agents reach an agreement immediately; any subgame-perfect equilib-
rium is payoff-equivalent to this equilibrium (Theorem 1); and the equilibrium
allocation is unique and Pareto-optimal when the first offer is made (Theorem
2). Furthermore, except for the trivial case where autarky is initially Pareto-
optimal, immediate agreement is the only equilibrium outcome, provided each
agent can make an offer with positive probability throughout, and the recogni-

1Under these conditions, assuming that a Pareto-optimal allocation rule is employed, Wil-
son (1968) characterizes the conditions under which the group can be represented by an
expected-utility maximizer.

2Another example: it is common in legal practice that the settlement is negotiated while
parts of the case are litigated. As each decision is made in court, some uncertainty about
the eventual payment by the defendant is resolved, making certain settlement agreements
individually irrational for certain parties. (In wage bargaining, delaying agreement may also
result in the costly delay of some decisions the parties might want to take after the agreement.
In litigation, the legal fees are also very large.)
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tion process is affiliated (Theorem 3).
These results clarify certain results in the bargaining literature. Excessive

optimism is presented as an explanation for delays by many authors, such as
Hicks (1932), Landes (1971), Posner (1974), Farber and Bazerman (1989), and
Yildiz (2001). They demonstrate that, if each agent has excessively high expec-
tations about his prospects in case of a delay, then delay may be necessary in
equilibrium. Here, under the condition that agents can generate all the Pareto-
optimal allocations throughout, we show that immediate agreement is always
an equilibrium outcome, and is in fact the only equilibrium outcome for generic
cases. Therefore, the delay results from the authors’ restrictions on the set of
contracts. Moreover, in order to satisfy our condition, all we need is risk-sharing
agreements about the dividends and side-bets on the events about which our
agents have distinct beliefs. Therefore, their results are based particularly on
their implicit assumption that side-bets are not feasible.

At the beginning of any given date, the continuation value of an agent is the
sum of the rents he expects to extract when he makes offers in the future, plus
his expected utility of consuming the dividend paid by his own asset. The value
of the rents is determined by the way uncertainty is resolved. After a substantial
resolution of uncertainty, a substantial group of the potential contracts become
individually irrational, and thus not viable. Therefore, agents who make offers
prior to such resolution of uncertainty extract substantial rents. For instance, in
the canonical case analyzed in Section 5, revealing an informative signal at some
time t rather than s is equivalent to transferring the gain from trade associated
with this signal from the agent who makes an offer at s − 1 to the agent who
makes an offer at t − 1.

Many axiomatic bargaining solutions have the property that, if an agent
becomes more risk-averse, then he becomes worse off while his opponent be-
comes better off. The same property holds in the Rubinstein-Stahl model for
the instantaneous risk-aversion. In our model, the impact of risk aversion is
ambiguous. If the total wealth in society is risky, risk aversion of an agent may
hurt his opponent. Hence, this property exhibited (and sometimes postulated)
in axiomatic bargaining models is not confirmed here.

Finally, even though we allow our agents to hold different beliefs, this is
not the main attribute of our model. In fact, the earlier versions of this paper
assumed that the agents hold the same beliefs.

The outline of the paper is as follows. In the next section we lay out our
model. In Section 3, we present examples with delay and inefficiency. We present
our main results in Section 4. In Section 5, we derive the solution in closed form
for a canonical case; we illustrate our results, and discuss the effects of risk
aversion. In Section 6, we present a monotonicity property of the equilibrium
and characterize the allocations that can be the equilibrium outcome for some
bargaining procedure. The appendix contains the proofs omitted in the text.
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2 Model

In this section we lay out our model. For some (possibly large) t̄ ∈ N, we
take T = {t ∈ N|0 ≤ t ≤ t̄} to be the time space, where N denotes the set
of all non-negative integers. At each date t ∈ T , a signal Yt becomes publicly
observable and remains observable thereafter. Writing Y = (Y0, . . . , Yt̄) and
Y t = (Y0, . . . , Yt), we designate y ≡ {ys}s∈T and yt ≡ {ys}s≤t as the generic
realizations of Y and Y t, respectively.

We have one consumption good, which will be consumed at date t̄, and two
agents, whose set will be denoted by N = {1, 2}. Each agent i has a strictly
concave and strictly increasing Von-Neumann-Morgenstern utility function ui :
R → R. We write P i (·|yt) for the beliefs of i at yt, and P i for his prior beliefs.
We assume that P 1 and P 2 are equivalent. That is, they assign zero probability
to the same events. (This assumption is made only to avoid the ambiguity in
using certain terms, such as almost surely.) We write Ei [·|yt] and Ei for the
expectations with respect to P i (·|yt) and P i, respectively.

Given any i ∈ N , for some xi ∈ R, we take [xi,∞) as the set of feasible
consumption levels for agent i and write Xi for the set of all (risky) consumption
functions, i.e., the random variables xi : y �→ xi (y) ∈ [xi,∞) that are integrable
with respect to P i. Each agent i ∈ N has an asset that pays only one dividend
Di ∈ Xi, which will be paid at t̄. There is no market at which our agents can
trade.

By an allocation, we mean any x ∈ X1 × X2 with x1(y) + x2(y) ≤ D1(y) +
D2(y) at each y. Here, xi(y) denotes the consumption of agent i when the
realization of Y is y. By a contract x[yt] at a given yt, we simply mean the
restriction of an allocation x to the set {y′|y′

s = ys for all s ≤ t} of all continu-
ations of yt. Clearly, an allocation x is the mutual extension of contracts x[yt].
We write X [yt] for the set of all contracts at yt and X for the set of all alloca-
tions. We take some Ct [yt] ⊆ X [yt] as the set of feasible contracts at yt and
write Ct ⊆ X for the set of allocations generated by the contracts in Ct [yt].
(The set of feasible contracts may be strictly smaller due to some additional
constraints.) We finally write C = (C0, . . . , Ct̄).

We will analyze the game G (C, ρ) in which the following is common knowl-
edge: At each t, first the signal Yt is observed and an agent ρt (yt) ∈ N is
recognized. Then, the recognized agent offers a contract x [yt]. If the con-
tract is accepted by the other agent, they sign the contract, yielding payoff
Ei

[
ui (x [yt]) |yt

]
for each i; otherwise, the offer expires and they wait until the

next date, except for date t̄, when the game ends and each i consumes Di (y).
The process ρ ≡ (ρ0, . . . , ρt̄) is called the recognition process.

We assume3 that P 1 (ρt = i|ys) = P 2 (ρt = i|ys) = pi
t (ys) for some pi

t (ys)
at each t and ys. We call any full list p =

{
pi

t (ys)
}

ys,i,t
of such probability

3All the conditions we are about to assume are here to simplify the exposition. They are
only used in Theorems 3 and 4 (see Yildiz, 2000). These assumptions have been made in most
papers (e.g., Baron and Farejohn (1989), Binmore (1987), Rubinstein, 1982) in the bargaining
literature — with few exceptions, such as Merlo and Wilson (1995 and 1998), who allow ρ to
be correlated with D.
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assessments a bargaining procedure. We assume that ρ and D are independent
and that pi

t (ys) depends only on the history {ρt′ (y0, . . . , yt′)}t′≤s of recognized
agents. The set of all such bargaining procedures is denoted by P.

Remark Merlo and Wilson (1995) develop a stochastic model of bargain-
ing in which the pie and the proposer at any date are determined by a time-
homogenous Markov process σ = (σ0, σ1, , . . . , σt, . . .), the players have a com-
mon prior, and the future is discounted with some β ∈ (0, 1). If we also had
the common-prior assumption, we could transform our model into theirs.4 Note
that differing priors do not cause a problem in defining a pie as in Merlo and
Wilson (1995). Nevertheless, differing priors do induce differing transition prob-
abilities for σ. The latter disagreement in the beliefs is the major source of the
delay when the side-bets are not allowed (see Yildiz, 2001). More importantly,
even if we had a common prior, we could not satisfy the condition that Merlo
and Wilson (1995) require for their payoff-uniqueness and immediate-agreement
results. This is mainly because we do not have actual discounting.5 Even with
discounting, our general model does not satisfy their condition, which is in-
tended to cope with the problems that arise in the infinite-horizon case. For
these reasons, we directly construct our equilibrium in the Appendix. The con-
struction is mathematically straightforward, but hopefully reveals our agents’
primary considerations.

Optimality, side bets, risk-sharing agreements Given any yt, an alloca-
tion x̃ is said to be Pareto-optimal at yt iff[∃i ∈ N, Ei[ui(xi)|yt] > Ei[ui(x̃i)|yt]

] ⇒ [∃j ∈ N, Ej [uj(x̃j)|yt] > Ej [uj(xj)|yt]
]

for each allocation x ∈ X. That is, the (conditional) probability that we can
improve both agents’ expected utility at yt is zero. An allocation is said to
be Pareto-optimal iff it is Pareto-optimal at the beginning. We say that C is
Pareto-complete iff Ct contains all Pareto-optimal allocations for each t ∈ T .

Our next lemma is familiar. It states that C is Pareto-complete whenever
all risk-sharing agreements and side-bets are available. Let us consider some
objective components of uncertainty separately, and write each Yt as (Ỹt, Ȳt)
where the agents have a common prior on Ỹt, which contains information about
some objective aspects of uncertainty. Likewise, we write each y as (ỹ, ȳ).

Lemma 1. Let X̄ = {x ∈ X|x (ỹ, ȳ) = x (ỹ′, ȳ) ∀(ỹ, ỹ′, ȳ)}. If D ∈ X̄, then(
X̄, . . . , X̄

)
is Pareto-complete.

4We would take all the sample paths yt as our states, let each yt̄ be absorbing, and compute
the transition probabilities using the common prior. We would then consider a super-game in
which our game starts at different dates, making σ time-homogenous. The pie at any state
yt would be

{(
E1[u1(x1) − u1(D1)|yt]/βt, E2[u2(x2) − u2(D2)|yt]/βt

) |x ∈ Ct
[
yt

]}
for some

β ∈ (0, 1).

5That is why our immediate agreement result requires more conditions.
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Proof: All the proofs are in the Appendix.

That is, Pareto-optimal contracts do not refer to Ỹ = (Ỹ0, . . . , Ỹt̄) if Ỹ
does not affect the dividends and if agents hold common beliefs about Ỹ . Put
differently, so long as we can write contracts on all the events that are relevant
for the dividends (so that they can share all the risk) or the events about which
the agents have distinct beliefs (so that they can bet), we can generate all the
Pareto-optimal contracts.

3 Examples of delay and inefficiency

Two properties of the bargaining procedures in this paper are essential: (i) they
are sequential and (ii) the offers expire immediately. In addition, we assume
that (iii) C is Pareto-complete. Under these conditions, we will show that all
equilibria are equivalent to an equilibrium where players immediately agree on
an allocation that is Pareto-optimal when the first offer is made. We will further
show that this is the only equilibrium outcome for generic cases. Now, we will
demonstrate that these conditions are not superfluous.

Firstly, it is well known that, when the bargaining procedure is not sequen-
tial, there may be multiple equilibria. In that case, the equilibria in future
subgames may depend on the play at the beginning, and this may cause a dis-
agreement at the beginning.

Our next example demonstrates that, when C is not Pareto-complete, we
may have delay and inefficiency in (the unique) equilibrium. In this example, we
restrict our contracts to the sales contracts. A sales contract can be represented
by the amounts of equity shares Agent 1 owns in the assets, and a consumption-
good transfer from Agent 2 to Agent 1.

Example 1: (The set of contracts is Pareto-incomplete.) Take T =
{0, 1, 2}, ρ0 = ρ2 = 1, and ρ1 = 2. For each i, take xi = 0 and
ui

(
xi

)
=

√
xi. Take Y0 a constant, and D (as a function of Y1 and

Y2) as in the following table.

Y2 = H Y2 = L
Y1 = 1 (16, 9) (16, 0)
Y1 = 2 (9, 16) (0, 16)

We take P i (Y1 = i) = 1 and P i (Y2 = H) = P i (Y2 = L) = 1/2 for each
i.6 We assume that only sales contracts are feasible.

At date 2, each agent knows the true state, hence any trade will be
just a transfer from some agent i to the other, which is not individually
rational for i. Hence, if they have not agreed by date 2, they will not
trade. Thus, Agent 1 will accept an offer at t = 1 iff it gives him at
least the expected utility of consuming his own asset. Moreover, at t = 1,

6In order to make P 1 and P 2 equivalent, take P i (Y1 = i) = 1 − ε for sufficiently small
ε > 0.
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the optimal contracts are sales contracts where any agent’s equity shares
in two assets are the same. Hence, at t = 1, Agent 2 will offer the
Pareto-optimal sales contract that gives Agent 1 his continuation value.
The offer will be accepted. When Y1 = 1, the asset of 1 will pay 16
for sure, yielding expected utility of

√
16 = 4. Then, Agent 2 will offer

64/81 of each asset to Agent 1, yielding payoff vector
(
4,
√

15/2
)
. When

Y1 = 2, if Agent 1 consumes his own asset, his expected utility will be
only

√
9/2+

√
0/2 = 3/2. In that case, Agent 2 will offer 1/9 of each asset

to Agent 1, yielding payoff vector
(
3/2, 3

√
2
)
. At t = 0, Agent 1 is certain

that Y1 = 1 and he will get 4. Likewise, Agent 2 is certain that Y1 = 2
and she will get 3

√
2. But the best sales contract at t = 0 is no-trade,

yielding expected payoff (4, 4) � (
3/2, 3

√
2
)
. Therefore, they disagree at

t = 0.
Yielding payoff vector

(
4, 3

√
2
)
, the equilibrium is Pareto-inefficient.

If Agent 1 owned both assets when Y1 = 1 and Agent 2 owned both assets
when Y1 = 2 (the sales contracts available at each t ∈ {1, 2}), the payoff
vector would be (9/2, 9/2).

Note that there is no allocation generated by feasible contracts at t = 0
that Pareto-dominates the equilibrium allocation. Therefore, the inefficiency is
not caused by delay. Recognizing that the Pareto-dominating contracts will be
individually irrational when they become available, agents agree on a Pareto-
dominated contract. Note also that, if C were Pareto-complete, the contract
that gives the entire wealth to the agent i with Y1 = i would be feasible at t = 0,
and agents would agree on this contract at t = 0, illustrating how the side-bets
would be used in equilibrium.

In this example, we have exploited the fact that the players have different
priors. This is not essential. What is essential is that the set of contracts at
t = 0 is Pareto-incomplete. The following version of this example demonstrates
this.

Example 17 (continued) Now, assume that the consumption-good trans-
fers are not feasible; i.e., the re-allocation of the assets is the only feasible
form of trade. Consider a new set of utility functions and dividends. Take
u1

(
x1

)
= x1, u2

(
x2

)
= 2

√
x2, and take the dividend-matrix as

Y2 = H Y2 = L
Y1 = 1 (8, 4 + ε) (0, 4 + ε)
Y1 = 2 (4, 8) (4, 0)

for some small ε > 0. Assume that the players agree that each cell is
equally likely. Now, if Y1 = 1, the initial allocation is already Pareto-
optimal, hence there will be no trade at date 1. If Y1 = 2, player 2 will
offer to exchange the assets (so that player 1 owns all of asset 2 and player
2 owns all of asset 1), which will be accepted. At the beginning of date
1, the continuation values of players 1 and 2 are 4 and

√
4 + ε +

√
4 ∼= 4,

respectively. Now, when ε = 0, among the offers that will be accepted by

7This version is given by an anonymous referee.
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player 2 at t = 0, the best offer for player 1 is to give 4/
(
1 +

√
3
)2

of each
asset to player 2, and keep the rest. Under this agreement, player 2 gets
4 and player 1 gets only approximately 3.7128 < 4. Therefore, for small
values of ε, they will not agree at t = 0. The delay is inefficient, because
the risk-averse agent bears some of the risk.

Finally, our next example demonstrates that, if the offers lived longer, the
equilibrium outcome might necessarily be inefficient.

Example 2: (The offers live longer.) Take T = {0, 1}, and assume that
the offers made at t = 0 expire at the end of date 1. Let ρ0 = 1 so that
Agent 1 makes the offer at 0. Given any offer x �= D of Agent 1, the
best response of Agent 2 is to wait until date t = 1 and to accept the
offer iff x2 (y) ≥ D2 (y). Hence, for any offer x, Agent 1 would consume
min{x1, D1} and Agent 2 would consume max{x2, D2}. In that case,
Agent 1 would offer x = D. Therefore, there is no trade in equilibrium.

Similarly, allowing the offers to live one period in Rubinstein’s (1982) model,
Avery and Zemsky (1994) show that the steady-state subgame-perfect equilib-
rium may be inefficient. In many situations some information may arrive before
the offer expires. This adds an option value for waiting, and causes inefficiency.
(In an earlier version of this paper, we show that, if C is Pareto-complete, and
the offers live one period, the equilibrium allocation will be Pareto-optimal when
the first offer expires, that is, conditional on the signal observed.)

4 Equilibrium

In this section we analyze the subgame-perfect equilibria of a game G(C, ρ) with
Pareto-complete C. The first result establishes that the equilibrium payoff-
vector is unique and can be obtained through an immediate agreement. We
show further that immediate agreement is the only equilibrium outcome if there
are some gains from trade and each agent is likely to make an offer throughout.
Finally, we derive an equation determining an agent’s equilibrium payoff in
terms of the dividends and the sequence of expected rents.

As usual, a strategy of an agent is a complete contingent-plan that deter-
mines the offer the agent makes when he makes an offer, and whether he accepts
or rejects an offer made by the other agent. We require an agent’s offers at
various yt of a given date t to be measurable. A strategy profile s is a subgame-
perfect equilibrium (henceforth simply equilibrium) iff the strategies are best
response to each other in each subgame.

Notation Given any distinct i, j ∈ N , any t, any yt, and any feasible payoff
vector v at yt, we let x̂t[v, i; yt] be the (almost surely) unique solution to the
optimization problem

max
x[yt]∈X[yt]

Ei[ui(xi[yt])|yt] subject to Ej [uj
(
xj [yt]

) |yt] ≥ vj ,
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and mi(v; yt) = Ei[ui
(
x̂i

t[v, i; yt]
) |yt] be the maximum. Note that x̂t[v, i; yt] is

Pareto-optimal at t.
Define the process V = {Vt}t∈T by the terminal value

V i
t̄

(
yt̄−1

)
= Ei

[
ui

(
Di

) |yt̄−1
]

(1)

and the difference equation

V i
t (yt−1) = Ei[mi

(
Vt+1; yt

)
1{ρt(yt)=i}|yt−1] + Ei[V i

t+1

(
yt

)
1{ρt(yt) �=i}|yt−1],

(2)
required at each i and yt−1. Here, V i

t (yt−1) will be the continuation value of an
agent i at the beginning of t at yt−1 for any equilibrium. Hence, (1) states the
fact that there will be no trade at t̄, while (2) is given by backward induction.
That is, given that players will get Vt+1 (yt) the next day, the proposer will
offer x̂t[Vt+1 (yt) , i; yt], which the other player will barely accept. This gives
(2). (When C is Pareto-complete, x̂t[Vt+1 (yt) , i; yt] is feasible.)

Theorem 1. Let C be Pareto-complete. Then, the following strategy profile
(denoted by s̄) is a subgame-perfect equilibrium of game G (C,ρ): at any yt,
an agent j �= ρt (yt) accepts an offer xt[yt] iff Ej [uj(xj

t [yt])|yt] ≥ V j
t+1(y

t),
and agent i = ρt (yt) offers x̂i

t[Vt+1, i; ·]. Moreover, for any subgame-perfect
equilibrium of G (C,ρ), the vector of continuation values at the beginning of any
date t with yt−1 (before Yt is observed) is Vt

(
yt−1

)
. After Yt is observed, the

continuation value of an agent i is mi (Vt+1(yt); yt) if ρt (yt) = i, and V i
t+1(y

t)
otherwise.

That is, all equilibria are payoff equivalent. Moreover, in one of these equi-
libria, the agents reach an agreement at t = 0, so long as the space of feasible
contracts is Pareto-complete, e.g., so long as all side-bets and all risk-sharing
agreements are feasible. (Therefore, the delay results cited in the Introduction
are based on the authors’ exclusion of some of these contracts.)

In any equilibrium, by Theorem 1, when agents learn which of them is to
make the first offer, the continuation values are mi

(
V1(y0); y0

)
and V j

1 (y0)
where ρ0

(
y0

)
= i �= j. This is a Pareto-optimal expected-utility level (cf.

Lemma 2.1 in the Appendix). Since the utility functions are strictly quasi-
concave, it is uniquely obtained by x̂0[V1, ρ0

(
y0

)
; y0]. Hence, the outcome is

Pareto optimal at y0, when they learn which player makes the first offer. Before
they learn y0, however, agents are uncertain of which x̂0[V1, ρ0

(
y0

)
; y0] will

prevail. When x̂0[V1, ρ0

(
y0

)
; y0] varies as Y0 takes different values of y0, the

uncertainty about x̂0[V1, ρ0 (·) ; ·] may hurt our risk-averse agents, causing some
inefficiency. In order to avoid this ambiguity in measuring efficiency, we will
state our efficiency result for the case that Y0 is constant.

Theorem 2. Let C be Pareto-complete. Then, G(C, ρ) admits a unique equilib-
rium allocation, which is Pareto-optimal at y0. This allocation is Pareto-optimal
at the beginning whenever Y0 is constant.
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We have seen in Example 1 that, when the space of contracts is Pareto-
incomplete, some delay may be necessary for reaching an agreement. When the
space of the contracts is Pareto complete, there exists a contract at t = 0 that
imitates such delay, as the delayed equilibrium allocation is unique. Therefore,
even though the unique equilibrium allocation is reachable via contracts at t = 0,
it is not clear that these contracts are not simply imitating a delay. Theorem 2
implies that, typically, the contracts written in equilibrium are not equivalent to
a delay. For, by the syndicate theory, Pareto-optimal contracts use the minimal
information about the total wealth and the discrepancy between the agent’s
beliefs. When there is a common prior, they depend only on the sum D1 + D2.
Our next example clarifies this matter further and motivates our next theorem.

Example 3: For any large, even integer t̄, let Y = (Y0 . . . , Yt̄) be iden-
tically and independently distributed, each Yt taking values of 0 and 1
with equal probabilities. Take D = 4 (Yt̄, 1 − Yt̄) and set ui

(
xi

)
=

√
xi

for each i so that there is no risk in the total wealth. First, consider the
bargaining procedure with alternating offers where Agent 1 makes offers
at even dates. At t̄− 1, Agent 2 offers the riskless allocation (1, 3), which
is accepted. This allocation is already Pareto-optimal. Hence, there are
multiple equilibria yielding the same allocation: at each t < t̄ − 1, the
recognized agent offers the riskless allocation (1, 3), and the other agent
accepts this offer only at some t∗ ≤ t̄ − 1.

Now consider the recognition process according to which Agent 1
makes an offer at t iff yt = 0. Note that p1

t = p2
t = 1/2 for each t. Under

this procedure there is a unique equilibrium. At t̄−1, if recognized, agents
1 and 2 will offer (3, 1) and (1, 3), respectively. The offer will be accepted.
Hence, at the beginning of t̄− 1, the risky allocation that gives (3, 1) and
(1, 3) with equal probabilities will prevail. Thus, at t̄ − 2, the recognized
agent will offer the other agent his continuation value,

(
1 +

√
3
)
/2 and

keep the rest, which is larger than
(
1 +

√
3
)
/2. Therefore, a risky allo-

cation prevails at t̄ − 2, too, yielding
(
(1 +

√
3)/2, 4 − (1 +

√
3)/2

)
and(

4 − (1 +
√

3)/2, (1 +
√

3)/2
)

with equal probabilities. Repeating this
procedure, one can see that, at each date, a risky allocation prevails,
leading agents to reach an agreement at the previous date, in which the
randomly determined proposer gets a somewhat larger share. Therefore,
there is a unique equilibrium, which yields immediate agreement.8

Therefore, under this random recognition procedure, the immediate agree-
ment is not merely an imitation of a delay, as delay is no longer a possible equi-
librium outcome. This is generally true in our model. To state this formally,
we first need a definition: The recognition process ρ is said to be affiliated iff,
when an agent is recognized at a given date, he will be, if anything, more likely
to be recognized in the future. Note that when ρ is independently distributed
(in particular, when it is deterministic), it is affiliated.

8Note that, as t̄ → ∞, the equilibrium allocation approaches to (2, 2), while the alternating-
offer procedure always yields (1, 3). These two procedures thus yield very different outcomes
in our model – whereas they yield similar outcomes in Rubinstein’s (1982) model with dis-
counting.
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Theorem 3. Assume that ρ is affiliated. Let p be a bargaining procedure with
pi

t (ρs) ∈ (0, 1) throughout. If D is independent of Y0 and not Pareto-optimal
initially, then the unique equilibrium path-of-play is that at t = 0 the recognized
agent i offers the contract x̂0[V0, i;φ] and the other agent accepts the offer.

The rationale behind Theorem 3 is as follows. When there are gains from
trade, the recognized agent will get some positive rent at some history yt. Since
either agent is likely to be recognized at t, at the previous date there is a need
for insurance against the risk associated with the allocation of this rent. When
only one of the agents can get a positive rent when he is recognized, he faces a
risk of whether he will be recognized so that he will get the rent, a risk that can
be shared. When both agents can get a positive rent when they are recognized,
they face uncertainty about which agent will get the rent; and once again they
would like to share the risk. In either case, there is a gain to be realized at t−1,
allocating a positive rent to the agent recognized at t − 1. Applying the same
argument inductively, one can conclude that there are gains to be realized at 0,
in which case delaying agreement will cause an inefficiency (when the first offer
made), which cannot be an equilibrium outcome according to Theorem 2. That
is, when there are gains from trade, a strictly stochastic bargaining procedure
will generate a positive risk (and thus a positive cost of delaying agreement)
throughout the game, rendering delay impossible as an equilibrium outcome.

This argument implicitly assumes that being recognized at t does not de-
crease an agent’s continuation value at t + 1. If the recognition process were
not affiliated, or if it were correlated with the dividends, then being recognized
at some time t might have happened to decrease an agent’s continuation value
at t + 1 as much as the rent at t, making the agent indifferent towards being
recognized at t. If this happened to be true for both agents, then there would
be no need to reach an agreement at t− 1, and this might have caused a delay.
To show that this is possible, in the next example we consider a non-affiliated
recognition process.

Example 4: Take t̄ = 3, ui
(
xi

)
= − exp

(−xi
)

for each i ∈ N , D1 =
Z2 + Z3, and D2 = −D1 where Z2 and Z3 are normal random variables
with mean 0 and variances σ2 ∈ (0, 1) and 1, respectively. Each Zt be-
comes observable at t. At dates 0 and 1, each player is recognized with
probability 1/2, independently from the history. If a player is recognized
at date 1, he will be recognized at date 2 only with probability

π =
e

1
2 (1−σ2) − 1

e − 1
∈ (0, 1/2) .

Since each i consumes Di at date 3, if recognized at date 2, player 1 will
offer −Z2−1/2 to player 2 and keep Z2+1/2 for himself. (Here, −Z2−1/2
is the certainty equivalent of D2 at date 2.) Similarly, if recognized at date
2, player 2 will offer Z2 − 1/2 to player 1 and keep −Z2 + 1/2 for himself.
Hence, if player 1 is recognized at date 1, the continuation value of player
2 at the beginning of date 2 will be

V 2
2 (1) = −E

[
πe−(−Z2−1/2) + (1 − π) e−(−Z2+1/2)

]
.
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The values of π and σ2 are chosen so that V 2
2 (1) = −1, i.e., for player 2,

the certainty equivalent of his consumption at 2 is 1
2

(
1 − σ2

)−log (πe + 1 − π) =
0. In that case, if recognized at date 1, player 1 will offer 0 to player 2,
who will accept, and each will consume 0. The same is true if player 2 is
recognized. Hence, if they wait until date 1, each player will consume 0,
which is Pareto-optimal. Therefore, there is an equilibrium in which the
agreement is delayed until date 1.

Summary In our model the set of feasible outcomes does not necessarily
shrink as time passes. Instead, revelation of some information makes certain
contracts individually irrational for some parties, and therefore not viable to
society as a whole, a phenomenon known as the Hirshleifer effect. This happens
to such an extent that at date t̄ the only individually rational allocation is
D itself. This sets further restrictions on the set of viable allocations at the
previous date, through Lemmas 2 and 3. The inductive application of this
procedure gives us a unique (Pareto-optimal) level of utilities at the beginning
of the game. Risk-aversion shows up at this stage and tells us that the contract
must also be unique, and further requires that, generically, there is no delay in
equilibrium.

Equilibrium payoffs and rents In any equilibrium, given any yt, an agent
i ∈ N gets mi (Vt+1(yt); yt) if he is to make an offer at yt, and gets only V i

t+1(y
t)

if he is not to make an offer at yt. Hence, the recognized agent i = ρt (yt)
extracts a (non-informational) rent

Ri
t

(
yt

)
= mi

(
Vt+1(yt); yt

) − V i
t+1(y

t) ≥ 0. (3)

Together with D, these rents determine the equilibrium payoffs. Substituting (3)
in (2), we obtain V i

t

(
yt−1

)
= Ei

[
Ri

t (yt) 1{ρt(yt)=i}|yt−1
]
+ Ei

[
V i

t+1 (yt) |yt−1
]
.

Since Vt̄ =
(
u1

(
D1

)
, u2

(
D2

))
, this yields

V i
t

(
yt−1

)
=

t̄−1∑
s=t

Ei
[
Ri

s (ys) 1{ρs(ys)=i}|yt−1
]
+ Ei

[
ui

(
Di

) |yt−1
]

(4)

for each t ∈ T . Equation (4) displays the determinants of bargaining power in
this environment. It states that the continuation value of an agent is the sum
of the rents he expects to extract in the future when he is recognized, plus his
expected utility from consuming the dividend his own asset pays. These rents
will be decoupled in our next section.

5 Equilibrium in a Canonical Case

In order to illustrate some of the basic ideas in this paper, we analyze the
equilibrium in the following canonical case. We assume that our agents have a
common prior and the credit constraints are not binding. i.e., the set of feasible
consumption levels is R.
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We take ui(x) = − exp(−αix) for some αi > 0 for each i ∈ N . We let
Y = {Yt : t ∈ T} be independently distributed where each Yt takes values
in R

2, E[Yt] = 0 at every t > 0, and Y0 ∈ R
2 is a constant. We take D =

Y0 +Y1 + · · ·+Yt̄ so that as time passes agents learn the independent increments
in the dividends. Finally, we take a purely deterministic bargaining procedure,
and write Ti(t) = {s ∈ T | ρs = i, s ≥ t} for the set of all future dates at which
agent i is to make an offer.

Notation The total wealth is denoted by W = D1 + D2. We define the
certainty equivalent CEi

t [x
i] of any xi for any agent i at any date t as CEi

t [x
i] =(

ui
)−1 (

Ei
[
ui

(
xi

) |Y0, . . . , Yt

])
. When xi is a function of (Yt+1, . . . , Yt̄), it is

stochastically independent of (Y0, . . . , Yt), and hence

CEi
t [x

i] = − 1
αi

log E[exp(−αix
i)] ≡ M [xi](αi). (5)

In Figure 1, we plot the equilibrium contracts {x̂t}t∈T in terms of their
certainty equivalents computed at date 0. In this figure, the vector of cer-
tainty equivalents of any given allocation xt of the form xt = E[D|Y0, . . . , Yt] +
f(Yt+1, . . . , Yt−1) stays under the line lt, where E[D|Y0, . . . , Yt] = Y0 + Y1 +
· · · + Yt. Note that lt moves inwards as t increases. At t̄, they consume D,
which is depicted at the origin. Assume that Agent 2 makes an offer at t̄ − 1.
He offers to share the unresolved risk Y 1

t̄ +Y 2
t̄ optimally, and takes all the rent.

The certainty equivalent of this allocation is found by going up until we reach
the line lt̄−1. At t̄− 2, Agent 1 now offers to share the risk Y 1

t̄−1 + Y 2
t̄−1 as well.

He now extracts all the rent of agreeing one day earlier. Hence, the vector of
certainty equivalents for this contract is found by going horizontally until we
reach the line lt̄−1. Using this algorithm until we reach the line l0, we find the
certainty equivalents of the contract signed at t = 0.

We compute that the equilibrium allocation at any date t ∈ T is

x̂i
t = E[Di|Y0, . . . , Yt] +

αj

α1 + α2
(W − E[W |Y0, . . . , Yt])

−
∑

s∈Tj(t)

M

[
αj

α1 + α2
(Y 1

s+1 + Y 2
s+1)

]
(αi) − M

[
Y i

s+1

]
(αi)

+
∑

s∈Ti(t)

M

[
αi

α1 + α2
(Y 1

s+1 + Y 2
s+1)

]
(αj) − M

[
Y j

s+1

]
(αj),(6)

where i, j ∈ N with i �= j. (One can easily check the validity of (6) by induction.)
Note that the share of the social risk W−E[W |Y0, . . . , Yt] borne by agent i at any
optimal risk-sharing scheme is αj

α1+α2
(W − E[W |Y0, . . . , Yt]). At any s ∈ Ti(t),

in order to insure himself against his individual risk Y j
s+1, agent j is offered to

bear αi

α1+α2
(Y 1

s+1 +Y 2
s+1) in addition to the risk αi

α1+α2
(W −E[W |Y0, . . . , Ys+1])

that he would bear if they were to agree at the next date. Since the agent i
makes an offer that can be rejected only by delaying the agreement until s + 1,
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lt̄−1 lt̄−2 l1 l0 CE1[x̂1
t ]

CE2[x̂2
t ]

Figure 1: The sequence of the equilibrium contracts in the space of certainty equiv-
alents computed at t = 0.
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he extracts the entire value M
[

αi

α1+α2
(Y 1

s+1 + Y 2
s+1)

]
(αj) − M

[
Y j

s+1

]
(αj) of

this transaction for agent j. This value is the certainty equivalent of the extra
risk that agent j bears, minus the certainty equivalent of the risk that agent j
avoids. Thus, (6) is read as: The consumption allocated to an agent at some
t is the certainty equivalent of his own asset’s dividend plus the optimal risk
that he shares, minus the rents that he pays to the other agent when the other
agent makes an offer (in the future), plus the rent that he extracts from the
other agent when he makes an offer (in the future).

Using (6), we compute9 that

CEi
t [x̂

i
t] = CEi

t [D
i] +

∑
s∈Ti(t)

Gs, (7)

where CEi
t [D

i] = E[Di|Y0, . . . , Yt] +
∑

s≥t M
[
Y i

s+1

]
(αi) and

Gs = M
[
Y 1

s+1 + Y 2
s+1

] (
α1α2

α1 + α2

)
−

[
M

[
Y j

s+1

]
(αj) + M

[
Y i

s+1

]
(αi)

]
. (8)

Given that they will share the risk optimally, the value of the increment Y 1
s+1 +

Y 2
s+1 in total wealth for the agents at date s is M

[
Y 1

s+1 + Y 2
s+1

] (
α1α2

α1+α2

)
,

the certainty equivalent of Y 1
s+1 + Y 2

s+1 with respect to the group’s surrogate
utility-function of Wilson (1968). If they were not able to share the risk,
the value of the increments Y i

s+1 and Y j
s+1 in the social wealth would be only

M
[
Y j

s+1

]
(αj)+M

[
Y i

s+1

]
(αi). Therefore, Gs is the gains from sharing the risk

in Ys+1 optimally. Therefore, (7) states that, in CE terms, the consumption
that our equilibrium allocates to agent i at date t consists of what he already
owns and the sum of gains from (optimal) trade when he makes offers in the
future. Equation (7) is similar to (4). Moreover, in CE space we have transfer-
able utility, which allows us to decouple the gains from trade at each date from
the rest of the problem.

Observations Firstly, being able to make an offer prior to an important
information-revelation strengthens the position of a bargainer. To see this, let
Y = (Y0, . . . , Ys, Ys+1 + Z, Ys+2, . . . , Yt̄) and

Y ∗ = (Y0, . . . Ys∗ , Ys∗+1 + Z, Ys∗+2, . . . , Ys, Ys+1, Ys+2, . . . , Yt̄)

9By independence,

CEi
t [

αj

α1 + α2
(W − E[W |Y0, . . . , Yt])] =

∑
s≥t

M

[
αj

α1 + α2
(Y 1

s+1 + Y 2
s+1)

]
(αi).

Also,

M

[
α2

α1 + α2
x

]
(α1) + M

[
α1

α1 + α2
x

]
(α2) = M [x]

(
α1α2

α1 + α2

)
at any x. Substitute these equalities in (6).
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be such that {Y1, . . . , Yt̄, Z} is independently distributed and ρs∗ �= ρs. If we re-
place Y with Y ∗, then CEρs∗ [x̂ρs∗

0 ] increases by G[Z] = M
[
Z1 + Z2

] (
α1α2

α1+α2

)
−[

M
[
Zj

]
(αj) + M

[
Zi

]
(αi)

]
, while CEρs [x̂ρs

0 ] decreases by the same amount.
Second, if we replace a bargaining procedure p with p̂ by changing pi

t∗ = 0
to p̂i

t∗ = 1 at some t∗ for some i, then CEi[x̂i
0] increases by Gt∗ . [Cf. Theorem

4 below.]
Third, any Pareto-optimal allocation is approximately obtainable via a deter-

ministic bargaining procedure as long as information arrives smoothly. Assume
that Y1, . . . , Yt̄ are identically distributed with variance σ2/t̄. Then, given any
Pareto-optimal and individually rational allocation x ∈ X and any ε > 0, there
exists a t̂ such that we can find a deterministic bargaining procedure p that yields∣∣CEi[x̂i

0] − CEi[xi]
∣∣ < ε for each i ∈ N as long as t̄ > t̂. To do this, letting

λ1, λ2 ∈ R be such that λ1

∣∣CE1[x1] − CE1[D1]
∣∣ = λ2

∣∣CE2[x2] − CE2[D2]
∣∣

and λ1 +λ2 > 0, we write n for the integer part of λ2
λ1+λ2

t̄. We consider the bar-
gaining procedure p with p1

t = 1 iff t ≤ n. Now, by (7), CE1[x̂1
0] − CE1[D1] =

nG0 ≡ (n/t̄) G and CE2[x̂2
0]−CE2[D2] = (1 − n/t̄) G, where G =

∑
s Gs is the

total gain from trade. Thus,
∣∣CEi[x̂i

0] − CEi[xi]
∣∣ =

(
λ2

λ1+λ2
t̄ − n

)
G/t̄ ≤ G/t̄,

where the right hand side goes to 0 as t̄ → ∞. [Cf. Theorem 5 below.]

5.1 The impact of risk aversion

Many axiomatic bargaining solutions have the property that, if a bargainer gets
more risk-averse, then he becomes worse off, while his opponent benefits from
this. Examples of such bargaining solutions are Nash (1950), Mashler-Perles
(1980) and Kalai-Smorodinsky (1975). Roth (1985) shows that Rubinstein’s
bargaining model has the same property if we consider “instantaneous risk-
aversion.”10 We will now show that this property does not hold in our model,
where the bargaining is driven by risk aversion itself.

In our model, risk-aversion of an agent may hurt or benefit his opponent. To
see this, note that an increase in αj affects CEi

t [x̂
i
t] through Gs for s ∈ Ti(t). As

αj increases, on the one hand, M
[
Y j

s+1

]
(αj) decreases, which increases Gs. On

the other hand, M
[
Y 1

s+1 + Y 2
s+1

] (
α1α2

α1+α2

)
decreases, which results in a decrease

in Gs. Either of these effects can be dominant: If D1+D2 is constant, the latter
is identically 0, hence, the risk aversion of j benefits i. If Dj is a constant, the
former is identically 0, thus an increase in αj renders CEi

t [x̂
i
t] lower, i.e., risk-

aversion of j hurts i. Intuitively, the decrease in M
[
Y 1

s+1 + Y 2
s+1

] (
α1α2

α1+α2

)
is

the loss that agent j’s risk-aversion causes to society, part of which is borne
by agent i; and the decrease in M

[
Y j

s+1

]
(αj) is the decrease in j’s reservation

value, which strengthens i’s position in bargaining.

10See Roth (1985) for the references to these results. In contrast with these results, White
(1999) shows that adding a non-contractible background-noise to an agent’s consumption
would make him better off, leaving his opponent worse off.
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In order to demonstrate which effect is dominant in which cases, let Ys+1 be a

bivariate normal random vector with variance-covariance matrix
[

σ2
1 rσ1σ2

rσ1σ2 σ2
2

]
.

Then, we have M
[
Y i

s+1

]
(α) = − 1

2ασ2
i and M

[
Y 1

s+1 + Y 2
s+1

]
(α) = − 1

2α(σ2
1 +

σ2
2 + 2rσ1σ2). Substituting these equalities into (8) and differentiating with

respect to αj , we find that Gs (and hence CEi
t [x̂

i
t]) is increasing in αj iff

r < r̄ ≡
[

1
2

(
αj

αi

)2

+
αj

αi

]
σj

σi
− 1

2
σi

σj
. (9)

Here, an agent benefits from the risk aversion of his opponent when r is small
enough, the case when the social cost of this risk-aversion is not significant.
Moreover, the upper bound r̄ increases with both αj/αi and σj/σi. An intuition
for this observation comes from insurance: As an insured becomes more risk-
averse, we expect the insurer to benefit. On the other hand, if the insurer is the
one who becomes more risk-averse, we would not expect the other party –the
insured– to benefit. As αj/αi and σj/σi increase, agent i becomes the insurer
and benefits from the risk aversion of agent j.

Figure 2 illustrates how the risk aversion of an agent hurts the other. Take
t̄ = 1 and assume that agent 2 makes the offer at t = 0. As α1 increases
to α′

1 and agent 1 becomes more risk-averse, the certainty equivalent of his
asset decreases in the amount of ∆M1 = 1

2 (α′
1 − α1) σ2

1 , which is added to the
equilibrium payoff of agent 2 in terms of certainty equivalents. At the same
time, the total payoff (measured as the certainty equivalent of the total wealth
with respect to the group’s surrogate utility function) decreases in the amount
of ∆MSOC = 1

2 (α′
SOC − αSOC) (σ2

1 + σ2
2 + 2rσ1σ2), which is subtracted from

the equilibrium payoff of agent 2, where αSOC = α1α2
α1+α2

and α′
SOC = α′

1α2
α′

1+α2
.

When r > r̄, the social cost ∆MSOC of increased risk-aversion will be larger
than its private cost ∆M1 for agent 1, and agent 2 will be worse off.

Remark One can check that the certainty equivalent of an agent is decreasing
with his own risk-aversion. But this hardly implies that he is in a weaker
bargaining position, as the certainty equivalent of his consumption would still
decrease even if his consumption had not changed at all. In comparing a player’s
equilibrium welfare-levels as his own risk-aversion changes, we clearly perform
an interpersonal comparison between the two selves of the agent, each self having
a different utility function. We can safely say that an agent gets worse off as he
becomes more risk-averse, only if each self finds the agent’s consumption worse
under higher risk-aversion. Since the equilibrium outcome is Pareto optimal,
the more risk-averse self will find himself worse off only when his risk-aversion
benefits his opponent.
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6 Monotonicity and Obtainability

In this section, we present two results about the equilibrium. The first one is by
Merlo and Wilson (1995). It states that an agent cannot lose when he becomes
more likely to make an offer in the future. This fact will help us in proving the
second result. The second result states that any individually rational and Pareto
optimal allocation is obtainable as an equilibrium outcome of some bargaining
procedure if and only if “the first-mover advantage” is not too large; i.e., the
uncertainty resolved at t = 1 is not substantial.

Given any p ∈ P, let us write U0 (p) for the vector V0 of equilibrium-
continuation values at the beginning for game G(C, p) where C is Pareto-
complete.

Theorem 4. (Merlo and Wilson, 1995) Given any two bargaining proce-
dures p,p̂ ∈ P with pi

t ≥ p̂i
t at each t ∈ T for some i ∈ N , we have U i

0(p) ≥ U i
0(p̂)

and U j
0 (p) ≤ U j

0 (p̂) for j �= i.

By (2), the proof of Merlo and Wilson (1995) can be extended to our model.
They also provide a counter-example, showing that this result cannot be ex-
tended to more than two agents. Yildiz (2001) shows that, if the agents had
different beliefs about the recognition process, we would also need to assume
that the recognition process is affiliated.

Given any (Pareto-optimal and individually rational11) allocation x ∈ X,
can we find a bargaining procedure p∈P that gives us x as its equilibrium
allocation (of game G(C, p))? If such a bargaining procedure p exists, then we
will say that x is obtainable (via p).

We will now answer this question. To this end, take any i ∈ N , and set
Pi = {p∈P|pi

0 = 1}. The best bargaining procedure for agent i (by Theorem
4) is p [i] ∈ P1 that recognizes agent i with probability 1 at each history and
date. Under p [i], agent i extracts all the rent, leaving agent j with his reserva-
tion utility-level. On the other hand, by Theorem 4, the bargaining procedure
minimizing U i

0 over Pi is p[i] ∈ Pi where p[i]it is 1 when t = 0, and 0 otherwise.
Under p[i], i makes only the first offer. (In that case, at date t = 1, agent j
can extract the entire rent, leaving agent i indifferent to consuming D, when
both agents know y1. At date 0, agent i extracts the remaining rent, which is
associated with the uncertainty in y1.)

Theorem 5. Let C be Pareto-complete. Every Pareto-optimal and individually-
rational allocation is obtainable iff U i

0

(
p [i]

) ≤ U i
0

(
p [j]

)
for some i �= j.

The condition that U i
0

(
p [i]

) ≤ U i
0

(
p [j]

)
for some i �= j expresses that it

is not the case that, for some agent, the worst outcome when he moves first is
better than the best outcome when he does not, i.e., the first-mover advantage is
not too large. Therefore, Theorem 5 can be read as: Every Pareto-optimal and
individually-rational allocation is obtainable so long as the first-mover advantage

11That is, Ei
[
ui

(
xi

)] ≥ Ei
[
ui

(
Di

)]
for each i.
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Figure 3: Obtainable utility levels. The disagreement utilities are at the origin.

is not too large. The first-mover advantage is large when a substantial part of
uncertainty resolved at date t = 1. If this is the case, then many axiomatic
bargaining solutions that select centrally located utility pairs, such as the Nash
bargaining solution, will not be obtainable.

When uncertainty is resolved smoothly, the first-mover advantage will be
small, and therefore every Pareto-optimal and individually-rational allocation
will be obtainable.

The proof is illustrated in Figure 3. Given any i, since U0 is continuous
and Pi is connected, U0 (Pi) is a connected set with the end-points U i

0

(
p [i]

)
and U i

0 (p̄ [i]), which we computed above. By Theorem 2, U0 (Pi) is on the
Pareto-frontier, hence it is the part of Pareto-frontier connecting these two end-
points. Moreover, any bargaining procedure p ∈ P can be written as a convex
combination of two such bargaining procedures p [1] ∈ P1 and p [2] ∈ P2, where
p [j] is the same as p after j is recognized at 0, but recognizes j at 0 with
certainty. Then, by linearity, U0 (P) is the convex hull of U0 (P1) ∪ U0 (P2), as
shown in the figure. Since the agents are strictly risk averse, the Pareto-frontier
is strictly concave, hence the set of Pareto-optimal payoff vectors in U0 (P) is
U0 (P1) ∪ U0 (P2). This set contains all the Pareto-optimal and individually
rational payoff vectors if and only if U0

(
p [2]

)
is to the right of U0

(
p [1]

)
, the
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characterizing condition in our Theorem.

7 Concluding Remarks

Consider a two-person risk-sharing problem where the agents’ beliefs may differ
but there is no private information. Assuming that a Pareto-optimal sharing
rule is employed, Wilson (1968), in his seminal paper “The theory of syndicates”,
shows that the group can be represented by an expected-utility maximizer only
if the agents hold the same beliefs or the sharing rule happens to be linear. Since
there is a continuum of Pareto-optimal and individually rational allocations, we
would expect the agents to allocate the risk through negotiation.

In this paper, we develop a natural bargaining-model in the context of risk
sharing, and show that the equilibrium allocation will be Pareto-optimal and
that there will be no delay for generic cases, provided there is a sufficiently
rich set of contracts to generate the Pareto-optimal allocations throughout the
negotiation — an implicit assumption in Wilson (1968). This result strengthens
Wilson’s theory by predicting its Pareto-optimality assumption.

The allocation chosen by the group in equilibrium depends on the way un-
certainty is to be resolved. For example, in Section 5, where the agents hold
the same beliefs and the sharing rule is linear, revealing an informative signal
at some time t rather than s is equivalent to transferring the gain from trade
associated with this signal from the agent who makes an offer at s − 1 to the
agent who makes an offer at t−1. Since the decision of an expected utility max-
imizer is typically independent of such details, this suggests that we may not be
able to find an expected-utility maximizer that represents the group even if the
agents hold the same beliefs. This may strengthen Wilson’s negative result.

Our detailed analysis also helps us to understand the role of risk aversion in
bargaining better. Contrary to earlier results, in our model, the risk aversion of
an agent may hurt the other agent, as the social cost of the agent’s risk-aversion
may exceed its private cost to the agent.

8 Proofs

This section contains the proofs. Throughout these proofs, we will use the fact
that C is Pareto-complete iff, given any x ∈ X and any yt, there exists a feasible
allocation x̃ ∈ Ct such that Ei[ui(x̃i)|yt] ≥ Ei[ui(xi)|yt] at each i ∈ N .

Towards proving Lemma 1, write each P i as P̃ × P̄ i, where P̃ is the com-
mon prior associated with Ỹ . Given any

(
i, xi, yt

)
, we define the conditional

marginals Ēi
[
xi|yt

]
(ỹ) =

∫
ȳ
xi (ỹ, ȳ) dP̄ i(·|yt) and Ẽi

[
xi|yt

]
(ȳ) =

∫
ỹ

∫
ȳ
xi (ỹ, ȳ) dP̃ (·|yt).

Proof: (Lemma 1) Take any yt and any x ∈ X. Since x1 + x2 ≤ D1 + D2,
Ẽ

[
x1|yt

]
+ Ẽ

[
x2|yt

] ≤ Ẽ
[
D1|yt

]
+ Ẽ

[
D1|yt

]
. Moreover, when D ∈ X̄,

Ẽ
[
Di|yt

] ≡ D for each i ∈ N , hence Ẽ
[
x1|yt

]
+ Ẽ

[
x2|yt

] ≤ D1 + D2.

Thus,
(
Ẽ

[
x1|yt

]
, Ẽ

[
x2|yt

]) ∈ X̄. But, by Jensen’s inequality, Ei
[
ui(xi)|yt

]
=
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Ēi[Ẽ
[
ui

(
xi

) |yt
] |yt] ≤ Ēi[ui(Ẽ [x|yt])|yt] = Ei[ui(Ẽ [x|yt])|yt] for each i ∈ N .

Therefore,
(
X̄, . . . , X̄

)
is Pareto-complete.

We now present two preliminary results used in our construction. Our first
Lemma states some familiar properties of optimization with increasing func-
tions.

Lemma 2. Let C be Pareto-complete. Given any distinct i, j ∈ N , any t, any
yt, and any v ≡ (

E1
[
u1

(
z1

) |yt
]
, E2

[
u2

(
z2

) |yt
])

with z =
(
z1, z2

) ∈ X, the
optimization problem

max
x[yt]∈Ct[yt]

Ei[ui(xi[yt])|yt] subject to Ej [uj
(
xj [yt]

) |yt] ≥ vj (10)

has an (almost surely) unique solution x̂t[v, i; yt], which does not depend on C.
Write mi(v; yt) = Ei[ui

(
x̂i

t[v, i; yt]
) |yt] for the maximum. Then, the following

are true.

1. x̂t[v, i; yt] is Pareto-optimal at t;

2. the constraint is binding, i.e., Ej
[
uj

(
x̂j

t [v, i; yt]
)
|yt

]
= vj; and

3. mi (v; yt) ≥ vi, where the inequality is strict whenever z is not Pareto-
optimal at yt.

Proof: Since
(
u1, u2

)
is increasing, the optimization problem (10) corresponds

to the optimization problem

max
w∈Ũ(Ct;yt)

wi subject to wj ≥ vj (11)

in the utility space where Ũ(Ct; yt) = {w ∈ R
2|∃x[yt] ∈ Ct[yt] s.t. wi ≤

Ei[ui(xi[yt])|yt] ∀i ∈ N}. Firstly, Ũ(Ct; yt) = Ũ(X; yt) for each Ct,12 hence,
if exists, the solution mi (v; yt) to (11) does not depend on Ct. Moreover,
U (X; yt) = {(E1[u1(x1)|yt], E2[u2(x2)|yt] )|x ∈ X} is compact.13 Hence, a so-
lution mi (v; yt) to (11) (and thus a solution x̂t[v, i; yt] to (10)) exist. As we
will see, x̂t[v, i; yt] is Pareto optimal at yt, hence x̂t[v, i; yt] is unique (almost
surely), and is in Ct [yt].

In the following, without loss of generality, we will take Ct = X. Towards
proving part 1, suppose that x̂t[v, i; yt] is not Pareto optimal at yt. Then, there

12To see this, take any w ∈ Ũ(X; yt) so that w ≤ (
E1[u1(x1)|yt], E2[u2(x2)|yt]

)
for some

x ∈ X. Since C is Pareto-complete, there exists some x̃ ∈ Ct such that Ei[ui(xi)|yt] ≤
Ei[ui(x̃i)|yt] for each i ∈ N . Thus, w ≤ (

E1[u1(x̃1)|yt], E2[u2(x̃2)|yt]
)
, showing that w ∈

Ũ(Ct; yt). Therefore, Ũ(X; yt) ⊆ Ũ(Ct; yt). On the other hand, Ct ⊆ X, thus Ũ(Ct; yt) ⊆
Ũ(X; yt). Therefore, Ũ(Ct; yt) = Ũ(X; yt).

13Since u1 and u2 are continuous and X[yt] is closed, U
(
X; yt

)
is closed. Moreover, given

any x ∈ X, x ≥ x. Hence, x ≤ xhuge = (D1 + D2 − x2, D1 + D2 − x1). Since ui is increasing,
it follows that ui

(
xi

) ≤ Ei[ui(xi)|yt] ≤ Ei[ui(xi
huge)|yt]. Therefore, U

(
X, yt

)
is bounded.
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exists some x̃[yt] ∈ X[yt] such that Ei[ui
(
x̃i[yt]

) |yt] ≥ Ei[ui(x̂i
t[v, i; yt])|yt] =

mi(v; yt) and Ej [uj
(
x̃j [yt]

) |yt] ≥ Ej [uj(x̂j
t [v, i; yt])|yt], and one of the inequal-

ities is strict. Since x̂t[v, i; yt] is a solution to the problem (10), we also have
Ej [ui(x̂j

t [v, i; yt])|yt] ≥ vj , and hence we have Ej [uj
(
x̃j [yt]

) |yt] ≥ vj , i.e., x̃[yt]
is feasible to the optimization problem. Thus, Ei[ui

(
x̃i[yt]

) |yt] ≤ mi(v; yt).
Therefore, Ei[ui

(
x̃i[yt]

) |yt] = mi(v; yt). Since at least one of the inequali-
ties was strict, this implies that Ej [uj

(
x̃j [yt]

) |yt] > vj . Since uj is increas-
ing and continuous, it follows that there exists some random variable δ > 0
such that x̃j [yt] − δ ≥ xi and Ej [uj

(
x̃j [yt] − δ

) |yt] ≥ vj . But then, for
(x̃i[yt] + δ, x̃j [yt] − δ) ∈ X[yt],we have Ei[ui

(
x̃i[yt] + δ

) |yt] > mi(v; yt), which
is a contradiction. Therefore, x̂t[v, i; yt] is Pareto-optimal at yt. Part 2 of the
lemma can be proven by similar arguments to the last one. As for Part 3, since
z ∈ X, mi(v; yt) ≥ vi. Moreover, since x̂t[v, i; yt] is Pareto-optimal at yt and
Ej [uj

(
x̂j

t [v, i; yt]
)
] = Ej [uj

(
zj

) |yt], if mi(v; yt) = vi, then z will be Pareto-

optimal at yt, showing the contrapositive of the last statement.

Given any two dates t, s ∈ T with t ≤ s, consider a collection {x[ys]}ys of
contracts at s, indexed by the continuation ys of yt until s. Write x|yt for the
mutual extension of these contracts. At each ys, x|yt requires agents to write
x[ys]. We call x|yt preemptive, for x|yt is equivalent to offering the continuation
in advance to preempt the delay. Our next Lemma states that x|yt will be a
contract at yt in all cases of concern.

Lemma 3. Take any t ∈ T , and let v [ys] ≡ (
E1

[
u1

(
z1

) |ys
]
, E2

[
u2

(
z2

) |ys
])

at each ys for some
(
z1, z2

) ∈ X. Then, we can select a family x̂s[v [ys] , i; ys] of
solutions (indexed by ys) so that their mutual extension will also be an allocation.

Proof: Let us write x̃[ys] ≡ x̂s[v, i; ys] for each ys. We want to select x̃[ys]
in such a way that x̃ ∈ X. By construction, x̃ ≥ x and x̃1 + x̃2 ≤ D1 + D2.
Hence, we only need to guarantee that x̃k is integrable for each k ∈ N . Now, by
Lemma 2.1, x̃[ys] is Pareto-optimal. Thus, by the syndicate theory, there exists
some λ0 > 0 such that the equations

x̃(y;λ) = arg max
x1+x2≤W (y)

xk≥xk

u1(x1)P 1(y|ys) + λu2(x2)P 2(y|ys) (12)

(at each continuation y of ys) and

Φ(λ) ≡
∫

uj(x̃j(y;λ))dP j(y|ys) = Ej [uj
(
zj

) |ys] (13)

hold when λ = λ0. We set x̃(y) = x̃(y;λ0). [We choose x̃(y;λ) to satisfy
Equation (12) at each y rather than almost surely. Hence the phrase “we
can choose” in the statement of Lemma.] Clearly, x̃(y;λ) is continuous in λ.
Hence, so is Φ. Thus, λ0 that solves equation (13) is upper semi-continuous in
vj = Ej [uj

(
zj

) |ys]. Since x̃(y) ≡ x̃(y;λ0) is continuous in λ0, it will also be
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continuous in vj = Ej [uj
(
zj

) |ys]. Since Ej [uj
(
zj

) |ys] is measurable, we con-
clude that x̃ is measurable. Moreover, x̃k ≤ D1 + D2 − xl ∈ Xk for l ∈ N\ {k}
and hence Ek

[∣∣x̃k
∣∣] ≤ ∣∣xk

∣∣ + Ek
[∣∣D1 + D2 − xl

∣∣] < ∞; and this completes the
proof.

Construction of an Equilibrium For a given G(C, ρ) with Pareto-complete
C, we now construct the subgame-perfect equilibrium s̄ of Theorem 1. In this
equilibrium, the agents reach an agreement immediately. We use backward
induction. If the agents have not agreed by t̄, at t̄, agent j �= ρt̄ (y) will accept an
offer x (y) iff xj (y) ≥ Dj (y). This inequality holds only when xk (y) ≤ Dk (y)
for k = ρt̄ (y). Hence, k will offer xt̄ (y) = D (y). There will be no trade.
Each will consume his own asset, independent of which contracts were offered
at previous dates. The continuation value of an agent i at the beginning of t̄
will be

V i
t̄

(
yt̄−1

)
= Ei

[
ui

(
Di

) |yt̄−1
]
.

Given any date t < t̄, assume that an allocation xt+1 ∈ X will prevail
at date t + 1, independent of which contracts were offered (and rejected) be-
fore. Write V i

t+1(y
t) = Ei

[
ui

(
xi

t+1

) |yt
]

for the continuation value of any
agent i at the beginning of t + 1. Given that agent j �= ρt (yt) gets V j

t+1(y
t)

when he rejects an offer xt[yt], it is a best response for him to accept xt[yt]
iff Ej [uj(xj

t [y
t])|yt] ≥ V j

t+1(y
t). Given this response, if agent k = ρt (yt) of-

fers a contract xt[yt], then his expected utility-level will be Ek[uk(xk
t [yt])|yt] if

Ej [uj(xj
t [yt])|yt] ≥ V j

t+1(y
t), and V k

t+1(y
t) otherwise. To maximize this expected

utility level, he will either offer x̂t[Vt+1(yt), k; yt], the best acceptable offer, and
get mk (Vt+1(yt); yt), or will offer some unacceptable offer and get V k

t (yt). By
Lemma 2.3, mk (Vt+1(yt); yt) ≥ V k

t+1(y
t), hence offering x̂t[Vt+1(yt), k; yt] is a

best response for k. Agent k offers x̂t[Vt+1(yt), k; yt], and the offer is accepted.
Since xt+1 ∈ X, by Lemma 3, we can choose contracts x̂t[Vt+1(yt), k; yt] at all
sample paths yt in such a way that their mutual extension forms an allocation,
yielding a (preemptive) contract x̂t[Vt+1, k; ·]|yt−1 at yt−1. We choose them so.
If agents do not reach an agreement by date t, allocation x̂t[Vt+1, ρt; ·] (which
is x̂t[Vt+1, i; ·]|yt−1 when ρt (yt) = i and x̂t[Vt+1, j; ·]|yt−1 when ρt (yt) = j)
prevails at t. This allocation is once again independent of which contracts were
offered previously. Since ui

(
x̂i

t[Vt+1, i; ·]
)

= mi (Vt+1; ·) and ui
(
x̂i

t[Vt+1, j; ·]
)

=
V i

t+1(·), the continuation value of an agent i at the beginning of t is

V i
t (yt−1) = Ei[mi

(
Vt+1; yt

)
1{ρt(yt)=i}|yt−1] + Ei[V i

t+1

(
yt

)
1{ρt(yt) �=i}|yt−1]

at each yt−1. By backward induction, this procedure gives us s̄ as a subgame-
perfect equilibrium of G(C, ρ).
Proof: (Theorem 1) We have already shown that s̄ is an equilibrium. Now,
given any equilibrium s∗, we will show (via mathematical induction) that the
vector of continuation values at the beginning of any t is Vt. This is trivially
true at t̄. Assume that it is true at some t + 1. Since s∗ is an equilibrium, an
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agent j must accept an offer xt[yt] if Ej [uj(xj
t [yt])|yt] > V j

t+1(y
t), and reject it if

Ej [uj(xj
t [yt])|yt] < V j

t+1(y
t). Thus, j’s action in s∗ can differ from his action in

s̄ only by rejecting an offer xt[yt] when Ej [uj(xj
t [yt])|yt] = V j

t+1(y
t). The only

such distinction that can make a difference is when j rejects x̂t[Vt+1(yt), i; yt].
Let us consider this case. If Vt+1 is not Pareto-optimal at yt, then by Lemma
2.3, mi(Vt+1(yt); yt) > V i

t+1(y
t) where i = ρt (yt). Since x̂t[Vt+1(yt), i; yt] is

rejected, the best response correspondence of i at yt is empty. This contradicts
the fact that s∗ is an equilibrium. Therefore, when Vt+1 is not Pareto-optimal
at yt, x̂t[Vt+1(yt), i; yt] must be accepted, and hence s∗ and s̄ yield the same
outcome at yt. On the other hand, when Vt+1 is already Pareto-optimal at yt,
mi(Vt+1(yt); yt) > V i

t+1(y
t). Hence, if j is to reject x̂t[Vt+1(yt), i; yt], the best

response of i is to make an offer that is to be rejected, yielding mi(Vt+1(yt); yt)
for i and V j

t+1(y
t) for j – as in s̄. Therefore, in either case, s∗ and s̄ yield the

same continuation values at yt (after the agent is recognized). Therefore, at
the beginning of t, they yield the same vector of continuation values, which is
Vt

(
yt−1

)
.

We now prove Theorem 3. Using the notation of Lemma 1, we take Ỹ = ρ,
and write each yt as (ρt, ȳ

t) and each y as (ρ, ȳ), where ρt is the history of the
recognized agents. (Ȳ consists of all the information except for the recognition
process.) The recognition process and the dividends are stochastically indepen-
dent, hence D ∈ X, i.e., D (ρ, ȳ) = D (ρ′, ȳ) for each (ρ, ρ′, ȳ). The allocations
generated by contracts below will all be in X̄, hence the irrelevant argument ρ
will be omitted. We first prove the following Lemma.

Lemma 4. Let p ∈ P be such that pi
t (ys) ∈ (0, 1) for each (i, t, ys). If Ri

t (yt) =
0 for some yt with i = ρt (yt), then

P j
(
Rk

t+1

(
yt+1

)
1{ρt+1(yt+1)=k} = 0|yt

)
= 1

for each j, k ∈ N .

Proof: We will prove the contrapositive. That is, assuming that

P j
(
Rk

t+1

(
yt+1

)
1{ρt+1=k} �= 0|yt

)
> 0 (14)

for some j, k ∈ N , we will show that Ri
t (yt) > 0, where i = ρt (yt). Since

there are no rents at t̄, our assumption holds only for t ≤ t̄ − 1. Considering
any such t with (14), we take l �= k. We take yt and its continuations yt+1

k

and yt+1
l as generic realizations where ρt+1

(
yt+1

k

)
= k and ρt+1

(
yt+1

l

)
= l.

We will simply write x̂t+1

[
yt+1

k

]
for x̂t+1

[
Vt+2

(
yt+1

k

)
, k, yt+1

k

]
. By Lemma 1,

x̂t+1

[
yt+1

k

] ∈ X̄
[
yt+1

k

]
. We define x̂t+1

[
yt+1

l

]
, similarly. Define x̃ ∈ X̄ by

setting

x̃(ȳ) =pk
t

(
yt

)
x̂t+1

[
yt+1

k

]
(ȳ) +

(
1 − pk

t

(
yt

))
x̂t+1

[
yt+1

l

]
(ȳ)
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at each continuation (ρ, ȳ) of yt. By concavity, we have

Ei
[
ui

(
x̃i

) |yt
] ≥ Ei

[
pk

t

(
yt

)
ui

(
x̂i

t+1

[
yt+1

k

]) (
1 − pk

t

(
yt

))
+ ui

(
x̂i

t+1

[
yt+1

l

]) |yt
]

= pk
t

(
yt

)
Ei

[
ui

(
x̂i

t+1

[
yt+1

k

]) |yt
]
+

(
1 − pk

t

(
yt

))
Ei

[
ui

(
x̂i

t+1

[
yt+1

l

]) |yt
]

= V i
t+1

(
yt

)
for each i ∈ N . We claim that Ej

[
uj

(
x̃j

) |yt
]

> V j
t+1 (yt). In that case,

Vt+1 (yt) is not a Pareto-optimal utility pair at yt, thus by Lemma 2.3, mi (Vt+1 (yt) ; yt) >
V i

t+1 (yt), showing that Ri
t (yt) = mi (Vt+1 (yt) ; yt) − V i

t+1 (yt) > 0 for each
i = ρt (yt).

Now we prove our claim. Since ρ is affiliated, by Theorem 4, we have
V k

t+2

(
yt+1

k

) ≥ V k
t+2

(
yt+1

l

)
, where we use the convention that Vt̄+1 ≡ 0. Hence,

whenever Rk
t+1

(
yt+1

k

) �= 0, we have mk
(
Vt+2

(
yt+1

k

)
; yt+1

k

)
= V k

t+2

(
yt+1

k

)
+

Rk
t+1

(
yt+1

k

)
> V k

t+2

(
yt+1

k

) ≥ V k
t+2

(
yt+1

l

)
, showing that x̂t+1

[
yt+1

k

] �= x̂t+1

[
yt+1

l

]
.

This inequality holds for each component, as x̂1
t+1 + x̂2

t+1 = D1 + D2. Since
pk

t (yt) ∈ (0, 1) and uj is strictly concave, we therefore have uj
(
x̃j(y)

)
>

pk
t (yt) ui

(
x̂j

t+1

[
yt+1

k

]
(ȳ)

)
+

(
1 − pk

t (yt)
)
uj

(
x̂j

t+1

[
yt+1

k

]
(ȳ)

)
at each contin-

uation (ρ, ȳ) of yt. Thus, by (14),

Ej
[
uj

(
x̃j

) |yt
]

> pk
t

(
yt

)
Ej

[
ui

(
x̂j

t+1

[
yt+1

k

]) |yt
]

+
(
1 − pk

t

(
yt

))
Ej

[
uj

(
x̂j

t+1

[
yt+1

l

]) |yt
]

= V j
t+1

(
yt

)
.

Proof: (Theorem 3) Suppose that there exists an equilibrium in which agents
do not agree at some history y0. Then, by Theorem 2, V1(y0) is a Pareto-optimal
utility level, thus R

ρ0(y
0)

0 = 0. Thus, by the previous Lemma, for each j, k ∈ N ,
and each s > 0, P j

(
Rk

s (ys) 1{ρs=k} = 0|y0
)

= 1, yielding Ej
[
Rk

s1{ρs=k}|y0
]

=
0. Therefore, by (4), V1(y0) = (E1[u1(D1)|y0], E2[u2(D2)|y0]), showing that D1

is Pareto-optimal at y0. Since D is independent of Y0 it must also be Pareto-
optimal at the beginning – a contradiction.

We will now prove Theorem 5. To this end, given any set S ⊂ R
2, let us

write Hull[S] for the convex hull of S, the smallest convex set that includes S.
Note that Hull[U0(P1 ∪ P2)] = {λU0(p [1]) + (1 − λ)U0(p[2])|λ ∈ [0, 1], p [1] ∈
P1, p [2] ∈ P2}.
Lemma 5. U0(P) = Hull[U0(P1 ∪ P2)].

Proof: Given any p∈P, starting at history h0,1, the subgame of G(C, p)
that starts at some y0 before the recognized agent makes his offer coincides
with that of and G(C, p [i0]), where i0 = ρ0

(
y0

)
and p [i0] ∈ Pi0 such that

p [i0]
i
t = pi

t for each t > 0 and i ∈ N , while p [i0]
i0
0 = 1. Therefore, the utility

level for an agent i at equilibrium consumption can be expressed as a mix-
ture of U i

0(p[1]) and U i
0(p[2]) with probabilities p1

0 and p2
0 = 1 − p1

0. Therefore,
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U i
0(p) = p1

0U
i
0(p [1]) + (1− p2

0)U
i
0(p[2]) ∈ Hull[U0(P1 ∪P2)]. On the other hand,

given any v = λU0(p [1]) + (1 − λ)U0(p[2]) ∈ Hull[U0(P1 ∪ P2)], we consider
p ∈ P such that p1

0 = λ and, at any ys and any t > 0, pi
t(y

s) = p [i0]
i
t (ys) for

each i ∈ N where i0 is the agent recognized at 0 according to ys. Once again,
U0(p) = p1

0U0(p [1]) + (1 − p2
0)U0(p[2]), showing that v = U0 (p) ∈ U0 (P).

Lemma 6. mi(v; yt) is a continuous function of v.

Proof: Given any yt and any v ∈ Ũ (X, yt), mi(v; yt) = maxξ∈Dom(v) ξi, where
Dom(v) = {ξ = (E1[u1 ◦ x1[yt]|yt], E2

t [u2 ◦ x2[yt]]|yt)|x[yt] ∈ Ct[yt], ξ ≥ v}.
Note that Dom(v) is always non-empty and compact. Moreover, since ui is
continuous, (v) ⇒ Dom(v) is clearly upper-semi continuous, and hence by the
Maximum Theorem mi(v; yt) is a continuous function of v.

Lemma 7. U0 is continuous in p.

Proof: Using mathematical induction on t, we will show that Vt[p](yt−1)
is continuous in p at each t and yt−1. Firstly, V i

t̄ [p](yt̄−1) = ui(Di(yt̄−1)) is
trivially continuous in p. Assume that Vt+1[p](yt) is continuous in p for each
yt for some t < t̄. Since mi(·; yt) is continuous, it follows that Ri

t (yt) =
mi(Vt+1[p](yt); yt) − V i

t+1[p](yt) is continuous in p for each yt and each i ∈ N .
Thus,

V i
t [p]

(
yt−1

)
= Ei

[
Ri

t

(
yt

)
1{ρt=i}|yt−1

]
+ Ei

[
V i

t+1[p](yt)|yt−1
]

= pi
t

(
yt−1

)
Ei

[
Ri

t

(
yt

) |ρt = i, yt−1
]
+ Ei

[
V i

t+1[p](yt)|yt−1
]

is continuous in p.

The payoff vectors from Pareto-optimal allocations form a connected curve
PF in R

2, which we call the Pareto-frontier. Given any two v, v̄ ∈ PF , we
write [v, v̄]PF = {v ∈ PF |min{v1, v̄1} ≤ v1 ≤ max{v1, v̄1}} for the part of the
Pareto-frontier connecting v to v̄.

Since U0 is continuous and Pi is connected, U0(Pi) is also connected. But,
by Theorem 2, we have U0(Pi) ⊆ PF . Thus,

U0(Pi) = [U0(p [i]), U0 (p̄ [i])]PF . (15)

Using Lemma 5, we obtain the following lemma.

Lemma 8. U0(P)∩PF = U0(P1∪P2) = [U0(p [1]), U0 (p̄ [1])]PF∪[U0(p [1]), U0 (p̄ [1])]PF .

Proof: We have U0(P) ∩ PF = Hull[U0(P1 ∪ P2)] ∩ PF = U0(P1 ∪ P2),
where the first equality is due to Lemma 5, and the second equality is due to
the fact that we have strictly concave utility functions yielding strictly con-
vex set U [X] of materially-feasible utility levels. By (15), we further have
U0(P1 ∪ P2) = [U0(p [1]), U0 (p̄ [1])]PF ∪ [U0(p [1]), U0 (p̄ [1])]PF .
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Proof: (Theorem 5) (See Figure 3 for illustration.) Firstly, the set of all
Pareto-optimal and individually rational utility levels is [U0(p̄ [1]), U0 (p̄ [2])]PF .
Thus, Every Pareto-optimal and individually-rational allocation is obtainable iff
[U0(p̄ [1]), U0 (p̄ [2])]PF ⊆ U0(P). This inclusion holds iff U0(P1) ∩ U0(P2) �= ∅.
[If U0(P1) ∩ U0(P2) �= ∅, then by Lemma 8 we have U0(P) ∩ PF = U0(P1) ∪
U0(P2) = [U0(p̄ [1]), U0 (p̄ [2])]PF . Conversely, when U0(P1) ∩ U0(P2) = ∅, by
Lemma 8, [U0(p̄ [1]), U0 (p̄ [2])]PF \U0(P) = [U0(p [1]), U0

(
p [2]

)
]PF �= ∅.] But

U0(P1) ∩ U0(P2) �= ∅ iff U1
0 (p [1]) ≤ U1

0 (p [2]), and this inequality holds iff
U2

0 (p [2]) ≤ U2
0 (p [1]).
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